JP2008159097A - Substrate holder, etching process of substrate and manufacturing method of magnetic recording medium - Google Patents

Substrate holder, etching process of substrate and manufacturing method of magnetic recording medium Download PDF

Info

Publication number
JP2008159097A
JP2008159097A JP2006343470A JP2006343470A JP2008159097A JP 2008159097 A JP2008159097 A JP 2008159097A JP 2006343470 A JP2006343470 A JP 2006343470A JP 2006343470 A JP2006343470 A JP 2006343470A JP 2008159097 A JP2008159097 A JP 2008159097A
Authority
JP
Japan
Prior art keywords
substrate
processed
etching
substrate holder
plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2006343470A
Other languages
Japanese (ja)
Inventor
Kenji Maeda
賢治 前田
Makoto Satake
真 佐竹
Masaru Izawa
勝 伊澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2006343470A priority Critical patent/JP2008159097A/en
Priority to KR1020070117709A priority patent/KR20080058169A/en
Priority to US11/942,849 priority patent/US20080149590A1/en
Publication of JP2008159097A publication Critical patent/JP2008159097A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67017Apparatus for fluid treatment
    • H01L21/67063Apparatus for fluid treatment for etching
    • H01L21/67069Apparatus for fluid treatment for etching for drying etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C15/00Surface treatment of glass, not in the form of fibres or filaments, by etching
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/74Record carriers characterised by the form, e.g. sheet shaped to wrap around a drum
    • G11B5/743Patterned record carriers, wherein the magnetic recording layer is patterned into magnetic isolated data islands, e.g. discrete tracks
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/74Record carriers characterised by the form, e.g. sheet shaped to wrap around a drum
    • G11B5/82Disk carriers
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/84Processes or apparatus specially adapted for manufacturing record carriers
    • G11B5/8404Processes or apparatus specially adapted for manufacturing record carriers manufacturing base layers
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/84Processes or apparatus specially adapted for manufacturing record carriers
    • G11B5/855Coating only part of a support with a magnetic layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/687Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/687Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches
    • H01L21/68714Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support
    • H01L21/6875Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support characterised by a plurality of individual support members, e.g. support posts or protrusions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/687Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches
    • H01L21/68714Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support
    • H01L21/68771Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support characterised by supporting more than one semiconductor substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/687Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches
    • H01L21/68714Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support
    • H01L21/68785Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support characterised by the mechanical construction of the susceptor, stage or support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/20Positioning, supporting, modifying or maintaining the physical state of objects being observed or treated

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Mathematical Physics (AREA)
  • Theoretical Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Manufacturing Of Magnetic Record Carriers (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)
  • ing And Chemical Polishing (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To efficiently form a rugged pattern on recording layers of front and rear both surfaces of a magnetic recording medium. <P>SOLUTION: In a substrate holder provided with an insulating member provided with a recessed part holding a substrate to be etched and a through hole formed in a direct under part of the recessed part and a conductive body member provided with a projecting part engaged with the through hole, a gap part is formed between the surface of the projecting part and a bottom surface of the substrate in such a state that the substrate to be etched is placed in the recessed part, the gap part has 0.05 to 1 mm thickness and the insulating member has 1 to 15 mm thickness. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、基板ホルダ及び基板のエッチング方法及び磁気記録媒体の製造方法に係り、特に、記録層が凹凸パターンで形成されている磁気記録媒体の製造に好適な基板ホルダ及び基板のエッチング方法に関する。   The present invention relates to a substrate holder, a substrate etching method, and a magnetic recording medium manufacturing method, and more particularly to a substrate holder and a substrate etching method suitable for manufacturing a magnetic recording medium in which a recording layer is formed in a concavo-convex pattern.

ハードディスク装置は、円盤状の磁気記録媒体を高速で回転させ、磁気ヘッドによりディジタル信号を記録・再生している。従来では、磁気記録媒体は、表面が非常に平坦な円盤状のアルミニウム基板、もしくは強化ガラス基板に、磁性体をスパッタリング等により蒸着したものを用いていた。記録密度の上昇に伴い、該記録媒体に対し、記録層を構成する磁性体の微粒子化、磁性体材料の変更、磁性体の積層構造の工夫、垂直記録方式の採用等により、面記録密度の向上が図られてきた。しかるに、媒体に起因したノイズやクロストーク、熱ゆらぎ耐性等の問題により、既存の記録媒体では記録密度向上の限界が見え始めた。そこで、磁気記録層に所定の凹凸を設ける事により、さらなる記録密度向上を実現できる磁気記録媒体、いわゆるディスクリートトラックメディアや、パターンドメディア等の記録媒体が提案されている(例えば、特許文献1参照)。   A hard disk device rotates a disk-shaped magnetic recording medium at a high speed and records / reproduces a digital signal by a magnetic head. Conventionally, a magnetic recording medium is a disk-shaped aluminum substrate having a very flat surface or a tempered glass substrate on which a magnetic material is deposited by sputtering or the like. As the recording density increases, the surface recording density of the recording medium is reduced by making the magnetic material composing the recording layer finer, changing the magnetic material, devising the laminated structure of the magnetic material, adopting the perpendicular recording method, etc. Improvements have been made. However, due to problems such as noise, crosstalk, and thermal fluctuation resistance caused by the medium, the limit of improvement in recording density has begun to appear with existing recording media. In view of this, magnetic recording media such as so-called discrete track media and patterned media that can realize further improvement in recording density by providing predetermined irregularities on the magnetic recording layer have been proposed (for example, see Patent Document 1). ).

磁気記録層に凹凸を設けるプロセスは、大まかに二種類に分類できる。一つ目は、基板に磁性体を蒸着したものに所望のマスクを施し、非マスク部の磁性体を直接エッチングする方法である。もう一つは、基板自体もしくは、基板に堆積させた窒化シリコンや酸化シリコン等の非磁性体膜(以降、両者を含め基板と称する)に所望のマスクを施し、該基板にエッチングにより凹凸加工を施したものに、磁性体を蒸着させる方法である。   The process of providing the magnetic recording layer with unevenness can be roughly classified into two types. The first is a method in which a desired mask is applied to a substrate obtained by depositing a magnetic material, and the magnetic material in the non-mask portion is directly etched. The other is to apply a desired mask to the substrate itself or a non-magnetic film such as silicon nitride or silicon oxide deposited on the substrate (hereinafter referred to as the substrate including both of them), and etching the substrate by etching. In this method, a magnetic material is vapor-deposited on the applied material.

基板もしくは磁性体にマスクを施す方法としては、ナノインプリント法や光リソグラフィー、電子線リソグラフィー等がある。また、マスクを施された基板もしくは磁性体をエッチングする方法には、ウエットエッチングや、プラズマエッチング、イオンビームエッチング、イオンミリング、中性ビームエッチング等のドライエッチングが考えられる。特に、半導体デバイスの製造で広く用いられているプラズマエッチング技術は、量産性まで考慮した、基板もしくは磁性体の凹凸加工に応用が期待できる。   Examples of a method for applying a mask to a substrate or a magnetic material include a nanoimprint method, photolithography, and electron beam lithography. In addition, as a method of etching a substrate or a magnetic material provided with a mask, dry etching such as wet etching, plasma etching, ion beam etching, ion milling, or neutral beam etching can be considered. In particular, plasma etching technology widely used in the manufacture of semiconductor devices can be expected to be applied to uneven processing of a substrate or a magnetic material in consideration of mass productivity.

プラズマエッチングは、減圧された処理室に処理用のガスを導入し、平板アンテナやコイル状アンテナ等を介して、処理室にソース電源より高周波電力を投入することで該ガスをプラズマ化し、これにより発生したイオンやラジカルを基板に照射することにより進行する。プラズマ源には、プラズマを発生させる方式の違いにより、有磁場マイクロ波タイプ、誘導結合(ICP:Inductively Coupled Plasma)タイプ、容量結合(CCP:Capacitively Coupled Plasma)タイプ等、様々な方式が存在している。   In plasma etching, a processing gas is introduced into a decompressed processing chamber, and the processing chamber is turned into plasma by supplying high-frequency power from a source power source to the processing chamber via a flat antenna, a coiled antenna, or the like. The process proceeds by irradiating the generated ions and radicals onto the substrate. There are various types of plasma sources, such as magnetic field microwave type, inductively coupled plasma (ICP) type, and capacitively coupled (CCP) type, depending on the method of generating plasma. Yes.

さらに、基板を載置するステージに高周波バイアスを印加することにより、プラズマ中のイオンを積極的に基板に引き込む事ができ、これによりエッチング速度の向上や、垂直加工性の向上が実現できる。該高周波バイアスは、プラズマ生成に用いられるソース電源の周波数よりも一桁から三桁低い周波数を用いる事が多い。   Furthermore, by applying a high-frequency bias to the stage on which the substrate is placed, ions in the plasma can be actively drawn into the substrate, thereby improving the etching rate and improving the vertical workability. The high frequency bias often uses a frequency that is one to three orders of magnitude lower than the frequency of the source power supply used for plasma generation.

また、特許文献2には、基板を一枚毎ドライエッチングするのに好適な基板ホルダの例が開示されている。   Patent Document 2 discloses an example of a substrate holder that is suitable for dry etching a single substrate.

特開平9-97419号公報JP-A-9-97419 特開2006-222127号公報JP 2006-222127 A

しかしながら、従来のプラズマエッチング装置を用いて磁気記録媒体に凹凸加工を施そうとすると、以下に示す二点の課題が発生する。まず、第一の課題として、基板の材質が強化ガラス等の非導電体であった場合、基板に高周波バイアスが印加され難くなることが挙げられる。基板が非導電体であった場合、ステージからプラズマまでの高周波インピーダンスは、非導電体の基板が載置されている部分のみが著しく高くなってしまう。そのため、基板を介して高周波電流が流れ難くなってしまい、基板のエッチングが進行しなくなる。これを補うために高周波バイアス電力を増加させると、エネルギー効率が悪化するだけでなく、ステージの基板が載置されている部分以外がエッチングされてしまい、ステージ部品等の寿命が短くなりランニングコストが増加する懸念や、ステージ部品の削れに起因した異物が発生する懸念が起きる。   However, when the conventional plasma etching apparatus is used to perform uneven processing on the magnetic recording medium, the following two problems occur. First, as a first problem, when the material of the substrate is a non-conductor such as tempered glass, it is difficult to apply a high frequency bias to the substrate. When the substrate is a non-conductor, the high-frequency impedance from the stage to the plasma is remarkably increased only at the portion where the non-conductor substrate is placed. Therefore, it becomes difficult for a high-frequency current to flow through the substrate, and etching of the substrate does not proceed. Increasing the high-frequency bias power to compensate for this not only deteriorates the energy efficiency, but also etches parts other than the part where the substrate of the stage is placed, shortening the life of the stage parts and the like, and reducing the running cost There is a concern that it will increase or foreign matter will be generated due to scraping of stage parts.

次に、第二の課題として、基板裏面のパターン損傷や、基板裏面への異物の付着が挙げられる。磁気記録媒体は、媒体一枚あたりの記録容量を上げるために表裏両面を記録層として用いている。したがって、ディスクリートトラックメディアやパターンドメディアも、表裏両面に凹凸加工を施す必要が生じる。基板の表側、即ち、プラズマに接する面の処理を行っている間に、基板の裏側がステージ表面に接すると、基板裏側の凹凸パターンが損傷を受ける、もしくは、基板裏側の凹凸パターンに異物が付着する事が発生する。これにより、凹凸パターンに重大な欠陥を引き起こす可能性が高くなる。   Next, as a second problem, pattern damage on the back surface of the substrate and adhesion of foreign matter to the back surface of the substrate can be mentioned. The magnetic recording medium uses both front and back surfaces as recording layers in order to increase the recording capacity per medium. Therefore, the discrete track media and the patterned media also need to be processed with irregularities on both the front and back sides. If the back side of the substrate touches the surface of the stage while processing the front side of the substrate, that is, the surface in contact with the plasma, the uneven pattern on the back side of the substrate is damaged, or foreign matter adheres to the uneven pattern on the back side of the substrate. To occur. This increases the possibility of causing serious defects in the concavo-convex pattern.

これを避けるためには、基板をステージに直接載置せず、基板の両面がプラズマと接するように、プラズマ中に基板を保持し、基板の表裏両面を一括でエッチングする方法も考えられる。しかるに、このような両面一括の処理方法は、非導電体である基板にバイアスを印加する事が困難となり、エッチング速度が上がらない事、垂直加工が困難になる事が問題となる。   In order to avoid this, there may be a method in which the substrate is not placed directly on the stage, but the substrate is held in plasma so that both surfaces of the substrate are in contact with the plasma, and the front and back surfaces of the substrate are etched together. However, such a double-sided batch processing method has a problem in that it is difficult to apply a bias to a non-conductive substrate, the etching rate does not increase, and vertical processing becomes difficult.

