JP2008153249A - Plasma etching apparatus - Google Patents

Plasma etching apparatus Download PDF

Info

Publication number
JP2008153249A
JP2008153249A JP2006336488A JP2006336488A JP2008153249A JP 2008153249 A JP2008153249 A JP 2008153249A JP 2006336488 A JP2006336488 A JP 2006336488A JP 2006336488 A JP2006336488 A JP 2006336488A JP 2008153249 A JP2008153249 A JP 2008153249A
Authority
JP
Japan
Prior art keywords
substrate
etched
electrode
support member
plasma
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006336488A
Other languages
Japanese (ja)
Inventor
Makoto Satake
真 佐竹
Kenji Maeda
賢治 前田
Masaru Izawa
勝 伊澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2006336488A priority Critical patent/JP2008153249A/en
Publication of JP2008153249A publication Critical patent/JP2008153249A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Manufacturing Of Magnetic Record Carriers (AREA)
  • Drying Of Semiconductors (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a plasma etching apparatus which can apply a bias efficiently even to a substrate which is not a conductor and can perform double-side polishing without damaging a pattern formed on both sides of the substrate. <P>SOLUTION: The plasma etching apparatus comprises a substrate supporting member movable in the direction perpendicular to the surface of a substrate to be etched. Since the movable substrate supporting member holding a substrate to be etched is stuck to the electrode side outputting a bias voltage, a distance between the electrode to which the bias voltage is applied and the substrate is shortened and thereby the bias can be applied efficiently to the substrate. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、記録層が凹凸パターンで形成されている磁気記録媒体の製造装置、製造方法に関する。   The present invention relates to a manufacturing apparatus and a manufacturing method of a magnetic recording medium in which a recording layer is formed in a concavo-convex pattern.

ハードディスク装置は、円環状の磁気記録媒体を高速で回転させ、磁気ヘッドによりディジタル信号を記録・再生している。従来では、磁気記録媒体は、表面が非常に平坦な円環状のアルミニウム基板、もしくは強化ガラス基板に、磁性体をスパッタリング等により蒸着したものを用いていた。記録密度の上昇に伴い、該記録媒体に対し、記録層を構成する磁性体の微粒子化、磁性体材料の変更、磁性体の積層構造の工夫、垂直記録方式の採用等により、面記録密度の向上が図られてきた。しかるに、媒体に起因したノイズやクロストーク、熱ゆらぎ耐性等の問題により、既存の記録媒体では記録密度向上の限界が見え始めた。そこで、磁気記録層に所定の凹凸を設ける事により、さらなる記録密度向上を実現できる磁気記録媒体、いわゆるディスクリートトラックメディアや、パターンドメディア等の記録媒体が提案されている(例えば、特許文献1参照)。   A hard disk device rotates an annular magnetic recording medium at a high speed and records / reproduces a digital signal by a magnetic head. Conventionally, a magnetic recording medium has been obtained by depositing a magnetic material on an annular aluminum substrate having a very flat surface or a tempered glass substrate by sputtering or the like. As the recording density increases, the surface recording density of the recording medium is reduced by making the magnetic material composing the recording layer finer, changing the magnetic material, devising the laminated structure of the magnetic material, adopting the perpendicular recording method, etc. Improvements have been made. However, due to problems such as noise, crosstalk, and thermal fluctuation resistance caused by the medium, the limit of improvement in recording density has begun to appear with existing recording media. In view of this, magnetic recording media such as so-called discrete track media and patterned media that can realize further improvement in recording density by providing predetermined irregularities on the magnetic recording layer have been proposed (for example, see Patent Document 1). ).

磁気記録層に凹凸を設けるプロセスは、大まかに二種類に分類できる。一つ目は、基板に磁性体を蒸着したものに所望のマスクを施し、非マスク部の磁性体を直接エッチングする方法である。もう一つは、基板自体もしくは、基板に堆積させた窒化シリコンや酸化シリコン等の非磁性体膜(以降、両者を含め基板と称する)に所望のマスクを施し、該基板にエッチングにより凹凸加工を施したものに、磁性体を蒸着させる方法である。   The process of providing the magnetic recording layer with unevenness can be roughly classified into two types. The first is a method in which a desired mask is applied to a substrate obtained by depositing a magnetic material, and the magnetic material in the non-mask portion is directly etched. The other is to apply a desired mask to the substrate itself or a non-magnetic film such as silicon nitride or silicon oxide deposited on the substrate (hereinafter referred to as the substrate including both of them), and etching the substrate by etching. In this method, a magnetic material is vapor-deposited on the applied material.

