JP6094306B2 - Resistance spot welding method for galvanized steel sheet - Google Patents

Resistance spot welding method for galvanized steel sheet Download PDF

Info

Publication number
JP6094306B2
JP6094306B2 JP2013064868A JP2013064868A JP6094306B2 JP 6094306 B2 JP6094306 B2 JP 6094306B2 JP 2013064868 A JP2013064868 A JP 2013064868A JP 2013064868 A JP2013064868 A JP 2013064868A JP 6094306 B2 JP6094306 B2 JP 6094306B2
Authority
JP
Japan
Prior art keywords
steel plate
thickness
welding
spot welding
steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013064868A
Other languages
Japanese (ja)
Other versions
JP2014188539A (en
Inventor
及川 初彦
初彦 及川
元 村山
元 村山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2013064868A priority Critical patent/JP6094306B2/en
Publication of JP2014188539A publication Critical patent/JP2014188539A/en
Application granted granted Critical
Publication of JP6094306B2 publication Critical patent/JP6094306B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、亜鉛系めっき鋼板の抵抗スポット溶接方法に関するものであり、特に、自動車用部品の製造や車体の組立等の工程で使用される抵抗スポット溶接方法において、溶接時の散りの発生や溶接部における欠陥の発生を防止し、連続打点性を向上させることができる亜鉛系めっき鋼板の抵抗スポット溶接方法に関するものである。   TECHNICAL FIELD The present invention relates to a resistance spot welding method for galvanized steel sheets, and in particular, in the resistance spot welding method used in the process of manufacturing automobile parts and assembling a vehicle body, the occurrence of scattering during welding and welding. The present invention relates to a resistance spot welding method for a galvanized steel sheet that can prevent the occurrence of defects in the part and improve the continuous spotting property.

近年、自動車分野では、車体の耐食性向上を目的として、合金化溶融亜鉛めっき鋼板(以下、GA鋼板と略称することがある)や、溶融亜鉛めっき鋼板(以下、GI鋼板と略称することがある)、電気亜鉛めっき鋼板(以下、EG鋼板と略称することがある)等の亜鉛系めっき鋼板が使用されている。また、最近では、低燃費化やCO排出量削減を目的とした車体の軽量化および衝突安全性向上のために、自動車の車体や部品等に、板厚の薄い高強度鋼板が使用されているが、このような高強度鋼板でも、亜鉛系のめっきが被覆された鋼板が使用されている。 In recent years, in the automotive field, for the purpose of improving the corrosion resistance of a vehicle body, an alloyed hot dip galvanized steel sheet (hereinafter sometimes abbreviated as GA steel sheet) or a hot dip galvanized steel sheet (hereinafter sometimes abbreviated as GI steel sheet). Zinc-based plated steel sheets such as electrogalvanized steel sheets (hereinafter sometimes abbreviated as EG steel sheets) are used. Recently, high-strength steel sheets with thin plate thickness have been used for automobile bodies and parts to reduce vehicle weight and improve collision safety for the purpose of reducing fuel consumption and reducing CO 2 emissions. However, even such a high-strength steel plate is a steel plate coated with zinc-based plating.

一方、自動車用部品の製造や車体の組立てでは、抵抗スポット溶接(以下、スポット溶接と略称することがある)が主に用いられているが、亜鉛系めっき鋼板をスポット溶接した場合には、以下のような問題が生じる。
スポット溶接部(溶接継手)の代表的な品質指標としては、引張強さと疲労強度が挙げられる。また、溶接継手の引張強さには、せん断方向に引張荷重を負荷して測定する引張せん断強さ(TSS)と、剥離方向に引張荷重を負荷して測定する十字引張強さ(CTS)がある。また、溶接継手の疲労強度には、せん断方向に引張荷重を負荷して測定する引張せん断疲労強度と、剥離方向に引張荷重を負荷して測定する十字引張疲労強度がある。一般に、引張強さも疲労強度も、スポット溶接部に欠陥(割れや穴等)が無い場合には、設計上問題無い十分に高い値が得られるが、欠陥や割れが存在する場合には、著しい低下が生じる場合がある。
On the other hand, resistance spot welding (hereinafter sometimes abbreviated as spot welding) is mainly used in the manufacture of automobile parts and the assembly of vehicle bodies, but when spot welding is performed on galvanized steel sheets, The following problems arise.
Typical quality indicators for spot welds (welded joints) include tensile strength and fatigue strength. The tensile strength of welded joints includes tensile shear strength (TSS) measured by applying a tensile load in the shear direction and cross tensile strength (CTS) measured by applying a tensile load in the peeling direction. is there. Further, the fatigue strength of a welded joint includes a tensile shear fatigue strength measured by applying a tensile load in the shear direction and a cross tensile fatigue strength measured by applying a tensile load in the peeling direction. In general, when there is no defect (crack, hole, etc.) in the spot welded part, both tensile strength and fatigue strength are sufficiently high with no design problem. However, if there is a defect or crack, it is remarkable. Decrease may occur.

亜鉛系めっき鋼板のスポット溶接では、従来から良く知られているように、スポット溶接時に銅電極の先端が、めっきである亜鉛と反応して合金化する。このCu−Zn合金は非常に硬くて脆いことから、連続打点時に脱落して電極先端径が拡大し、電流密度が低下してナゲット径が徐々に小さくなり、やがてナゲットが形成されなくなるという問題が生じる。また、銅電極の先端が合金化すると、その部分の電気抵抗が増加して、電極/鋼板間での発熱量が増加する。さらに、合金化した部分の熱伝導度が低下することから、水冷された電極での冷却効果が下がり、その結果、溶接時にめっき鋼板の表面温度や溶接部全体の温度が上昇し、その結果、散りが発生したり、過大発熱によって穴あきや割れ等の欠陥が生じることがある。   In spot welding of a zinc-based plated steel sheet, as is well known, the tip of the copper electrode reacts with zinc as plating to form an alloy during spot welding. Since this Cu—Zn alloy is very hard and brittle, there is a problem that it drops off at the time of continuous hitting, the electrode tip diameter is enlarged, the current density is lowered, the nugget diameter is gradually reduced, and the nugget is not formed. Arise. Further, when the tip of the copper electrode is alloyed, the electrical resistance of the portion increases, and the amount of heat generated between the electrode / steel plate increases. Furthermore, since the thermal conductivity of the alloyed portion is reduced, the cooling effect of the water-cooled electrode is reduced, and as a result, the surface temperature of the plated steel sheet and the temperature of the entire welded portion are increased during welding, and as a result, Spattering may occur, and excessive heat generation may cause defects such as holes or cracks.

従来、めっき鋼板のスポット溶接において連続打点性を向上させる技術としては、電極寿命を改善する技術がほとんどであり、数多くの提案がなされている。例えば、特許文献1には、めっき層の表面の80%以上が3μm以下の結晶粒の合金層で構成されたGA鋼板の表面に、ZnOを主体とする酸化皮膜を形成させることによってスポット溶接性を改善する技術が開示されている。
また、特許文献2には、GA鋼板のめっき層最表層に存在する金属Zn(η相)およびAlを低減・除去することにより、電極チップ表面の発熱と電極チップへの金属Znの拡散を抑制し、連続打点性を改善する技術が開示されている。
Conventionally, as a technique for improving the continuous spot property in spot welding of a plated steel sheet, most of the techniques improve the electrode life, and many proposals have been made. For example, Patent Document 1 discloses spot weldability by forming an oxide film mainly composed of ZnO on the surface of a GA steel plate in which 80% or more of the surface of the plating layer is composed of an alloy layer of crystal grains of 3 μm or less. A technique for improving the above is disclosed.
Further, Patent Document 2 discloses that by reducing / removing metal Zn (η phase) and Al 2 O 3 existing in the outermost layer of the plated layer of the GA steel plate, heat generation on the surface of the electrode tip and metal Zn on the electrode tip are eliminated. A technique for suppressing diffusion and improving continuous spotting is disclosed.

また、特許文献3には、GAめっき層中のAl量を低減するとともに、Alを酸化物として無害化することにより、電極寿命を改善する技術が開示されている。
また、特許文献4には、GI鋼板またはGA鋼板のめっき層表面にFe−P−Oめっき層を形成させることにより、スポット溶接性を改善する技術が開示されている。
さらに、特許文献5および特許文献6には、スポット溶接用の電極の電極先端部あるいは芯部を電極本体とは異なる材料とすることにより、電極寿命を向上させる技術が開示されている。
また、特許文献7には、めっき鋼板と非めっき鋼板のスポット溶接において、規定された目付量、板厚の鋼板、アルミナ分散銅の電極を使用し、規定された電流でスポット溶接を行うことにより、電極寿命を向上させる方法が開示されている。
Patent Document 3 discloses a technique for improving the electrode life by reducing the amount of Al in the GA plating layer and detoxifying Al as an oxide.
Patent Document 4 discloses a technique for improving spot weldability by forming a Fe—P—O plating layer on the surface of a GI steel plate or GA steel plate.
Further, Patent Document 5 and Patent Document 6 disclose a technique for improving the electrode life by using a material different from that of the electrode body for the electrode tip or core of the electrode for spot welding.
Further, in Patent Document 7, in spot welding of a plated steel plate and a non-plated steel plate, a spot weight, a steel plate of a plate thickness, an electrode of alumina dispersed copper is used, and spot welding is performed at a specified current. A method for improving the electrode life is disclosed.

特開昭63−230861号公報Japanese Patent Laid-Open No. Sho 63-230861 特開平10−330902号公報Japanese Patent Laid-Open No. 10-330902 特開平04−021750号公報Japanese Patent Laid-Open No. 04-021750 特開平08−269780号公報Japanese Patent Laid-Open No. 08-269780 特開平05−305456号公報JP 05-305456 A 特開平06−179082号公報Japanese Patent Laid-Open No. 06-179082 特開2005−279679号公報JP 2005-279679 A

しかしながら、特許文献1〜3の技術はGA鋼板に関するものであり、めっき層が容易に溶融するGI鋼板には適用できないという問題がある。また、GA鋼板においては、特許文献3に記載の技術のように、Alを低減した場合に、めっき層中で硬くて脆い合金層の発達を促進する他、めっき時にドロス付着が起こり易くなり、めっき性状の低下を招くという問題がある。
また、特許文献4の技術は、めっき層の変更を伴うものであり、通常のGI鋼板の溶接性を改善する技術ではない。
However, the techniques of Patent Documents 1 to 3 relate to a GA steel sheet, and there is a problem that it cannot be applied to a GI steel sheet in which a plating layer is easily melted. In addition, in the GA steel sheet, as in the technique described in Patent Document 3, when Al is reduced, in addition to promoting the development of a hard and brittle alloy layer in the plating layer, dross adhesion is likely to occur during plating, There is a problem that the plating properties are deteriorated.
Moreover, the technique of patent document 4 is accompanied by the change of a plating layer, and is not a technique which improves the weldability of a normal GI steel plate.

また、特許文献5および特許文献6に記載の技術は、特殊な構成の電極を用いているため、汎用性に欠けるという問題がある。そのため、GI鋼板をスポット溶接する場合には、電極寿命が短い分、頻繁に電極の交換を行うことで対応しているのが実情である。
また、特許文献7に記載の技術は、溶接条件等によって連続打点性を向上させる技術であるが、この技術をもってしても、全ての鋼種、板厚、板組みで、連続打点性を向上させるのは困難である。
さらに加えて、特許文献1〜7に記載の技術は、いずれも連続打点性を向上させることを目的とする技術ではあるものの、散りの発生や穴あき、割れ等の欠陥の発生を防止することは困難である。
Further, the techniques described in Patent Document 5 and Patent Document 6 have a problem that they lack general versatility because they use electrodes having a special configuration. Therefore, when spot welding the GI steel sheet, the fact is that the electrode life is short, so that the electrode is frequently exchanged for the actual situation.
Moreover, although the technique of patent document 7 is a technique which improves continuous spot property by welding conditions etc., even if it has this technique, continuous spot property is improved with all the steel types, board thickness, and board assembly. It is difficult.
In addition, the techniques described in Patent Documents 1 to 7 are all techniques aimed at improving the continuous spotting property, but prevent the occurrence of defects such as scattering, perforation and cracking. It is difficult.

ここで、図5、6に、両面に亜鉛系めっきが被覆された、板厚の薄い鋼板101(101A)と、これよりも板厚が厚く、両面に亜鉛系めっきが被覆された鋼板101(101B)を重ね合わせ、従来の方法でスポット溶接を行った場合の溶接部の断面を示す。   Here, in FIGS. 5 and 6, a steel plate 101 (101A) having a thin plate thickness coated with zinc-based plating on both surfaces and a steel plate 101 (101A) having a thicker plate thickness and coated with zinc-based plating on both surfaces are shown. 101B) is superimposed, and the cross section of the welded part when spot welding is performed by a conventional method is shown.

図5、6に示すように、従来の方法でスポット溶接を行った場合、鋼板のめっきが被覆された側に配置された電極が、めっきと反応して合金化する。そして、この合金化した部分の電気抵抗が増加して、電極/鋼板間での発熱量が増加する。さらに、合金化した部分の熱伝導度が低下することから、水冷された電極での冷却効果が下がり、溶接時に鋼板のめっきが被覆された側の表面温度や溶接部全体の温度が上昇し、表面で散りが発生するという問題が生じる。その結果、従来の方法では、過大発熱により、図5に示すように、溶接金属部(符号103Aを参照)が飛散して欠陥(符号104を参照)が生じたり、図6に示すような割れ105が発生したりするという問題が生じていた。   As shown in FIGS. 5 and 6, when spot welding is performed by a conventional method, the electrode disposed on the side of the steel plate coated with the metal reacts with the plating to form an alloy. And the electrical resistance of this alloyed part increases and the emitted-heat amount between an electrode / steel plate increases. Furthermore, since the thermal conductivity of the alloyed portion is reduced, the cooling effect of the water-cooled electrode is lowered, the surface temperature of the side coated with the steel plate during welding and the temperature of the entire welded portion are increased, The problem arises that scattering occurs on the surface. As a result, in the conventional method, due to excessive heat generation, as shown in FIG. 5, the weld metal part (see reference numeral 103A) scatters and a defect (see reference numeral 104) occurs, or cracks as shown in FIG. 105 has occurred.

本発明は上記問題に鑑みてなされたものであり、亜鉛系めっき鋼板を連続打点で抵抗スポット溶接した場合においても、散り発生による作業性の低下を防止するとともに、スポット溶接部の表面における穴あきや割れ等の欠陥の発生を防止することができ、抵抗スポット溶接における連続打点数が3000点を超えるような長い電極寿命を得ることが可能な亜鉛系めっき鋼板の抵抗スポット溶接方法を提供することを目的とする。   The present invention has been made in view of the above problems, and even when resistance spot welding is performed on a zinc-based plated steel sheet at a continuous spot, the workability is prevented from being deteriorated due to the occurrence of splattering, and the surface of the spot welded portion is perforated. To provide a resistance spot welding method for galvanized steel sheets that can prevent the occurrence of defects such as cracks and cracks and can obtain a long electrode life such that the number of continuous dots in resistance spot welding exceeds 3000 points. With the goal.

本発明者等が上記問題を解決するために鋭意研究したところ、鋼板のめっき目付量および板厚、抵抗スポット溶接条件を規定することにより、電極/めっき鋼板界面での過大な温度上昇を防止して電極に対する熱負荷を軽減させ、電極先端での合金化反応を抑制できることを知見した。そして、鋼板の板厚比を規定して抵抗スポット溶接を行うことにより、鋼板間に確実にナゲットが形成されることを見出した。
さらに、本発明者等は、抵抗スポット溶接電源に直流電源を用い、電極損耗が少ない正極(+)側を薄い鋼板側に配置した場合には、電極先端での合金化をより効果的に抑制できることを見出した。また、これに加え、合金化した電極先端部を、適宜最適な厚さでドレッシングする方法を採用することで、効果的に合金層を除去することが可能であることを見出した。
これらにより、電極先端での合金化による熱伝導度の低下を抑制し、散り発生や穴あき、割れ等の欠陥発生を防止し、連続打点性を向上させることが可能となることを見出し、本発明を完成させた。
即ち、本発明の要旨は以下のとおりである。
The inventors of the present invention have intensively studied to solve the above-mentioned problems. As a result, the excessive amount of temperature rise at the electrode / plated steel sheet interface is prevented by defining the coating weight and thickness of the steel sheet and the resistance spot welding conditions. It was found that the thermal load on the electrode can be reduced and the alloying reaction at the electrode tip can be suppressed. And it discovered that a nugget was formed reliably between steel plates by prescribing the thickness ratio of steel plates and performing resistance spot welding.
Furthermore, the present inventors more effectively suppress alloying at the electrode tip when a DC power source is used for the resistance spot welding power source and the positive electrode (+) side with less electrode wear is arranged on the thin steel plate side. I found out that I can do it. In addition to this, it has been found that the alloy layer can be effectively removed by adopting a method of dressing the alloyed electrode tip with an appropriate thickness as appropriate.
By these, it is found that it is possible to suppress a decrease in thermal conductivity due to alloying at the electrode tip, prevent occurrence of defects such as scattering, perforation, cracking, etc., and improve the continuous spotting performance. Completed the invention.
That is, the gist of the present invention is as follows.

[1] 電極に接する側または両面に片面あたり30〜100g/mの亜鉛系めっきが被覆された板厚0.5〜1.0mmの第1の鋼板と、該第1の鋼板よりも板厚が厚い、非めっき、あるいは、片面または両面に片面あたり30〜100g/mの亜鉛系めっきが被覆された板厚0.7〜3.0mmの第2の鋼板とを重ね合わせ、抵抗スポット溶接を行う亜鉛系めっき鋼板の抵抗スポット溶接方法であって、前記第1の鋼板と前記第2の鋼板との板厚比を下記(1)式で表される範囲にするとともに、前記第1の鋼板および第2の鋼板の平均板厚を、下記(2)式で表される平均板厚tm1とした時に、重ね合わせられた前記第1の鋼板と前記第2の鋼板の間を、溶接電流WC、溶接時間WT1、保持時間HT、スポット溶接時の電極の加圧力EF1の各々を下記(3)〜(6)式で表される条件に設定し、且つ、前記溶接電流WCを7.8(kA)以上として抵抗スポット溶接することを特徴とする亜鉛系めっき鋼板の抵抗スポット溶接方法。
1.2≦t2/t1≦3.0 ・・・(1)
tm1=(t1+t2)/2 ・・・(2)
0.80×Ie≦WC≦0.98×Ie ・・・(3)
(10×t1+2)/60≦WT1≦(10×tm1+2)/50 ・・・(4)
HT≦0.2 ・・・(5)
1.96×t1≦EF1≦3.19×tm1 ・・・(6)
{但し、上記(1)〜(6)式において、t1:第1の鋼板の板厚(mm)、t2:第2の鋼板の板厚(mm)、tm1:第1の鋼板および第2の鋼板の平均板厚(mm)、Ie:散り発生電流(kA)、WC:溶接電流(kA)、WT1:溶接時間(s)、HT:溶接通電後に鋼板を電極で加圧する保持時間(s)、EF1:スポット溶接時の電極の加圧力(kN)を示す。}
[1] A first steel plate having a thickness of 0.5 to 1.0 mm in which 30 to 100 g / m 2 of zinc-based plating is coated on one side or both sides in contact with the electrode, and a plate that is more than the first steel plate Thick, non-plated, or superposed with a second steel plate with a thickness of 0.7-3.0 mm coated with zinc-based plating of 30-100 g / m 2 per side on one or both sides, resistance spot A resistance spot welding method for a galvanized steel sheet to be welded, wherein a thickness ratio between the first steel sheet and the second steel sheet is within a range represented by the following formula (1), and the first When the average plate thickness of the steel plate and the second steel plate is set to the average plate thickness tm1 represented by the following formula (2), welding is performed between the superimposed first steel plate and the second steel plate. Current WC, welding time WT1, holding time HT, electrode of spot welding Zinc system set condition represented each pressure EF1 below (3) to (6), and, wherein the welding current WC for resistance spot welding as a the 7.8 (kA) or Resistance spot welding method for plated steel sheet.
1.2 ≦ t2 / t1 ≦ 3.0 (1)
tm1 = (t1 + t2) / 2 (2)
0.80 × Ie ≦ WC ≦ 0.98 × Ie (3)
(10 × t1 + 2) / 60 ≦ WT1 ≦ (10 × tm1 + 2) / 50 (4)
HT ≦ 0.2 (5)
1.96 × t1 ≦ EF1 ≦ 3.19 × tm1 (6)
{However, in the above formulas (1) to (6), t1: the thickness of the first steel plate (mm), t2: the thickness of the second steel plate (mm), tm1: the first steel plate and the second steel plate Average plate thickness (mm) of steel plate, Ie: Scattering current (kA), WC: Welding current (kA), WT1: Welding time (s), HT: Holding time (s) for pressing the steel plate with electrodes after welding energization , EF1: Indicates the applied pressure (kN) of the electrode during spot welding. }