さらに、基板の両面に良好な凹凸パターン加工を施すためには、エッチング処理中だけでなく、基板の搬送に関しても注意を払わなければならない。通常の半導体デバイス製造用のエッチング装置では、シリコン基板を処理室内に搬入・搬出する際には、シリコン基板の裏面に搬送アームが必ず接触する。従って、両面加工が必須である磁気記録媒体をエッチングする際に、同様な搬送システムを用いることは不可能である。   Furthermore, in order to perform good uneven pattern processing on both sides of the substrate, attention must be paid not only during the etching process but also about the conveyance of the substrate. In an etching apparatus for manufacturing a normal semiconductor device, a transfer arm always comes into contact with the back surface of a silicon substrate when the silicon substrate is carried into and out of a processing chamber. Therefore, it is impossible to use a similar transport system when etching a magnetic recording medium that requires double-side processing.

上記特許文献1や特許文献2では、このような課題については、なんら配慮されていない。   In Patent Document 1 and Patent Document 2, no consideration is given to such a problem.

本発明の目的の1つは、両面に被処理面を有する被処理基板の処理や搬送時に、被処理基板に形成されたパターンの損傷を回避し、被処理基板の表裏両面にパターンを効率良く形成するのに適した、基板ホルダを提供することにある。   One of the objects of the present invention is to avoid damage to the pattern formed on the substrate to be processed during processing and transport of the substrate to be processed having both surfaces to be processed, and to efficiently apply the pattern to both the front and back surfaces of the substrate to be processed. The object is to provide a substrate holder suitable for forming.

本発明の他の目的は、基板の両面に記録層が凹凸パターンで形成されている磁気記録媒体を効率良く形成するのに適した、低コストの基板製造装置及び磁気記録媒体の製造方法を提供することにある。   Another object of the present invention is to provide a low-cost substrate manufacturing apparatus and a method for manufacturing a magnetic recording medium, which are suitable for efficiently forming a magnetic recording medium in which recording layers are formed in an uneven pattern on both sides of a substrate. There is to do.

本発明の基板ホルダは、貫通孔が複数設けられた板状絶縁体部材と、該各貫通孔に係合し得る凸部を備えた導電性保持部材とを備え、前記凸部が前記貫通孔に係合した状態において、該貫通孔内に基板載置面と、該基板載置面に垂直な方向の厚みを有する隙間部とが形成されて成ることを特徴とする。   The substrate holder of the present invention includes a plate-like insulator member provided with a plurality of through holes, and a conductive holding member provided with a convex portion that can be engaged with each through hole, and the convex portion is the through hole. The substrate mounting surface and a gap portion having a thickness in a direction perpendicular to the substrate mounting surface are formed in the through-hole in a state in which the through hole is engaged.

ここで、前記隙間部の厚さは0.05mmから1mmの間に設定され、前記絶縁体部材は1mmから15mmの厚さに設定され、高周波バイアスから見た前記絶縁体部材のインピーダンスを、前記隙間部と被処理基板との合成インピーダンスよりも大きくしたことを特徴としている。また、該基板ホルダは、被エッチング基板を複数載置できる構成となっている。   Here, the thickness of the gap is set between 0.05 mm and 1 mm, the insulator member is set to a thickness of 1 mm to 15 mm, and the impedance of the insulator member viewed from a high frequency bias is It is characterized by being larger than the combined impedance of the gap and the substrate to be processed. Further, the substrate holder is configured to be able to place a plurality of substrates to be etched.

また、本発明による表裏両面に記録層を有する磁気記録媒体の製造方法は、被処理基板の両面に対して、O2もしくはCO2を含むガス系のプラズマによりベースレジストをエッチングする工程と、フロロカーボン系のプラズマにより絶縁体層をエッチングする工程と、O2系のプラズマにより上記絶縁体層上部に残留したレジストを除去する工程の少なくとも3つの工程を、同一の処理室にて一貫処理を行う事を特徴とする。   The method of manufacturing a magnetic recording medium having recording layers on both front and back surfaces according to the present invention includes a step of etching a base resist with a gas-based plasma containing O2 or CO2 on both surfaces of a substrate to be processed, and a fluorocarbon-based method. It is characterized in that at least three steps of etching the insulator layer by plasma and removing the resist remaining on the insulator layer by O2 plasma are performed in the same processing chamber. To do.

さらに、本発明によるプラズマ処理方法は、両面に被処理面を有する被処理基板を載置した基板ホルダ自体をエッチング装置の処理室に搬入し、基板ホルダごとプラズマ処理を行う事を特徴としている。ここで、基板ホルダの外径は、半導体デバイス用のウエハサイズと同じ200mmもしくは300mmとするのが望ましい。   Furthermore, the plasma processing method according to the present invention is characterized in that a substrate holder itself, on which a substrate to be processed having processing surfaces on both sides is placed, is carried into a processing chamber of an etching apparatus, and the substrate holder is subjected to plasma processing. Here, the outer diameter of the substrate holder is desirably 200 mm or 300 mm, which is the same as the wafer size for semiconductor devices.

本発明による基板ホルダは、被処理基板の裏面に隙間部が設けられているために、基板表面のエッチング処理を行っている間に、基板裏面に形成されたパターンを損傷することが回避できる。また、基板ホルダごと搬送を行うために、搬送中に基板裏面に形成されたパターンを損傷することも回避できる。   In the substrate holder according to the present invention, since the gap portion is provided on the back surface of the substrate to be processed, it is possible to avoid damaging the pattern formed on the back surface of the substrate while the substrate surface is being etched. Further, since the entire substrate holder is transported, it is possible to avoid damaging the pattern formed on the back surface of the substrate during transport.

また、本発明による基板ホルダは、高周波バイアスから見た前記絶縁体部材のインピーダンスを、前記隙間部と被処理基板との合成インピーダンスよりも大きくなるように構成しているため、エッチングを行う磁気記録媒体のみに高周波バイアスを印加することができる。これにより、磁気記録媒体のみを効率的にエッチングすることが可能となり、前記絶縁体部材で直接プラズマに曝される部分が消耗することも抑制できる。これにより、前記絶縁体部材の削れに起因した異物の発生や、ランニングコストの上昇を抑える事が出来る。   In addition, the substrate holder according to the present invention is configured so that the impedance of the insulator member as viewed from the high frequency bias is larger than the combined impedance of the gap and the substrate to be processed. A high frequency bias can be applied only to the medium. As a result, only the magnetic recording medium can be efficiently etched, and the portion of the insulator member that is directly exposed to plasma can be suppressed from being consumed. Thereby, generation | occurrence | production of the foreign material resulting from the scraping of the said insulator member, and the raise of a running cost can be suppressed.

また、本発明による基板ホルダは、複数の被処理基板を載置できるように構成しているため、被処理基板を一枚ずつ処理する場合と比較し、大幅なスループットの向上が期待できる。さらに、基板ホルダの外径を、200mmもしくは300mmとすることにより、半導体デバイスを製造するために広く用いられているエッチング装置を流用した処理が可能となり、エッチング装置に対する投資コストを抑制することができる。   In addition, since the substrate holder according to the present invention is configured so that a plurality of substrates to be processed can be mounted, a significant improvement in throughput can be expected as compared with the case where the substrates to be processed are processed one by one. Furthermore, by setting the outer diameter of the substrate holder to 200 mm or 300 mm, it is possible to carry out processing using an etching apparatus widely used for manufacturing semiconductor devices, and to suppress the investment cost for the etching apparatus. .

また、本発明による磁気記録媒体の製造方法によれば、磁気記録媒体の表裏両面の記録層に凹凸パターンを効率良く、低コストで形成することができる。   Further, according to the method for manufacturing a magnetic recording medium according to the present invention, it is possible to efficiently form an uneven pattern on the recording layers on both the front and back surfaces of the magnetic recording medium at a low cost.

以下、図面を用いて本発明の被処理基板のエッチング処理装置及び処理方法を実施するための最良の形態について説明する。   DESCRIPTION OF EXEMPLARY EMBODIMENTS Hereinafter, a best mode for carrying out an etching apparatus and a processing method for a substrate to be processed according to the invention will be described with reference to the drawings.

本発明の第一の実施形態を図1〜図8で説明する。
図1は、本発明の第一の実施形態になる基板ホルダの概略を示す斜視図である。図2は、図1のO−A断面図を示す。
A first embodiment of the present invention will be described with reference to FIGS.
FIG. 1 is a perspective view schematically showing a substrate holder according to the first embodiment of the present invention. 2 shows a cross-sectional view taken along the line OA of FIG.

基板ホルダ101は、板状絶縁体部材1、中心絶縁体部材2、リング状導電体部材4、及び円板状導電体部材5で構成されている。円板状の板状絶縁体部材1にはその中心から等距離の位置に等間隔に複数の貫通孔3が設けられている。また、各貫通孔はその上部に基板載置面となる段部が形成されている。中心絶縁体部材2、リング状導電体部材4及び円板状導電体部材5は一体化されて、導電性保持部材を構成している。この導電性保持部材において、中心絶縁体部材2は各貫通孔3の中央部に対応する位置にあり、リング状導電体部材4は中央部が中心絶縁体部材2に嵌合し外周部が貫通孔3に係合するように構成されている。すなわち、中心絶縁体部材2とリング状導電体部材4とは、貫通孔3に係合し得る凸部を構成しており、この凸部が貫通孔3に係合した状態で、基板ホルダ101の上面には、被エッチング基板12を保持するための略リング状の凹部が形成される。   The substrate holder 101 is composed of a plate-like insulator member 1, a central insulator member 2, a ring-like conductor member 4, and a disk-like conductor member 5. The disc-shaped plate-like insulator member 1 is provided with a plurality of through-holes 3 at equal intervals from the center thereof. Each through hole is formed with a step portion serving as a substrate mounting surface at the top thereof. The central insulator member 2, the ring-shaped conductor member 4, and the disk-shaped conductor member 5 are integrated to form a conductive holding member. In this conductive holding member, the central insulator member 2 is located at a position corresponding to the central portion of each through-hole 3, and the ring-shaped conductive member 4 is fitted to the central insulator member 2 at the central portion and the outer peripheral portion is penetrated. It is configured to engage with the hole 3. That is, the central insulator member 2 and the ring-shaped conductor member 4 constitute a convex portion that can be engaged with the through hole 3, and the substrate holder 101 is in a state in which the convex portion is engaged with the through hole 3. A substantially ring-shaped recess for holding the substrate to be etched 12 is formed on the upper surface of the substrate.

図1は、基板ホルダ101に複数枚の略リング状の被エッチング基板12が支持されている状態を示している。すなわち、各貫通孔3の上端の外径は被エッチング基板12の外径よりもわずかに大きく、略リング状の被エッチング基板12が、板状絶縁体部材1の各貫通孔3に形成された凹部に丁度収まるような構造となっており、この凹部の周縁部の基板載置面に被エッチング基板12が保持される。また、各被エッチング基板は、略リング状の凹部内において、中心絶縁体部材2により中心部付近が保持される。図2に示すように、板状絶縁体部材1が導電性保持部材上に保持され凸部が貫通孔3内に係合した状態において、各被エッチング基板の下面換言すると基板載置面と、凸部の表面換言するとリング状導電体部材4の上面との間には、基板載置面に垂直な方向に厚みを有する隙間部6が形成される。   FIG. 1 shows a state in which a plurality of substantially ring-shaped substrates to be etched 12 are supported on a substrate holder 101. That is, the outer diameter of the upper end of each through hole 3 is slightly larger than the outer diameter of the substrate 12 to be etched, and the substantially ring-shaped substrate 12 to be etched is formed in each through hole 3 of the plate-like insulator member 1. The structure just fits in the recess, and the substrate to be etched 12 is held on the substrate mounting surface at the periphery of the recess. In addition, each substrate to be etched is held in the vicinity of the central portion by the central insulator member 2 in a substantially ring-shaped recess. As shown in FIG. 2, in a state where the plate-like insulator member 1 is held on the conductive holding member and the convex portion is engaged in the through hole 3, the bottom surface of each substrate to be etched, that is, the substrate mounting surface, In other words, a gap 6 having a thickness in a direction perpendicular to the substrate mounting surface is formed between the surface of the convex portion and the upper surface of the ring-shaped conductor member 4.

図1は、基板ホルダに被処理基板を6枚載置した状態を示しているが、実際にはさらに多数の被処理基板を載置するよう構成する方が、スループットの観点から好ましい。例えば、基板ホルダの外径を300mmとし、それに外径φ2.5インチの被処理基板を載置する場合、12枚乃至は14枚程度の被処理基板を載置することが可能となる。外径φ2インチもしくは外径φ1.8インチの被処理基板では、さらに多数枚の被処理基板を載置することができるのは言うまでもない。この場合、板状絶縁体部材1に設ける貫通孔3の位置は、単一の円上に等間隔に配置する例に限定されるものではなく、内外2つの同心円上に貫通孔3を交互に配置するなど、基板のサイズや処理条件に応じ種々の位置を取りうることはいうまでも無い。   FIG. 1 shows a state in which six substrates to be processed are placed on the substrate holder, but actually, it is preferable from the viewpoint of throughput that a larger number of substrates to be processed are placed. For example, when the substrate holder has an outer diameter of 300 mm and a substrate to be processed having an outer diameter of φ2.5 inches is placed thereon, it is possible to place about 12 to 14 substrates to be processed. It goes without saying that a larger number of substrates to be processed can be placed on a substrate to be processed having an outer diameter of φ2 inches or an outer diameter of φ1.8 inches. In this case, the positions of the through holes 3 provided in the plate-like insulator member 1 are not limited to the example in which the through holes 3 are arranged at equal intervals on a single circle, and the through holes 3 are alternately arranged on two inner and outer concentric circles. It goes without saying that various positions can be taken according to the size of the substrate and processing conditions, such as placement.