基板もしくは磁性体にマスクを施す方法としては、ナノインプリント法や光リソグラフィー、電子線リソグラフィー等がある。また、マスクを施された基板もしくは磁性体をエッチングする方法には、ウエットエッチングや、プラズマエッチング、イオンビームエッチング、イオンミリング、中性ビームエッチング等のドライエッチングが考えられる。特に、半導体デバイスの製造で広く用いられているプラズマエッチング技術は、量産性まで考慮した、基板もしくは磁性体の凹凸加工への応用が期待できる。   Examples of a method for applying a mask to a substrate or a magnetic material include a nanoimprint method, photolithography, and electron beam lithography. In addition, as a method of etching a substrate or a magnetic material provided with a mask, dry etching such as wet etching, plasma etching, ion beam etching, ion milling, or neutral beam etching can be considered. In particular, plasma etching technology widely used in the manufacture of semiconductor devices can be expected to be applied to uneven processing of a substrate or a magnetic material in consideration of mass productivity.

プラズマエッチングは、減圧された処理室に処理用のガスを導入し、平板アンテナやコイル状アンテナ等を介して、処理室にソース電源より高周波電力を投入することで該ガスをプラズマ化し、これにより発生したイオンやラジカルを基板に照射することにより進行する。プラズマ源には、プラズマを発生させる方式の違いにより、有磁場マイクロ波タイプ、誘導結合(ICP:Inductively Coupled Plasma)タイプ、容量結合(CCP:Capacitively Coupled Plasma)タイプ等、様々な方式が存在している。   In plasma etching, a processing gas is introduced into a decompressed processing chamber, and the processing chamber is turned into plasma by supplying high-frequency power from a source power source to the processing chamber via a flat antenna, a coiled antenna, or the like. The process proceeds by irradiating the generated ions and radicals onto the substrate. There are various types of plasma sources, such as magnetic field microwave type, inductively coupled plasma (ICP) type, and capacitively coupled (CCP) type, depending on the method of generating plasma. Yes.

さらに、基板を載置する電極に高周波バイアスを印加することにより、プラズマ中のイオンを積極的に基板に引き込む事ができ、これによりエッチング速度の向上や、垂直加工性の向上が実現できる。該高周波バイアスは、プラズマ生成に用いられるソース電源の周波数よりも一桁から三桁低い周波数を用いる事が多い。   Furthermore, by applying a high frequency bias to the electrode on which the substrate is placed, ions in the plasma can be actively drawn into the substrate, thereby improving the etching rate and improving the vertical workability. The high frequency bias often uses a frequency that is one to three orders of magnitude lower than the frequency of the source power supply used for plasma generation.

特開平9-97419号公報Japanese Unexamined Patent Publication No. 9-97419

しかし、従来のプラズマエッチング装置を用いて磁気記録媒体に凹凸加工を施そうとすると、基板裏面のパターン損傷や、基板裏面への異物の付着が問題となる。磁気記録媒体は、媒体一枚あたりの記録容量を上げるために表裏両面を記録層として用いている。したがって、ディスクリートトラックメディアやパターンドメディアも、表裏両面に凹凸加工を施す必要が生じる。基板の表側、即ち、プラズマに接する面の処理を行っている間に、基板の裏側が電極表面に接すると、基板裏側の凹凸パターンが損傷を受ける、もしくは、基板裏側の凹凸パターンに異物が付着する問題が発生する。これにより、凹凸パターンに重大な欠陥を引き起こす可能性が高くなる。   However, when an uneven process is applied to a magnetic recording medium using a conventional plasma etching apparatus, pattern damage on the back surface of the substrate and adhesion of foreign matter to the back surface of the substrate becomes a problem. The magnetic recording medium uses both front and back surfaces as recording layers in order to increase the recording capacity per medium. Therefore, the discrete track media and the patterned media also need to be processed with irregularities on both the front and back sides. If the back side of the substrate touches the electrode surface while processing the front side of the substrate, that is, the surface in contact with the plasma, the concavo-convex pattern on the back side of the substrate is damaged, or foreign matter adheres to the concavo-convex pattern on the back side of the substrate. Problems occur. This increases the possibility of causing serious defects in the concavo-convex pattern.