[2] 電極に接する側または両面に片面あたり30〜100g/mの亜鉛系めっきが被覆された板厚0.5〜1.0mmの第1の鋼板と、該第1の鋼板よりも板厚が厚い、非めっき、あるいは、片面または両面に片面あたり30〜100g/mの亜鉛系めっきが被覆された板厚0.6〜2.0mmの第3の鋼板とを重ね合わせ、さらに、前記第3の鋼板側に、前記第1の鋼板よりも板厚が厚く、非めっき、あるいは、片面または両面に片面あたり30〜100g/mの亜鉛系めっきが被覆された板厚0.6〜2.0mmの第4の鋼板を重ね合わせ、抵抗スポット溶接を行う亜鉛系めっき鋼板の抵抗スポット溶接方法であって、前記第1の鋼板と、前記第3の鋼板および第4の鋼板の合計板厚との比を下記(7)式で表される範囲にするとともに、前記第1の鋼板、第3の鋼板および第4の鋼板の3枚重ねを2枚重ねと仮定した時の平均板厚を、下記(8)式で表される平均板厚tm2とした時に、重ね合わせられた前記第1、3、4の鋼板の各々の間を、溶接電流WC、保持時間HTの各々を、請求項1に記載の(3)、(5)式で表される条件に設定するとともに、溶接時間WT2、スポット溶接時の電極の加圧力EF2を下記(9)、(10)式で表される条件に設定し、且つ、前記溶接電流WCを7.5(kA)以上として抵抗スポット溶接することを特徴とする亜鉛系めっき鋼板の抵抗スポット溶接方法。
1.2≦(t3+t4)/t1≦3.0 ・・・(7)
tm2=(t1+t3+t4)/2 ・・・(8)
(10×t1+2)/60≦WT2≦(10×tm2+2)/50 ・・・(9)
1.96×t1≦EF2≦3.19×tm2 ・・・(10)
{但し、上記(7)〜(10)式において、t1:第1の鋼板の板厚(mm)、t3:第3の鋼板の板厚(mm)、t4:第4の鋼板の板厚(mm)、tm2:第1の鋼板、第3の鋼板および第4の鋼板の3枚重ねを2枚重ねと仮定した時の平均板厚(mm)、WT2:溶接時間(s)、EF2:スポット溶接時の電極の加圧力(kN)を示す。}
[2] A first steel plate having a thickness of 0.5 to 1.0 mm in which 30 to 100 g / m 2 of zinc-based plating is coated on one side or both sides in contact with the electrode, and a plate more than the first steel plate Thick, non-plated, or superposed with a third steel plate with a thickness of 0.6 to 2.0 mm, coated on one or both sides with a zinc-based plating of 30 to 100 g / m 2 per side, A thickness of 0.6 on the third steel plate side, which is thicker than the first steel plate and coated with 30-100 g / m 2 of zinc plating per side or non-plated or on one side or both sides. A resistance spot welding method for a zinc-based plated steel sheet in which resistance spot welding is performed by superimposing a ~ 2.0 mm fourth steel sheet, and the sum of the first steel sheet, the third steel sheet, and the fourth steel sheet Set the ratio to the plate thickness within the range expressed by the following formula (7). In addition, an average plate thickness tm2 expressed by the following equation (8) is assumed when three sheets of the first steel plate, the third steel plate, and the fourth steel plate are assumed to be two layers. The welding current WC and the holding time HT are respectively expressed by the equations (3) and (5) according to claim 1 between each of the first, third, and fourth steel plates that are overlapped. The welding time WT2, the electrode pressing force EF2 at the time of spot welding are set to the conditions represented by the following equations (9) and (10) , and the welding current WC is 7.5 ( resistance spot welding process of galvanized steel sheet, characterized in that as the kA) above will be resistance spot welding.
1.2 ≦ (t3 + t4) /t1≦3.0 (7)
tm2 = (t1 + t3 + t4) / 2 (8)
(10 × t1 + 2) / 60 ≦ WT2 ≦ (10 × tm2 + 2) / 50 (9)
1.96 × t1 ≦ EF2 ≦ 3.19 × tm2 (10)
{However, in the above formulas (7) to (10), t1: the thickness of the first steel plate (mm), t3: the thickness of the third steel plate (mm), t4: the thickness of the fourth steel plate ( mm), tm2: average plate thickness (mm) when assuming that the first steel plate, the third steel plate, and the fourth steel plate are stacked in two, WT2: welding time (s), EF2: spot The pressure (kN) of the electrode at the time of welding is shown. }

[3] 電極に接する側または両面に片面あたり30〜100g/mの亜鉛系めっきが被覆された板厚0.5〜1.0mmの第1の鋼板と、該第1の鋼板よりも板厚が厚い、非めっき、あるいは、片面または両面に片面あたり30〜100g/mの亜鉛系めっきが被覆された板厚0.7〜3.0mmの第2の鋼板とを重ね合わせ、さらに、前記第2の鋼板側に、該第2の鋼板よりも板厚が薄く、非めっき、あるいは、電極に接する面または両面に片面あたり30〜100g/mの亜鉛系めっきが被覆された板厚0.5〜1.0mmの第5の鋼板を重ね合わせ、抵抗スポット溶接を行う亜鉛系めっき鋼板の抵抗スポット溶接方法であって、前記第1の鋼板と前記第2の鋼板との板厚比を請求項1に記載の(1)式、前記第5の鋼板と前記第2の鋼板との板厚比を下記(11)式で表される範囲に設定するとともに、前記第1の鋼板、前記第2の鋼板および前記第5の鋼板の3枚重ねを2枚重ねと仮定した時の平均板厚を、下記(12)式で表される平均板厚tm3とした時に、重ね合わせられた前記第1の鋼板、前記第2の鋼板および第5の鋼板の各々の間を、溶接電流WC、保持時間HTの各々を請求項1に記載の(3)、(5)式で表される条件に設定するとともに、溶接時間WT3、スポット溶接時の電極の加圧力EF3を下記(13)、(14)式で表される条件に設定し、且つ、前記溶接電流WCを7.6(kA)以上として抵抗スポット溶接することを特徴とする亜鉛系めっき鋼板の抵抗スポット溶接方法。
1.2≦t2/t5≦3.0 ・・・(11)
tm3=(t1+t2+t5)/2 ・・・(12)
(10×t1+2)/60≦WT3≦(10×tm3+2)/50 ・・・(13)
1.96×t1≦EF3≦3.19×tm3 ・・・(14)
{但し、上記(11)〜(14)式において、t1:第1の鋼板の板厚(mm)、t2:第2の鋼板の板厚(mm)、t5:第5の鋼板の板厚(mm)、tm3:第1の鋼板、第2の鋼板および第5の鋼板の3枚重ねを2枚重ねと仮定した時の平均板厚(mm)、WT3:溶接時間(s)、EF3:スポット溶接時の電極の加圧力(kN)を示す。}
[3] A first steel plate having a thickness of 0.5 to 1.0 mm in which a zinc-based plating of 30 to 100 g / m 2 is coated on one side or both sides in contact with the electrode, and a plate more than the first steel plate Thick, non-plated, or overlapped with a second steel plate having a thickness of 0.7 to 3.0 mm coated with 30 to 100 g / m 2 of zinc-based plating on one side or both sides, The thickness of the second steel plate is thinner than that of the second steel plate, and is coated with 30 to 100 g / m 2 of zinc-based plating per side on the non-plated surface or both sides in contact with the electrode. A resistance spot welding method for a zinc-based plated steel sheet in which a fifth steel sheet having a thickness of 0.5 to 1.0 mm is overlapped and resistance spot welding is performed, and the thickness ratio between the first steel sheet and the second steel sheet The formula (1) according to claim 1, the fifth steel plate and the The plate thickness ratio with the second steel plate is set to a range represented by the following expression (11), and two three-layered stacks of the first steel plate, the second steel plate, and the fifth steel plate are stacked. When assuming that the average plate thickness is an average plate thickness tm3 represented by the following equation (12), each of the superposed first steel plate, the second steel plate, and the fifth steel plate is used. The welding current WC and the holding time HT are set to the conditions represented by the equations (3) and (5) according to claim 1, and the welding time WT3 and the electrode pressure EF3 during spot welding are set. the following (13), (14) is set to the condition of the formula, and the resistance of the galvanized steel sheet, characterized in that the resistance spot welding the welding current WC as a 7.6 (kA) or Spot welding method.
1.2 ≦ t2 / t5 ≦ 3.0 (11)
tm3 = (t1 + t2 + t5) / 2 (12)
(10 × t1 + 2) / 60 ≦ WT3 ≦ (10 × tm3 + 2) / 50 (13)
1.96 × t1 ≦ EF3 ≦ 3.19 × tm3 (14)
{However, in the above formulas (11) to (14), t1: the thickness of the first steel plate (mm), t2: the thickness of the second steel plate (mm), t5: the thickness of the fifth steel plate ( mm), tm3: average plate thickness (mm) when assuming that the first steel plate, the second steel plate, and the fifth steel plate are stacked in two, WT3: welding time (s), EF3: spot The pressure (kN) of the electrode at the time of welding is shown. }

[4] 抵抗スポット溶接電源として直流電源を用いることを特徴とする上記[1]〜[3]の何れか1項に記載の亜鉛系めっき鋼板の抵抗スポット溶接方法。
[5] 抵抗スポット溶接電源として直流電源を用い、板厚の薄い前記第1の鋼板側が正極(+)、板厚の厚い前記第2の鋼板側が負極(−)となるように電極を配置して抵抗スポット溶接することを特徴とする上記[1]に記載の亜鉛系めっき鋼板の抵抗スポット溶接方法。
[6] 抵抗スポット溶接電源として直流電源を用い、前記第1の鋼板または前記第の鋼板の内、何れか薄い側が正極(+)、厚い側が負極(−)となるように電極を配置して抵抗スポット溶接することを特徴とする上記[2]に記載の亜鉛系めっき鋼板の抵抗スポット溶接方法。
[7] 上記[1]〜[6]の何れか1項に記載の方法を用いて、鋼板同士を重ね合わせて抵抗スポット溶接を連続打点で行う際、鋼板表面に散りが発生した時点で溶接を中断し、電極の表面から0.1〜1.0mmの厚さでドレッシングを行った後、抵抗スポット溶接による連続打点を再開することを特徴とする亜鉛系めっき鋼板の抵抗スポット溶接方法。
[4] The resistance spot welding method for a galvanized steel sheet according to any one of [1] to [3], wherein a direct current power source is used as the resistance spot welding power source.
[5] A DC power source is used as the resistance spot welding power source, and the electrodes are arranged so that the first steel plate side with the thin plate thickness is the positive electrode (+) and the second steel plate side with the thick plate thickness is the negative electrode (−). Resistance spot welding of the galvanized steel sheet according to [1] above, wherein resistance spot welding is performed.
[6] A direct current power source is used as a resistance spot welding power source, and the electrode is arranged so that either one of the first steel plate or the fourth steel plate is a positive electrode (+) and the thicker one is a negative electrode (-). Resistance spot welding of the galvanized steel sheet according to the above [2], wherein resistance spot welding is performed.
[7] Using the method described in any one of [1] to [6] above, when steel plates are overlapped and resistance spot welding is performed with continuous striking, welding is performed when scattering occurs on the steel plate surface. The method of resistance spot welding of a zinc-based plated steel sheet is characterized in that, after performing the dressing at a thickness of 0.1 to 1.0 mm from the surface of the electrode, continuous spotting by resistance spot welding is resumed.

本発明の亜鉛系めっき鋼板の抵抗スポット溶接方法によれば、鋼板のめっき目付量および板厚、抵抗スポット溶接条件を適正範囲に規定することにより、電極/めっき鋼板界面および溶接部全体での過大な温度上昇を抑制して電極に対する熱負荷を軽減させ、電極先端での合金化反応を抑制することができ、さらに、鋼板の板厚比を適正範囲に規定することにより、鋼板間に確実にナゲットを形成させることができる。これにより、電極先端での合金化による熱伝導度の低下を抑制し、散り発生や穴あき、割れ等の欠陥発生を防止することで、連続打点性を向上させることができるので、良好な溶接作業性を確保しつつ、信頼性の高い溶接金属部を形成させることが可能となる。従って、例えば、自動車用部品の製造や車体の組立て等で用いる亜鉛系めっき鋼板のスポット溶接に本発明を適用することにより、自動車分野での亜鉛系めっき鋼板の適用による耐食性向上や、それに伴う安全性、耐久性向上のメリットなどを十分に享受することができ、その社会的な貢献は多大である。   According to the resistance spot welding method for a zinc-based plated steel sheet according to the present invention, it is possible to overload the electrode / plated steel sheet interface and the entire welded part by defining the coating weight and thickness of the steel sheet and the resistance spot welding conditions within appropriate ranges. The temperature load on the electrodes can be reduced by suppressing the temperature rise, and the alloying reaction at the electrode tip can be suppressed. Nuggets can be formed. This suppresses the decrease in thermal conductivity due to alloying at the electrode tip and prevents the occurrence of defects such as splattering, perforation, cracking, etc., so that it is possible to improve the continuous spotting performance, so good welding It is possible to form a highly reliable weld metal part while ensuring workability. Therefore, for example, by applying the present invention to spot welding of galvanized steel sheets used in the production of automobile parts, assembling of car bodies, etc., the corrosion resistance is improved by the application of galvanized steel sheets in the automobile field, and the safety associated therewith. It is possible to fully enjoy the benefits of improving performance and durability, and its social contribution is great.

本発明に係る亜鉛系めっき鋼板の抵抗スポット溶接方法の第1の実施形態を模式的に説明する図であり、2枚の亜鉛系めっき鋼板を重ね合わせて抵抗スポット溶接を行い、溶接金属部を形成した状態を示す断面図である。BRIEF DESCRIPTION OF THE DRAWINGS It is a figure which illustrates typically 1st Embodiment of the resistance spot welding method of the zinc-plated steel plate which concerns on this invention, superimposing two zinc-based plated steel plates, performing resistance spot welding, and welding metal part It is sectional drawing which shows the formed state. 本発明に係る亜鉛系めっき鋼板の抵抗スポット溶接方法の第1の実施形態を説明する図であり、通電パターンおよび加圧パターンを示すグラフである。It is a figure explaining 1st Embodiment of the resistance spot welding method of the zinc-plated steel plate which concerns on this invention, and is a graph which shows an electricity supply pattern and a pressurization pattern. 本発明に係る亜鉛系めっき鋼板の抵抗スポット溶接方法の第2の実施形態を模式的に説明する図であり、3枚の亜鉛系めっき鋼板を重ね合わせて抵抗スポット溶接を行い、溶接金属部を形成した状態を示す断面図である。It is a figure which illustrates typically 2nd Embodiment of the resistance spot welding method of the zinc-plated steel plate which concerns on this invention, superimposes three zinc-plated steel plates, performs resistance spot welding, and welds a metal part. It is sectional drawing which shows the formed state. 本発明に係る亜鉛系めっき鋼板の抵抗スポット溶接方法の第3の実施形態を模式的に説明する図であり、3枚の亜鉛系めっき鋼板を重ね合わせて抵抗スポット溶接を行い、溶接金属部を形成した状態を示す断面図である。It is a figure which illustrates typically 3rd Embodiment of the resistance spot welding method of the zinc-plated steel plate which concerns on this invention, superimposes three zinc-based plated steel plates, performs resistance spot welding, and carries out the welding metal part. It is sectional drawing which shows the formed state. 従来の抵抗スポット溶接方法で、亜鉛系めっき鋼板を2枚重ねにして抵抗スポット溶接を行った場合を模式的に説明する図であり、溶接金属部を形成した際に発生する欠陥を示す断面図である。It is a figure explaining typically the case where resistance spot welding is performed by overlapping two zinc-based plated steel sheets by a conventional resistance spot welding method, and is a cross-sectional view showing defects generated when a weld metal part is formed It is. 従来の抵抗スポット溶接方法で、亜鉛系めっき鋼板を2枚重ねにして抵抗スポット溶接を行った場合を模式的に説明する図であり、溶接金属部に発生した割れを示す断面図である。It is a figure which illustrates typically the case where resistance spot welding is performed by overlapping two zinc-based plated steel sheets by a conventional resistance spot welding method, and is a cross-sectional view showing a crack generated in a weld metal part.

以下、本発明の亜鉛系めっき鋼板の抵抗スポット溶接方法の第1〜第3の実施形態について、主に図1〜図4を適宜参照しながら説明する。なお、本実施形態は、本発明の亜鉛系めっき鋼板の抵抗スポット溶接方法の趣旨をより良く理解させるために詳細に説明するものであるから、特に指定の無い限り本発明を限定するものではない。   Hereinafter, the first to third embodiments of the resistance spot welding method for a zinc-based plated steel sheet according to the present invention will be described mainly with reference to FIGS. In addition, since this embodiment explains in detail in order to make the meaning of the resistance spot welding method of the zinc-plated steel plate of this invention better understood, unless otherwise specified, this invention is not limited. .

近年、特に自動車分野においては、低燃費化やCO排出量削減を目的とした車体の軽量化および衝突安全性向上に加え、車体の耐食性向上を目的として、GA鋼板やGI鋼板等の亜鉛系めっきが施された、板厚の薄い高強度鋼板を使用するニーズが高まっている。また、このような亜鉛系めっき鋼板が用いられてなる車体の組立や部品の取付け等を行う場合には、主として抵抗スポット溶接方法が用いられるが、スポット溶接を行った場合に、散りの発生を抑制しながら連続的に溶接することができ、かつ、溶接金属部に発生する欠陥や割れを抑制することが可能な、高い作業性と継手特性を実現できる方法に対するニーズが非常に高まっている。このようなニーズに対し、本発明では、上述したように、溶接方法自体は通常のスポット溶接方法と同じであるが、さらに、鋼板のめっき目付量、板厚、組合せ板厚比、溶接電流、溶接時間および保持時間の各々を最適に規定して抵抗スポット溶接を行う方法としている。これにより、亜鉛系めっき鋼板同士の溶接において、通電パターンを実用の溶接条件範囲内で制御しながら、従来と同様の抵抗スポット溶接設備等を用いて、溶接時の散りの発生を抑制して良好な溶接作業性を確保しつつ、欠陥や割れの発生が抑制された信頼性の高い溶接金属部を形成させることで、亜鉛系めっき鋼板同士を溶接することが可能になるというものである。 In recent years, especially in the automotive field, in addition to reducing the weight of vehicles and improving collision safety for the purpose of reducing fuel consumption and reducing CO 2 emissions, zinc-based steels such as GA steel plates and GI steel plates are being used to improve the corrosion resistance of vehicle bodies. There is a growing need to use high-strength steel sheets that are plated and thin. In addition, the resistance spot welding method is mainly used when assembling a vehicle body or mounting parts using such a zinc-based plated steel sheet. However, when spot welding is performed, the occurrence of scattering occurs. There is a great need for a method capable of achieving high workability and joint characteristics that can be continuously welded while being suppressed, and that can suppress defects and cracks occurring in the weld metal part. For such needs, in the present invention, as described above, the welding method itself is the same as a normal spot welding method, but further, the coating weight of the steel sheet, the plate thickness, the combined plate thickness ratio, the welding current, The resistance spot welding is performed by optimizing each of the welding time and the holding time. As a result, in welding between galvanized steel sheets, it is possible to suppress the occurrence of scattering during welding using the same resistance spot welding equipment as before, while controlling the energization pattern within the range of practical welding conditions. It is possible to weld galvanized steel sheets by forming a highly reliable weld metal part in which the occurrence of defects and cracks is suppressed while ensuring good welding workability.

また、本発明に係る方法においては、上記各条件に加え、さらに、スポット溶接時の加圧力や、電源の種類、電極先端のドレッシング条件等を付加した場合には、亜鉛系めっき鋼板を連続打点で抵抗スポット溶接した場合であっても、溶接時の散りの発生や、欠陥・割れが生じるのをより効果的に抑制することが可能となる。
以下、本発明の亜鉛系めっき鋼板の抵抗スポット溶接方法の各実施形態について詳細に説明する。
Further, in the method according to the present invention, in addition to the above-mentioned conditions, in addition, when a welding pressure at the time of spot welding, a type of power source, a dressing condition of the electrode tip, etc. are added, the galvanized steel sheet is continuously spotted. Even when resistance spot welding is performed, it is possible to more effectively suppress the occurrence of scatter and defects / cracks during welding.
Hereinafter, each embodiment of the resistance spot welding method of the galvanized steel sheet of the present invention will be described in detail.