ここで、板状絶縁体部材1及び中心絶縁体部材2の材質は、プラズマに曝されても変質し難いものが望ましい。即ち、石英(SiO)、アルミナ(Al)、窒化アルミ(AlN)、パイレクス(登録商標)等の材質が望ましい。中でも、比誘電率の小さい石英は、板状絶縁体部材1や中心絶縁体部材2に高周波バイアスが印加されるのを防ぐ意味で好適である。 Here, it is desirable that the material of the plate-like insulator member 1 and the central insulator member 2 is difficult to change even when exposed to plasma. That is, materials such as quartz (SiO 2 ), alumina (Al 2 O 3 ), aluminum nitride (AlN), and Pyrex (registered trademark) are desirable. Among them, quartz having a small relative dielectric constant is preferable in terms of preventing a high frequency bias from being applied to the plate-like insulator member 1 and the central insulator member 2.

また、板状絶縁体部材1には、被処理基板12を基板ホルダ101に載置する際や、基板ホルダと被処理基板をエッチング装置に搬入する際に位置決めをするための位置決めマーク7が設けられている。位置決めマーク7は、板状絶縁体部材1に物理的に凹部を設ける、もしくは、金属、磁性体等を板状絶縁体部材1に埋め込むことにより、作成されている。光、渦電流、磁界他の検出手段により基板ホルダ101の位置決めマーク7の位置を検出することで、基板ホルダ101のオリエンテーションを検出することを可能としている。   The plate-like insulator member 1 is provided with a positioning mark 7 for positioning when the substrate 12 to be processed is placed on the substrate holder 101 or when the substrate holder and the substrate to be processed are carried into the etching apparatus. It has been. The positioning mark 7 is created by physically providing a recess in the plate-like insulator member 1 or by embedding a metal, a magnetic material or the like in the plate-like insulator member 1. The orientation of the substrate holder 101 can be detected by detecting the position of the positioning mark 7 of the substrate holder 101 by detecting means such as light, eddy current, and magnetic field.

さらに、既存の半導体エッチング装置を用いて基板の処理をすることが可能となる。すなわち、板状絶縁体部材1の外径をφ200mmもしくはφ300mmとすることにより、既存の半導体エッチング装置の下部電極(ステージ)上に、例えばφ300mmのウエハの代わりにφ300mmの板状絶縁体部材1を載置して、多数枚の被処理基板を同時に処理することが可能となる。   Furthermore, the substrate can be processed using an existing semiconductor etching apparatus. That is, by setting the outer diameter of the plate-like insulator member 1 to φ200 mm or φ300 mm, the plate-like insulator member 1 having a diameter of 300 mm, for example, instead of a wafer having a diameter of 300 mm is placed on the lower electrode (stage) of the existing semiconductor etching apparatus. It is possible to process a large number of substrates to be processed at the same time.

導電性保持部材すなわちリング状導電体部材4及び円板状導体部材5の材質としては、アルミニウム、各種アルミ合金、チタン合金、ステンレス、ボロンドープシリコン等の導電材料が好ましい。さらに、リング状導電体部材4と円板状導体部材5は、ろう付け、溶接等の手段で一体化されている方が好ましい。   As the material of the conductive holding member, that is, the ring-shaped conductor member 4 and the disk-shaped conductor member 5, conductive materials such as aluminum, various aluminum alloys, titanium alloys, stainless steel, and boron-doped silicon are preferable. Furthermore, the ring-shaped conductor member 4 and the disk-shaped conductor member 5 are preferably integrated by means such as brazing or welding.

図3に示したように、基板ホルダ101は、板状絶縁体部材1に対し、導電性保持部材すなわち中心絶縁体部材2、リング状導電体部材4及び円板状導電対部材5が上下に分離できる構造となっている。また、中心絶縁体部材2及び貫通孔3は、軸方向において、中央部か突出することで、各々上下に段部が形成されている。中心絶縁体部材の上側の段部21と貫通孔3の上側の段部31とは、板状絶縁体部材1と中心絶縁体部材2、リング状導電体部材4及び円板状導電対部材5を結合させた図2の状態において、実質的に同じ高さであり、これらの段部21と段部31により上記凹部に基板載置面を構成する。なお、段部31を若干高くし、これのみで基板載置面を構成するようにしても良い。中心絶縁体部材2の下側の段部はリング状導電体部材4の中央の穴の段部に対応している。貫通孔3の下側の段部32には、リング状導電体部材4の外周の段部41が係合する。さらに、板状絶縁体部材1の下面に形成された凹部に円板状導体部材5が係合する。   As shown in FIG. 3, the substrate holder 101 has a conductive holding member, that is, a central insulating member 2, a ring-shaped conductive member 4, and a disk-shaped conductive pair member 5 in the vertical direction with respect to the plate-shaped insulating member 1. It has a structure that can be separated. Further, the central insulator member 2 and the through-hole 3 protrude from the central portion in the axial direction, so that step portions are formed on the upper and lower sides, respectively. The upper step portion 21 of the central insulator member and the upper step portion 31 of the through hole 3 are the plate-like insulator member 1, the central insulator member 2, the ring-like conductor member 4, and the disk-like conductive pair member 5. In the state of FIG. 2 where the two are coupled, the height is substantially the same, and the step 21 and the step 31 constitute a substrate mounting surface in the recess. Note that the stepped portion 31 may be slightly raised and the substrate mounting surface may be configured only by this. The lower step portion of the central insulator member 2 corresponds to the step portion of the central hole of the ring-shaped conductor member 4. The step portion 41 on the outer periphery of the ring-shaped conductor member 4 is engaged with the step portion 32 on the lower side of the through hole 3. Further, the disk-shaped conductor member 5 engages with a recess formed on the lower surface of the plate-shaped insulator member 1.

被処理基板12の載置面とリング状導電体部材4の上表面40との間には、図2に示したように、隙間部6が形成されるように構成されている。換言すると、基板ホルダ101に被処理基板12を載置した状態において、被処理基板12とリング状導電体部材4の上表面40との間には、基板載置面に垂直な方向に0.05mmから1mm程度の厚みの隙間部6が形成される。本発明による基板ホルダでは、この隙間部6を設ける事により、被処理基板をその裏面に形成されたパターンに損傷を与えることなくエッチング処理が可能となる。   As shown in FIG. 2, a gap 6 is formed between the mounting surface of the substrate 12 to be processed and the upper surface 40 of the ring-shaped conductor member 4. In other words, in a state where the substrate 12 to be processed is placed on the substrate holder 101, the distance between the substrate 12 to be processed and the upper surface 40 of the ring-shaped conductor member 4 is 0. 0 in the direction perpendicular to the substrate placement surface. A gap 6 having a thickness of about 05 mm to 1 mm is formed. In the substrate holder according to the present invention, by providing this gap portion 6, the substrate to be processed can be etched without damaging the pattern formed on the back surface thereof.

次に、本発明による基板ホルダに対応した、被処理基板の搬送機構について、図3で説明する。この搬送機構は、押し上げ機構8、第一の基板保持機構9及び第二の基板保持機構15を備えている。第一の基板保持機構9は、被処理基板12を内周部を保持しつつ搬送可能である。第二の基板保持機構15は、被処理基板12の外周部を保持してこの基板の上下方向を反転させるのに使用される。   Next, a substrate transfer mechanism corresponding to the substrate holder according to the present invention will be described with reference to FIG. The transport mechanism includes a push-up mechanism 8, a first substrate holding mechanism 9, and a second substrate holding mechanism 15. The first substrate holding mechanism 9 can transport the substrate 12 to be processed while holding the inner peripheral portion. The second substrate holding mechanism 15 is used to hold the outer peripheral portion of the substrate 12 to be processed and to reverse the vertical direction of the substrate.

基板ホルダ101に被処理基板を載置する場合、まず、板状絶縁体部材1を押し上げ機構8により押し上げることにより、板状絶縁体部材1に対し、中心絶縁体部材2、リング状導電体部材4、円板状導電対部材5を分離する。この状態で、第一の基板保持機構9にて保持した被処理基板12を、板状絶縁体部材1の貫通孔3内の載置面すなわち凹部に逐次載せていく。板状絶縁体部材1に備えられた複数個の貫通孔3の全てに被処理基板を載置し終わった後、押し上げ機構8を下降させる。   When placing the substrate to be processed on the substrate holder 101, first, the plate-like insulator member 1 is pushed up by the push-up mechanism 8, whereby the central insulator member 2 and the ring-like conductor member are placed against the plate-like insulator member 1. 4. Separate the disk-shaped conductive pair member 5. In this state, the substrate 12 to be processed held by the first substrate holding mechanism 9 is successively placed on the placement surface, that is, the concave portion in the through hole 3 of the plate-like insulator member 1. After placing the substrate to be processed in all of the plurality of through holes 3 provided in the plate-like insulator member 1, the push-up mechanism 8 is lowered.

次に、本発明の第一の実施形態になる基板ホルダを用いて基板を処理するエッチング装置及び搬送機構について説明する。図4は、半導体用のエッチング装置の概略を示す平面図である。以下に示した半導体エッチング装置は、あくまでも一例であり、どのような形態のものでも構わない。また、以下の説明では、「被処理基板を複数枚設置した状態の基板ホルダ」を「基板ホルダ」と称する。   Next, an etching apparatus and a transport mechanism for processing a substrate using the substrate holder according to the first embodiment of the present invention will be described. FIG. 4 is a plan view schematically showing an etching apparatus for semiconductor. The semiconductor etching apparatus shown below is merely an example, and may be in any form. In the following description, “a substrate holder in which a plurality of substrates to be processed are installed” is referred to as a “substrate holder”.

図4において、102は、被処理基板12を複数枚載置した基板ホルダ101を複数枚収容したフープであり、半導体処理用のエッチング装置の大気搬送部に設置する。   In FIG. 4, reference numeral 102 denotes a hoop containing a plurality of substrate holders 101 on which a plurality of substrates to be processed 12 are placed, and is installed in an atmospheric transfer part of an etching apparatus for semiconductor processing.

フープ102に収納された状態の基板ホルダ101は、大気搬送ロボットの搬送アーム104によりフープから取り出された後、大気搬送部のアライナ105に載置される。アライナは基板ホルダの水平面内での位置の微調整と、周方向の位置決めの役割を担っている。   The substrate holder 101 stored in the FOUP 102 is taken out of the FOUP by the transfer arm 104 of the atmospheric transfer robot and then placed on the aligner 105 of the atmospheric transfer unit. The aligner plays a role of fine adjustment of the position of the substrate holder in the horizontal plane and positioning in the circumferential direction.

次に、図5を用いて、本発明の基板ホルダを用いて被処理基板を処理するのに好適な、エッチング装置の処理室109の構成例について説明する。図5は、半導体用のエッチング装置の概略を示す縦断面図である。   Next, a configuration example of the processing chamber 109 of the etching apparatus suitable for processing a substrate to be processed using the substrate holder of the present invention will be described with reference to FIG. FIG. 5 is a longitudinal sectional view showing an outline of an etching apparatus for a semiconductor.

真空排気され、接地された真空チャンバ201の上部には、絶縁体天板202とシャワープレート203が備えられている。ガス供給系204より供給されたプロセスガスは、該シャワープレートにより均一に処理室に導入される。処理室下部には、温調機構212により一定温度に温調されたステージ207が備えられており、基板ホルダ101はステージ207に載置される。処理室上部には導波管205が備えられており、この導波管を介して、図示しないプラズマソース電源からマイクロ波が処理室に供給される。処理室201の外部には、2系統ないし3系統のソレノイドコイル208と、ヨーク209が備えられており、ソレノイドコイルに任意の直流電流を流す事により、処理室に任意の形状の磁場を発生させることができる。該磁場とマイクロ波との相互作用により、処理室内に導入されたプロセスガスをプラズマ化することができる。さらに、ソース電力や磁場配置、処理圧力等を調節することにより、プラズマ密度やプラズマ分布を詳細に制御できる構成となっている。   An insulator top plate 202 and a shower plate 203 are provided above the vacuum chamber 201 that is evacuated and grounded. The process gas supplied from the gas supply system 204 is uniformly introduced into the processing chamber by the shower plate. A stage 207 that is temperature-controlled by a temperature adjustment mechanism 212 is provided at the lower part of the processing chamber, and the substrate holder 101 is placed on the stage 207. A waveguide 205 is provided in the upper portion of the processing chamber, and microwaves are supplied to the processing chamber from a plasma source power source (not shown) via the waveguide. Two or three solenoid coils 208 and a yoke 209 are provided outside the processing chamber 201, and an arbitrary direct current is passed through the solenoid coil to generate a magnetic field having an arbitrary shape in the processing chamber. be able to. The process gas introduced into the processing chamber can be turned into plasma by the interaction between the magnetic field and the microwave. Furthermore, the plasma density and the plasma distribution can be controlled in detail by adjusting the source power, the magnetic field arrangement, the processing pressure, and the like.