これを避けるためには、基板をステージに直接載置せず、基板の両面がプラズマと接するように、プラズマ中に基板を保持し、基板の表裏両面を一括でエッチングする方法が考えられる。しかし、このような両面一括の処理方法は、非導電体である基板にバイアスを印加する事が困難であり、エッチング速度が上がらない事、垂直加工が困難になる事が問題となる。   In order to avoid this, a method is conceivable in which the substrate is not placed directly on the stage, but the substrate is held in plasma so that both surfaces of the substrate are in contact with the plasma, and the front and back surfaces of the substrate are etched together. However, such a double-sided batch processing method has a problem that it is difficult to apply a bias to a non-conductive substrate, the etching rate does not increase, and vertical processing becomes difficult.

本発明は、前記した課題を解決するためのものであり、真空排気手段、ガス供給手段、対向する二つの電極、それぞれの電極に接続された二つの高周波電源、略円環状被エッチング基板、略円環状被エッチング基板を保持する可動式基板支持部材を有するプラズマエッチング装置において、可動式基板支持部材内にクランプされた被エッチング基板が被エッチング基板面鉛直方向に可動することを特徴とするプラズマエッチング装置である。   The present invention is for solving the above-described problems, and includes an evacuation unit, a gas supply unit, two opposing electrodes, two high-frequency power sources connected to the respective electrodes, a substantially annular substrate to be etched, In a plasma etching apparatus having a movable substrate support member for holding an annular substrate to be etched, the substrate to be etched clamped in the movable substrate support member is movable in a direction perpendicular to the surface of the substrate to be etched. Device.

そして、前記可動式基板支持部材の被エッチング基板を支持している最外周部分は可動式基板支持部材内にクランプされた被エッチング基板の表面よりも0mmより大きく3mm未満の範囲で、突出した構造をしている。   The outermost peripheral portion of the movable substrate support member that supports the substrate to be etched protrudes in a range of more than 0 mm and less than 3 mm from the surface of the substrate to be etched clamped in the movable substrate support member. I am doing.

また、前記対向する二つの電極表面には、両方とも中心絶縁体部材が備わっており、該中心絶縁体部材が略円環状被エッチング基板中央にある空孔を埋めることできる。   Further, both of the opposing two electrode surfaces are provided with a central insulator member, and the central insulator member can fill a hole in the center of the substantially annular substrate to be etched.

さらに、前記可動式基板支持部材内部に伸縮材を挿入することで、電極と可動式基板支持部材が接触時に生じる衝撃を該伸縮材が吸収し、電極、可動式基板支持部材、被エッチング基板にかかる衝撃を低減することができる。   Further, by inserting a stretchable material into the movable substrate support member, the stretchable material absorbs an impact generated when the electrode and the movable substrate support member come into contact with each other, and the electrode, the movable substrate support member, and the substrate to be etched are absorbed. Such impact can be reduced.

加えて、前記高周波電源は基板にバイアスを印加するバイアス電圧と、プラズマを生成するためのソース電圧の2種類の高周波電圧のうち、一方を選択して出力することができる。   In addition, the high-frequency power source can select and output one of two types of high-frequency voltages: a bias voltage for applying a bias to the substrate and a source voltage for generating plasma.

可動式基板支持部材にクランプされた被エッチング基板が被エッチング基板面鉛直方向に可動することで、被エッチング基板を装着した可動式基板支持部材を、バイアス電圧を印加した電極側に密着させることができ、被エッチング基板に効率よくバイアスを印加することが可能となる。   Since the substrate to be etched clamped to the movable substrate support member moves in the vertical direction of the substrate to be etched, the movable substrate support member on which the substrate to be etched is attached can be brought into close contact with the electrode side to which the bias voltage is applied. It is possible to efficiently apply a bias to the substrate to be etched.

そして、可動式基板支持部材の基板を支持している最外周部は可動式基板支持部材内にクランプされた被エッチング基板の表面と裏面よりも0mmより大きく、3mm未満の範囲で突出した構造をしており、電極と被エッチング基板が接近したとき、可動式基板支持部材の突出部が電極と接触することで、電極と被エッチング基板の間に0mmより大きく3mm未満の範囲で隙間が生じる。前記隙間により、電極と被エッチング基板表面が接触するのを防ぐことができ、基板表面のエッチング処理を行っている間に、基板裏面に形成されたパターンの損傷を回避できる。   And the outermost peripheral part supporting the substrate of the movable substrate support member has a structure that protrudes within a range of less than 3 mm larger than 0 mm than the front and back surfaces of the substrate to be etched clamped in the movable substrate support member. When the electrode and the substrate to be etched come close to each other, the protrusion of the movable substrate support member comes into contact with the electrode, so that a gap is generated between the electrode and the substrate to be etched in the range of more than 0 mm and less than 3 mm. The gap can prevent the electrode and the surface of the substrate to be etched from coming into contact with each other, and damage to the pattern formed on the back surface of the substrate can be avoided while the substrate surface is being etched.