[第1の実施形態]
本実施形態の亜鉛系めっき鋼板の抵抗スポット溶接方法は、図1に例示するように、電極2Aに接する側または両面に片面あたり30〜100g/mの亜鉛系めっきが被覆された板厚0.5〜1.0mmの第1の鋼板1Aと、この第1の鋼板1Aよりも板厚が厚い、非めっき、あるいは、片面または両面に片面あたり30〜100g/mの亜鉛系めっきが被覆された板厚0.7〜3.0mmの第2の鋼板1Bとを重ね合わせ、抵抗スポット溶接を行う方法である。具体的には、本実施形態では、第1の鋼板1Aと第2の鋼板1Bとの板厚比を下記(1)式で表される範囲にするとともに、第1の鋼板1Aおよび第2の鋼板1Bの平均板厚を、下記(2)式で表される平均板厚tm1とした時に、重ね合わせられた第1の鋼板1Aと第2の鋼板1Bの間を、溶接電流WC、溶接時間WT1、保持時間HT、スポット溶接時の電極の加圧力EF1の各々を下記(3)〜(6)式で表される条件に設定して抵抗スポット溶接する方法を採用している。
1.2≦t2/t1≦3.0 ・・・(1)
tm1=(t1+t2)/2 ・・・(2)
0.80×Ie≦WC≦0.98×Ie ・・・(3)
(10×t1+2)/60≦WT1≦(10×tm1+2)/50 ・・・(4)
HT≦0.2 ・・・(5)
1.96×t1≦EF1≦3.19×tm1 ・・・(6)
但し、上記(1)〜(6)式において、t1:第1の鋼板1Aの板厚(mm)、t2:第2の鋼板1Bの板厚(mm)、tm1:第1の鋼板1Aおよび第2の鋼板1Bの平均板厚(mm)、Ie:散り発生電流(kA)、WC:溶接電流(kA)、WT1:溶接時間(s)、HT:溶接通電後に鋼板を電極で加圧する保持時間(s)、EF1:スポット溶接時の電極の加圧力(kN)を示す。
[First Embodiment]
As shown in FIG. 1, the resistance spot welding method of the zinc-based plated steel sheet according to the present embodiment has a thickness 0 in which 30 to 100 g / m 2 of zinc-based plating is coated on one side or both sides in contact with the electrode 2A. .5 to 1.0 mm of a first steel plate 1A and a thicker plate than the first steel plate 1A, non-plated, or coated with zinc-based plating of 30 to 100 g / m 2 per side on one or both sides In this method, resistance spot welding is performed by superimposing the second steel plate 1B having a thickness of 0.7 to 3.0 mm. Specifically, in the present embodiment, the thickness ratio of the first steel plate 1A and the second steel plate 1B is set to a range represented by the following formula (1), and the first steel plate 1A and the second steel plate 1B are set. When the average plate thickness of the steel plate 1B is the average plate thickness tm1 represented by the following formula (2), the welding current WC and the welding time are set between the first steel plate 1A and the second steel plate 1B superimposed. A resistance spot welding method is adopted in which WT1, holding time HT, and electrode pressing force EF1 at the time of spot welding are set to the conditions represented by the following formulas (3) to (6).
1.2 ≦ t2 / t1 ≦ 3.0 (1)
tm1 = (t1 + t2) / 2 (2)
0.80 × Ie ≦ WC ≦ 0.98 × Ie (3)
(10 × t1 + 2) / 60 ≦ WT1 ≦ (10 × tm1 + 2) / 50 (4)
HT ≦ 0.2 (5)
1.96 × t1 ≦ EF1 ≦ 3.19 × tm1 (6)
However, in the above formulas (1) to (6), t1: the thickness of the first steel plate 1A (mm), t2: the thickness of the second steel plate 1B (mm), tm1: the first steel plate 1A and the first steel plate 1A No. 2 steel plate 1B average plate thickness (mm), Ie: Scattering current (kA), WC: Welding current (kA), WT1: Welding time (s), HT: Holding time for pressurizing the steel plate with electrodes after welding energization (S), EF1: The applied pressure (kN) of the electrode during spot welding is shown.

「抵抗スポット溶接方法」
図1は、本発明において亜鉛系めっき鋼板(第1の鋼板1A、第2の鋼板1Bを参照)を溶接するのに用いられる、一般的な抵抗スポット溶接方法を説明するための模式図である。
本発明で用いられる抵抗スポット溶接方法とは、まず、被溶接材である亜鉛系めっき鋼板、即ち、本例においては第1の鋼板1Aと第2の鋼板1Bとの2枚を重ね合わせる。そして、これら第1の鋼板1Aおよび第2の鋼板1Bの重ね合わせ部分に対して両側から、即ち、図1に示す例では上下方向から挟み込むように、銅合金からなる電極2A、2Bを押し付けつつ通電することにより、第1の鋼板1Aと第2の鋼板1Bとの間に溶融金属部を形成させる。この溶融金属部は、溶接通電が終了した後、水冷された電極2A、2Bによる抜熱や鋼板自体への熱伝導によって急速に冷却されて凝固し、第1の鋼板1Aと第2の鋼板1Bとの間に、図示例のような断面楕円形状のナゲット(溶接金属部)3が形成される。このようなナゲット3が形成されることにより、第1の鋼板1Aと第2の鋼板1Bとが溶接される。
"Resistance spot welding method"
FIG. 1 is a schematic diagram for explaining a general resistance spot welding method used for welding galvanized steel sheets (see the first steel sheet 1A and the second steel sheet 1B) in the present invention. .
In the resistance spot welding method used in the present invention, first, a galvanized steel sheet as a material to be welded, that is, in this example, two sheets of a first steel sheet 1A and a second steel sheet 1B are overlapped. Then, while pressing the electrodes 2A and 2B made of copper alloy so as to be sandwiched from both sides with respect to the overlapping portion of the first steel plate 1A and the second steel plate 1B, that is, in the example shown in FIG. By energizing, a molten metal portion is formed between the first steel plate 1A and the second steel plate 1B. After the welding energization is completed, the molten metal portion is rapidly cooled and solidified by heat removal by the water-cooled electrodes 2A and 2B or heat conduction to the steel plate itself, and the first steel plate 1A and the second steel plate 1B. Between the two, a nugget (welded metal portion) 3 having an elliptical cross section as shown in the example is formed. By forming such a nugget 3, the first steel plate 1A and the second steel plate 1B are welded.

本発明に係る溶接方法は、上述のような抵抗スポット溶接方法による溶接において、亜鉛系めっき鋼板のめっき目付量、板厚、組合せ板厚比に加え、さらに、溶接電流、溶接時間および保持時間等を、以下に説明するような適正範囲に規定することにより、溶接時の散りの発生を抑制しながら、ナゲット3における欠陥や割れ等の発生を防止できる方法である。   In the welding method according to the present invention, in the welding by the resistance spot welding method as described above, in addition to the coating weight of the galvanized steel sheet, the plate thickness, the combined plate thickness ratio, the welding current, the welding time, the holding time, etc. Is defined in an appropriate range as will be described below, thereby preventing the occurrence of defects or cracks in the nugget 3 while suppressing the occurrence of scattering during welding.

「鋼板特性の限定理由」
以下に、本実施形態における被溶接物である亜鉛系めっき鋼板(第1の鋼板1A、第2の鋼板1B)の鋼板特性の限定理由について詳述する。
"Reason for limiting steel sheet properties"
Below, the reason for limitation of the steel plate characteristics of the zinc-based plated steel plate (the first steel plate 1A and the second steel plate 1B), which is the work piece in this embodiment, will be described in detail.

(板厚および板厚比)
本実施形態では、被溶接物である亜鉛系めっき鋼板の板厚に関し、まず、第2の鋼板1Bの板厚を、第1の鋼板1Aよりも厚い板厚に規定している。具体的には、第1の鋼板1Aの板厚を0.5〜1.0mmの範囲に規定し、第2の鋼板1Bの板厚を0.7〜3.0mmの範囲に規定したうえで、上記範囲内において、第2の鋼板1Bが第1の鋼板1Aよりも厚い板厚を有するものとしている。
(Thickness and thickness ratio)
In this embodiment, regarding the plate thickness of the zinc-based plated steel plate that is the workpiece, first, the plate thickness of the second steel plate 1B is defined to be thicker than that of the first steel plate 1A. Specifically, after the thickness of the first steel plate 1A is specified in the range of 0.5 to 1.0 mm and the thickness of the second steel plate 1B is specified in the range of 0.7 to 3.0 mm. Within the above range, the second steel plate 1B is thicker than the first steel plate 1A.

本実施形態において、2枚の亜鉛系めっき鋼板の内、薄い側の鋼板である第1の鋼板1Aの板厚の下限を0.5mmに規定したのは、これ未満では電極に対する熱負荷が大きく、電極先端での合金化が極端に進み、本発明をもってしても、散りや欠陥発生の防止効果が得られにくいためである。また、第1の鋼板1Aの板厚の上限を1.0mmに規定したのは、これを超えると、そもそも、電極先端における合金化があまり進まないことから、散りや欠陥発生の問題が生じないため、本発明の適用対象外とした。   In the present embodiment, the lower limit of the thickness of the first steel plate 1A, which is the thin steel plate among the two zinc-based plated steel plates, is regulated to 0.5 mm. This is because alloying at the electrode tip is extremely advanced, and even with the present invention, it is difficult to obtain the effect of preventing the occurrence of scattering and defects. In addition, the upper limit of the thickness of the first steel plate 1A is defined as 1.0 mm. If the upper limit is exceeded, the alloying at the electrode tip does not progress so much in the first place, so that the problem of occurrence of scattering and defects does not occur. Therefore, it was excluded from the scope of application of the present invention.

また、2枚の亜鉛系めっき鋼板の内、厚い側の鋼板である第2の鋼板1Bの板厚の下限を0.7mmに規定したのは、第1の鋼板1Aの場合と同様、これ未満では電極に対する熱負荷が大きく、電極先端での合金化が極端に進み、本発明をもってしても、散りや欠陥発生の防止効果が得られにくいためである。また、第2の鋼板1Bの板厚の上限を3.0mmに規定した点についても、第1の鋼板1Aの場合と同様、これを超えると、そもそも、電極先端における合金化があまり進まないことから、散りや欠陥発生の問題が生じないため、本発明の適用対象外とした。   In addition, the lower limit of the thickness of the second steel plate 1B, which is the thick steel plate of the two zinc-based plated steel plates, is set to 0.7 mm, as in the case of the first steel plate 1A. In this case, the heat load on the electrode is large, and alloying at the electrode tip is extremely advanced, and even with the present invention, it is difficult to obtain the effect of preventing scattering and defect generation. Moreover, also about the point which prescribed | regulated the upper limit of the plate | board thickness of the 2nd steel plate 1B to 3.0 mm, when exceeding this similarly to the case of the 1st steel plate 1A, alloying in an electrode tip should not progress so much in the first place. Therefore, since the problem of scattering and the occurrence of defects does not occur, it was excluded from the scope of application of the present invention.

また、上記範囲の板厚を有する第1の鋼板1Aと第2の鋼板1Bとの板厚比は、上記(1)式、即ち、次式{1.2≦t2/t1≦3.0}で表される範囲に規定する。第1の鋼板1Aと第2の鋼板1Bとの板厚比(t2/t1)が1.2未満だと、板厚比が高い場合に比べて、第1の鋼板1Aの表面に近い側にナゲットが形成されて表面の温度が高くなり易くなるため、板厚比が高い場合に比べて電極先端における合金化が進み、散りの発生や欠陥発生の問題が生じ易くなる。また、第1の鋼板1Aと第2の鋼板1Bとの板厚比が3.0を超えると、厚い第2の鋼板1B側に偏ってナゲットが生成され、2枚の鋼板の界面の位置でナゲットが形成され難くなることから、所望の溶接強度が得られなくなるおそれがある。   The thickness ratio between the first steel plate 1A and the second steel plate 1B having a thickness in the above range is the above equation (1), that is, the following equation {1.2 ≦ t2 / t1 ≦ 3.0} Stipulated in the range represented by When the plate thickness ratio (t2 / t1) between the first steel plate 1A and the second steel plate 1B is less than 1.2, it is closer to the surface of the first steel plate 1A than when the plate thickness ratio is high. Since the nugget is formed and the surface temperature is likely to increase, alloying at the electrode tip proceeds more than in the case where the plate thickness ratio is high, and the problem of occurrence of scattering and defects is likely to occur. Further, when the plate thickness ratio between the first steel plate 1A and the second steel plate 1B exceeds 3.0, nuggets are generated biased toward the thick second steel plate 1B, and at the position of the interface between the two steel plates. Since it becomes difficult to form a nugget, there is a possibility that a desired welding strength cannot be obtained.

さらに、本実施形態では、上記範囲の板厚を有する第1の鋼板1Aおよび第2の鋼板1Bの平均板厚tm1を、上記(2)式、即ち、次式{tm1=(t1+t2)/2}で定義した。これは、本発明に係る抵抗スポット溶接のように、亜鉛系めっき鋼板を異厚で2枚重ねや3枚重ねとする場合には、全ての鋼板の板厚を加算し、2枚重ねとして平均した値を鋼板の板厚として溶接時間や加圧力を設定することが、散りや欠陥が生じるのを抑制する観点から望ましいためである。   Furthermore, in this embodiment, the average plate thickness tm1 of the first steel plate 1A and the second steel plate 1B having the plate thickness in the above range is expressed by the above formula (2), that is, the following formula {tm1 = (t1 + t2) / 2 }. This is the same as the resistance spot welding according to the present invention, when two or three galvanized steel sheets are stacked with different thicknesses, the thicknesses of all the steel sheets are added and averaged as two sheets. This is because it is desirable to set the welding time and the applied pressure using the measured value as the plate thickness of the steel sheet from the viewpoint of suppressing the occurrence of scattering and defects.

(めっき)
本実施形態では、被溶接物である亜鉛系めっき鋼板表面のめっきに関し、第1の鋼板1Aについては、電極2Aに接する側または両面に、片面あたりで30〜100g/mの亜鉛系めっきが被覆されたものとする。また、第1の鋼板1Aよりも板厚が厚い第2の鋼板1Bについては、非めっきであるか、あるいは、片面または両面に片面あたり30〜100g/mの亜鉛系めっきが被覆されたものとする。
(Plating)
In this embodiment, regarding the plating on the surface of the zinc-based plated steel sheet, which is an object to be welded, about the first steel sheet 1A, 30-100 g / m 2 of zinc-based plating per side is provided on the side or both sides in contact with the electrode 2A. It shall be covered. Moreover, about the 2nd steel plate 1B whose plate | board thickness is thicker than the 1st steel plate 1A, it is a non-plating thing, or 30-100 g / m < 2 > zinc-based plating per single side | surface was coat | covered on the single side | surface or both surfaces And

板厚が薄い亜鉛系めっき鋼板である第1の鋼板1Aの片面あたりの目付量が30(g/m)未満だと、そもそも、電極先端における合金化があまり進まないことから、散りや欠陥発生の問題が生じないため、本発明の適用対象外とした。また、第1の鋼板1Aの片面あたりの目付量が100(g/m)を超えると、電極先端(電極2A)での合金化が極端に進み、本発明をもってしても、散りや欠陥発生の防止効果が得られにくいことから、これを上限とした。また、めっきの目付け量が片面あたりでこの上限を超えた場合には、このめっき層が溶接の際の障害となるおそれがある。 If the basis weight per side of the first steel plate 1A, which is a thin zinc-plated steel plate, is less than 30 (g / m 2 ), alloying at the tip of the electrode will not progress so much in the first place. Since the problem of occurrence does not occur, it was excluded from the scope of application of the present invention. Further, when the basis weight per one side of the first steel plate 1A exceeds 100 (g / m 2 ), alloying at the electrode tip (electrode 2A) proceeds extremely, and even with the present invention, scattering and defects This is the upper limit because it is difficult to obtain the effect of preventing the occurrence. Further, when the plating weight per unit area exceeds this upper limit, this plating layer may become an obstacle during welding.

板厚が厚い亜鉛系めっき鋼板である第2の鋼板1Bを非めっきとせず、片面または両面に亜鉛系めっきを施す場合、片面あたりの目付量が30(g/m)未満だと、そもそも、電極先端における合金化があまり進まないことから、散りや欠陥発生の問題が生じないため、本発明の適用対象外とした。また、第2の鋼板1Bの片面あたりの目付量が100(g/m)を超えると、第1の鋼板1Aの場合と同様、電極先端(電極2B)での合金化が極端に進み、本発明をもってしても、散りや欠陥発生の防止効果が得られにくいことから、これを上限とした。また、第1の鋼板1Aの場合と同様、めっきの目付け量が片面あたりでこの上限を超えた場合には、このめっき層が溶接の際の障害となるおそれがある。 If the second steel plate 1B, which is a thick zinc-based plated steel plate, is not unplated, and one side or both sides are subjected to zinc-based plating, if the basis weight per side is less than 30 (g / m 2 ), Since the alloying at the electrode tip does not progress so much, the problem of scattering and the occurrence of defects does not occur, so it was excluded from the scope of application of the present invention. Further, when the basis weight per one side of the second steel plate 1B exceeds 100 (g / m 2 ), as in the case of the first steel plate 1A, alloying at the electrode tip (electrode 2B) proceeds extremely, Even with the present invention, the effect of preventing the occurrence of scattering and defects is difficult to obtain, so this was made the upper limit. Further, as in the case of the first steel plate 1A, if the plating weight per unit area exceeds this upper limit per one side, this plating layer may become an obstacle during welding.

なお、本発明において、亜鉛系めっき鋼板の表面に設けられるめっき層の種類については、亜鉛系のめっきであれば特に限定されない。例えば、Zn系、Zn−Fe系、Zn−Ni系、Zn−Al系、Zn−Mg系等、従来公知の亜鉛系めっきを採用すれば良い。また、めっき層の表層に無機系、有機系の皮膜(例えば、潤滑皮膜等)が施されていても良い。   In the present invention, the type of the plating layer provided on the surface of the zinc-based plated steel sheet is not particularly limited as long as it is zinc-based plating. For example, conventionally known zinc-based plating such as Zn-based, Zn-Fe-based, Zn-Ni-based, Zn-Al-based, Zn-Mg-based, etc. may be employed. Further, an inorganic or organic film (for example, a lubricating film) may be applied to the surface layer of the plating layer.

(引張強さ)
本発明では、被溶接物である亜鉛系めっき鋼板(第1の鋼板1A、第2の鋼板1B)の引張強さについては、特に限定されず、例えば、自動車分野等で一般的に用いられる、引張強さが270〜1800MPa程度の軟鋼板、高強度鋼板に亜鉛系めっきが施されたものを用いることができる。
(Tensile strength)
In the present invention, there is no particular limitation on the tensile strength of the zinc-based plated steel sheet (first steel sheet 1A, second steel sheet 1B) that is the work piece, and for example, it is generally used in the automotive field or the like. A mild steel plate having a tensile strength of about 270 to 1800 MPa, or a high strength steel plate obtained by applying zinc plating can be used.

一般に、鋼板の引張強さが900MPa以上である場合に、溶接後の溶接金属部において欠陥や割れが発生し易いことが知られている。このため、本発明においては、特に、この引張強さ以上である亜鉛系めっき鋼板を用いた場合に、欠陥や割れの防止効果が顕著となる。一方、亜鉛系めっき鋼板の引張強さが1800MPaを超える場合には、本発明による欠陥や割れの防止効果が得られ難くなる可能性がある。   Generally, when the tensile strength of a steel plate is 900 MPa or more, it is known that defects and cracks are likely to occur in the weld metal part after welding. For this reason, in this invention, especially when the zinc-based plated steel plate which is more than this tensile strength is used, the prevention effect of a defect and a crack becomes remarkable. On the other hand, when the tensile strength of the galvanized steel sheet exceeds 1800 MPa, the effect of preventing defects and cracks according to the present invention may be difficult to obtain.

(鋼種)
本発明では、被溶接物である亜鉛系めっき鋼板をなす鋼種については特に限定されず、例えば、軟鋼板(フェライト主体)や、2相組織型(例えば、フェライト中にマルテンサイトを含む組織、フェライト中にベイナイトを含む組織)、加工誘起変態型(フェライト中に残留オーステナイトを含む組織)、微細結晶型(フェライト主体組織)等の高強度鋼板等、何れの型の鋼板であっても良い。何れの鋼種からなる亜鉛系めっき鋼板であっても、本発明のスポット溶接方法を適用することにより、スポット溶接の際の散りの発生や、欠陥、割れが発生するのを防止でき、鋼板の特性を損なうことなく、信頼性の高い溶接継手(溶接金属部)が得られる。
(Steel grade)
In the present invention, the type of steel forming the galvanized steel sheet to be welded is not particularly limited. For example, a mild steel sheet (mainly ferrite), a two-phase structure type (for example, a structure containing martensite in ferrite, ferrite, Any type of steel sheet may be used, such as a high-strength steel sheet such as a microstructure containing bainite), a processing-induced transformation type (structure containing residual austenite in ferrite), or a fine crystal type (ferrite main structure). Regardless of the type of galvanized steel sheet, by applying the spot welding method of the present invention, it is possible to prevent the occurrence of scattering, defects and cracks during spot welding, and the characteristics of the steel sheet. A highly reliable welded joint (welded metal part) can be obtained without impairing.

また、本発明の亜鉛系めっき鋼板の抵抗スポット溶接方法の適用は、同種の鋼板の組合せに限定されるものではなく、各規定を満たす鋼板の溶接であれば、本実施形態で例示する同種異厚の他、異種異厚の組合せで行うことも可能である。   In addition, the application of the resistance spot welding method for the zinc-based plated steel sheet according to the present invention is not limited to the combination of the same kind of steel sheets. In addition to the thickness, a combination of different thicknesses may be used.

「溶接条件の限定理由」
以下に、本実施形態で規定する抵抗スポット溶接の際の溶接条件について、その限定理由を詳述する。
"Reasons for limiting welding conditions"
Below, the reason for limitation is explained in full detail about the welding conditions in the case of resistance spot welding prescribed | regulated by this embodiment.

(溶接電流:WC)
本実施形態においては、抵抗スポット溶接を行う際の溶接電流を、上記(3)式、即ち、次式{0.80×Ie≦WC≦0.98×Ie}で表される範囲に規定する。ここで、上記(3)式中のIe(kA)とは散り発生電流(溶接電流を増加させた時に散りが発生し始める電流)であり、被溶接物である亜鉛系めっき鋼板の鋼種や板厚、板組み、めっきの有無、めっきの目付量等に応じて変化する数値である。
(Welding current: WC)
In the present embodiment, the welding current at the time of resistance spot welding is defined in the above formula (3), that is, a range represented by the following formula {0.80 × Ie ≦ WC ≦ 0.98 × Ie}. . Here, Ie (kA) in the above formula (3) is a scatter generation current (current that starts to scatter when the welding current is increased), and the steel type and plate of the galvanized steel sheet to be welded It is a numerical value that changes depending on the thickness, the plate assembly, the presence or absence of plating, the basis weight of plating, and the like.