ステージ207には整合器210を介して高周波電源21が接続されており、基板ホルダ101に設置された被処理基板に高周波バイアスを印加することができる構成となっている。該高周波バイアスは、プラズマ中のイオンを積極的に被処理基板に引き込み、垂直な処理形状と高速な処理速度を実現することができる。   A high-frequency power source 21 is connected to the stage 207 via a matching unit 210 so that a high-frequency bias can be applied to the substrate to be processed installed in the substrate holder 101. The high frequency bias can positively attract ions in the plasma to the substrate to be processed, and realize a vertical processing shape and a high processing speed.

また、ウエハステージはダイポール式の静電チャックを備えた構成とし、被処理基板の処理時に、基板ホルダの円板状導電体部材5を静電吸着力により、ウエハステージ上に保持できるようにしても良い。   Further, the wafer stage is provided with a dipole electrostatic chuck so that the disk-shaped conductor member 5 of the substrate holder can be held on the wafer stage by electrostatic attraction when processing the substrate to be processed. Also good.

本実施例によれば、基板ホルダ内の被処理基板の裏面に隙間部が設けられているために、基板表面の処理を行っている間に、基板裏面に形成されたパターンの損傷を回避でき、さらに、磁気記録媒体のみに高周波バイアスを印加することができるため、磁気記録媒体のみを効率的にエッチングすることが可能となる。   According to this embodiment, since the gap is provided on the back surface of the substrate to be processed in the substrate holder, damage to the pattern formed on the back surface of the substrate can be avoided while the substrate surface is being processed. Furthermore, since a high frequency bias can be applied only to the magnetic recording medium, only the magnetic recording medium can be efficiently etched.

次に、実施例2として、本発明による基板ホルダを用いた基板のエッチング方法について、図3乃至図5を参照しつつ、説明する。まず、被処理基板12を基板ホルダ101に載置する。この時点で、被処理基板の表裏両面には、すでにマスク用のパターンが形成されているものとする。   Next, as a second embodiment, a substrate etching method using the substrate holder according to the present invention will be described with reference to FIGS. First, the substrate 12 to be processed is placed on the substrate holder 101. At this point, it is assumed that mask patterns have already been formed on both the front and back surfaces of the substrate to be processed.

まず、図3に示したように、板状絶縁体部材1を押し上げ機構8により押し上げておき、第一の基板保持機構9にて内周部を保持した被処理基板12を、板状絶縁体部材1の基板載置面である凹部に逐次載せていく。板状絶縁体部材1に備えられた複数個の基板載置面の全てに被処理基板を載置し終わった後、押し上げ機構8を下降させる。ここでは、被処理基板の表面、裏面のパターン部分に接触せずに被処理基板12を基板ホルダに設置する事が重要である。   First, as shown in FIG. 3, the plate-like insulator member 1 is pushed up by the push-up mechanism 8, and the substrate to be processed 12 holding the inner peripheral portion by the first substrate holding mechanism 9 is replaced with the plate-like insulator. The members 1 are successively placed in the recesses that are the substrate placement surfaces. After placing the substrate to be processed on all of the plurality of substrate placement surfaces provided in the plate-like insulator member 1, the push-up mechanism 8 is lowered. Here, it is important to place the substrate 12 to be processed on the substrate holder without contacting the front and back pattern portions of the substrate.

複数枚の被処理基板をセットし終えた基板ホルダは、半導体エッチング装置用のウエハカセットもしくはフープにセットされる。   The substrate holder after setting a plurality of substrates to be processed is set in a wafer cassette or hoop for a semiconductor etching apparatus.

次に、図4に示したように、被処理基板12を複数枚設置した基板ホルダを複数枚収容したフープを、半導体処理用のエッチング装置の大気搬送部に設置する。フープ102に収納された状態の基板ホルダ101は、大気搬送アーム104によりフープから取り出された後、アライナ105に載置される。アライナにより位置と方向を調整された基板ホルダはロック室106に搬入される。次に、ロック室が図示しないポンプにより真空排気された後、基板ホルダ101は、真空搬送アーム108によりバッファ室107に搬入される。その後、基板ホルダ101は処理室109に搬入され、所定のエッチング処理を施される。即ち、被処理基板12は、基板ホルダ101ごとエッチング装置内に搬送され、基板ホルダごとエッチング処理を施されることになる。この際、ここまでで述べてきたように、本発明による基板ホルダを用いることにより、被処理基板12のみを効率的にエッチングでき、また、板状絶縁部材1はプラズマにより殆ど損傷を受けない。さらに、被処理基板12の裏側に設けた隙間部6により、被処理基板12の裏面のパターンに損傷を与える事もない。   Next, as shown in FIG. 4, a hoop containing a plurality of substrate holders on which a plurality of substrates to be processed 12 are installed is installed in the atmospheric transfer part of an etching apparatus for semiconductor processing. The substrate holder 101 stored in the hoop 102 is taken out from the hoop by the atmospheric transfer arm 104 and then placed on the aligner 105. The substrate holder whose position and direction are adjusted by the aligner is carried into the lock chamber 106. Next, after the lock chamber is evacuated by a pump (not shown), the substrate holder 101 is carried into the buffer chamber 107 by the vacuum transfer arm 108. Thereafter, the substrate holder 101 is carried into the processing chamber 109 and subjected to a predetermined etching process. That is, the substrate 12 to be processed is transferred into the etching apparatus together with the substrate holder 101, and is subjected to the etching process with respect to the substrate holder. At this time, as described above, by using the substrate holder according to the present invention, only the substrate to be processed 12 can be efficiently etched, and the plate-like insulating member 1 is hardly damaged by the plasma. Furthermore, the gap 6 provided on the back side of the substrate 12 to be processed does not damage the pattern on the back surface of the substrate 12 to be processed.

次に、片面の処理を終えた被処理基板12を載置した基板ホルダ101は、真空搬送アーム108により処理室109から搬出され、ロック室106に搬入される。次にロック室を窒素ガスまたはドライエアでパージする。ロック室の圧力が大気圧まで上がった後、基板ホルダ101は大気搬送アームによりロック室から搬出され、フープ102に回収される。   Next, the substrate holder 101 on which the substrate 12 to be processed that has undergone the processing on one side is unloaded from the processing chamber 109 by the vacuum transfer arm 108 and is loaded into the lock chamber 106. The lock chamber is then purged with nitrogen gas or dry air. After the pressure in the lock chamber rises to atmospheric pressure, the substrate holder 101 is unloaded from the lock chamber by the atmospheric transfer arm and collected in the FOUP 102.

ここまで説明してきた手順で、全ての被処理基板基12の処理が終了し、全ての被処理基板基12を載置した基板ホルダ101が回収された後、該フープは、エッチング装置から回収される。   After the processing of all the substrate bases 12 to be processed is completed by the procedure described so far and the substrate holder 101 on which all the substrate bases 12 to be processed are recovered, the hoop is recovered from the etching apparatus. The

次に、被処理基板12の表裏を反転させる手順について、再度図3を用いて説明する。まず、板状絶縁体部材1を押し上げ機構8により押し上げておき、第一の基板保持機構9にて被処理基板12の内周部を保持し、被処理基板12を板状絶縁体部材1から持ち上げる。次に第二の基板保持機構15により被処理基板12の外周部を保持した後、第一の基板保持機構9を開放する。次に、第二の基板保持機構15を図中θ方向に180°回転させ、基板の上下方向を反転させた後、再度、第一の基板保持機構9にて被処理基板12の内周部を保持し、第二の基板保持機構15を開放する。最後に第一の基板保持機構9を下降させ、表裏が反転している被処理基板12を板状絶縁体部材1に設置する。これら一連の作業を、被処理基板12の枚数分だけ実施する。   Next, a procedure for inverting the front and back of the substrate 12 to be processed will be described with reference to FIG. 3 again. First, the plate-like insulator member 1 is pushed up by the push-up mechanism 8, the inner peripheral portion of the substrate to be processed 12 is held by the first substrate holding mechanism 9, and the substrate to be processed 12 is removed from the plate-like insulator member 1. lift. Next, after holding the outer peripheral portion of the substrate 12 to be processed by the second substrate holding mechanism 15, the first substrate holding mechanism 9 is opened. Next, the second substrate holding mechanism 15 is rotated 180 ° in the θ direction in the figure to reverse the vertical direction of the substrate, and then the inner peripheral portion of the substrate 12 to be processed is again formed by the first substrate holding mechanism 9. And the second substrate holding mechanism 15 is opened. Finally, the first substrate holding mechanism 9 is lowered, and the substrate 12 to be processed whose front and back are reversed is placed on the plate-like insulator member 1. These series of operations are performed for the number of substrates 12 to be processed.

複数枚の表裏が反転した被処理基板12をセットし終えた基板ホルダ101は、再度、半導体エッチング装置用のフープにセットされる。該フープは、再度エッチング装置に設置され、まだ処理を施されていない面のエッチング処理を実施する。該処理はこれまで説明してきたのと同様の手順で行うため、説明を省略する。   The substrate holder 101 after setting the plurality of substrates to be processed 12 whose front and back sides are reversed is set again in the hoop for the semiconductor etching apparatus. The hoop is again installed in the etching apparatus and performs an etching process on a surface that has not been processed yet. Since this processing is performed in the same procedure as described above, description thereof is omitted.

最後に、両面の処理が終了した被処理基板12を載置した基板ホルダが収納されたフープをエッチング装置から回収した後、基板ホルダ101から、被処理基板12を回収する。   Finally, after the hoop in which the substrate holder on which the substrate 12 to be processed on which both sides have been processed is placed is stored is recovered from the etching apparatus, the substrate 12 to be processed is recovered from the substrate holder 101.

まず、板状絶縁体部材1を押し上げ機構8により押し上げておき、基板保持機構9にて内周部を保持した被処理基板12を、板状絶縁体部材1の凹部から逐次回収していく。板状絶縁体部材1に備えられた複数個の凹部全てから被処理基板を回収し終わった後、押し上げ機構8を下降させる。   First, the plate-like insulator member 1 is pushed up by the push-up mechanism 8, and the substrate to be processed 12 holding the inner peripheral portion by the substrate holding mechanism 9 is sequentially collected from the concave portion of the plate-like insulator member 1. After the substrate to be processed is collected from all of the plurality of recesses provided in the plate-like insulator member 1, the push-up mechanism 8 is lowered.

ここまでの説明では、板状絶縁体部材1を押し上げ機構8にて押し上げる事により、被処理基板の載置や回収を行っていたが、実施例1の変形例として、中心絶縁体部材2を押し上げることでも、被処理基板を載置、回収することが出来る。この場合、円板状導電体部材5の中心絶縁体部材2の直下に開口部を設け、該開口部を介して中心絶縁体部材2を押し上げるための押し上げ機構8を、被処理基板の枚数分設置すればよい。この場合でも、中心絶縁体部材2とリング状導電体部材4とで構成される凸部が、板状絶縁体部材1の貫通孔3内に係合した状態において、各被エッチング基板の下面換言すると基板載置面と、凸部の表面換言するとリング状導電体部材4の上面との間に、基板載置面に垂直な方向に厚みを有する隙間部6が形成されるように構成する。また、中心絶縁体部材2はリング状導電体部材4及び円板状導電体部材5に対して上下動可能に構成される。この場合、基板保持機構9は、被処理基板の外周部を保持する構造にすればよい。   In the above description, the plate-like insulator member 1 is pushed up by the push-up mechanism 8 to place and collect the substrate to be processed. As a modification of the first embodiment, the central insulator member 2 is The substrate to be processed can also be placed and recovered by pushing it up. In this case, an opening is provided immediately below the central insulator member 2 of the disk-shaped conductor member 5, and a push-up mechanism 8 for pushing up the central insulator member 2 through the opening is provided for the number of substrates to be processed. Install it. Even in this case, the bottom surface of each substrate to be etched in a state where the convex portion constituted by the central insulator member 2 and the ring-shaped conductor member 4 is engaged in the through hole 3 of the plate-like insulator member 1. Then, a gap portion 6 having a thickness in a direction perpendicular to the substrate mounting surface is formed between the substrate mounting surface and the surface of the convex portion, in other words, the upper surface of the ring-shaped conductor member 4. The central insulator member 2 is configured to be movable up and down with respect to the ring-shaped conductor member 4 and the disk-shaped conductor member 5. In this case, the substrate holding mechanism 9 may be configured to hold the outer peripheral portion of the substrate to be processed.

本発明によれば、隙間部6の厚さと、板状絶縁体部材1の厚さを以下に示すように設定することにより、被処理基板12に効率的に高周波バイアスを印加することが可能となる。   According to the present invention, it is possible to efficiently apply a high-frequency bias to the substrate 12 to be processed by setting the thickness of the gap 6 and the thickness of the plate-like insulator member 1 as shown below. Become.