溶接電流WCが上記(3)式で表される範囲未満、即ち、散り発生電流Ieの0.80倍を下回ると、連続打点時のナゲット径の低下速度が早くなり、連続打点性が向上しない。また、溶接電流WCが上記(3)式で表される範囲超、即ち散り発生電流Ieの0.98倍を超えると、散りや欠陥が発生し易くなる。   If the welding current WC is less than the range expressed by the above formula (3), that is, less than 0.80 times the scattering generation current Ie, the rate of decrease of the nugget diameter at the time of continuous hitting becomes faster, and the continuous spotting performance is not improved. . Further, if the welding current WC exceeds the range represented by the above formula (3), that is, exceeds 0.98 times the scattering generation current Ie, scattering and defects are likely to occur.

(溶接時間:WT1)
本実施形態においては、抵抗スポット溶接を行う際の溶接時間を、上記(4)式、即ち、次式{(10×t1+2)/60≦WT1≦(10×tm1+2)/50}で表される範囲に規定する。溶接時間(WT1)の範囲は、上記(4)式中に示されるように、その下限は第1の鋼板1Aの板厚t1に依存し、また、上限は、第1の鋼板1Aと第2の鋼板1Bの平均板厚tm1に依存する。
(Welding time: WT1)
In this embodiment, the welding time when performing resistance spot welding is expressed by the above equation (4), that is, the following equation {(10 × t1 + 2) / 60 ≦ WT1 ≦ (10 × tm1 + 2) / 50}. Specified in the range. The range of the welding time (WT1), as shown in the above formula (4), the lower limit depends on the thickness t1 of the first steel plate 1A, and the upper limit is the first steel plate 1A and the second steel plate 1A. Depends on the average thickness tm1 of the steel plate 1B.

溶接時間WT1が上記(4)式で表される範囲未満、即ち、次式{(10×t1+2)/60}(s)を下回ると、ナゲット3において十分な大きさの径が得られない。また、溶接時間WT1が上記(4)式で表される範囲超、即ち、次式{(10×tm1+2)/50}を超えると、溶接中に電極先端で合金化反応が進行し、散りや欠陥が発生し易くなるとともに、溶接時間が長くなって作業性低下の原因となる。溶接時間WT1は、電極2A、2Bの先端とめっきとの反応を最小限に抑えるためには、可能な限り短いことが好ましい。   When the welding time WT1 is less than the range represented by the above equation (4), that is, less than the following equation {(10 × t1 + 2) / 60} (s), a sufficiently large diameter cannot be obtained in the nugget 3. Further, if the welding time WT1 exceeds the range represented by the above formula (4), that is, exceeds the following formula {(10 × tm1 + 2) / 50}, the alloying reaction proceeds at the electrode tip during welding, Defects are likely to occur, and the welding time becomes longer, causing workability to deteriorate. The welding time WT1 is preferably as short as possible in order to minimize the reaction between the tips of the electrodes 2A and 2B and the plating.

(溶接通電後に電極で鋼板を加圧する保持時間:HT)
本実施形態においては、上記溶接電流WC、溶接時間WT1の条件で溶接通電した後、引き続き、上記(5)式で表されるように、0.2(s)以下(200(ms)以下)の保持時間HTで電極2A、2Bによって第1の鋼板1Aおよび第2の鋼板1Bを保持する。保持時間HTが200(ms)を超えると、保持時間中に電極先端の合金化反応が進み、散りや欠陥が発生し易くなる。
また、保持時間HTは、電極2A、2Bの先端とめっきとの反応を最小限に防ぐためには、可能な限り短いことが好ましいが、短すぎると、ナゲット中心部で収縮欠陥が発生する場合があるので、溶接時の散りの発生や、欠陥の発生を抑制する効果が確実に得られる最小時間とすることが好ましい。
(Holding time to press the steel plate with electrode after welding energization: HT)
In the present embodiment, after energizing the welding under the conditions of the welding current WC and the welding time WT1, as expressed by the above equation (5), 0.2 (s) or less (200 (ms) or less) The first steel plate 1A and the second steel plate 1B are held by the electrodes 2A and 2B with the holding time HT. When the holding time HT exceeds 200 (ms), the alloying reaction of the electrode tip proceeds during the holding time, and scattering and defects are likely to occur.
The holding time HT is preferably as short as possible in order to minimize the reaction between the tips of the electrodes 2A and 2B and the plating, but if it is too short, a shrinkage defect may occur in the center of the nugget. Therefore, it is preferable to set the minimum time for which the effect of suppressing the occurrence of scattering during welding and the occurrence of defects can be reliably obtained.

一般に、亜鉛系めっき鋼板のスポット溶接におけるにおける欠陥や割れの発生は、溶接部での発熱や冷却、ナゲット形成位置等に影響される。特に、片側に板厚の薄い鋼板が配置された場合には、合金化によって電極/めっき鋼板界面の温度が上昇し、また、電極での冷却能が下がると、溶融部が表面にまで到達し、表面から散りが発生して穴あき等の欠陥が発生する。また、溶融部が表面に到達しなくても、めっき鋼板の表面温度が上昇して、めっきである亜鉛がオーステナイト粒界に浸入し、通電後の収縮によって割れが生じる。   In general, the occurrence of defects and cracks in spot welding of galvanized steel sheets is affected by heat generation and cooling at the welded portion, nugget formation position, and the like. In particular, when a thin steel plate is placed on one side, the temperature at the electrode / plated steel plate interface rises due to alloying, and when the cooling capacity at the electrode decreases, the molten part reaches the surface. Scattering from the surface causes defects such as holes. Even if the melted portion does not reach the surface, the surface temperature of the plated steel sheet rises, and zinc as plating penetrates into the austenite grain boundaries, and cracking occurs due to shrinkage after energization.

抵抗スポット溶接では、冷却速度が非常に速いため、凝固中に急激な収縮が起こる。その際、電極による加圧力無しに溶融した金属を自由凝固させると、最後に凝固した溶接金属中央部で欠陥が発生したり、周囲の拘束によって割れが発生したりする場合がある。これに対し、溶接通電後、十分な加圧力で電極2A、2Bを溶接金属の収縮過程に追従させると、溶接金属の中央部に残留した溶融金属を押し込むため、ナゲットにおける収縮欠陥の発生を抑制させ、また、割れの発生も抑制することが可能となる。ここで、溶接金属は、完全に凝固するまで、水冷された電極2A、2Bで加圧することが重要であり、そのためには、本実施形態で説明するように、保持時間HTを適正範囲に設定することが重要となる。   In resistance spot welding, the cooling rate is so fast that rapid contraction occurs during solidification. At that time, if the molten metal is freely solidified without applying pressure by the electrode, a defect may occur in the central portion of the weld metal that has been solidified last, or cracks may occur due to surrounding constraints. On the other hand, when the electrodes 2A and 2B are made to follow the shrinkage process of the weld metal with sufficient pressure after welding energization, the molten metal remaining in the center of the weld metal is pushed in, so the occurrence of shrinkage defects in the nugget is suppressed. It is also possible to suppress the occurrence of cracks. Here, it is important to pressurize the weld metal with the water-cooled electrodes 2A and 2B until the weld metal is completely solidified. For that purpose, as described in the present embodiment, the holding time HT is set to an appropriate range. It is important to do.

本実施形態では、上記条件で溶接通電を行った後、引き続き、所定の加圧力で、上記(5)で表される保持時間HTで、第1の鋼板1Aおよび第2の鋼板1Bを電極2A、2Bで加圧保持することにより、上述のような、溶接金属の中央部に残留した溶融金属を押し込む作用が得られる。これにより、ナゲット3における収縮欠陥の発生を抑制させ、割れの発生も抑制することができる。   In the present embodiment, after the welding energization is performed under the above-described conditions, the first steel plate 1A and the second steel plate 1B are continuously connected to the electrode 2A with the predetermined pressurizing force and the holding time HT represented by the above (5). By pressurizing and holding at 2B, the effect | action which pushes in the molten metal which remained in the center part of a weld metal as mentioned above is acquired. Thereby, generation | occurrence | production of the contraction defect in the nugget 3 can be suppressed and generation | occurrence | production of a crack can also be suppressed.

(電極の加圧力:EF1)
本実施形態では、上記条件の溶接通電ならびに電極による保持を行う際の、第1の鋼板1Aおよび第2の鋼板1Bに対する電極2A、2Bの加圧力EF1は、下記(6)式で表される範囲に設定すると、上述した散りの発生の防止や欠陥防止の効果が顕著に得られる点から好ましい。
1.96×t1≦EF1≦3.19×tm1 ・・・(6)
但し、上記(6)式において、EF1:スポット溶接時の電極の加圧力(kN)、t1:第1の鋼板1Aの板厚(mm)、tm1:第1の鋼板1Aおよび第2の鋼板1Bの平均板厚(mm)を示す。
(Electrode pressure: EF1)
In this embodiment, the applied pressure EF1 of the electrodes 2A and 2B with respect to the first steel plate 1A and the second steel plate 1B at the time of welding energization and holding by the above conditions is expressed by the following equation (6). Setting to a range is preferable from the viewpoint that the effects of preventing the above-described scattering and preventing defects can be obtained remarkably.
1.96 × t1 ≦ EF1 ≦ 3.19 × tm1 (6)
However, in the above equation (6), EF1: pressure applied to the electrode during spot welding (kN), t1: plate thickness (mm) of the first steel plate 1A, tm1: first steel plate 1A and second steel plate 1B The average plate thickness (mm) is shown.

電極の加圧力EF1が上記(6)式で表される範囲未満、即ち、第1の鋼板1Aの板厚t1の1.96倍を下回ると、鋼板間で十分な接触径が得られず、溶接時に散りが発生し易くなって、十分な大きさのナゲット径が得られない。また、加圧力EF1が上記(6)式で表される範囲超、即ち、平均板厚tm1の3.19倍を超えると、溶接部の窪みが大きくなって継手強度が低下する。   When the applied pressure EF1 of the electrode is less than the range represented by the above formula (6), that is, less than 1.96 times the thickness t1 of the first steel plate 1A, a sufficient contact diameter cannot be obtained between the steel plates, Scattering is likely to occur during welding, and a sufficiently large nugget diameter cannot be obtained. Further, if the pressing force EF1 exceeds the range represented by the above formula (6), that is, exceeds 3.19 times the average plate thickness tm1, the dent of the welded portion becomes large and the joint strength decreases.

(通電パターンおよび加圧パターン)
本実施形態では、溶接電流WC、溶接時間WT1、保持時間HTおよび電極の加圧力EFの各条件を上記規定とした場合、その通電パターンおよび加圧パターンは、図2のグラフに示すようなパターンとなる。本実施形態では、このような通電パターンおよび加圧パターンにおいて、上記規定範囲内で各条件を設定することができる。また、本発明においては、図2のグラフに示すような通電パターンおよび加圧パターンには限定されず、溶接条件を上記範囲で変更しながら、適宜、異なるパターンに変更することも可能である。
(Energization pattern and pressure pattern)
In the present embodiment, when the conditions of the welding current WC, the welding time WT1, the holding time HT, and the electrode pressing force EF are defined as above, the energization pattern and the pressurizing pattern are patterns as shown in the graph of FIG. It becomes. In this embodiment, in such an energization pattern and a pressurization pattern, each condition can be set within the specified range. Moreover, in this invention, it is not limited to the electricity supply pattern and pressurization pattern as shown in the graph of FIG. 2, It is also possible to change into a different pattern suitably, changing welding conditions in the said range.

(電源の種類)
本実施形態では、抵抗スポット溶接に用いる電源は特に限定されず、一般的な交流電源を用いることができるが、その他、直流インバーター等の直流電源を用いることも可能である。
(Type of power supply)
In this embodiment, the power source used for resistance spot welding is not particularly limited, and a general AC power source can be used, but a DC power source such as a DC inverter can also be used.

ここで、抵抗スポット溶接電源に直流電源を用いた場合には、板厚の薄い第1の鋼板1A側が正極(+)、板厚の厚い第2の鋼板1B側が負極(−)となるように電極2A、2Bを配置することが好ましい。一般に、板厚の薄い鋼板を用いると、この薄い鋼板側に配置される電極先端において合金化が生じ易く、電極損耗も生じ易い。本実施形態では、溶接電源に直流電源を用いるとともに、電極損耗が少ない正極(+)側の電極(図1に示す例では電極2A側)を薄い第1の鋼板1A側に配置することにより、電極先端における合金化をより効果的に抑制することが可能となる。これにより、電極先端における発熱増加と熱伝導度の低下を抑制し、散りの発生や、穴あき、割れ等の欠陥発生を防止できるとともに、連続打点性を向上させることが可能となる。   Here, when a direct current power source is used as the resistance spot welding power source, the first steel plate 1A side with a thin plate thickness is a positive electrode (+), and the second steel plate 1B side with a thick plate thickness is a negative electrode (-). It is preferable to arrange the electrodes 2A and 2B. In general, when a thin steel plate is used, alloying is likely to occur at the electrode tip disposed on the thin steel plate side, and electrode wear tends to occur. In the present embodiment, a DC power source is used for the welding power source, and the positive electrode (+) side electrode (electrode 2A side in the example shown in FIG. 1) with less electrode wear is disposed on the thin first steel plate 1A side. It becomes possible to more effectively suppress alloying at the electrode tip. As a result, an increase in heat generation and a decrease in thermal conductivity at the electrode tip can be suppressed, and the occurrence of scattering, perforation, cracking, and other defects can be prevented, and continuous spotting can be improved.

(電極のドレッシング)
本実施形態においては、上記方法で亜鉛系めっき鋼板同士を重ね合わせて抵抗スポット溶接を連続打点で行う際、第1の鋼板1Aまたは第2の鋼板1Bの何れかの表面に散りが発生した時点で溶接を中断し、電極2A、2Bの表面、特に電極先端の表面から0.1〜1.0mmの厚さでドレッシングを行った後、抵抗スポット溶接による連続打点を再開する方法を採用しても良い。このように、連続打点による抵抗スポット溶接で合金化した電極先端部を、適宜、最適な厚さでドレッシングすることにより、電極先端における発熱増加と熱伝導度の低下を抑制できるので、散りの発生や、穴あき、割れ等の欠陥の発生を防止し、連続打点性を向上させることが可能となる。この際のドレッシングの厚さが0.1mm未満だと、電極表面の合金層が十分に除去されず、散りや欠陥の発生防止効果がない。また、ドレッシングの厚さが1.0mmを超えると、ドレッシングの度に電極の肉厚が薄くなり過ぎ、電極寿命が短くなる。
(Electrode dressing)
In the present embodiment, when the zinc-plated steel sheets are overlapped with each other by the above method and resistance spot welding is performed at a continuous spot, the time when scattering occurs on the surface of either the first steel sheet 1A or the second steel sheet 1B. After the welding is interrupted, dressing is performed at a thickness of 0.1 to 1.0 mm from the surfaces of the electrodes 2A and 2B, particularly from the surface of the electrode tip, and then a continuous spot by resistance spot welding is resumed. Also good. In this way, by dressing the tip of the electrode alloyed by resistance spot welding with continuous striking with an appropriate thickness as appropriate, it is possible to suppress an increase in heat generation and a decrease in thermal conductivity at the tip of the electrode. In addition, it is possible to prevent the occurrence of defects such as perforations and cracks and to improve the continuous spotting performance. If the dressing thickness at this time is less than 0.1 mm, the alloy layer on the electrode surface is not sufficiently removed, and there is no effect of preventing the occurrence of scattering and defects. On the other hand, if the dressing thickness exceeds 1.0 mm, the electrode thickness becomes too thin for each dressing, and the electrode life is shortened.

(抵抗スポット溶接設備)
本発明に係る亜鉛系めっき鋼板の抵抗スポット溶接方法は、本実施形態で説明したように、鋼板のめっき目付量、板厚および板厚比に加え、溶接電流や溶接時間、保持時間等の抵抗スポット溶接条件を最適化した方法なので、例えば、図1に例示するような電極2が備えられた従来公知の抵抗スポット溶接設備を何ら制限無く採用することが可能である。
(Resistance spot welding equipment)
As described in the present embodiment, the resistance spot welding method for a zinc-plated steel sheet according to the present invention includes resistances such as welding current, welding time, holding time, etc. in addition to the coating weight of the steel sheet, the sheet thickness, and the sheet thickness ratio. Since the spot welding conditions are optimized, for example, a conventionally known resistance spot welding equipment provided with the electrode 2 as illustrated in FIG. 1 can be used without any limitation.

[第2の実施形態]
本発明の亜鉛系めっき鋼板の抵抗スポット溶接方法の第2の実施形態について、以下に説明する。
なお、本実施形態では、上記第1の実施形態と共通する構成については、同じ符号を付し、その詳しい説明を省略する。
[Second Embodiment]
A second embodiment of the resistance spot welding method for galvanized steel sheet according to the present invention will be described below.
Note that in this embodiment, the same reference numerals are given to configurations common to the first embodiment, and detailed description thereof is omitted.

本実施形態の亜鉛系めっき鋼板の抵抗スポット溶接方法は、図3に示す例のように、上記第1の実施形態と同様に、第1の鋼板1Aと、第1の鋼板1Aよりも板厚が厚く、非めっき、あるいは、片面または両面に片面あたり30〜100g/mの亜鉛系めっきが被覆された板厚0.6〜2.0mmの第3の鋼板1Cを重ね合わせたうえで、さらに、第3の鋼板1C側に、第1の鋼板1Aよりも板厚が厚く、非めっき、あるいは、片面または両面に片面あたり30〜100g/mの亜鉛系めっきが被覆された板厚0.6〜2.0mmの第4の鋼板1Dを重ね合わせ、合計3枚の亜鉛系めっき鋼板を重ね合わせることで抵抗スポット溶接を行う方法である。より具体的には、本実施形態では、まず、第1の鋼板1Aと、第3の鋼板1Cおよび第4の鋼板1Dの合計板厚との比を下記(7)式で表される範囲にするとともに、第1の鋼板1A、第3の鋼板1Cおよび第4の鋼板1Dの3枚重ねを2枚重ねと仮定した時の平均板厚を、下記(8)式で表される平均板厚tm2とした時に、重ね合わせられた前記第1、3、4の鋼板1A、1C、1Dの各々の間を、溶接電流WC、保持時間HTの各々を第1の実施形態で示した上記(3)、(4)式で表される条件に設定するとともに、溶接時間WT2、スポット溶接時の電極の加圧力EF2を下記(9)、(10)式で表される条件に設定して抵抗スポット溶接を行う。
1.2≦(t3+t4)/t1≦3.0 ・・・(7)
tm2=(t1+t3+t4)/2 ・・・(8)
(10×t1+2)/60≦WT2≦(10×tm2+2)/50 ・・・(9)
1.96×t1≦EF2≦3.19×tm2 ・・・(10)
但し、上記(7)〜(10)式において、t1:第1の鋼板1Aの板厚(mm)、t3:第3の鋼板1Cの板厚(mm)、t4:第4の鋼板1Dの板厚(mm)、tm2:第1の鋼板1A、第3の鋼板1Cおよび第4の鋼板1Dの3枚重ねを2枚重ねと仮定した時の平均板厚(mm)、WT2:溶接時間(s)、EF2:スポット溶接時の電極の加圧力(kN)を示す。
As in the example shown in FIG. 3, the resistance spot welding method for the zinc-based plated steel sheet according to the present embodiment is similar to the first embodiment in that the first steel sheet 1A is thicker than the first steel sheet 1A. Is superimposed on a third steel plate 1C having a thickness of 0.6 to 2.0 mm, which is thick, non-plated, or coated on one or both sides with a zinc-based plating of 30 to 100 g / m 2 per side. Further, the thickness of the third steel plate 1C is greater than that of the first steel plate 1A, and the thickness is 0. The plate thickness is 0 or 100 mm / m 2 per side coated on one side or both sides. This is a method of performing resistance spot welding by superposing fourth steel plates 1D of 6 to 2.0 mm and superposing three total zinc-based plated steel plates. More specifically, in the present embodiment, first, the ratio between the first steel plate 1A and the total plate thickness of the third steel plate 1C and the fourth steel plate 1D is in a range represented by the following equation (7). In addition, the average plate thickness when the three steel plates of the first steel plate 1A, the third steel plate 1C, and the fourth steel plate 1D are assumed to be two, is represented by the following equation (8). When tm2, the welding current WC and the holding time HT are shown in the first embodiment between the first, third, and fourth steel plates 1A, 1C, and 1D, which are superposed (3). ) And (4), the welding time WT2, and the electrode pressing force EF2 at the time of spot welding are set to the conditions represented by the following expressions (9) and (10). Weld.
1.2 ≦ (t3 + t4) /t1≦3.0 (7)
tm2 = (t1 + t3 + t4) / 2 (8)
(10 × t1 + 2) / 60 ≦ WT2 ≦ (10 × tm2 + 2) / 50 (9)
1.96 × t1 ≦ EF2 ≦ 3.19 × tm2 (10)
However, in the above formulas (7) to (10), t1: plate thickness (mm) of the first steel plate 1A, t3: plate thickness (mm) of the third steel plate 1C, t4: plate of the fourth steel plate 1D Thickness (mm), tm2: Average thickness (mm) when assuming that three sheets of the first steel sheet 1A, the third steel sheet 1C, and the fourth steel sheet 1D are two layers, WT2: welding time (s ), EF2: The applied pressure (kN) of the electrode during spot welding.