図6に、本発明による基板ホルダ101を用いてエッチングを行っている際の模式図を示す。基板ホルダ101の上部には、CCPやICP、もしくは、有磁場マイクロ波プラズマ源を用いて生成したプラズマ20が存在しており、基板ホルダの円板状導電体部材5及びリング状導電体部材4には、高周波電源21より周波数100kHz〜13.56MHz程度の高周波バイアスが印加されている。プラズマと基板ホルダ及び被処理基板の上面には、バイアスを印加することによりイオンシース23が形成される。   FIG. 6 shows a schematic view when etching is performed using the substrate holder 101 according to the present invention. Plasma 20 generated using CCP, ICP, or a magnetic field microwave plasma source is present above the substrate holder 101, and the disk-shaped conductor member 5 and the ring-shaped conductor member 4 of the substrate holder. A high frequency bias having a frequency of about 100 kHz to 13.56 MHz is applied from the high frequency power source 21. An ion sheath 23 is formed on the upper surface of the plasma, the substrate holder, and the substrate to be processed by applying a bias.

印加された高周波バイアス電流は、板状絶縁体部材1−シース23(経路b)を経由してプラズマ20に流れ込む分と、隙間部6−被処理基板12−シース23(経路c)を経由してプラズマ20に流れ込む分と、に分解して考える事が出来る。   The applied high-frequency bias current flows into the plasma 20 via the plate-like insulator member 1-sheath 23 (path b), and via the gap 6-substrate 12-sheath 23 (path c). Therefore, it can be considered to be decomposed into the amount that flows into the plasma 20.

この状態を、電気的な等価回路で示したものが図7である。ここで、板状絶縁体部材1、隙間部6、被処理基板12は、いずれも、高周波バイアスに対しては、キャパシタンス成分とみなせ、シース23は、あるインピーダンスを持った非線形素子とみなせる。   FIG. 7 shows this state as an electrical equivalent circuit. Here, the plate-like insulator member 1, the gap 6, and the substrate to be processed 12 can all be regarded as capacitance components with respect to the high frequency bias, and the sheath 23 can be regarded as a nonlinear element having a certain impedance.

図7において、Z1bは板状絶縁体部材1の単位面積あたりの高周波インピーダンスを、Zsbは板状絶縁体部材1の上部に形成されるシースの単位面積あたりの高周波インピーダンスを示している。また、Z6cは隙間部6の、Z3cは被処理基板12の、Zscは被処理基板12の上部に形成されるシースの、単位面積あたりの高周波インピーダンスを示している。また、Ibは経路bを経由して流れる高周波電流の電流密度を、Icは経路cを経由して流れる高周波電流の電流密度を示している。   In FIG. 7, Z 1 b represents the high frequency impedance per unit area of the plate-like insulator member 1, and Zsb represents the high-frequency impedance per unit area of the sheath formed on the plate-like insulator member 1. Z6c represents the high-frequency impedance per unit area of the gap portion 6, Z3c represents the substrate 12 to be processed, and Zsc represents the sheath formed on the substrate 12 to be processed. Ib indicates the current density of the high-frequency current flowing through the path b, and Ic indicates the current density of the high-frequency current flowing through the path c.

ここで、隙間部6と被処理基板12が作る合成インピーダンス(Z6c+Z3c)が板状絶縁体部材1のインピーダンスZ1bと等しかった場合を考える。本状態をケース1とする。この場合では、被処理基板12上のシースにかかる電圧Vscと、板状絶縁体部材1上のシースにかかる電圧Vsbは当然等しくなる。また、経路cを流れる電流密度Icと経路bを流れる電流密度Ibも等しくなる。即ち、被処理基板12上のシースで消費される電力密度IcVscと、板状絶縁体部材1上のシースで消費される電力密度IbVsbとは等しくなる。   Here, consider a case where the combined impedance (Z6c + Z3c) created by the gap 6 and the substrate 12 to be processed is equal to the impedance Z1b of the plate-like insulator member 1. This state is referred to as Case 1. In this case, the voltage Vsc applied to the sheath on the substrate 12 to be processed and the voltage Vsb applied to the sheath on the plate-like insulator member 1 are naturally equal. Further, the current density Ic flowing through the path c and the current density Ib flowing through the path b are also equal. That is, the power density IcVsc consumed by the sheath on the substrate 12 to be processed is equal to the power density IbVsb consumed by the sheath on the plate-like insulator member 1.

次に、前記した状態から板状絶縁体部材1の厚さを若干厚くし、板状絶縁体部材1の作るインピーダンスZ1bを大きくした場合を考える。本状態をケース2とする。この場合、次のような現象が起こる。   Next, consider a case where the thickness of the plate-like insulator member 1 is slightly increased from the above-described state and the impedance Z1b formed by the plate-like insulator member 1 is increased. This state is referred to as Case 2. In this case, the following phenomenon occurs.

(1)経路b内で各素子にかかる電圧を考えると、Z1bに分圧される電圧V1bが大きくなるため、シースにかかる電圧Vsbは逆に小さくなる。   (1) Considering the voltage applied to each element in the path b, since the voltage V1b divided by Z1b increases, the voltage Vsb applied to the sheath decreases conversely.

(2)経路bと経路cに分流される電流密度を考えると、Z1b > Z3c + Z6c となるため、経路bに流れるバイアス電流の電流密度Ibが小さくなる。   (2) Considering the current density divided into the path b and the path c, since Z1b> Z3c + Z6c, the current density Ib of the bias current flowing in the path b becomes small.

(3)上記(1)、(2)の相乗効果により、板状絶縁体部材1の上部に形成されるシースで消費される電力Vsb×Ibは大幅に減少する。   (3) Due to the synergistic effect of the above (1) and (2), the electric power Vsb × Ib consumed by the sheath formed on the upper part of the plate-like insulator member 1 is greatly reduced.

このように、板状絶縁体部材1の厚さを若干厚くすることにより、板状絶縁体部材1上のシースで消費される電力は大幅に減少し、その結果、被処理基板12上のシースで消費される電力が大幅に増加することになる。即ち、投入したバイアス電力は、効率的に被処理基板12のエッチングに寄与することになる。   Thus, by slightly increasing the thickness of the plate-like insulator member 1, the power consumed by the sheath on the plate-like insulator member 1 is greatly reduced. As a result, the sheath on the substrate 12 to be processed is reduced. The electric power consumed in will greatly increase. That is, the input bias power efficiently contributes to the etching of the substrate 12 to be processed.

逆に、板状絶縁体部材1の厚さをケース1から若干減じた場合、ケース2で述べた事と全く逆の現象がおこる。即ち、被処理基板12上のシースで消費される電力が大幅に減少することになり、投入したバイアス電力は、被処理基板12のエッチングに殆ど寄与しなくなる。   On the contrary, when the thickness of the plate-like insulator member 1 is slightly reduced from the case 1, a phenomenon completely opposite to that described in the case 2 occurs. That is, the power consumed by the sheath on the substrate to be processed 12 is greatly reduced, and the input bias power hardly contributes to the etching of the substrate to be processed 12.

ここまでで述べてきた事から明らかなように、板状絶縁体部材1よりも被処理基板12に効率的にバイアス電力が投入される臨界状態は、ケース1、即ち、隙間部6と被処理基板12が作る合成インピーダンス(Z6c+Z3c)が板状絶縁体部材1のインピーダンスZ1bと等しくなった状態であることが分かる。また、ケース1では板状絶縁体部材1の厚さを増加させることにより被処理基板12を効率的にエッチングできることを示したが、同様の考え方をすれば、隙間部6の厚さを減じること、即ち、Z6cを減じる事によっても同様な効果を期待できることが分かる。   As apparent from what has been described so far, the critical state in which the bias power is more efficiently applied to the substrate 12 to be processed than the plate-like insulator member 1 is the case 1, that is, the gap 6 and the object to be processed. It can be seen that the combined impedance (Z6c + Z3c) produced by the substrate 12 is equal to the impedance Z1b of the plate-like insulator member 1. Further, in the case 1, it has been shown that the substrate 12 to be processed can be efficiently etched by increasing the thickness of the plate-like insulator member 1. However, if the same idea is used, the thickness of the gap 6 is reduced. That is, it can be seen that the same effect can be expected by reducing Z6c.

次に、隙間部6をある厚さ t6 に設定した際に、支持誘電体部材1の厚さ t1 をどの程度まで厚くすれば被処理基板12に効率的に高周波バイアスが印加されるようになるかを具体的に見積もった。   Next, when the gap portion 6 is set to a certain thickness t6, to what extent the thickness t1 of the supporting dielectric member 1 is increased, a high frequency bias is efficiently applied to the substrate 12 to be processed. I specifically estimated.

図8の実線は、隙間部6の厚さ t6 に対する支持誘電体部材1の臨界厚さt1c を示しており、Z1b = Z6c + Z3c の関係を満たす線である。ここでは、支持誘電体部材1の比誘電率を4(石英)、隙間部6の比誘電率を1(真空)、被処理基板の比誘電率を6(ガラス)、被処理基板の厚さを0.65mmとして見積もってある。図8において、本実線よりも上の領域に存在するt1,t6の値の組み合わせを用いれば、支持誘電体部材よりも被処理基板により多くのバイアスが印加されることになる。   The solid line in FIG. 8 indicates the critical thickness t1c of the supporting dielectric member 1 with respect to the thickness t6 of the gap 6 and is a line that satisfies the relationship Z1b = Z6c + Z3c. Here, the relative dielectric constant of the supporting dielectric member 1 is 4 (quartz), the relative dielectric constant of the gap 6 is 1 (vacuum), the relative dielectric constant of the substrate to be processed is 6 (glass), and the thickness of the substrate to be processed is Is estimated as 0.65 mm. In FIG. 8, when a combination of the values of t1 and t6 existing in the region above the solid line is used, more bias is applied to the substrate to be processed than the supporting dielectric member.

さらに、図8の破線はT1c を示しており、Z1b = 1.5 × (Z6c + Z3c) なる関係を満たす線である。図8の破線よりも上の領域に存在するt1,t6の組み合わせを用いれば、さらに効率的に、被処理基板12に高周波バイアスを印加することが可能となる。ここで、図8の破線は、臨界厚さt1cと隙間部6の厚さt6とを用いて、概ね、T1c = 0.65 + 6×t6 なる直線で表すことが出来る。さらに、破線を表す直線の式における切片の値0.65は、被処理基板の厚さ0.65mmに相当している。即ち、被処理基板12の厚さをt3とした場合、ある隙間部6の厚さt6に対し、 t1c > (t3 + 6×t6) なる関係を満たすように支持誘電体部材1の厚さt1c を定めればよい事になる。   Furthermore, the broken line in FIG. 8 indicates T1c, which is a line that satisfies the relationship Z1b = 1.5 × (Z6c + Z3c). If a combination of t1 and t6 existing in the region above the broken line in FIG. 8 is used, a high frequency bias can be applied to the substrate 12 to be processed more efficiently. Here, the broken line in FIG. 8 can be represented by a straight line of T1c = 0.65 + 6 × t6 using the critical thickness t1c and the thickness t6 of the gap 6. Further, the intercept value 0.65 in the straight line expression representing the broken line corresponds to the thickness of the substrate to be processed of 0.65 mm. That is, when the thickness of the substrate 12 to be processed is set to t3, the thickness t1c of the supporting dielectric member 1 satisfies the relationship of t1c> (t3 + 6 × t6) with respect to the thickness t6 of the gap 6. It is only necessary to determine.

また、図8中には、加工限界を示す一点破線と、搬送限界を示す二点破線が示してある。加工限界とは、誘電体支持部材1を機械加工で作成する際の精度で限定され、隙間部6の厚さの最小値を示しており、おおむね0.05mm程度である。また搬送限界とは、一般的な半導体用のエッチング装置で搬送しうる支持誘電体部材1の厚さt1cの最大厚さを示しており、これは通常7-8mm程度となる。よって、斜線で示した領域が、好ましい領域となる。なお、支持誘電体部材1は被処理基板にバイアスを効率よく印加する観点からは、より厚い方が望ましいが、厚くなりすぎると、搬送経路でエッチング装置の一部と接触する懸念が生じる。本懸念は、半導体エッチング装置に僅かな改造を加える事により解消可能であるものの、絶縁体部材のコストや、絶縁体部材の重量増加も考慮した場合、t1cは15mm程度の厚さが限界であると考える。   Moreover, in FIG. 8, the one-dot broken line which shows a process limit, and the two-dot broken line which shows a conveyance limit are shown. The processing limit is limited by the accuracy with which the dielectric support member 1 is formed by machining, and indicates the minimum value of the thickness of the gap 6, which is approximately 0.05 mm. The transport limit indicates the maximum thickness t1c of the supporting dielectric member 1 that can be transported by a general semiconductor etching apparatus, which is usually about 7-8 mm. Therefore, a region indicated by hatching is a preferable region. The support dielectric member 1 is desirably thicker from the viewpoint of efficiently applying a bias to the substrate to be processed. However, if the support dielectric member 1 is too thick, there is a concern that the support dielectric member 1 may come into contact with a part of the etching apparatus through the transport path. Although this concern can be resolved by making a slight modification to the semiconductor etching apparatus, when considering the cost of the insulator member and the increase in the weight of the insulator member, the thickness of t1c is limited to about 15 mm. I think.

本実施例によれば、基板ホルダは、高周波バイアスから見た前記絶縁体部材のインピーダンスを、前記隙間部と被処理基板との合成インピーダンスよりも大きくなるように構成しているため、エッチングを行う磁気記録媒体のみに高周波バイアスを印加することができる。これにより、磁気記録媒体のみを効率的にエッチングすることが可能となり、前記絶縁体部材で直接プラズマに曝される部分が消耗することも抑制できる。これにより、前記絶縁体部材の削れに起因した異物の発生や、ランニングコストの上昇を抑える事が出来る。   According to the present embodiment, the substrate holder is configured so that the impedance of the insulator member viewed from the high frequency bias is larger than the combined impedance of the gap and the substrate to be processed. A high frequency bias can be applied only to the magnetic recording medium. As a result, only the magnetic recording medium can be efficiently etched, and the portion of the insulator member that is directly exposed to plasma can be suppressed from being consumed. Thereby, generation | occurrence | production of the foreign material resulting from the scraping of the said insulator member, and the raise of a running cost can be suppressed.

次に、図9により、本発明による基板ホルダ101を用いた基板の加工プロセスの例を示す。この場合の基板は、例えば、ディスクリートトラックメディア等の磁気記録媒体である。ディスクリートトラックメディアは、それぞれのデータトラックが形成された溝によって物理的、磁気的に分離されている記録媒体である。ディスクリートトラックメディアは記録に必要なトラック部分のみを残し、記録に不要なトラック間は磁牲材料を除去し、ここに非磁性材料を充填する。製造工程としては、まず記録媒体上のレジスト樹脂にパターンを転写し、この転写された樹脂パターンをマスク材としてドライエッチングにより記録媒体の表面に溝を形成する。磁気ヘッドの浮上安定性を確保するために、一旦形成した溝に再び非磁性材料を埋め込み平坦化した後、保護膜などを形成する。一旦形成した溝を埋め戻して記録媒体の表面を鏡面に仕上げるために、ナノオーダーの微細加工技術が求められる。以下、図に基づいて説明する。   Next, FIG. 9 shows an example of a substrate processing process using the substrate holder 101 according to the present invention. The substrate in this case is a magnetic recording medium such as a discrete track medium, for example. A discrete track medium is a recording medium that is physically and magnetically separated by a groove in which each data track is formed. The discrete track medium leaves only the track portion necessary for recording, removes the magnetic material between the tracks unnecessary for recording, and fills it with a nonmagnetic material. As a manufacturing process, first, a pattern is transferred to a resist resin on a recording medium, and a groove is formed on the surface of the recording medium by dry etching using the transferred resin pattern as a mask material. In order to ensure the flying stability of the magnetic head, a nonmagnetic material is again buried in the groove once formed and planarized, and then a protective film or the like is formed. In order to refill the groove once formed and finish the surface of the recording medium into a mirror surface, a nano-order fine processing technique is required. Hereinafter, a description will be given based on the drawings.

図9において、(a1)は基板ホルダ101と共にエッチング処理室に搬入される被処理基板の状態、換言すると、強化ガラス基板303の上に絶縁体層302を形成し、その上に所望のパターン(即ち、ドットパターンや溝パターン、サーボパターン)のレジストマスク部301を形成した状態を示している。ここで、絶縁体層303の材質は窒化シリコン、酸化シリコン等の材質が用いられる。また、マスク部301の形成は、インプリント法や光、電子線リソグラフィー法を用いて行う。   In FIG. 9, (a1) shows the state of the substrate to be processed that is carried into the etching chamber together with the substrate holder 101. In other words, the insulator layer 302 is formed on the tempered glass substrate 303, and a desired pattern ( That is, a resist mask portion 301 (dot pattern, groove pattern, servo pattern) is formed. Here, the insulator layer 303 is made of a material such as silicon nitride or silicon oxide. The mask portion 301 is formed using an imprint method, light, or electron beam lithography.

まず、第一の工程としてエッチング処理室においてドライエッチングにより、(a2)示したように、ベースレジスト部を除去する。この第一の工程では、サイドエッチ量を抑えながらベースレジスト層を除去する必要があり、かつ、下地の絶縁膜層302との選択性が要求されるため、O2やCO2が用いられる。さらに、これらのガスをN2やAr等の反応性の小さいガスで希釈することで、さらなるサイドエッチ量の抑制が期待できる。   First, as shown in (a2), the base resist portion is removed by dry etching in an etching chamber as a first step. In this first step, it is necessary to remove the base resist layer while suppressing the amount of side etching, and selectivity with the underlying insulating film layer 302 is required, so O 2 or CO 2 is used. Further, by diluting these gases with a gas having a low reactivity such as N 2 or Ar, it is possible to further suppress the side etch amount.

次に、第二の工程で、(a3)に示したように、絶縁体層302のエッチングを行う。本ステップでは、絶縁体層の垂直加工性と、マスクであるレジスト材料との選択比が要求されるため、CF4,CHF3,CH2F2,C4F8,C5F8,C4F6等のフロロカーボン系のガスを2〜3種類混合して用いる場合や、これらのフロロカーボン系のガスをAr,N2,Xe等の反応性の小さいガスで希釈し、さらにO2等を添加する場合が多い。また、第一の工程での酸素雰囲気が残留していると、レジスト選択比が低下する事があるため、第一の工程と第二の工程の間では、放電を中断する事が望ましい。   Next, in the second step, the insulator layer 302 is etched as shown in (a3). In this step, the vertical processability of the insulator layer and the selection ratio of the resist material that is the mask are required. In many cases, these fluorocarbon-based gases are diluted with a less reactive gas such as Ar, N2, or Xe, and O2 or the like is added. In addition, if the oxygen atmosphere in the first step remains, the resist selectivity may be lowered. Therefore, it is desirable to interrupt the discharge between the first step and the second step.

次に、第三の工程で、(a4)で示したように、パターン上部に残ったレジスト材料をO2プラズマによりアッシングし除去する。また、本発明では、上記してきた第一の工程から第三の工程を、一つのエッチング処理室で一貫処理する事ができる。   Next, in the third step, as shown in (a4), the resist material remaining on the upper part of the pattern is removed by ashing with O2 plasma. Further, in the present invention, the above-described first to third steps can be consistently processed in one etching processing chamber.

上記した第二の工程で用いられるフロロカーボン系のガスは堆積性が強く、処理室内の壁等にもCF系のポリマーが堆積する。これによりエッチング特性が経時変化したり、壁からポリマーが剥離し、異物となる可能性が大きいが、第三の工程はパターン上に残ったレジスト材料を除去するだけでなく、壁に堆積したCF系ポリマーを除去するクリーニングの役目も兼ねている。即ち、第一の工程から第三の工程を、一つのエッチング処理室で一貫処理することにより、処理室の状態を常に一定に保つことが可能となり、低異物で長期間安定した処理が期待できる。第一の工程から第三の工程までを実施することにより、図9の(a1)〜(a4)までの処理を実施する部分が、本発明による基板ホルダと基板ホルダを用いたエッチング方法の特徴である。なお、上記3つの工程に、さらに他の工程を加えて一つのエッチング処理室で一貫処理する場合も、同様な効果があることはいうまでもない。   The fluorocarbon-based gas used in the second step described above is highly depositable, and CF-based polymer is deposited on the walls of the processing chamber. As a result, the etching characteristics may change with time and the polymer may peel off from the wall and become a foreign substance, but the third process not only removes the resist material remaining on the pattern, but also CF deposited on the wall. It also serves as a cleaning agent to remove the polymer. That is, by performing the first process to the third process in a single etching process chamber, it is possible to always keep the process chamber in a constant state, and a stable treatment can be expected for a long time with low foreign matters. . By performing the steps from the first step to the third step, the portions for performing the processes (a1) to (a4) in FIG. 9 are the features of the substrate holder and the etching method using the substrate holder according to the present invention. It is. Note that it goes without saying that the same effect can be obtained when another process is added to the above three processes and integrated processing is performed in one etching chamber.

絶縁体層302のエッチングが終了した後は、ウエット処理装置によるウエット洗浄工程を経た後、スパッタリング装置により、Co,Ni,Fe,Pt等の合金からなる複数層の磁性体304を堆積させ、図9の(a5)に示したような磁性体がパターニングされた状態を形成する。さらに、パターン凹部をスパッタリングやSOG (Spin On Glass) 塗布により絶縁物で埋め、CMP (Chemical Mechanical Polyshing) 法やエッチバック、ミリング等による平坦化を実施することで、表面が非常に滑らかで、かつ、磁性体がパターニングされたディスクリートトラックメディア等の磁気記録媒体を作成できる。   After the etching of the insulating layer 302 is completed, a wet cleaning process is performed by a wet processing apparatus, and then a plurality of layers of magnetic bodies 304 made of an alloy such as Co, Ni, Fe, and Pt are deposited by a sputtering apparatus. The magnetic material as shown in (a5) of 9 is patterned. Furthermore, by filling the pattern recess with an insulator by sputtering or SOG (Spin On Glass) coating, and performing planarization by CMP (Chemical Mechanical Polyshing) method, etch back, milling, etc., the surface is very smooth and A magnetic recording medium such as a discrete track medium patterned with a magnetic material can be produced.

本実施例によれば、複数の被処理基板を載置できるように構成しているため、被処理基板を一枚ずつ処理する場合と比較し、大幅なスループットの向上が期待できる。さらに、基板ホルダの外径を、200mmもしくは300mmとすることにより、半導体デバイスを製造するために広く用いられているエッチング装置を流用した処理が可能となり、エッチング装置に対する投資コストを抑制することができる。   According to the present embodiment, since a plurality of substrates to be processed can be placed, a significant improvement in throughput can be expected compared to the case where the substrates to be processed are processed one by one. Furthermore, by setting the outer diameter of the substrate holder to 200 mm or 300 mm, it is possible to carry out processing using an etching apparatus widely used for manufacturing semiconductor devices, and to suppress the investment cost for the etching apparatus. .

次に、図10により、本発明による基板ホルダ101を用いた基板の別の加工プロセスの例を示す。図9の加工プロセスは、予め基板をパターニングしておき、そこに磁性体をスパッタリングで堆積させる方法であったが、以下で説明する実施例4は、直接磁性体を加工する方法である。   Next, FIG. 10 shows an example of another substrate processing process using the substrate holder 101 according to the present invention. The processing process of FIG. 9 is a method in which a substrate is patterned in advance and a magnetic material is deposited thereon by sputtering. Example 4 described below is a method of directly processing a magnetic material.

図10の(b1)は、強化ガラス基板303上に磁性体304を堆積させ、その上に所望のパターンのレジストマスク部301を形成した状態を示している。ここで、磁性体304は、磁気特性の向上や磁性膜の安定性を向上させるために多層構造をとることが普通であるが、図と説明の簡略化のために単層構造で示している。   FIG. 10B1 shows a state in which a magnetic material 304 is deposited on a tempered glass substrate 303 and a resist mask portion 301 having a desired pattern is formed thereon. Here, the magnetic body 304 usually has a multilayer structure in order to improve the magnetic characteristics and the stability of the magnetic film, but is shown in a single layer structure for the sake of simplicity of the drawings and description. .

まず、第一の工程として(b2)に示したように、エッチング処理室においてドライエッチングによりベースレジスト部を除去する。これには、サイドエッチ量を抑えながらベースレジスト層を除去する必要があり、かつ、下地の絶縁膜層302との選択性が要求されるため、O2やCO2が用いられる。さらに、これらのガスをN2やAr等の反応性の小さいガスで希釈することで、さらなるサイドエッチ量の抑制が期待できる。   First, as shown in (b2) as the first step, the base resist portion is removed by dry etching in the etching processing chamber. For this, it is necessary to remove the base resist layer while suppressing the amount of side etching, and since selectivity with the underlying insulating film layer 302 is required, O 2 or CO 2 is used. Further, by diluting these gases with a gas having a low reactivity such as N 2 or Ar, it is possible to further suppress the side etch amount.

次に、第二の工程として(b3)で示したように、磁性体304を直接エッチングする。これには、CO+NH3等のガス系を用いることが多い。磁性体材料は揮発性に乏しいため、バイアスを印加しないと殆どエッチングが進行しないが、本発明による基板ホルダを用いる事により効率的にバイアスを印加する事が可能となり、高スループットの処理が期待できる。   Next, as shown in (b3) as a second step, the magnetic body 304 is directly etched. For this, a gas system such as CO + NH3 is often used. Since the magnetic material is poor in volatility, the etching hardly proceeds unless a bias is applied. However, by using the substrate holder according to the present invention, it is possible to efficiently apply a bias, and high throughput processing can be expected. .

次に、第三の工程として(b4)で示したように、パターン上部に残ったレジスト材料をO2プラズマによりアッシングし除去する。このように、(b1)〜b4までの処理を実施する部分が、本発明による基板ホルダと基板ホルダを用いた別のエッチング方法である。さらにその後、パターン凹部に絶縁体を埋め込み、表面の平坦化を実施することで、磁気記録媒体が作成できる。   Next, as shown in (b4) as a third step, the resist material remaining on the upper portion of the pattern is removed by ashing with O2 plasma. Thus, the part which performs the processing from (b1) to b4 is another etching method using the substrate holder and the substrate holder according to the present invention. Further, after that, an insulator is embedded in the pattern recess and the surface is flattened, whereby a magnetic recording medium can be produced.