本実施形態では、被溶接物である第1の鋼板1Aの鋼種、めっき種、引張強さ等は、上記第1の実施形態と同様とすることができる。また、本実施形態では、第1の鋼板1Aの板厚の範囲や、これらの厚さの関係についても、上記第1の実施形態と同様とする。
また、本実施形態では、溶接電流WC、保持時間HTの各々を上記(3)、(4)式で表される範囲とする点でも、上記第1の実施形態と同様である。
In the present embodiment, the steel type, the plating type, the tensile strength, and the like of the first steel plate 1A that is the workpiece can be the same as those in the first embodiment. In the present embodiment, the thickness range of the first steel plate 1A and the relationship between the thicknesses are the same as those in the first embodiment.
Further, the present embodiment is the same as the first embodiment in that the welding current WC and the holding time HT are within the ranges represented by the above formulas (3) and (4).

本実施形態の抵抗スポット溶接方法は、第2の鋼板1Bの代わりに、第2の鋼板とは板厚範囲が異なる第3の鋼板1Cを使用し、第3の鋼板1C側に、第1の鋼板1Aよりも板厚が厚い第4の鋼板1Dを重ね合わせ、第1の鋼板1Aと、第3の鋼板1Cおよび第4の鋼板1Dの合計板厚との比を上記範囲に規定し、さらに、第1、3、4の鋼板1A、1C、1Dの平均板厚tm2を上記範囲に規定する点で、上記第1の実施形態の抵抗スポット溶接方法とは異なる。
さらに、本実施形態の抵抗スポット溶接方法は、溶接時間WT2を上記範囲に規定している点で、上記第1の実施形態の抵抗スポット溶接方法とは異なる。
The resistance spot welding method of the present embodiment uses a third steel plate 1C having a plate thickness range different from that of the second steel plate, instead of the second steel plate 1B, and the first steel plate 1C side has the first steel plate 1C side. The fourth steel plate 1D having a thickness greater than that of the steel plate 1A is overlapped, and the ratio of the total thickness of the first steel plate 1A to the third steel plate 1C and the fourth steel plate 1D is defined within the above range, and The difference from the resistance spot welding method of the first embodiment is that the average plate thickness tm2 of the first, third, and fourth steel plates 1A, 1C, and 1D is defined within the above range.
Furthermore, the resistance spot welding method of the present embodiment differs from the resistance spot welding method of the first embodiment in that the welding time WT2 is defined in the above range.

「鋼板特性」
(鋼板の板厚および板厚比)
本実施形態では、被溶接物である亜鉛系めっき鋼板の板厚に関し、まず、第1の実施形態と同様、第3の鋼板1Cの板厚を、第1の鋼板1Aよりも厚い板厚に規定し、且つ、第1の鋼板1Aの板厚を0.5〜1.0mm、第3の鋼板1Cの板厚を0.6〜2.0mmの範囲に規定している。
そして、本実施形態では、上述のように、第3の鋼板1C側に重ね合わせる第4の鋼板1Dを、第1の鋼板1Aよりも板厚が厚いものとしたうえで、第1の鋼板1Aと、第3の鋼板1Cおよび第4の鋼板1Dの合計板厚との比を、上記(7)式、即ち、次式{1.2≦(t3+t4)/t1≦3.0}で表される範囲に規定している。さらに、本実施形態では、第1、3、4の鋼板1A、1C、1Dの平均板厚tm2を、上記(8)式、即ち、次式{tm2=(t1+t3+t4)/2}で表される範囲に規定している。
"Steel sheet characteristics"
(Steel plate thickness and thickness ratio)
In the present embodiment, regarding the plate thickness of the zinc-based plated steel plate that is the work piece, first, the plate thickness of the third steel plate 1C is made thicker than the first steel plate 1A, as in the first embodiment. The thickness of the first steel plate 1A is defined as 0.5 to 1.0 mm, and the thickness of the third steel plate 1C is defined as 0.6 to 2.0 mm.
In the present embodiment, as described above, the fourth steel plate 1D to be superimposed on the third steel plate 1C side is thicker than the first steel plate 1A, and then the first steel plate 1A. And the total thickness of the third steel plate 1C and the fourth steel plate 1D is expressed by the above formula (7), that is, the following formula {1.2 ≦ (t3 + t4) /t1≦3.0}. It is stipulated in the range. Furthermore, in this embodiment, the average thickness tm2 of the first, third, and fourth steel plates 1A, 1C, and 1D is expressed by the above equation (8), that is, the following equation {tm2 = (t1 + t3 + t4) / 2}. Stipulated in the scope.

本実施形態において、第3、4の鋼板1C、1Dの板厚の下限を0.6mmに規定したのは、第1の鋼板1Aの場合と同様、これ未満では電極に対する熱負荷が大きく、電極先端での合金化が極端に進み、本発明をもってしても、散りや欠陥発生の防止効果が得られにくいためである。また、第3、4の鋼板1C、1Dの板厚の上限を2.0mmに規定した点についても、第1の鋼板1Aの場合と同様、これを超えると、そもそも、電極先端における合金化があまり進まないことから、散りや欠陥発生の問題が生じないため、本発明の適用対象外とした。   In the present embodiment, the lower limit of the thickness of the third and fourth steel plates 1C and 1D is defined as 0.6 mm. Similarly to the case of the first steel plate 1A, the heat load on the electrode is large below this, This is because alloying at the tip is extremely advanced, and even with the present invention, it is difficult to obtain the effect of preventing scattering and defect generation. Moreover, also about the point which prescribed | regulated the upper limit of the board thickness of the 3rd, 4th steel plates 1C and 1D to 2.0 mm, when exceeding this similarly to the case of the 1st steel plate 1A, the alloying in the electrode tip is originally performed. Since it does not progress so much, the problem of scattering and the occurrence of defects does not occur, so it was excluded from the scope of application of the present invention.

また、第1の鋼板1Aと、第3の鋼板1Cおよび第4の鋼板1Dの合計板厚との比((t3+t4)/t1)の下限を、上記(7)式で表される範囲の下限値、即ち、1.2に規定している。この板厚比((t3+t4)/t1)が1.2未満だと、板厚比が高い場合に比べて、第1の鋼板1Aの表面に近い側にナゲットが形成されて表面の温度が高くなり易くなるため、板厚比が高い場合に比べて電極先端における合金化が進み、散りの発生や欠陥発生の問題が生じ易くなる。また、上記板厚比((t3+t4)/t1)が3.0を超えると、厚い第3、4の鋼板1C、1D側に偏ってナゲットが生成され、第1の鋼板1Aと第3の鋼板1Cとの界面にナゲットが形成され難くなることから、所望の溶接強度が得られなくなるおそれがある。   Further, the lower limit of the ratio ((t3 + t4) / t1) between the first steel plate 1A and the total plate thickness of the third steel plate 1C and the fourth steel plate 1D is the lower limit of the range represented by the above formula (7). The value is defined as 1.2. When this plate thickness ratio ((t3 + t4) / t1) is less than 1.2, compared to the case where the plate thickness ratio is high, nuggets are formed on the side closer to the surface of the first steel plate 1A and the surface temperature is high. Therefore, alloying at the electrode tip proceeds more than in the case where the plate thickness ratio is high, and the problem of occurrence of scattering and the occurrence of defects is likely to occur. When the plate thickness ratio ((t3 + t4) / t1) exceeds 3.0, nuggets are generated biased toward the thick third and fourth steel plates 1C and 1D, and the first steel plate 1A and the third steel plate are generated. Since it becomes difficult to form nuggets at the interface with 1C, there is a possibility that desired welding strength cannot be obtained.

さらに、本実施形態では、上記範囲の板厚を有する第1、3、4の鋼板1A、1C、1Dの平均板厚tm2を、上記(8)式、即ち、次式{tm2=(t1+t3+t4)/2}で表される範囲で定義した。これは、本実施形態のように、亜鉛系めっき鋼板を異厚で3枚重ねとする場合には、全ての鋼板の板厚を加算し、2枚重ねとして平均した値を鋼板の板厚として、溶接時間や加圧力を設定することが、散りや欠陥が生じるのを抑制する観点から望ましいためである。   Further, in this embodiment, the average thickness tm2 of the first, third, and fourth steel plates 1A, 1C, and 1D having the thickness in the above range is expressed by the above equation (8), that is, the following equation {tm2 = (t1 + t3 + t4) / 2}. This is because, as in this embodiment, when the zinc-based plated steel sheets have three different thicknesses, the thicknesses of all the steel sheets are added and the average value of the two stacked sheets is used as the steel sheet thickness. This is because setting the welding time and the pressing force is desirable from the viewpoint of suppressing the occurrence of scattering and defects.

(めっき)
本実施形態では、被溶接物である亜鉛系めっき鋼板表面のめっきに関し、第1の鋼板1Aについては、上記第1の実施形態における規定と同様とする。そして、第3の鋼板1Cおよび第3の鋼板1C側に重ね合わせられる第4の鋼板1Dについては、非めっきであるか、あるいは、片面または両面に片面あたり30〜100g/mの亜鉛系めっきが被覆されたものとする。
(Plating)
In this embodiment, regarding the plating on the surface of the zinc-based plated steel sheet, which is a workpiece, the first steel sheet 1A is the same as defined in the first embodiment. And about the 4th steel plate 1D piled up on the 3rd steel plate 1C and the 3rd steel plate 1C side, it is non-plating, or 30-100 g / m < 2 > of zinc-based plating per single side | surface or both surfaces Is covered.

第4の鋼板1Dを非めっきとせず、片面または両面に亜鉛系めっきを施す場合、片面あたりの目付量が30(g/m)未満だと、第1の鋼板1Aの場合と同様、そもそも、電極先端における合金化があまり進まないことから、散りや欠陥発生の問題が生じないため、本発明の適用対象外とした。また、第4の鋼板1Dの片面あたりの目付量が100(g/m)を超えると、上記同様、電極先端(電極2B)での合金化が極端に進み、本発明をもってしても、散りや欠陥発生の防止効果が得られにくいことから、これを上限とした。また、上記同様、めっきの目付け量が片面あたりで上限を超えた場合には、このめっき層が溶接の際の障害となるおそれがある。 In the case where the fourth steel plate 1D is not unplated and zinc-based plating is performed on one side or both sides, if the basis weight per side is less than 30 (g / m 2 ), as in the case of the first steel plate 1A, in the first place Since the alloying at the electrode tip does not progress so much, the problem of scattering and the occurrence of defects does not occur, so it was excluded from the scope of application of the present invention. Further, when the basis weight per one side of the fourth steel plate 1D exceeds 100 (g / m 2 ), as described above, the alloying at the electrode tip (electrode 2B) proceeds extremely, and even with the present invention, This is the upper limit because it is difficult to obtain the effect of preventing the occurrence of scattering and defects. Similarly to the above, when the plating weight exceeds the upper limit per side, this plating layer may become an obstacle during welding.

なお、本実施形態において、亜鉛系めっき鋼板の表面に設けられるめっき層の種類についても、上記第1の実施形態と同様とすることができ、さらに、めっき層の表層に無機系、有機系の皮膜等が施されていても良い点についても同様である。   In this embodiment, the kind of the plating layer provided on the surface of the zinc-based plated steel sheet can be the same as that of the first embodiment, and the surface layer of the plating layer is inorganic or organic. The same applies to the point that a film or the like may be provided.

「溶接条件」
本実施形態では、3枚重ねとする亜鉛系めっき鋼板の板厚に関し、各々の鋼板の関係を上記範囲に規定したうえで、抵抗スポット溶接の際の溶接条件を、以下に詳述する条件に規定する。
"Welding conditions"
In the present embodiment, regarding the plate thickness of the zinc-based plated steel sheet that is three-layered, the relationship between each steel sheet is specified in the above range, and the welding conditions at the time of resistance spot welding are the conditions detailed below. Stipulate.

(溶接時間:WT2)
本実施形態においては、抵抗スポット溶接を行う際の溶接時間を、上記(9)式、即ち、次式{(10×t1+2)/60≦WT2≦(10×tm2+2)/50}で表される範囲に規定する。本実施形態における溶接時間(WT2)の範囲は、上記(9)式中に示されるように、その下限は第1の鋼板1Aの板厚t1に依存し、また、上限は、第1の鋼板1A、第2の鋼板1Bおよび第3の鋼板1Cの平均板厚tm2に依存する。
(Welding time: WT2)
In this embodiment, the welding time when performing resistance spot welding is expressed by the above equation (9), that is, the following equation {(10 × t1 + 2) / 60 ≦ WT2 ≦ (10 × tm2 + 2) / 50}. Specified in the range. The range of the welding time (WT2) in the present embodiment, as shown in the above equation (9), the lower limit depends on the thickness t1 of the first steel plate 1A, and the upper limit is the first steel plate. It depends on the average thickness tm2 of 1A, the second steel plate 1B and the third steel plate 1C.

溶接時間WT2が上記(9)式で表される範囲未満、即ち、次式{(10×t1+2)/60}(s)を下回ると、図3中に示すナゲット30において十分な大きさの径が得られない。また、溶接時間WT2が上記(9)式で表される範囲超、即ち、次式{(10×tm2+2)/50}を超えると、溶接中に電極先端で合金化反応が進行し、散りや欠陥が発生し易くなるとともに、溶接時間が長くなって作業性低下の原因となる。溶接時間WT2は、電極2A、2Bの先端とめっきとの反応を最小限に抑えるため、可能な限り短いことが好ましい。   When the welding time WT2 is less than the range represented by the above formula (9), that is, less than the following formula {(10 × t1 + 2) / 60} (s), a sufficiently large diameter in the nugget 30 shown in FIG. Cannot be obtained. Further, if the welding time WT2 exceeds the range represented by the above formula (9), that is, exceeds the following formula {(10 × tm2 + 2) / 50}, the alloying reaction proceeds at the electrode tip during welding, Defects are likely to occur, and the welding time becomes longer, causing workability to deteriorate. Welding time WT2 is preferably as short as possible in order to minimize the reaction between the tips of electrodes 2A and 2B and plating.

(電極の加圧力:EF2)
本実施形態では、上記第1の実施形態と同様、上記条件の溶接通電ならびに電極による保持を行う際の、第1、3、4の鋼板1A、1C、1Dに対する電極2A、2Bの加圧力EF2は、下記(10)式で表される範囲に設定すると、上述した散りの発生の防止や欠陥防止の効果が顕著に得られる点から好ましい。
1.96×t1≦EF2≦3.19×tm2 ・・・(10)
但し、上記(10)式において、EF2:スポット溶接時の電極の加圧力(kN)、t1:第1の鋼板1Aの板厚(mm)、tm2:第1の鋼板1A、第3の鋼板1Cおよび第4の鋼板1Dの3枚重ねを2枚重ねと仮定した時の平均板厚(mm)を示す。
(Electrode pressure: EF2)
In the present embodiment, as in the first embodiment, the applied pressure EF2 of the electrodes 2A and 2B to the first, third and fourth steel plates 1A, 1C and 1D when welding energization and holding by the electrodes are performed. Is preferably set in the range represented by the following formula (10) from the viewpoint that the effects of preventing the occurrence of scattering and preventing defects described above can be remarkably obtained.
1.96 × t1 ≦ EF2 ≦ 3.19 × tm2 (10)
However, in the above formula (10), EF2: electrode pressing force (kN) during spot welding, t1: plate thickness (mm) of the first steel plate 1A, tm2: first steel plate 1A, third steel plate 1C And the average plate thickness (mm) when it is assumed that three sheets of the fourth steel sheet 1D are two sheets is shown.

電極の加圧力EF2が上記(10)式で表される範囲未満、即ち、第1の鋼板1Aの板厚t1の1.96倍を下回ると、鋼板間で十分な接触径が得られず、溶接時に散りが発生し易くなって、十分な大きさのナゲット径が得られない。また、加圧力EF2が上記(10)式で表される範囲超、即ち、平均板厚tm2の3.19倍を超えると、溶接部の窪みが大きくなって継手強度が低下する。   When the pressure EF2 of the electrode is less than the range represented by the above formula (10), that is, less than 1.96 times the thickness t1 of the first steel plate 1A, a sufficient contact diameter cannot be obtained between the steel plates, Scattering is likely to occur during welding, and a sufficiently large nugget diameter cannot be obtained. Further, if the pressing force EF2 exceeds the range represented by the above formula (10), that is, exceeds 3.19 times the average plate thickness tm2, the dent of the welded portion becomes large and the joint strength decreases.

(電源の種類)
本実施形態においても、上記第1の実施形態と同様、抵抗スポット溶接に用いる電源は特に限定されず、一般的な交流電源の他、直流インバーター等の直流電源を用いることができる。
また、本実施形態において、抵抗スポット溶接電源に直流電源を用いた場合には、上記第1の実施形態の場合と同様の理由により、板厚の薄い第1の鋼板1A側が正極(+)、板厚の厚い第4の鋼板1D側が負極(−)となるように電極2A、2Bを配置することが好ましい。これにより、電極先端における合金化をより効果的に抑制することができるので、電極先端での発熱増加と熱伝導度の低下を抑制し、散りの発生や、穴あき、割れ等の欠陥発生を防止できるとともに、連続打点性を向上させることが可能となる。
(Type of power supply)
Also in this embodiment, the power source used for resistance spot welding is not particularly limited as in the first embodiment, and a DC power source such as a DC inverter can be used in addition to a general AC power source.
Further, in the present embodiment, when a direct current power source is used as the resistance spot welding power source, the first steel plate 1A side having a small thickness is the positive electrode (+) for the same reason as in the first embodiment. It is preferable to arrange the electrodes 2A and 2B so that the fourth steel plate 1D having a large thickness becomes the negative electrode (-). As a result, alloying at the electrode tip can be more effectively suppressed, so that an increase in heat generation at the electrode tip and a decrease in thermal conductivity are suppressed, and the occurrence of defects such as scattering, perforation, and cracking is prevented. It is possible to prevent this, and it is possible to improve the continuous hitting performance.

(その他の溶接条件)
本実施形態では、上記規定以外の条件については、上述した第1の実施形態と同様とすることができる。例えば、通電パターンおよび加圧パターンについても、図2に示すようなパターンと同様のパターンとし、上記規定範囲内で各条件を設定することができる。また、第1の実施形態と同様、通電パターンおよび加圧パターンは、溶接条件を上記範囲で変更しながら、適宜、異なるパターンに変更することも可能である。
また、使用する抵抗スポット溶接設備についても、図3に例示するような電極2が備えられた従来公知の抵抗スポット溶接設備を何ら制限無く採用することが可能である。
さらに、電極のドレッシングについても第1の実施形態と同様の方法で行うことができ、合金化した電極先端部を、適宜、最適な厚さでドレッシングすることで、電極先端における発熱増加と熱伝導度の低下を抑制でき、散りの発生や、穴あき、割れ等の欠陥の発生を防止し、連続打点性を向上させることが可能となる。
(Other welding conditions)
In the present embodiment, conditions other than the above-mentioned rules can be the same as those in the first embodiment described above. For example, the energization pattern and the pressurization pattern can be similar to the pattern as shown in FIG. 2, and each condition can be set within the specified range. As in the first embodiment, the energization pattern and the pressurization pattern can be appropriately changed to different patterns while changing the welding conditions within the above range.
As for the resistance spot welding equipment to be used, a conventionally known resistance spot welding equipment provided with the electrode 2 as illustrated in FIG. 3 can be employed without any limitation.
Furthermore, electrode dressing can be performed in the same manner as in the first embodiment, and the alloyed electrode tip can be dressed with an appropriate thickness as appropriate to increase heat generation and heat conduction at the electrode tip. The reduction in the degree can be suppressed, the occurrence of scattering, the occurrence of defects such as perforations and cracks can be prevented, and the continuous dotability can be improved.

[第3の実施形態]
本発明の亜鉛系めっき鋼板の抵抗スポット溶接方法の第3の実施形態について、以下に説明する。
なお、本実施形態では、上記第1および第2の実施形態と共通する構成については同じ符号を付し、その詳しい説明を省略する。
[Third Embodiment]
A third embodiment of the resistance spot welding method for galvanized steel sheet according to the present invention will be described below.
In the present embodiment, the same reference numerals are assigned to configurations common to the first and second embodiments, and detailed description thereof is omitted.