第一の工程から第三の工程を、一つのエッチング処理室で一貫処理することにより、処理室の状態を常に一定に保つことが可能となり、低異物で長期間安定した処理が期待できる。なお、上記3つの工程に、さらに他の工程を加えて一つのエッチング処理室で一貫処理する場合も、同様な効果があることはいうまでもない。   By consistently performing the first to third steps in one etching chamber, the state of the chamber can be kept constant, and stable treatment can be expected for a long time with low foreign matters. Note that it goes without saying that the same effect can be obtained when another process is added to the above three processes and integrated processing is performed in one etching chamber.

本実施例によれば、複数の被処理基板を載置できるように構成しているため、被処理基板を一枚ずつ処理する場合と比較し、大幅なスループットの向上が期待できる。   According to the present embodiment, since a plurality of substrates to be processed can be placed, a significant improvement in throughput can be expected compared to the case where the substrates to be processed are processed one by one.

以上、本発明による基板ホルダを用いたエッチング方法について説明してきたが、エッチング装置自体に関しては、半導体製造用のものを流用することで、コスト削減を図ることができる。また、エッチング装置に関しては、誘導結合型、平行平板型、有磁場マイクロ波型ほか、如何なる方式を用いたエッチング装置を用いても構わない。   Although the etching method using the substrate holder according to the present invention has been described above, the cost of the etching apparatus itself can be reduced by diverting the one for semiconductor manufacturing. As for the etching apparatus, an etching apparatus using any method other than the inductive coupling type, the parallel plate type, and the magnetic field microwave type may be used.

また、ここまでに説明してきた、本発明による基板ホルダを用いたエッチング方法では、被処理基板12を基板ホルダに設置する際は、基板をホルダに設置、反転、回収をするための装置が必要となるが、該機構を、エッチング装置自体に具備させることも可能である。   Further, in the etching method using the substrate holder according to the present invention described so far, when the substrate 12 to be processed is placed on the substrate holder, an apparatus for placing, inverting and collecting the substrate on the holder is necessary. However, the mechanism can be provided in the etching apparatus itself.

次に、本発明を実施するための他の実施形態について説明していく。この実施形態の断面図を図11に示す。第一の実施形態で説明した個所については、説明を省略する。また、図11は、本発明による基板ホルダがエッチング装置内のステージ207に載置されている状態を示している。ステージ207は、温調機構212と、冷却ガス導入機構213が備えられており、整合器210を介して高周波電源211が接続されている。また、電極外周部は、電極上部以外にバイアス電力が漏れる事を防ぐために、石英もしくはアルミナ製のサセプタ214も具備されている。   Next, other embodiments for carrying out the present invention will be described. A cross-sectional view of this embodiment is shown in FIG. The description of the parts described in the first embodiment is omitted. FIG. 11 shows a state in which the substrate holder according to the present invention is placed on the stage 207 in the etching apparatus. The stage 207 is provided with a temperature control mechanism 212 and a cooling gas introduction mechanism 213, and a high frequency power supply 211 is connected via a matching unit 210. In addition, the outer periphery of the electrode is also provided with a susceptor 214 made of quartz or alumina in order to prevent leakage of the bias power to the part other than the upper part of the electrode.

この実施形態では、被処理基板12とリング状導電体部材5の間の隙間部6にヘリウム、アルゴン、窒素等のガスを導入するためのガス導入機構10を備えている。さらに、被処理基板チャッキング機構11を備えている。   In this embodiment, a gas introduction mechanism 10 for introducing a gas such as helium, argon, or nitrogen into the gap 6 between the substrate to be processed 12 and the ring-shaped conductor member 5 is provided. Further, a substrate chucking mechanism 11 to be processed is provided.

ガス導入機構10は、被処理基板12の上面をエッチング処理している際に、隙間部6にガスをパージすることにより、被処理基板12の下面が損傷することを防止する。エッチングは、プラズマにより生成したイオンやラジカルが基板に入射することで進行するが、被処理基板12の上面をエッチングしている最中に、隙間部6にラジカルが進入する可能性がある。   The gas introduction mechanism 10 prevents the lower surface of the substrate to be processed 12 from being damaged by purging the gap 6 when the upper surface of the substrate to be processed 12 is etched. Etching proceeds when ions or radicals generated by the plasma are incident on the substrate. However, radicals may enter the gap 6 while the upper surface of the substrate 12 is being etched.

隙間部6に進入したラジカルは、被処理基板12の下面のマスクパターンや、既にエッチング処理されたパターンに損傷を与える可能性がある。エッチング処理中にガス導入機構10により隙間部6にガスをパージし、処理圧力よりも、隙間部6の圧力を高く保つことにより、隙間部6へのラジカルの進入を防止することができる。   The radical that has entered the gap portion 6 may damage the mask pattern on the lower surface of the substrate 12 to be processed and the pattern that has already been etched. By purging the gap 6 with the gas introduction mechanism 10 during the etching process and keeping the pressure in the gap 6 higher than the processing pressure, it is possible to prevent radicals from entering the gap 6.

処理圧力は、通常0.2Pa〜20Pa程度であるが、隙間部6へのパージ圧力を0.3kPa〜3kPa程度とすることにより、隙間部6へのラジカルの進入は完全に防止できる。さらに、隙間部6へガスパージを行うことにより、被処理基板の温度調節をすることが可能となり、より精密な処理を実施することができる。また、被処理基板チャッキング機構11により、処理圧力よりも隙間部6の圧力を高くした際の、被処理基板12の浮き上がりを防止することができる。   The processing pressure is usually about 0.2 Pa to 20 Pa, but radicals can be completely prevented from entering the gap 6 by setting the purge pressure to the gap 6 to about 0.3 kPa to 3 kPa. Furthermore, by performing a gas purge to the gap 6, it becomes possible to adjust the temperature of the substrate to be processed, so that more precise processing can be performed. Further, the substrate to be processed 12 can be prevented from being lifted by the substrate chucking mechanism 11 when the pressure in the gap 6 is made higher than the processing pressure.

基板ホルダ自体へのガス供給は、エッチング装置のウエハステージに通常具備されている冷却ガス導入機構213から行われる。この際、ウエハステージから基板ホルダが浮上してしまう懸念は、ダイポール式の静電チャックを備えたウエハステージを用い、基板ホルダの円板状導電体部材5をステージに電気的にチャッキングすることにより回避できる。   Gas supply to the substrate holder itself is performed from a cooling gas introduction mechanism 213 that is usually provided in a wafer stage of an etching apparatus. At this time, the concern that the substrate holder may float from the wafer stage is that a wafer stage equipped with a dipole electrostatic chuck is used to electrically chuck the disk-shaped conductor member 5 of the substrate holder on the stage. Can be avoided.

以上説明してきたように、本実施形態を用いることにより、被処理基板裏面の損傷を防止することができ、さらに、被処理基板の温調が可能となるため、より精密な加工を行うことができる。   As described above, by using this embodiment, it is possible to prevent damage to the back surface of the substrate to be processed, and furthermore, the temperature of the substrate to be processed can be controlled, so that more precise processing can be performed. it can.

本発明による基板ホルダの第一の実施形態の概略を示す斜視図である。It is a perspective view which shows the outline of 1st embodiment of the board | substrate holder by this invention. 図1中のO-A断面を示す断面図である。It is sectional drawing which shows the OA cross section in FIG. 被処理基板12を載置、反転、回収する方法を示す図である。It is a figure which shows the method of mounting, reversing, and collect | recovering the to-be-processed substrates. 半導体用のエッチング装置の概略を示す平面図である。It is a top view which shows the outline of the etching apparatus for semiconductors. 半導体用のエッチング装置のエッチング処理室の概略を示す断面図である。It is sectional drawing which shows the outline of the etching process chamber of the etching apparatus for semiconductors. 本発明による基板ホルダを用いてエッチングを行っている際の模式図である。It is a schematic diagram at the time of etching using the substrate holder by this invention. 図6を電気的な等価回路で示した図である。It is the figure which showed FIG. 6 with the electrical equivalent circuit. 隙間部6の厚さに対する板状絶縁体部材1の臨界厚さを示す図である。It is a figure which shows the critical thickness of the plate-shaped insulator member 1 with respect to the thickness of the clearance gap part 6. FIG. 本発明による基板ホルダを用いた、複数ステップのエッチング工程を示す概念図である。It is a conceptual diagram which shows the multi-step etching process using the substrate holder by this invention. 本発明による基板ホルダを用いた、他の実施形態になる複数ステップのエッチング工程を示す概念図である。It is a conceptual diagram which shows the multistep etching process which becomes another embodiment using the substrate holder by this invention. 本発明による基板ホルダの他の実施形態を示す図である。It is a figure which shows other embodiment of the board | substrate holder by this invention.

符号の説明Explanation of symbols

1:板状絶縁体部材、2:中心絶縁体部材、4:リング状導電体部材、5:円板状導電体部材、6:隙間部、7:位置決めマーク、8:押し上げ機構、9:第一の基板保持機構、10:ガス導入機構、11:被処理基板チャッキング機構、12:被処理基板、15:第二の基板保持機構、21:高周波電源101:基板ホルダ、102:フープ、104:大気搬送アーム、105:アライナ、106:ロック室、107:バッファ室、108:真空搬送アーム、109:処理室、201:真空チャンバ、202:絶縁体天板、203:シャワープレート、204:プロセスガス供給系、205:導波管、207:ステージ、208:コイル、209:ヨーク、210:整合器、211:高周波電源、212:温調機構、213:冷却ガス供給機構、301:マスク部、302:絶縁体層、303:強化ガラス基板、304:磁性体。 1: plate-like insulator member, 2: central insulator member, 4: ring-like conductor member, 5: disc-like conductor member, 6: gap portion, 7: positioning mark, 8: push-up mechanism, 9: first One substrate holding mechanism, 10: gas introduction mechanism, 11: substrate to be processed chucking mechanism, 12: substrate to be processed, 15: second substrate holding mechanism, 21: high frequency power supply 101: substrate holder, 102: hoop, 104 : Atmospheric transfer arm, 105: aligner, 106: lock chamber, 107: buffer chamber, 108: vacuum transfer arm, 109: processing chamber, 201: vacuum chamber, 202: insulator top plate, 203: shower plate, 204: process Gas supply system, 205: Waveguide, 207: Stage, 208: Coil, 209: Yoke, 210: Matching device, 211: High frequency power supply, 212: Temperature control mechanism, 213: Cooling gas supply Structure, 301: mask portion, 302: insulating layer, 303: tempered glass substrate, 304: magnetic body.

Claims (11)