本実施形態の亜鉛系めっき鋼板の抵抗スポット溶接方法は、図4に示す例のように、上記第1の実施形態と同様に第1の鋼板1Aと第2の鋼板1Bとを重ね合わせたうえで、 さらに、第2の鋼板1B側に、この第2の鋼板1Bよりも板厚が薄く、非めっき、あるいは、電極2(2B)に接する面または両面に片面あたり30〜100g/mの亜鉛系めっきが被覆された板厚0.5〜1.0mmの第5の鋼板1Eを重ね合わせることで抵抗スポット溶接を行う方法である。より具体的には、本実施形態では、まず、第1の鋼板1Aと第2の鋼板1Bとの板厚比を第1の実施形態に示した(1)式、第5の鋼板1Eと第2の鋼板1Bとの板厚比を下記(11)式で表される範囲に設定する。そして、第1の鋼板1A、第2の鋼板1Bおよび第5の鋼板1Eの3枚重ねを2枚重ねと仮定した時の平均板厚を、下記(12)式で表される平均板厚tm3とした時に、重ね合わせられた第1の鋼板1A、第2の鋼板1Bおよび第5の鋼板1Eの各々の間を、溶接電流WC、保持時間HTの各々を第1の実施形態で示した上記(3)、(4)式で表される条件に設定するとともに、溶接時間WT3、スポット溶接時の電極の加圧力EF3を下記(13)、(14)式で表される条件に設定して抵抗スポット溶接を行う。
1.2≦t2/t5≦3.0 ・・・(11)
tm3=(t1+t2+t5)/2 ・・・(12)
(10×t1+2)/60≦WT3≦(10×tm3+2)/50 ・・・(13)
1.96×t1≦EF3≦3.19×tm3 ・・・(14)
但し、上記(11)〜(14)式において、t1:第1の鋼板1Aの板厚(mm)、t2:第2の鋼板1Bの板厚(mm)、t5:第5の鋼板1Eの板厚(mm)、tm3:第1の鋼板1A、第2の鋼板1Bおよび第5の鋼板1Eの3枚重ねを2枚重ねと仮定した時の平均板厚(mm)、WT3:溶接時間(s)、EF3:スポット溶接時の電極の加圧力(kN)を示す。
In the resistance spot welding method for a zinc-based plated steel sheet according to this embodiment, as in the example shown in FIG. 4, the first steel sheet 1A and the second steel sheet 1B are overlapped in the same manner as in the first embodiment. Further, on the second steel plate 1B side, the plate thickness is thinner than that of the second steel plate 1B, and is 30 to 100 g / m 2 per side on the non-plated surface or both surfaces in contact with the electrode 2 (2B). In this method, resistance spot welding is performed by superimposing a fifth steel plate 1E having a thickness of 0.5 to 1.0 mm coated with zinc-based plating. More specifically, in the present embodiment, first, the thickness ratio between the first steel plate 1A and the second steel plate 1B is the expression (1) shown in the first embodiment, the fifth steel plate 1E and the first steel plate 1B. The plate thickness ratio with the steel plate 1B of 2 is set to the range represented by the following formula (11). And the average plate thickness tm3 represented by the following (12) formula is assumed when the three sheets of the first steel plate 1A, the second steel plate 1B and the fifth steel plate 1E are assumed to be two layers. In the first embodiment, the welding current WC and the holding time HT are shown in the first embodiment between the first steel plate 1A, the second steel plate 1B, and the fifth steel plate 1E. (3) While setting to the conditions represented by the equation (4), the welding time WT3 and the electrode pressing force EF3 at the time of spot welding are set to the conditions represented by the following equations (13) and (14). Resistance spot welding is performed.
1.2 ≦ t2 / t5 ≦ 3.0 (11)
tm3 = (t1 + t2 + t5) / 2 (12)
(10 × t1 + 2) / 60 ≦ WT3 ≦ (10 × tm3 + 2) / 50 (13)
1.96 × t1 ≦ EF3 ≦ 3.19 × tm3 (14)
However, in the above formulas (11) to (14), t1: plate thickness (mm) of the first steel plate 1A, t2: plate thickness (mm) of the second steel plate 1B, t5: plate of the fifth steel plate 1E Thickness (mm), tm3: Average plate thickness (mm) when assuming that three sheets of the first steel plate 1A, the second steel plate 1B, and the fifth steel plate 1E are two layers, WT3: welding time (s ), EF3: Indicates the applied pressure (kN) of the electrode during spot welding.

本実施形態では、被溶接物である第1、第2の鋼板1A、1Bの鋼種、めっき種、引張強さ等は、上記第1および第2の実施形態と同様とすることができる。また、本実施形態では、第1の鋼板1Aおよび第2の鋼板1Bの板厚の範囲や、これらの厚さの関係についても、上記第1および第2の実施形態と同様とする。
また、本実施形態では、溶接電流WC、保持時間HTの各々を上記(3)、(4)式で表される範囲とする点でも、上記第1および第2の実施形態と同様である。
In the present embodiment, the steel types, plating types, tensile strengths, and the like of the first and second steel plates 1A and 1B, which are workpieces, can be the same as those in the first and second embodiments. In the present embodiment, the thickness ranges of the first steel plate 1A and the second steel plate 1B and the relationship between these thicknesses are the same as those in the first and second embodiments.
Further, the present embodiment is the same as the first and second embodiments in that each of the welding current WC and the holding time HT is within the range represented by the above formulas (3) and (4).

本実施形態の抵抗スポット溶接方法は、第2の鋼板1B側に、第1の鋼板1Aよりも板厚が薄い第5の鋼板1Eを重ね合わせ、第5の鋼板1Eと第2の鋼板1Bとの板厚比を上記範囲に規定し、第1の鋼板1A、第2の鋼板1Bおよび第5の鋼板1Eの平均板厚tm3を上記のように定義する点で、上記第1および第2の実施形態の抵抗スポット溶接方法とは異なる。
さらに、本実施形態の抵抗スポット溶接方法は、溶接時間WT3を上記範囲に規定している点で、上記第1および第2の実施形態の抵抗スポット溶接方法とは異なる。
In the resistance spot welding method of the present embodiment, the fifth steel plate 1E, which is thinner than the first steel plate 1A, is superimposed on the second steel plate 1B side, and the fifth steel plate 1E and the second steel plate 1B are overlapped. The thickness ratio of the first steel plate 1A, the second steel plate 1B, and the fifth steel plate 1E is defined as described above in that the average thickness tm3 of the first steel plate 1A, the second steel plate 1B, and the fifth steel plate 1E is defined as described above. This is different from the resistance spot welding method of the embodiment.
Furthermore, the resistance spot welding method of the present embodiment differs from the resistance spot welding methods of the first and second embodiments in that the welding time WT3 is defined in the above range.

「鋼板特性」
(鋼板の板厚および板厚比)
本実施形態では、被溶接物である亜鉛系めっき鋼板の板厚に関し、まず、第1および第2の実施形態と同様、第2の鋼板1Bの板厚を、第1の鋼板1Aよりも厚い板厚に規定し、且つ、第1の鋼板1Aの板厚を0.5〜1.0mm、第2の鋼板1Bの板厚を0.7〜3.0mmの範囲に規定している。
そして、本実施形態では、上述のように、第2の鋼板1B側に重ね合わせる第4の鋼板1Dを、第1の鋼板1Aよりも板厚が薄いものとしたうえで、第5の鋼板1Eと第2の鋼板1Bとの板厚比を上記(11)式、即ち、次式{1.2≦t2/t5≦3.0}で表される範囲に規定している。さらに、本実施形態では、第1の鋼板1A、第2の鋼板1Bおよび第5の鋼板1Eの平均板厚tm3を、上記(12)式、即ち、次式{tm3=(t1+t2+t5)/2}で表されるように定義に規定している。
"Steel sheet characteristics"
(Steel plate thickness and thickness ratio)
In this embodiment, regarding the plate thickness of the zinc-based plated steel plate that is the work piece, first, the plate thickness of the second steel plate 1B is thicker than that of the first steel plate 1A, as in the first and second embodiments. The thickness of the first steel plate 1A is defined as 0.5 to 1.0 mm, and the thickness of the second steel plate 1B is defined as 0.7 to 3.0 mm.
In the present embodiment, as described above, the fourth steel plate 1D to be superimposed on the second steel plate 1B side is thinner than the first steel plate 1A, and then the fifth steel plate 1E. The thickness ratio between the second steel plate 1B and the second steel plate 1B is defined in the above formula (11), that is, the range represented by the following formula {1.2 ≦ t2 / t5 ≦ 3.0}. Further, in the present embodiment, the average thickness tm3 of the first steel plate 1A, the second steel plate 1B, and the fifth steel plate 1E is expressed by the above equation (12), that is, the following equation {tm3 = (t1 + t2 + t5) / 2} It is defined in the definition as expressed by

本実施形態において、第5の鋼板1Eの板厚の下限を0.5mmに規定したのは、第1〜第3の鋼板1A〜1Cの場合と同様、これ未満では電極に対する熱負荷が大きく、電極先端での合金化が極端に進み、本発明をもってしても、散りの発生や欠陥発生の防止効果が得られにくいためである。また、第5の鋼板1Eの板厚の上限を1.0mmに規定した点についても、第1〜第4の鋼板1A〜1Dの場合と同様、これを超えると、そもそも、電極先端における合金化があまり進まないことから、散りの発生や欠陥発生の問題が生じないため、本発明の適用対象外とした。   In the present embodiment, the lower limit of the thickness of the fifth steel plate 1E is set to 0.5 mm, as in the case of the first to third steel plates 1A to 1C, the heat load on the electrodes is large below this, This is because alloying at the electrode tip is extremely advanced, and even with the present invention, it is difficult to obtain the effect of preventing the occurrence of scattering and the occurrence of defects. Moreover, also about the point which prescribed | regulated the upper limit of the plate | board thickness of the 5th steel plate 1E as 1.0 mm, when exceeding this similarly to the case of the 1st-4th steel plates 1A-1D, in the first place, it is alloyed in the electrode front-end | tip. Therefore, the problem of the occurrence of scattering and the occurrence of defects does not occur.

また、第5の鋼板1Eと第2の鋼板1Bとの合計板厚との比(t2/t5)の下限を、上記(11)式で表される範囲の下限値、即ち、1.2に規定している。この板厚比(t2/t5)が1.2未満だと、そもそも、板厚比が高い場合に比べて、第1の鋼板1Aの表面に近い側にナゲットが形成されて表面の温度が高くなり易くなるため、板厚比が高い場合に比べて電極先端における合金化が進み、散りの発生や欠陥発生の問題が生じ易くなる。また、上記板厚比(t2/t5)が3.0を超えると、厚い第2の鋼板1B側に偏ってナゲットが生成され、第5の鋼板1Eと第2の鋼板1Bとの界面にナゲットが形成され難くなることから、所望の溶接強度が得られなくなるおそれがある。   Further, the lower limit of the ratio (t2 / t5) of the total plate thickness of the fifth steel plate 1E and the second steel plate 1B is set to the lower limit of the range represented by the above formula (11), that is, 1.2. It stipulates. If this plate thickness ratio (t2 / t5) is less than 1.2, the nugget is formed on the side closer to the surface of the first steel plate 1A and the surface temperature is higher than in the first case. Therefore, alloying at the electrode tip proceeds more than in the case where the plate thickness ratio is high, and the problem of occurrence of scattering and the occurrence of defects is likely to occur. When the plate thickness ratio (t2 / t5) exceeds 3.0, nuggets are generated biased toward the thick second steel plate 1B, and the nuggets are formed at the interface between the fifth steel plate 1E and the second steel plate 1B. Since it becomes difficult to form, desired welding strength may not be obtained.

さらに、本実施形態では、上記範囲の板厚を有する第1の鋼板1A、第2の鋼板1Bおよび第5の鋼板1Eの3枚重ねを2枚重ねと仮定した時の平均板厚tm3(mm)を、上記(12)式、即ち、次式{(t1+t2+t5)/2}で表されるように定義している。これは、上記第2の実施形態の場合と同様、亜鉛系めっき鋼板を異厚で3枚重ねとする場合に、全ての鋼板の板厚を加算し、2枚重ねとして平均した値を鋼板の板厚として、溶接時間や加圧力を設定することが、散りや欠陥が生じるのを抑制する観点から望ましいためである。   Furthermore, in the present embodiment, the average plate thickness tm3 (mm when assuming that the three sheets of the first steel sheet 1A, the second steel sheet 1B, and the fifth steel sheet 1E having the sheet thicknesses in the above range are two layers. ) Is defined as expressed by the above formula (12), that is, the following formula {(t1 + t2 + t5) / 2}. As in the case of the second embodiment, when the zinc-plated steel sheets are stacked with three different thicknesses, the thicknesses of all the steel sheets are added and the average value of the two stacked sheets is This is because setting the welding time and the applied pressure as the plate thickness is desirable from the viewpoint of suppressing the occurrence of scattering and defects.

(めっき)
本実施形態では、被溶接物である亜鉛系めっき鋼板表面のめっきに関し、第1、2の鋼板1A、1Bについては、上記第1および第2の実施形態における規定と同様とする。そして、第2の鋼板1B側に重ね合わせられる第5の鋼板1Eについては、非めっきであるか、あるいは、片面または両面に片面あたり30〜100g/mの亜鉛系めっきが被覆されたものとする。
(Plating)
In the present embodiment, regarding the plating on the surface of the zinc-based plated steel sheet, which is an object to be welded, the first and second steel sheets 1A and 1B are the same as defined in the first and second embodiments. And about the 5th steel plate 1E piled up on the 2nd steel plate 1B side, it is non-plating, or 30-100 g / m < 2 > of zinc-based plating per single side | surface was coat | covered with one side or both sides To do.

本実施形態においても、第5の鋼板1Eを非めっきとせず、電極2(2B)に接する面または両面に亜鉛系めっきを施す場合、片面あたりの目付量が30(g/m)未満だと、第1〜第4の鋼板1A〜1Dの場合と同様、そもそも、電極先端における合金化があまり進まないことから、散りや欠陥発生の問題が生じないため、本発明の適用対象外とした。また、第5の鋼板1Eの片面あたりの目付量が100(g/m)を超えると、やはり同様に、電極先端(電極2B)での合金化が極端に進み、本発明をもってしても、散りや欠陥発生の防止効果が得られにくいことから、これを上限とした。さらに同様に、めっきの目付け量が片面あたりで上限を超えた場合には、このめっき層が溶接の際の障害となるおそれがある。 Also in this embodiment, when the fifth steel plate 1E is not unplated and the zinc-based plating is applied to the surface or both surfaces in contact with the electrode 2 (2B), the basis weight per one surface is less than 30 (g / m 2 ). And, in the same way as in the case of the first to fourth steel plates 1A to 1D, since alloying at the electrode tip does not progress so much, the problem of scattering and the occurrence of defects does not occur, so it was excluded from the scope of application of the present invention. . Further, when the basis weight per one side of the fifth steel plate 1E exceeds 100 (g / m 2 ), similarly, alloying at the electrode tip (electrode 2B) proceeds extremely, and even with the present invention. This is the upper limit because it is difficult to obtain the effect of preventing scattering and defect generation. Further, similarly, when the plating weight exceeds the upper limit per side, this plating layer may become an obstacle during welding.

なお、本実施形態において、亜鉛系めっき鋼板の表面に設けられるめっき層の種類についても、上記第1および第2の実施形態と同様とすることができ、さらに、めっき層の表層に無機系、有機系の皮膜等が施されていても良い点についても同様である。   In this embodiment, the kind of the plating layer provided on the surface of the galvanized steel sheet can be the same as that of the first and second embodiments, and the surface layer of the plating layer is inorganic. The same applies to the point that an organic film or the like may be applied.

「溶接条件」
本実施形態では、上記第2の実施形態と同様に3枚重ねとする亜鉛系めっき鋼板の板厚に関し、各々の鋼板の関係を上記範囲に規定したうえで、抵抗スポット溶接の際の溶接条件を、以下に詳述する条件に規定する。
"Welding conditions"
In the present embodiment, as with the second embodiment, with respect to the thickness of the galvanized steel sheet that is three-layered, the welding conditions for resistance spot welding are defined after the relationship between the steel sheets is defined in the above range. Are defined in the conditions detailed below.

(溶接時間:WT3)
本実施形態においては、抵抗スポット溶接を行う際の溶接時間を、上記(13)式、即ち、次式{(10×t1+2)/60≦WT3≦(10×tm3+2)/50}で表される範囲に規定する。本実施形態における溶接時間(WT3)の範囲は、上記(13)式中に示されるように、その下限は第1の鋼板1Aの板厚t1に依存し、また、上限は、第1の鋼板1A、第2の鋼板1Bおよび第5の鋼板1Eの平均板厚tm3に依存する。
(Welding time: WT3)
In this embodiment, the welding time when performing resistance spot welding is expressed by the above equation (13), that is, the following equation {(10 × t1 + 2) / 60 ≦ WT3 ≦ (10 × tm3 + 2) / 50}. Specified in the range. The range of the welding time (WT3) in the present embodiment is dependent on the thickness t1 of the first steel plate 1A as shown in the above equation (13), and the upper limit is the first steel plate. It depends on the average thickness tm3 of 1A, the second steel plate 1B, and the fifth steel plate 1E.

溶接時間WT3が上記(13)式で表される範囲未満、即ち、次式{(10×t1+2)/60}(s)を下回ると、図4中に示すナゲット31において十分な大きさの径が得られない。また、溶接時間WT3が上記(13)式で表される範囲超、即ち、次式{(10×tm3+2)/50}を超えると、溶接中に合金化反応が進行し、散りや欠陥が発生し易くなるとともに、溶接時間が長くなって作業性低下の原因となる。溶接時間WT3は、上記第1および第2の実施形態と同様、電極2A、2Bの先端とめっきとの反応を最小限に抑えるため、可能な限り短いことが好ましい。   When the welding time WT3 is less than the range represented by the above equation (13), that is, less than the following equation {(10 × t1 + 2) / 60} (s), a sufficiently large diameter in the nugget 31 shown in FIG. Cannot be obtained. Further, if the welding time WT3 exceeds the range represented by the above formula (13), that is, exceeds the following formula {(10 × tm3 + 2) / 50}, the alloying reaction proceeds during welding, and scattering and defects occur. It becomes easy to do, and welding time becomes long and causes workability fall. As with the first and second embodiments, the welding time WT3 is preferably as short as possible in order to minimize the reaction between the tips of the electrodes 2A and 2B and the plating.

(電極の加圧力:EF3)
本実施形態では、上記第1及び第2の実施形態と同様、上記条件の溶接通電ならびに電極による保持を行う際の、第1の鋼板1A、第2の鋼板1Bおよび第5の鋼板1Eに対する電極2A、2Bの加圧力EF2は、上記同様、下記(14)式で表される範囲に設定すると、上述した散りの発生の防止や欠陥防止の効果が顕著に得られる点から好ましい。
1.96×t1≦EF3≦3.19×tm3 ・・・(14)
但し、上記(14)式において、EF3:スポット溶接時の電極の加圧力(kN)、t1:第1の鋼板1Aの板厚(mm)、tm3:第1の鋼板1A、第2の鋼板1Bおよび第5の鋼板1Eの3枚重ねを2枚重ねと仮定した時の平均板厚(mm)を示す。
(Electrode pressure: EF3)
In the present embodiment, as in the first and second embodiments, the electrodes for the first steel plate 1A, the second steel plate 1B, and the fifth steel plate 1E when welding energization and holding by the electrodes are performed. Similarly to the above, it is preferable that the pressures EF2 of 2A and 2B are set in a range represented by the following expression (14) from the viewpoint that the effect of preventing the occurrence of the above-described scattering and the effect of preventing defects can be obtained remarkably.
1.96 × t1 ≦ EF3 ≦ 3.19 × tm3 (14)
However, in the above equation (14), EF3: electrode pressing force (kN) during spot welding, t1: plate thickness (mm) of the first steel plate 1A, tm3: first steel plate 1A, second steel plate 1B And the average board thickness (mm) when 3 sheets of 5th steel plates 1E are assumed to be 2 sheets is shown.

電極の加圧力EF3が上記(14)式で表される範囲未満、即ち、第1の鋼板1Aの板厚t1の1.96倍を下回ると、鋼板間で十分な接触径が得られず、溶接時に散りが発生し易くなって、十分な大きさのナゲット径が得られない。また、加圧力EF3が上記(10)式で表される範囲超、即ち、平均板厚tm3の3.19倍を超えると、溶接部の窪みが大きくなって継手強度が低下する。   When the electrode pressing force EF3 is less than the range represented by the above formula (14), that is, less than 1.96 times the thickness t1 of the first steel plate 1A, a sufficient contact diameter cannot be obtained between the steel plates, Scattering is likely to occur during welding, and a sufficiently large nugget diameter cannot be obtained. Further, if the pressing force EF3 exceeds the range represented by the above formula (10), that is, exceeds 3.19 times the average plate thickness tm3, the dent of the welded portion becomes large and the joint strength decreases.

(電源の種類)
本実施形態においても、上記第1および第2の実施形態と同様、抵抗スポット溶接に用いる電源は特に限定されず、一般的な交流電源の他、直流インバーター等の直流電源を用いることができる。なお、本実施形態で抵抗スポット溶接電源に直流電源を用いた場合には、板厚の薄い第1の鋼板1Aまたは板厚の薄い第5の鋼板1Eの内、何れか薄い側が正極(+)、厚い側が負極(−)となるように電極2A、2Bを配置することが好ましい。これにより、上記同様、電極先端における合金化をより効果的に抑制できるので、電極先端での発熱増加と熱伝導度の低下を抑制し、散りの発生や、穴あき、割れ等の欠陥発生を防止できるとともに、連続打点性を向上させることが可能となる。
(Type of power supply)
Also in this embodiment, the power source used for resistance spot welding is not particularly limited as in the first and second embodiments, and a DC power source such as a DC inverter can be used in addition to a general AC power source. When a direct current power source is used for the resistance spot welding power source in the present embodiment, either one of the thin steel plate 1A having a small thickness or the fifth steel plate 1E having a thin thickness is the positive electrode (+). The electrodes 2A and 2B are preferably arranged so that the thicker side becomes the negative electrode (-). This makes it possible to more effectively suppress alloying at the electrode tip, as described above, thereby suppressing an increase in heat generation at the electrode tip and a decrease in thermal conductivity, and generating defects such as scattering, perforations and cracks. It is possible to prevent this, and it is possible to improve the continuous hitting performance.

(その他の溶接条件)
本実施形態においても、上記第2の実施形態と同様、上記規定以外の溶接条件については、上記第1の実施形態と同様とすることができ、例えば、通電パターンおよび加圧パターンについても同様のパターンとしたうえで、上記規定範囲内で各条件を設定することができる。また、上記同様、通電パターンおよび加圧パターンは、溶接条件を上記範囲で変更しながら、適宜、異なるパターンに変更することも可能である。
また、使用する抵抗スポット溶接設備についても、第2の実施形態と同様、図3に例示するような電極2が備えられた従来公知の抵抗スポット溶接設備を何ら制限無く採用することが可能である。
さらに、電極のドレッシングについても第1および第2の実施形態と同様の方法で行うことができ、これによって電極先端における発熱増加と熱伝導度の低下を抑制できるので、散りの発生や、穴あき、割れ等の欠陥の発生を防止し、連続打点性を向上させることが可能となる。
(Other welding conditions)
Also in the present embodiment, as in the second embodiment, the welding conditions other than the above can be the same as those in the first embodiment. For example, the same applies to the energization pattern and the pressurization pattern. Each condition can be set within the specified range after forming a pattern. Similarly to the above, the energization pattern and the pressurization pattern can be appropriately changed to different patterns while changing the welding conditions within the above range.
As for the resistance spot welding equipment to be used, similarly to the second embodiment, a conventionally known resistance spot welding equipment provided with the electrode 2 illustrated in FIG. 3 can be used without any limitation. .
Further, the electrode dressing can be performed in the same manner as in the first and second embodiments, thereby suppressing an increase in heat generation at the electrode tip and a decrease in thermal conductivity. It is possible to prevent the occurrence of defects such as cracks and improve the continuous spotting performance.

以上説明したような、本発明に係る亜鉛系めっき鋼板の抵抗スポット溶接方法によれば、各鋼板(第1〜第5の鋼板1A〜1E)のめっき目付量および板厚、抵抗スポット溶接条件を適正範囲に規定することにより、電極/めっき界面での過大な温度上昇を抑制して電極2に対する熱負荷を軽減させ、電極先端での合金化反応を抑制することができ、さらに、鋼板の板厚比を適正範囲に規定することにより、鋼板間に確実にナゲットを形成させることができる。これにより、電極先端での合金化による発熱増加と熱伝導度の低下を抑制し、散り発生や穴あき、割れ等の欠陥発生を防止することで、連続打点性を向上させることができるので、良好な溶接作業性を確保しつつ、信頼性の高いナゲット3(30、31)を形成させることが可能となる。従って、例えば、自動車用部品の製造や車体の組立て等で用いる亜鉛系めっき鋼板のスポット溶接に本発明を適用することにより、自動車分野での亜鉛系めっき鋼板の適用による耐食性向上や、それに伴う安全性、耐久性向上のメリットなどを十分に享受することができ、その社会的な貢献は計り知れない。   As described above, according to the resistance spot welding method of a zinc-based plated steel sheet according to the present invention, the coating weight and thickness of each steel sheet (first to fifth steel sheets 1A to 1E), and resistance spot welding conditions are set. By defining it within an appropriate range, an excessive temperature rise at the electrode / plating interface can be suppressed, the thermal load on the electrode 2 can be reduced, and the alloying reaction at the electrode tip can be suppressed. By defining the thickness ratio within an appropriate range, nuggets can be reliably formed between the steel plates. This suppresses heat generation increase due to alloying at the electrode tip and a decrease in thermal conductivity, and prevents the occurrence of defects such as scattering, perforation, cracking, etc. It is possible to form a highly reliable nugget 3 (30, 31) while ensuring good welding workability. Therefore, for example, by applying the present invention to spot welding of galvanized steel sheets used in the production of automobile parts, assembling of car bodies, etc., the corrosion resistance is improved by the application of galvanized steel sheets in the automobile field, and the safety associated therewith. Can fully enjoy the benefits of improving the durability and durability, and its social contribution is immeasurable.

以下、本発明に係る亜鉛系めっき鋼板の抵抗スポット溶接方法の実施例を挙げ、本発明をより具体的に説明するが、本発明は、もとより下記実施例に限定されるものではなく、前、後記の趣旨に適合し得る範囲で適当に変更を加えて実施することも可能であり、それらはいずれも本発明の技術的範囲に含まれるものである。   Hereinafter, examples of the resistance spot welding method of the galvanized steel sheet according to the present invention will be given and the present invention will be described more specifically, but the present invention is not limited to the following examples from the beginning, It is also possible to carry out the present invention with appropriate modifications within a range that can be adapted to the gist described below, and these are all included in the technical scope of the present invention.

[実施例1]
供試材として、表1に示すような、引張強さ:300〜1190MPa、板厚:0.5〜3.2mmの、非めっき、あるいは、片面または両面に合金化溶融亜鉛めっき(記号:GA)または溶融亜鉛めっき(記号:GI)が施された、軟鋼板(270E)、2相複合組織型鋼板(日本鉄鋼連盟規格:590Y、980Y、1180Y)を用いた。なお、めっきの目付量は45〜120g/mであった。
[Example 1]
As shown in Table 1, as shown in Table 1, tensile strength: 300 to 1190 MPa, plate thickness: 0.5 to 3.2 mm, non-plated, or alloyed hot dip galvanized on one or both sides (symbol: GA ) Or hot dip galvanizing (symbol: GI), a mild steel plate (270E), a two-phase composite structure steel plate (Japan Iron and Steel Federation standards: 590Y, 980Y, 1180Y). The basis weight of plating was 45 to 120 g / m 2 .

次に、上記の鋼板から、40×40mmおよび300×300mmの試験片を切り出し、スポット溶接性評価のための試験片とした。スポット溶接性の評価では、まず、40×40mmの試験片を用い、事前に溶接電流とナゲット径の関係および散りが発生する電流の調査を実施した。また、2秒に1点溶接する連続打点を実施したが、1点目とそれ以降100点ごとでは40×40mmの試験片を、また、その間は300×300mmの試験片を用い、前者の試験片では1点のみ、後者の試験片では30mmピッチで複数点スポット溶接を実施した。   Next, 40 × 40 mm and 300 × 300 mm test pieces were cut out from the above steel plates and used as test pieces for spot weldability evaluation. In the evaluation of spot weldability, first, a 40 × 40 mm test piece was used, and the relationship between the welding current and the nugget diameter and the current at which scattering occurred were investigated in advance. In addition, continuous spot welding was carried out with 1 point welding every 2 seconds. The first test and every 100 points thereafter used a 40 × 40 mm test piece, and in the meantime, a 300 × 300 mm test piece was used. Multiple spot spot welding was performed with only one point on the piece and 30 mm pitch on the latter test piece.

上記の連続打点には、エアー加圧式で交流電源・直流電源ともに使用できるスポット溶接機を用いた。電極としては、JIS C 9304に規定された、直径φ16mm、先端径φ6mm、先端曲率径R40でクロム銅製のドームラジアス(DR)形電極を用いた。上記の連続打点時のスポット溶接条件は、下記表2に示すとおりである。また、一部の試験では、散りが発生した際に電極のドレッシング(先端部の研削)を実施した。   A spot welder that is an air pressurization type and that can be used with both an AC power source and a DC power source was used for the above-mentioned continuous spotting. As the electrode, a dome-radius (DR) electrode made of chrome copper having a diameter of 16 mm, a tip diameter of 6 mm, and a tip curvature diameter of R40 as defined in JIS C 9304 was used. The spot welding conditions at the time of the above continuous spotting are as shown in Table 2 below. In some tests, electrode dressing (tip grinding) was performed when scattering occurred.

本実施例においては、打点ごとに、スポット溶接時の散り発生状況を目視で観察した。また、スポット溶接部の外観観察、光学顕微鏡を用いた断面でのマクロ組織観察を実施して、溶接金属部(ナゲット)の形成状況、欠陥の有無、割れ発生の有無、溶接部の窪み有無を観察した。連続打点性の判定は、その打点数において、最小板厚の鋼板とそれに接する鋼板の界面に形成されたナゲット径が、最小板厚鋼板の4√t(tは板厚(mm))以上であるか否かによって判定した。
下記表1に鋼板特性の一覧を示すとともに、下記表2に溶接条件及び評価結果(観察結果)の一覧を示す。
In this example, the occurrence of scattering during spot welding was visually observed for each hit point. In addition, the appearance of the spot welded part and the macro-structure observation of the cross section using an optical microscope are carried out to check the formation status of the weld metal part (nugget), the presence or absence of defects, the presence or absence of cracks, and the presence or absence of dents in the welded part. Observed. The determination of the continuous spotting property is that the nugget diameter formed at the interface between the steel plate having the minimum thickness and the steel plate in contact with the steel plate is 4√t (t is the plate thickness (mm)) or more of the minimum plate thickness. Judgment was made by whether or not there was.
Table 1 below shows a list of steel sheet characteristics, and Table 2 below shows a list of welding conditions and evaluation results (observation results).

Figure 0006094306
Figure 0006094306

Figure 0006094306
Figure 0006094306

表1、2の条件および結果に示すように、本発明の請求項1で規定する鋼板特性を備える亜鉛系めっき鋼板を、同様に規定する溶接条件でスポット溶接を行った、条件No.A1,A2,A4〜A6,A10〜A12,A14の本発明例においては、何れの鋼種を用いた場合でも、溶接時に散りが発生することがなく、また、欠陥や割れも発生せず、溶接部における窪みも小さいことが確認でき、良好な連続打点性を示すことがわかった。さらに、加圧力を請求項の範囲に設定することにより、連続打点性がさらに向上することが確認できた。また、実施例1においては、直流(インバーター)電源を用いた場合や、さらに極性を最適に配置した場合、電極のドレッシングを行った場合には、連続打点性がさらに向上することが確認できた。 As shown in the conditions and results in Tables 1 and 2, spot-welded zinc-based plated steel sheets having the steel sheet characteristics defined in claim 1 of the present invention under the same welding conditions as defined in Condition No. A1 , In the present invention examples of A2, A4 to A6, A10 to A12, and A14, no matter which steel type is used, no scatter occurs at the time of welding, and no defects or cracks occur. It was confirmed that the dent was also small, and it was found that good continuous spotting properties were exhibited. Furthermore, it was confirmed that the continuous spotting property was further improved by setting the pressing force within the range of claim 1 . In Example 1, and the case of using a dc (inverter) supply, if further polar optimally arranged, when performing dressing of electrodes is confirmed that the continuous dotting property is further improved did it.

一方、本発明の請求項1で規定する範囲外の鋼板を採用した条件、または上記範囲外の溶接条件で抵抗スポット溶接を行った、条件No.A28〜A41の比較例においては、何れの鋼種を用いた場合においても、溶接時に散りが発生するか、または、欠陥あるいは割れが発生し、さらに、溶接部における窪みが大きくなっているケースもあることが確認された。   On the other hand, in the comparative example of the conditions No. A28 to A41 in which the resistance spot welding was performed under the conditions in which the steel sheet outside the range specified in claim 1 of the present invention was adopted or the welding conditions outside the above range, any steel type Even in the case of using, it has been confirmed that there are cases in which scattering occurs during welding, or defects or cracks occur, and the dents in the welded portion are further increased.

[実施例2]
下記表3に示すような、上記実施例1と同様の各種鋼板を用い、実施例1と同様の手順で各鋼板から上記と同様に試験片を切り出した。
次いで、これらの試験片を、下記表3に示した板組みで3枚重ね合わせ、下記表4に示す溶接条件(本発明の請求項3に記載の溶接条件、および、その範囲外の条件)で、上記実施例1と同様の手順で、スポット溶接を実施し、試験片を作製した。この際、上記と同様に、スポット溶接時の散りの発生状態を目視で確認した。
[Example 2]
Using various steel plates similar to Example 1 as shown in Table 3 below, test pieces were cut out from each steel plate in the same manner as in Example 1 in the same manner as described above.
Next, three of these test pieces were overlapped with the plate assembly shown in the following Table 3, and welding conditions shown in the following Table 4 (welding conditions described in claim 3 of the present invention and conditions outside the range). Thus, spot welding was performed in the same procedure as in Example 1 to prepare a test piece. At this time, in the same manner as described above, the occurrence of scattering during spot welding was visually confirmed.

そして、上記手順で得られたスポット溶接試験片について、実施例1と同様、スポット溶接部の外観観察、光学顕微鏡を用いた断面でのマクロ組織観察を実施して、溶接金属部(ナゲット)の形成状況、欠陥の有無、割れ発生の有無、溶接部の窪み有無を観察した。連続打点性の判定は、その打点数において、最小板厚の鋼板とそれに接する鋼板の界面に形成されたナゲット径が、最小板厚鋼板の4√t(tは板厚(mm))以上であるか否かによって判定した。
下記表3に鋼板特性の一覧を示すとともに、下記表4に溶接条件及び評価結果(観察結果)の一覧を示す。
And about the spot-welded test piece obtained by the said procedure, similarly to Example 1, the external appearance observation of a spot weld part and the macro structure observation in the cross section using an optical microscope were implemented, and a weld metal part (nugget) The formation status, the presence or absence of defects, the presence or absence of cracks, and the presence or absence of dents in the weld were observed. The determination of the continuous spotting property is that the nugget diameter formed at the interface between the steel plate having the minimum thickness and the steel plate in contact with the steel plate is 4√t (t is the plate thickness (mm)) or more of the minimum plate thickness. Judgment was made by whether or not there was.
Table 3 below shows a list of steel sheet characteristics, and Table 4 below shows a list of welding conditions and evaluation results (observation results).

Figure 0006094306
Figure 0006094306

Figure 0006094306
Figure 0006094306

表3、4の条件および結果に示すように、本発明の請求項で規定する鋼板特性を備える亜鉛系めっき鋼板を、同様に規定する溶接条件で抵抗スポット溶接を行った、条件No.B1,B2,B4〜B6,B10〜B12,B14の本発明例においては、何れの鋼種を用いた場合でも、溶接時に散りが発生することがなく、また、欠陥や割れが発生せず、さらに、溶接部における窪みも小さいことが確認でき、良好な連続打点性を示すことが確認できた。また、加圧力を請求項の範囲に設定することにより、連続打点性がさらに向上することが確認できた。また、実施例2においては、直流(インバーター)電源を用いた場合や、さらに極性を最適に配置した場合、電極のドレッシングを行った場合には、連続打点性がさらに向上することが確認できた。 As shown in the conditions and results of Tables 3 and 4, the resistance spot welding was performed on the galvanized steel sheet having the steel sheet characteristics defined in claim 2 of the present invention under the welding conditions similarly defined. In the present invention examples of B2, B4 to B6, B10 to B12, and B14 , even when any steel type is used, no scattering occurs during welding, and no defects or cracks occur. It was confirmed that the dent in the welded portion was small, and it was confirmed that good continuous spotting property was exhibited. Moreover, it was confirmed that the continuous spotting property was further improved by setting the applied pressure within the range of claim 2 . In Example 2, and the case of using a dc (inverter) supply, if further polar optimally arranged, when performing dressing of electrodes is confirmed that the continuous dotting property is further improved did it.

一方、本発明の請求項3で規定する範囲外の鋼板を採用した条件、または上記範囲外の溶接条件で抵抗スポット溶接を行った、条件No.B28〜B41の比較例においては、何れの鋼種を用いた場合においても、溶接時に散りが発生するか、または、欠陥あるいは割れが発生し、さらに、溶接部における窪みが大きくなっているケースもあることが確認された。   On the other hand, in the comparative example of the conditions No. B28 to B41, in which the resistance spot welding was performed under the conditions in which the steel sheet outside the range specified in claim 3 of the present invention was adopted or the welding conditions outside the above range, any steel type Even in the case of using, it has been confirmed that there are cases in which scattering occurs during welding, or defects or cracks occur, and the dents in the welded portion are further increased.

[実施例3]
下記表5に示すような、上記実施例1、2と同様の各種鋼板を用い、実施例1、2と同様の手順で、各鋼板から上記と同様に試験片を切り出した。
次いで、これらの試験片を、下記表5に示した板組みで3枚重ね合わせ、下記表6に示す溶接条件(本発明の請求項5に記載の溶接条件、および、その範囲外の条件)で、上記実施例1、2と同様の手順で、スポット溶接を実施し、試験片を作製した。この際、上記と同様に、スポット溶接時の散りの発生状態を目視で確認を行った。
[Example 3]
Using various steel plates similar to those in Examples 1 and 2 as shown in Table 5 below, test pieces were cut out from each steel plate in the same manner as in Examples 1 and 2 in the same manner as described above.
Next, three of these test pieces were overlapped with the plate assembly shown in Table 5 below, and welding conditions shown in Table 6 below (welding conditions described in claim 5 of the present invention, and conditions outside the range). Thus, spot welding was performed in the same procedure as in Examples 1 and 2 to prepare a test piece. At this time, in the same manner as described above, the occurrence of scattering during spot welding was visually confirmed.

そして、上記手順で得られたスポット溶接試験片について、実施例1、2と同様、スポット溶接部の外観観察、光学顕微鏡を用いた断面でのマクロ組織観察を実施して、溶接金属部(ナゲット)の形成状況、欠陥の有無、割れ発生の有無、溶接部の窪み有無を観察した。連続打点性の判定は、その打点数において、最小板厚の鋼板とそれに接する鋼板の界面に形成されたナゲット径が、最小板厚鋼板の4√t(tは板厚(mm))以上であるか否かによって判定した。
下記表5に鋼板特性の一覧を示すとともに、下記表6に溶接条件及び評価結果(観察結果)の一覧を示す。
And about the spot-welded test piece obtained by the said procedure, the macroscopic structure observation in the cross section using an optical microscope was carried out similarly to Example 1, 2, and the weld metal part (nugget) ), The presence or absence of defects, the presence or absence of cracks, and the presence or absence of dents in the weld. The determination of the continuous spotting property is that the nugget diameter formed at the interface between the steel plate having the minimum thickness and the steel plate in contact with the steel plate is 4√t (t is the plate thickness (mm)) or more of the minimum plate thickness. Judgment was made by whether or not there was.
Table 5 below shows a list of steel sheet characteristics, and Table 6 below shows a list of welding conditions and evaluation results (observation results).

Figure 0006094306
Figure 0006094306

Figure 0006094306
Figure 0006094306

表5、6の条件および結果に示すように、本発明の請求項で規定する鋼板特性を備える亜鉛系めっき鋼板を、同様に規定する溶接条件で抵抗スポット溶接を行った、条件No.C1,C2,C4〜C6,C10〜C12,C14の本発明例においては、何れの鋼種を用いた場合でも、溶接時に散りが発生することがなく、また、欠陥や割れが発生せず、さらに、溶接部における窪みも小さいことが確認でき、良好な連続打点性を示すことが確認できた。また、加圧力を請求項の範囲に設定することにより、連続打点性がさらに向上することが確認できた。また、実施例3においては、直流(インバーター)電源を用いた場合や、電極のドレッシングを行った場合には、連続打点性がさらに向上することが確認できた。 As shown in the conditions and results of Tables 5 and 6, the resistance spot welding was performed on the galvanized steel sheet having the steel sheet characteristics defined in claim 3 of the present invention under the welding conditions similarly defined. In the present invention examples of C2, C4 to C6, C10 to C12, and C14 , even when any steel type is used, no scatter occurs during welding, and no defects or cracks occur. It was confirmed that the dent in the welded portion was small, and it was confirmed that good continuous spotting property was exhibited. Moreover, it was confirmed that the continuous spotting property was further improved by setting the applied pressure within the range of claim 3 . In Example 3, and the case of using a straight stream (inverter) supply, when performing dressing of electrodes were confirmed to continuous dotting property is further improved.

一方、本発明の請求項5で規定する範囲外の鋼板を採用した条件、または上記範囲外の溶接条件で抵抗スポット溶接を行った、条件No.C27〜C40の比較例においては、何れの鋼種を用いた場合においても、溶接時に散りが発生するか、または、欠陥あるいは割れが発生し、さらに、溶接部における窪みが大きくなっているケースもあることが確認された。   On the other hand, in the comparative example of the conditions No. C27 to C40 in which the resistance spot welding was performed under the conditions in which the steel sheet outside the range specified in claim 5 of the present invention was employed, or the welding conditions outside the above range, any steel type Even in the case of using, it has been confirmed that there are cases in which scattering occurs during welding, or defects or cracks occur, and the dents in the welded portion are further increased.

なお、上記実施例1〜3においては、鋼板の板厚を適宜変更して実験を行った場合も、また、めっき種や目付け量等を変更して実験を行った場合も、結果は上記同様であり、溶接時の散りの発生、ならびに、欠陥や割れの発生を防止して連続打点性を向上させる本発明の効果が得られた。   In Examples 1 to 3, the results were the same as above when the experiment was performed by appropriately changing the plate thickness of the steel sheet or when the experiment was performed by changing the plating type, the basis weight, etc. Thus, the effect of the present invention was obtained, in which the occurrence of scattering during welding and the occurrence of defects and cracks are prevented to improve the continuous spotting performance.