貫通孔が複数設けられた板状絶縁体部材と、該各貫通孔に係合し得る凸部を備えた導電性保持部材とを備え、
前記凸部が前記貫通孔に係合した状態において、該貫通孔内に基板載置面と、該基板載置面に垂直な方向の厚みを有する隙間部とが形成されて成ることを特徴とする基板ホルダ。
A plate-like insulator member provided with a plurality of through holes, and a conductive holding member provided with a convex portion that can be engaged with each through hole;
The substrate mounting surface and a gap having a thickness in a direction perpendicular to the substrate mounting surface are formed in the through hole in a state where the convex portion is engaged with the through hole. Substrate holder.
請求項1において、
前記隙間部の厚さが0.05mm以上1mm以下、かつ、前記板状絶縁体部材の厚さが1mm以上15mm以下であることを特徴とする基板ホルダ。
In claim 1,
A substrate holder, wherein the gap portion has a thickness of 0.05 mm or more and 1 mm or less, and the plate-like insulator member has a thickness of 1 mm or more and 15 mm or less.
請求項1において、
前記基板載置面に保持される被処理基板の厚さをt3としたとき、前記凸部表面と該被処理基板の底面との間に厚さt6の前記隙間部が形成されており、該隙間部の厚さt6が0.05mm以上1mm以下、かつ、該絶縁体部材の厚さt1cが1mm以上15mm以下、かつ、t1c >(t3 + 6×t6) なる関係を満たすことを特徴とする基板ホルダ。
In claim 1,
When the thickness of the substrate to be processed held on the substrate mounting surface is t3, the gap portion of thickness t6 is formed between the convex surface and the bottom surface of the substrate, A thickness t6 of the gap is 0.05 mm or more and 1 mm or less, a thickness t1c of the insulator member is 1 mm or more and 15 mm or less, and satisfies a relationship of t1c> (t3 + 6 × t6) Substrate holder.
請求項1において、前記板状絶縁体部材及び前記導電性保持部材は円板状の部材からなり、
前記基板載置面に垂直な方向において、前記板状絶縁体部材と前記導電性保持部材とは分離可能に構成されていることを特徴とする基板ホルダ。
In Claim 1, the plate-like insulator member and the conductive holding member are formed of a disk-like member,
The substrate holder, wherein the plate-like insulator member and the conductive holding member are separable in a direction perpendicular to the substrate mounting surface.
請求項1において、
前記隙間部にガスを導入する機構を備えたことを特徴とする基板ホルダ。
In claim 1,
A substrate holder comprising a mechanism for introducing gas into the gap.
大気搬送ロボットと、ロック室と、真空搬送ロボット及び真空処理室を備え、両面に被処理面を有する被処理基板をエッチング処理するエッチング処理装置であって、
前記被処理基板を複数枚載置した基板ホルダを複数枚収容し得るフープと前記ロック室との間で、該基板ホルダ搬送する大気搬送ロボットと、
前記基板ホルダを、前記ロックと前記真空処理室の間で搬送する真空搬送ロボットとを備え、
前記真空処理室は、前記基板ホルダを載置して前記被処理基板の一方の被処理基板面をエッチング処理するためのステージを有し、
前記基板ホルダは、貫通孔が複数設けられた板状絶縁体部材と、該各貫通孔に係合し得る凸部を備えた導電性保持部材とを備え、前記導電性保持部材の凸部が前記板状絶縁体部材の貫通孔に係合した状態において、該貫通孔内に基板載置面と、該基板載置面に垂直な方向の厚みを有する隙間部とが形成され、かつ、前記板状絶縁体部材と前記導電性保持部材とは分離可能に構成されており、
前記被処理基板の一方の被処理基板面が処理された前記基板ホルダ内の前記被処理基板面を反転させた後、前記ステージに該基板ホルダを載置して前記被処理基板の他方の面をエッチング処理するように構成されている、ことを特徴とするエッチング処理装置。
An etching processing apparatus that includes an atmospheric transfer robot, a lock chamber, a vacuum transfer robot, and a vacuum processing chamber, and performs an etching process on a substrate to be processed having a surface to be processed on both sides.
An atmospheric transfer robot for transferring the substrate holder between the lock chamber and a hoop capable of storing a plurality of substrate holders on which a plurality of the substrates to be processed are placed;
A vacuum transfer robot for transferring the substrate holder between the lock and the vacuum processing chamber;
The vacuum processing chamber has a stage for placing the substrate holder and etching one substrate surface of the substrate to be processed,
The substrate holder includes a plate-like insulator member provided with a plurality of through holes, and a conductive holding member provided with a convex portion that can be engaged with each through hole, and the convex portion of the conductive holding member is In a state where the plate-like insulator member is engaged with the through hole, a substrate placement surface and a gap portion having a thickness in a direction perpendicular to the substrate placement surface are formed in the through hole, and The plate-like insulator member and the conductive holding member are configured to be separable,
After reversing the substrate surface in the substrate holder where one substrate surface of the substrate to be processed has been processed, the substrate holder is placed on the stage and the other surface of the substrate to be processed An etching processing apparatus characterized by being configured to perform etching processing.
表裏両面に記録層を有する磁気記録媒体の製造方法であって、
被処理基板の両面に対して、O2もしくはCO2を含むガス系のプラズマによりベースレジストをエッチングする工程と、フロロカーボン系のプラズマにより絶縁体層をエッチングする工程と、O2系のプラズマにより上記絶縁体層上部に残留したレジストを除去する工程の少なくとも3つの工程を、同一の処理室にて一貫処理を行う事を特徴とする磁気記録媒体の製造方法。
A method for producing a magnetic recording medium having recording layers on both front and back surfaces,
Etching the base resist with a gas-based plasma containing O2 or CO2 on both surfaces of the substrate to be processed, etching the insulator layer with a fluorocarbon-based plasma, and the insulator layer with an O2-based plasma. A method of manufacturing a magnetic recording medium, wherein at least three steps of removing a resist remaining on the upper portion are subjected to an integrated process in the same processing chamber.
請求項7において、前記各工程間で放電を中断する事を特徴とする磁気記録媒体の製造方法。   8. The method of manufacturing a magnetic recording medium according to claim 7, wherein the discharge is interrupted between the steps. 大気搬送部と、ロックと、真空搬送ロボット及び真空処理室を備えたエッチング処理装置において、基板ホルダを用い、被処理基板の両面にエッチングを施すエッチング方法であって、
前記基板ホルダは、貫通孔が複数設けられた板状絶縁体部材と、該各貫通孔に係合し得る凸部を備えた導電性保持部材とを備え、前記導電性保持部材の凸部が前記板状絶縁体部材の貫通孔に係合した状態において、該貫通孔内に基板載置面と、該基板載置面に垂直な方向の厚みを有する隙間部とが形成されており、
前記基板ホルダに載置された前記被処理基板に対する複数の処理工程を、同一の真空処理室にて一貫して行う事を特徴とするエッチング方法。
In an etching processing apparatus provided with an atmospheric transfer unit, a lock, a vacuum transfer robot and a vacuum processing chamber, an etching method for etching both surfaces of a substrate to be processed using a substrate holder,
The substrate holder includes a plate-like insulator member provided with a plurality of through holes, and a conductive holding member provided with a convex portion that can be engaged with each through hole, and the convex portion of the conductive holding member is In a state where the plate-like insulator member is engaged with the through hole, a substrate placement surface and a gap portion having a thickness in a direction perpendicular to the substrate placement surface are formed in the through hole,
An etching method characterized by consistently performing a plurality of processing steps on the substrate to be processed placed on the substrate holder in the same vacuum processing chamber.
請求項9に記載のプラズマエッチング方法であって、
前記基板ホルダに載置された前記被処理基板に対して、
O2もしくはCO2を含むガス系のプラズマによりベースレジストをエッチングする工程と、
フロロカーボン系のプラズマにより絶縁体層をエッチングする工程と、
O2系のプラズマにより上記絶縁体層上部に残留したレジストを除去する工程の少なくとも3つの工程を前記被処理基板に対して同一の真空処理室にて一貫で処理を行う事を特徴とするエッチング方法。
The plasma etching method according to claim 9,
For the substrate to be processed placed on the substrate holder,
Etching the base resist with a gas-based plasma containing O 2 or CO 2;
Etching the insulator layer with fluorocarbon plasma;
Etching method characterized in that at least three steps of removing the resist remaining on the upper part of the insulator layer by O2 plasma are consistently processed on the substrate to be processed in the same vacuum processing chamber. .
請求項9に記載のプラズマエッチング方法であって、
前記基板ホルダに載置された前記被処理基板に対して、
O2もしくはCO2を含むガス系のプラズマによりベースレジストをエッチングする工程と、CO+NH3系のプラズマにより磁性体層をエッチングする工程と、O2系のプラズマにより上記磁性体上部に残留したレジストを除去する工程の少なくとも3つの工程を同一の真空処理室にて一貫して行う事を特徴とするエッチング方法。
The plasma etching method according to claim 9,
For the substrate to be processed placed on the substrate holder,
Etching the base resist with a gas-based plasma containing O2 or CO2, etching the magnetic layer with a CO + NH3-based plasma, and removing the resist remaining on the magnetic body with the O2-based plasma. An etching method characterized in that at least three steps are performed consistently in the same vacuum processing chamber.
JP2006343470A 2006-12-20 2006-12-20 Substrate holder, etching process of substrate and manufacturing method of magnetic recording medium Withdrawn JP2008159097A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2006343470A JP2008159097A (en) 2006-12-20 2006-12-20 Substrate holder, etching process of substrate and manufacturing method of magnetic recording medium
KR1020070117709A KR20080058169A (en) 2006-12-20 2007-11-19 Substrate-holder, etching method of the substrate, and the fabrication method of a magnetic recording media
US11/942,849 US20080149590A1 (en) 2006-12-20 2007-11-20 Substrate-Holder, Etching Method of the Substrate, and the Fabrication Method of a Magnetic Recording Media

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006343470A JP2008159097A (en) 2006-12-20 2006-12-20 Substrate holder, etching process of substrate and manufacturing method of magnetic recording medium

Publications (1)

Publication Number Publication Date
JP2008159097A true JP2008159097A (en) 2008-07-10

Family

ID=39541359

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006343470A Withdrawn JP2008159097A (en) 2006-12-20 2006-12-20 Substrate holder, etching process of substrate and manufacturing method of magnetic recording medium

Country Status (3)

Country Link
US (1) US20080149590A1 (en)
JP (1) JP2008159097A (en)
KR (1) KR20080058169A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010061717A (en) * 2008-09-02 2010-03-18 Hitachi Ltd Etching device and method for etching magnetic disk
JP2014241394A (en) * 2013-05-17 2014-12-25 キヤノンアネルバ株式会社 Etching apparatus
CN105762092A (en) * 2014-12-16 2016-07-13 北京北方微电子基地设备工艺研究中心有限责任公司 Semiconductor processing equipment

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5365091B2 (en) * 2008-08-18 2013-12-11 富士通株式会社 Plating thickness calculation program, plating thickness calculation device, and plating thickness calculation method
US10026436B2 (en) * 2009-07-01 2018-07-17 Nordson Corporation Apparatus and methods for supporting workpieces during plasma processing
EP2471065A4 (en) * 2009-08-26 2013-01-30 Veeco Instr Inc System for fabricating a pattern on magnetic recording media
JP5791329B2 (en) * 2011-03-31 2015-10-07 大陽日酸株式会社 Vapor growth equipment
US8746666B2 (en) 2011-05-05 2014-06-10 Varian Semiconductor Equipment Associates, Inc. Media carrier
SG10201701595QA (en) * 2012-02-28 2017-03-30 Applied Materials Inc Substrate carrier plate
CN103346110A (en) * 2013-06-28 2013-10-09 武汉迪源光电科技有限公司 Quartz bearing disc for etching wafers
JP6976725B2 (en) 2016-06-07 2021-12-08 アプライド マテリアルズ インコーポレイテッドApplied Materials, Incorporated Contour pockets and hybrid susceptors for wafer uniformity
CN109478525B (en) 2016-07-09 2023-12-08 应用材料公司 Substrate carrier
WO2022204086A1 (en) * 2021-03-25 2022-09-29 Applied Materials, Inc. Fabrication of optical devices utilizing dicing to maximize chamber space

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0730468B2 (en) * 1988-06-09 1995-04-05 日電アネルバ株式会社 Dry etching equipment
DE4305750C2 (en) * 1993-02-25 2002-03-21 Unaxis Deutschland Holding Device for holding flat, circular disk-shaped substrates in the vacuum chamber of a coating or etching system
US6014296A (en) * 1995-07-24 2000-01-11 Kabushiki Kaisha Toshiba Magnetic disk, method of manufacturing magnetic disk and magnetic recording apparatus
US6001183A (en) * 1996-06-10 1999-12-14 Emcore Corporation Wafer carriers for epitaxial growth processes
DE10232731A1 (en) * 2002-07-19 2004-02-05 Aixtron Ag Loading and unloading device for a coating device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010061717A (en) * 2008-09-02 2010-03-18 Hitachi Ltd Etching device and method for etching magnetic disk
JP2014241394A (en) * 2013-05-17 2014-12-25 キヤノンアネルバ株式会社 Etching apparatus
US11195700B2 (en) 2013-05-17 2021-12-07 Canon Anelva Corporation Etching apparatus
CN105762092A (en) * 2014-12-16 2016-07-13 北京北方微电子基地设备工艺研究中心有限责任公司 Semiconductor processing equipment

Also Published As

Publication number Publication date
KR20080058169A (en) 2008-06-25
US20080149590A1 (en) 2008-06-26

Similar Documents

Publication Publication Date Title
JP2008159097A (en) Substrate holder, etching process of substrate and manufacturing method of magnetic recording medium
US9735021B2 (en) Etching method
JP4992389B2 (en) Mounting apparatus, plasma processing apparatus, and plasma processing method
CN107533970B (en) Cleaning method and plasma processing method
JP5216918B2 (en) Ion beam generator, substrate processing apparatus, and electronic device manufacturing method
US8940098B2 (en) Method for distributing gas for a bevel etcher
JP4223348B2 (en) Magnetic recording medium manufacturing method and manufacturing apparatus
US9208997B2 (en) Method of etching copper layer and mask
US20060115584A1 (en) Production process and production system of magnetic recording medium
TW200405466A (en) Apparatus for reducing polymer deposition on a substrate and substrate support
JP6050944B2 (en) Plasma etching method and plasma processing apparatus
US20080242086A1 (en) Plasma processing method and plasma processing apparatus
JP2008516426A (en) Method and apparatus for improving plasma etch uniformity
JP5323303B2 (en) Plasma processing equipment
JP4283366B2 (en) Plasma processing equipment
JP2011146690A (en) Ion beam generator and substrate processing apparatus and production method of electronic device using the ion beam generator
JP4616605B2 (en) Plasma processing method, plasma processing apparatus, and storage medium
JP2008153249A (en) Plasma etching apparatus
US11772137B2 (en) Reactive cleaning of substrate support
WO2024134927A1 (en) Plasma processing device
US20220028670A1 (en) Plasma processing method and plasma processing apparatus
JP5175519B2 (en) Plasma etching apparatus and method for manufacturing magnetic recording medium
WO2024095840A1 (en) Substrate processing apparatus, substrate processing system, and cleaning method
TW202245028A (en) etching method
JP2004335637A (en) Etching method and etching device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091009

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110427

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20110613