以上説明した実施例の結果より、本発明の亜鉛系めっき鋼板の抵抗スポット溶接方法を用いることにより、溶接時に散りが発生することが無く作業性が良好であり、また、溶接金属部に欠陥や割れ等が発生することが無く、連続打点性が向上し、信頼性の高い溶接継手が得られることが明らかとなった。   From the results of the examples described above, by using the resistance spot welding method of the galvanized steel sheet according to the present invention, there is no occurrence of scatter during welding, and the workability is good. It has been clarified that there is no occurrence of cracks and the like, continuous spotability is improved, and a highly reliable welded joint can be obtained.

本発明によれば、自動車用部品の製造や車体の組立等で用いる亜鉛系めっき鋼板をスポット溶接する際、散り発生の無い良好な溶接作業性を確保しつつ、溶接金属部で発生する欠陥や割れを防止することができる。従って、自動車分野での亜鉛系めっき鋼板の適用による耐食性向上や、それに伴う安全性、耐久性向上のメリットなどを十分に享受することができ、その社会的な貢献は多大である。   According to the present invention, when spot-welding a zinc-based plated steel sheet used in the manufacture of automobile parts or the assembly of a vehicle body, while ensuring good welding workability without occurrence of scattering, Cracking can be prevented. Therefore, the corrosion resistance improvement by application of the galvanized steel sheet in the automobile field and the merits of safety and durability improvement associated therewith can be fully enjoyed, and the social contribution is great.

1…亜鉛系めっき鋼板、
1A…第1の鋼板、
1B…第2の鋼板、
1C…第3の鋼板、
1D…第4の鋼板、
1E…第5の鋼板、
2(2A、2B)…電極、
3、30、31…ナゲット
1 ... zinc-based plated steel sheet,
1A ... 1st steel plate,
1B ... the second steel plate,
1C ... 3rd steel plate,
1D ... 4th steel plate,
1E ... fifth steel plate,
2 (2A, 2B) ... electrodes,
3, 30, 31 ... nuggets

Claims (7)

電極に接する側または両面に片面あたり30〜100g/mの亜鉛系めっきが被覆された板厚0.5〜1.0mmの第1の鋼板と、該第1の鋼板よりも板厚が厚い、非めっき、あるいは、片面または両面に片面あたり30〜100g/mの亜鉛系めっきが被覆された板厚0.7〜3.0mmの第2の鋼板とを重ね合わせ、抵抗スポット溶接を行う亜鉛系めっき鋼板の抵抗スポット溶接方法であって、
前記第1の鋼板と前記第2の鋼板との板厚比を下記(1)式で表される範囲にするとともに、前記第1の鋼板および第2の鋼板の平均板厚を、下記(2)式で表される平均板厚tm1とした時に、
重ね合わせられた前記第1の鋼板と前記第2の鋼板の間を、溶接電流WC、溶接時間WT1、保持時間HT、スポット溶接時の電極の加圧力EF1の各々を下記(3)〜(6)式で表される条件に設定し、且つ、前記溶接電流WCを7.8(kA)以上として抵抗スポット溶接することを特徴とする亜鉛系めっき鋼板の抵抗スポット溶接方法。
1.2≦t2/t1≦3.0 ・・・(1)
tm1=(t1+t2)/2 ・・・(2)
0.80×Ie≦WC≦0.98×Ie ・・・(3)
(10×t1+2)/60≦WT1≦(10×tm1+2)/50 ・・・(4)
HT≦0.2 ・・・(5)
1.96×t1≦EF1≦3.19×tm1 ・・・(6)
{但し、上記(1)〜(6)式において、t1:第1の鋼板の板厚(mm)、t2:第2の鋼板の板厚(mm)、tm1:第1の鋼板および第2の鋼板の平均板厚(mm)、Ie:散り発生電流(kA)、WC:溶接電流(kA)、WT1:溶接時間(s)、HT:溶接通電後に鋼板を電極で加圧する保持時間(s)、EF1:スポット溶接時の電極の加圧力(kN)を示す。}
A first steel plate having a thickness of 0.5 to 1.0 mm in which 30 to 100 g / m 2 of zinc-based plating is coated on one side or both sides in contact with the electrode, and the plate thickness is thicker than the first steel plate. , Non-plated, or overlapped with a second steel plate having a thickness of 0.7 to 3.0 mm coated with 30 to 100 g / m 2 of zinc-based plating on one side or both sides, and resistance spot welding is performed. A resistance spot welding method for galvanized steel sheet,
The thickness ratio of the first steel plate and the second steel plate is set to a range represented by the following formula (1), and the average thickness of the first steel plate and the second steel plate is set to the following (2 ) When the average thickness tm1 represented by the formula is
Each of welding current WC, welding time WT1, holding time HT, and electrode pressing force EF1 during spot welding between the first steel plate and the second steel plate superimposed on each other is represented by the following (3) to (6 ) is set to the condition of the formula, and the welding current WC to 7.8 (kA) above and to resistance spot welding resistance spot welding process of galvanized steel sheet, characterized in that the.
1.2 ≦ t2 / t1 ≦ 3.0 (1)
tm1 = (t1 + t2) / 2 (2)
0.80 × Ie ≦ WC ≦ 0.98 × Ie (3)
(10 × t1 + 2) / 60 ≦ WT1 ≦ (10 × tm1 + 2) / 50 (4)
HT ≦ 0.2 (5)
1.96 × t1 ≦ EF1 ≦ 3.19 × tm1 (6)
{However, in the above formulas (1) to (6), t1: the thickness of the first steel plate (mm), t2: the thickness of the second steel plate (mm), tm1: the first steel plate and the second steel plate Average plate thickness (mm) of steel plate, Ie: Scattering current (kA), WC: Welding current (kA), WT1: Welding time (s), HT: Holding time (s) for pressing the steel plate with electrodes after welding energization , EF1: Indicates the applied pressure (kN) of the electrode during spot welding. }
電極に接する側または両面に片面あたり30〜100g/mの亜鉛系めっきが被覆された板厚0.5〜1.0mmの第1の鋼板と、該第1の鋼板よりも板厚が厚い、非めっき、あるいは、片面または両面に片面あたり30〜100g/mの亜鉛系めっきが被覆された板厚0.6〜2.0mmの第3の鋼板とを重ね合わせ、さらに、前記第3の鋼板側に、前記第1の鋼板よりも板厚が厚く、非めっき、あるいは、片面または両面に片面あたり30〜100g/mの亜鉛系めっきが被覆された板厚0.6〜2.0mmの第4の鋼板を重ね合わせ、抵抗スポット溶接を行う亜鉛系めっき鋼板の抵抗スポット溶接方法であって、
前記第1の鋼板と、前記第3の鋼板および第4の鋼板の合計板厚との比を下記(7)式で表される範囲にするとともに、前記第1の鋼板、第3の鋼板および第4の鋼板の3枚重ねを2枚重ねと仮定した時の平均板厚を、下記(8)式で表される平均板厚tm2とした時に、
重ね合わせられた前記第1、3、4の鋼板の各々の間を、溶接電流WC、保持時間HTの各々を、請求項1に記載の(3)、(5)式で表される条件に設定するとともに、溶接時間WT2、スポット溶接時の電極の加圧力EF2を下記(9)、(10)式で表される条件に設定し、且つ、前記溶接電流WCを7.5(kA)以上として抵抗スポット溶接することを特徴とする亜鉛系めっき鋼板の抵抗スポット溶接方法。
1.2≦(t3+t4)/t1≦3.0 ・・・(7)
tm2=(t1+t3+t4)/2 ・・・(8)
(10×t1+2)/60≦WT2≦(10×tm2+2)/50 ・・・(9)
1.96×t1≦EF2≦3.19×tm2 ・・・(10)
{但し、上記(7)〜(10)式において、t1:第1の鋼板の板厚(mm)、t3:第3の鋼板の板厚(mm)、t4:第4の鋼板の板厚(mm)、tm2:第1の鋼板、第3の鋼板および第4の鋼板の3枚重ねを2枚重ねと仮定した時の平均板厚(mm)、WT2:溶接時間(s)、EF2:スポット溶接時の電極の加圧力(kN)を示す。}
A first steel plate having a thickness of 0.5 to 1.0 mm in which 30 to 100 g / m 2 of zinc-based plating is coated on one side or both sides in contact with the electrode, and the plate thickness is thicker than the first steel plate. , Non-plated, or a third steel plate having a thickness of 0.6 to 2.0 mm coated with 30 to 100 g / m 2 of zinc-based plating on one side or both sides, and the third The thickness of the steel plate is greater than that of the first steel plate and is not plated, or one side or both sides are coated with 30 to 100 g / m 2 of zinc-based plating per side. It is a resistance spot welding method for a zinc-based plated steel sheet in which a fourth steel sheet of 0 mm is overlaid and resistance spot welding is performed,
The ratio of the first steel plate and the total thickness of the third steel plate and the fourth steel plate is set to a range represented by the following formula (7), and the first steel plate, the third steel plate, and When assuming that the average plate thickness when assuming that the three overlaps of the fourth steel plate are two overlaps is the average plate thickness tm2 represented by the following equation (8),
Between each of the said 1st, 3rd, 4th steel plates piled up, each of welding current WC and holding | maintenance time HT is on the conditions represented by (3), (5) formula of Claim 1. In addition to setting, the welding time WT2, the electrode pressing force EF2 at the time of spot welding are set to the conditions represented by the following formulas (9) and (10) , and the welding current WC is 7.5 (kA) or more. resistance spot welding process of galvanized steel sheet, characterized in that the resistance spot welding as a.
1.2 ≦ (t3 + t4) /t1≦3.0 (7)
tm2 = (t1 + t3 + t4) / 2 (8)
(10 × t1 + 2) / 60 ≦ WT2 ≦ (10 × tm2 + 2) / 50 (9)
1.96 × t1 ≦ EF2 ≦ 3.19 × tm2 (10)
{However, in the above formulas (7) to (10), t1: the thickness of the first steel plate (mm), t3: the thickness of the third steel plate (mm), t4: the thickness of the fourth steel plate ( mm), tm2: average plate thickness (mm) when assuming that the first steel plate, the third steel plate, and the fourth steel plate are stacked in two, WT2: welding time (s), EF2: spot The pressure (kN) of the electrode at the time of welding is shown. }
電極に接する側または両面に片面あたり30〜100g/mの亜鉛系めっきが被覆された板厚0.5〜1.0mmの第1の鋼板と、該第1の鋼板よりも板厚が厚い、非めっき、あるいは、片面または両面に片面あたり30〜100g/mの亜鉛系めっきが被覆された板厚0.7〜3.0mmの第2の鋼板とを重ね合わせ、さらに、前記第2の鋼板側に、該第2の鋼板よりも板厚が薄く、非めっき、あるいは、電極に接する面または両面に片面あたり30〜100g/mの亜鉛系めっきが被覆された板厚0.5〜1.0mmの第5の鋼板を重ね合わせ、抵抗スポット溶接を行う亜鉛系めっき鋼板の抵抗スポット溶接方法であって、
前記第1の鋼板と前記第2の鋼板との板厚比を請求項1に記載の(1)式、前記第5の鋼板と前記第2の鋼板との板厚比を下記(11)式で表される範囲に設定するとともに、前記第1の鋼板、前記第2の鋼板および前記第5の鋼板の3枚重ねを2枚重ねと仮定した時の平均板厚を、下記(12)式で表される平均板厚tm3とした時に、
重ね合わせられた前記第1の鋼板、前記第2の鋼板および第5の鋼板の各々の間を、溶接電流WC、保持時間HTの各々を請求項1に記載の(3)、(5)式で表される条件に設定するとともに、溶接時間WT3、スポット溶接時の電極の加圧力EF3を下記(13)、(14)式で表される条件に設定し、且つ、前記溶接電流WCを7.6(kA)以上として抵抗スポット溶接することを特徴とする亜鉛系めっき鋼板の抵抗スポット溶接方法。
1.2≦t2/t5≦3.0 ・・・(11)
tm3=(t1+t2+t5)/2 ・・・(12)
(10×t1+2)/60≦WT3≦(10×tm3+2)/50 ・・・(13)
1.96×t1≦EF3≦3.19×tm3 ・・・(14)
{但し、上記(11)〜(14)式において、t1:第1の鋼板の板厚(mm)、t2:第2の鋼板の板厚(mm)、t5:第5の鋼板の板厚(mm)、tm3:第1の鋼板、第2の鋼板および第5の鋼板の3枚重ねを2枚重ねと仮定した時の平均板厚(mm)、WT3:溶接時間(s)、EF3:スポット溶接時の電極の加圧力(kN)を示す。}
A first steel plate having a thickness of 0.5 to 1.0 mm in which 30 to 100 g / m 2 of zinc-based plating is coated on one side or both sides in contact with the electrode, and the plate thickness is thicker than the first steel plate. , Non-plated, or a second steel plate having a thickness of 0.7 to 3.0 mm coated with 30 to 100 g / m 2 of zinc-based plating on one side or both sides, and the second The thickness of the steel plate is less than that of the second steel plate, and is not plated, or the thickness of 0.5 to 100 g / m 2 of zinc-based plating per side on the surface or both sides in contact with the electrode is 0.5. It is a resistance spot welding method for a zinc-based plated steel sheet, in which a fifth steel sheet of ~ 1.0 mm is overlaid and resistance spot welding is performed,
The plate thickness ratio between the first steel plate and the second steel plate is the formula (1) according to claim 1, and the plate thickness ratio between the fifth steel plate and the second steel plate is the following formula (11). In addition, the average plate thickness when assuming that the three sheets of the first steel sheet, the second steel sheet, and the fifth steel sheet are two-layered is set to the following formula (12): When the average plate thickness tm3 represented by
The expressions (3) and (5) according to claim 1, wherein the welding current WC and the holding time HT are respectively set between the first steel plate, the second steel plate, and the fifth steel plate that are superimposed. The welding time WT3 and the electrode pressing force EF3 during spot welding are set to the conditions represented by the following equations (13) and (14) , and the welding current WC is set to 7: .6 (kA) resistance spot welding process of galvanized steel sheet, characterized in that the to resistance spot welding more.
1.2 ≦ t2 / t5 ≦ 3.0 (11)
tm3 = (t1 + t2 + t5) / 2 (12)
(10 × t1 + 2) / 60 ≦ WT3 ≦ (10 × tm3 + 2) / 50 (13)
1.96 × t1 ≦ EF3 ≦ 3.19 × tm3 (14)
{However, in the above formulas (11) to (14), t1: the thickness of the first steel plate (mm), t2: the thickness of the second steel plate (mm), t5: the thickness of the fifth steel plate ( mm), tm3: average plate thickness (mm) when assuming that the first steel plate, the second steel plate, and the fifth steel plate are stacked in two, WT3: welding time (s), EF3: spot The pressure (kN) of the electrode at the time of welding is shown. }
抵抗スポット溶接電源として直流電源を用いることを特徴とする請求項1〜請求項3の何れか1項に記載の亜鉛系めっき鋼板の抵抗スポット溶接方法。   The direct current power supply is used as a resistance spot welding power supply, The resistance spot welding method of the galvanized steel sheet of any one of Claims 1-3 characterized by the above-mentioned. 抵抗スポット溶接電源として直流電源を用い、板厚の薄い前記第1の鋼板側が正極(+)、板厚の厚い前記第2の鋼板側が負極(−)となるように電極を配置して抵抗スポット溶接することを特徴とする請求項1に記載の亜鉛系めっき鋼板の抵抗スポット溶接方法。   A direct current power source is used as a resistance spot welding power source, and the electrodes are arranged so that the first steel plate side with the thin plate thickness becomes the positive electrode (+) and the second steel plate side with the thick plate thickness becomes the negative electrode (-). The resistance spot welding method for galvanized steel sheets according to claim 1, wherein welding is performed. 抵抗スポット溶接電源として直流電源を用い、前記第1の鋼板または前記第の鋼板の内、何れか薄い側が正極(+)、厚い側が負極(−)となるように電極を配置して抵抗スポット溶接することを特徴とする請求項2に記載の亜鉛系めっき鋼板の抵抗スポット溶接方法。 A direct current power source is used as a resistance spot welding power source, and the electrode is arranged so that either the first steel plate or the fourth steel plate has a positive side (+) on the thin side and a negative side (-) on the thick side. The resistance spot welding method for galvanized steel sheets according to claim 2, wherein welding is performed. 請求項1〜請求項6の何れか1項に記載の方法を用いて、鋼板同士を重ね合わせて抵抗スポット溶接を連続打点で行う際、鋼板表面に散りが発生した時点で溶接を中断し、電極の表面から0.1〜1.0mmの厚さでドレッシングを行った後、抵抗スポット溶接による連続打点を再開することを特徴とする亜鉛系めっき鋼板の抵抗スポット溶接方法。   Using the method according to any one of claims 1 to 6, when performing resistance spot welding with continuous spotting by overlapping steel sheets, welding is interrupted when scattering occurs on the steel sheet surface, A resistance spot welding method for a galvanized steel sheet, comprising performing dressing at a thickness of 0.1 to 1.0 mm from the surface of the electrode and then restarting the continuous spotting by resistance spot welding.
JP2013064868A 2013-03-26 2013-03-26 Resistance spot welding method for galvanized steel sheet Active JP6094306B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013064868A JP6094306B2 (en) 2013-03-26 2013-03-26 Resistance spot welding method for galvanized steel sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013064868A JP6094306B2 (en) 2013-03-26 2013-03-26 Resistance spot welding method for galvanized steel sheet

Publications (2)

Publication Number Publication Date
JP2014188539A JP2014188539A (en) 2014-10-06
JP6094306B2 true JP6094306B2 (en) 2017-03-15

Family

ID=51835419

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013064868A Active JP6094306B2 (en) 2013-03-26 2013-03-26 Resistance spot welding method for galvanized steel sheet

Country Status (1)

Country Link
JP (1) JP6094306B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
MX2018002382A (en) * 2015-08-27 2018-04-11 Jfe Steel Corp Resistance spot welding method and method for manufacturing welded member.
JP6790050B2 (en) * 2018-12-13 2020-11-25 本田技研工業株式会社 Resistance welding evaluation device and resistance welding evaluation method
CN113275724A (en) * 2021-05-28 2021-08-20 天津津荣天宇精密机械股份有限公司 Galvanized sheet resistance spot welding method and welding device
CN114951933A (en) * 2022-04-06 2022-08-30 攀钢集团攀枝花钢铁研究院有限公司 Spot welding method for environment-friendly passivated galvanized plate

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06344155A (en) * 1993-06-08 1994-12-20 Nasu Tooa Kk Controller for spot welding machine
JP2003103377A (en) * 2001-09-27 2003-04-08 Nippon Steel Corp Spot welding method for high strength plated steel plate
JP4532146B2 (en) * 2004-03-29 2010-08-25 Jfeスチール株式会社 Resistance spot welding method for hot-dip galvanized steel sheet and non-plated steel sheet
JP4543823B2 (en) * 2004-08-23 2010-09-15 Jfeスチール株式会社 Resistance spot welding method
JP2007268604A (en) * 2006-03-31 2007-10-18 Jfe Steel Kk Resistance spot welding method
JP5411792B2 (en) * 2009-06-05 2014-02-12 本田技研工業株式会社 Resistance welding method and apparatus

Also Published As

Publication number Publication date
JP2014188539A (en) 2014-10-06

Similar Documents

Publication Publication Date Title
KR101744427B1 (en) Spot welding method for high-strength steel sheet excellent in joint strength
JP4555160B2 (en) Steel plate for dissimilar welding with aluminum material and dissimilar material joint
TWI587954B (en) Point welding joints and point welding method
JP6447752B2 (en) Automotive parts having resistance welds
JP6108018B2 (en) Spot welding method
JP5299257B2 (en) Spot welding method for high strength steel sheet
JP5842734B2 (en) Arc spot welded joint with excellent joint strength and manufacturing method thereof
TWI622445B (en) Spot welding method
TWI725454B (en) Steel sheet, tailor welded blank, hot press formed product, steel pipe, hollow quenched product, and manufacturing method of steel sheet
JP6108017B2 (en) Spot welding method
JP6384603B2 (en) Spot welding method
JP6094306B2 (en) Resistance spot welding method for galvanized steel sheet
JP2018039019A (en) Spot-welding method
JP2008106324A (en) High strength steel sheet for lap resistance welding, and lap welding joint
JP2019118946A (en) Steel plate, butt welding member, hot press-formed product, steel pipe, hollow quench-formed product, and method of manufacturing steel plate
JP6777249B1 (en) Manufacturing method of steel plate, tailored blank, hot press molded product, steel pipe, hollow hardened molded product, and steel plate
WO2020105266A1 (en) Joined structure and method for manufacturing joined structure
JP7023962B2 (en) Welded parts Plated steel plate welded members with excellent pore resistance and fatigue characteristics and their manufacturing methods
WO2024063011A1 (en) Welded member and manufacturing method therefor
JP4532146B2 (en) Resistance spot welding method for hot-dip galvanized steel sheet and non-plated steel sheet
WO2024063010A1 (en) Welded member and method for manufacturing same
JP7435935B1 (en) Welded parts and their manufacturing method
JP7296985B2 (en) Resistance spot welding method and method for manufacturing resistance spot welded joints
JP7364113B2 (en) Resistance spot welding member and its resistance spot welding method
JP6828831B1 (en) Resistance spot welding method, resistance spot welding joint manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151106

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160908

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161004

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161205

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170117

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170130

R151 Written notification of patent or utility model registration

Ref document number: 6094306

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350