また、前記電極表面に備えつけた中心絶縁体部材が、略円環状被エッチング基板中央の空孔を塞ぐことで、略円環状被エッチング基板中央の空孔からプラズマやプロセスガスが処理面と反対側の面に回りこみ、処理面と反対側の面が汚染されることを防ぐことができる。   Further, the central insulator member provided on the surface of the electrode closes the hole at the center of the substantially annular substrate to be etched, so that plasma or process gas is opposite to the processing surface from the hole at the center of the substantially annular substrate to be etched. It is possible to prevent the surface opposite to the processing surface from being contaminated.

さらに、基板支持部材の内部に伸縮材を挿入することで、可動式基板支持部材、基板、電極にかかる衝撃が低減し、可動式基板支持部材、基板、電極の破損を防止できる。また、該伸縮材が電極、可動式基板支持部材、被エッチング基板にかかる圧力を低減するため、可動式基板支持部材を電極側に一定の圧力で押しつけた状態、つまり可動式基板支持部材と電極の密着性が向上した状態での加工が可能となる。密着性が増すことで、基板側面からプラズマやプロセスガスが処理面と反対側の面に回りこむのを防ぐことができ、処理面と反対側の面が汚染されることを防ぐことができる。   Furthermore, by inserting an elastic material into the substrate support member, the impact applied to the movable substrate support member, the substrate, and the electrode is reduced, and damage to the movable substrate support member, the substrate, and the electrode can be prevented. Further, in order to reduce the pressure applied to the electrode, the movable substrate support member, and the substrate to be etched by the stretchable material, the movable substrate support member is pressed against the electrode side with a certain pressure, that is, the movable substrate support member and the electrode. It is possible to perform processing with improved adhesion. By increasing the adhesion, it is possible to prevent the plasma or process gas from flowing from the side surface of the substrate to the surface opposite to the processing surface, and to prevent the surface opposite to the processing surface from being contaminated.

加えて、バイアス電圧とソース電圧の2種類の高周波電圧のうち一方を選択して出力できる高周波電源を対向する二つの電極にそれぞれ接続し、可動式基板支持部材と密着した一方の電極にはバイアス電圧を、対向した位置にあるもう一方の電極にはソース電圧を印加することで、基板にバイアスを効率よく印加した状態でのプラズマ処理が可能となる。上記方法により、被エッチング基板の表面を処理した後、可動式基板支持部材を用いて上記とは反対の電極に可動式基板支持部材を密着させ、可動式基板支持部材と密着した電極にはバイアス電圧を、もう一方の電極にはソース電圧を印加することで、基板裏面を処理できる。このように基板の表面と裏面を順番にエッチングすることにより、基板の表裏両面を処理することが可能となる。   In addition, a high-frequency power source capable of selecting and outputting one of two types of high-frequency voltages, ie, a bias voltage and a source voltage, is connected to two opposing electrodes, and one electrode in close contact with the movable substrate support member is biased. By applying a voltage to the other electrode at the opposite position, a source voltage is applied, so that plasma processing can be performed in a state where a bias is efficiently applied to the substrate. After the surface of the substrate to be etched is processed by the above method, the movable substrate support member is brought into close contact with the opposite electrode using the movable substrate support member, and the bias is applied to the electrode that is in close contact with the movable substrate support member. By applying a voltage and a source voltage to the other electrode, the back surface of the substrate can be processed. Thus, it becomes possible to process both the front and back surfaces of the substrate by sequentially etching the front surface and the back surface of the substrate.

以下、図面を用いて発明の実施例を説明する。
発明の実施形態を最もよく表す概略図を、図1に示す。真空排気された導電性の真空容器1内には第一の電極2と、それと対向する位置に第二の電極3が前記真空容器1内に縦に配置されている。前記二つの電極の間には、可動式基板支持部材4と該可動式基板支持部材内にクランプされた被エッチング基板5が備わっており、可動式基板支持部材が前記二つの電極の間を可動する動きに連動して、被エッチング基板も前記二つの電極間を可動できる。第一の電極2は固定電極台6と、第二の電極3は可動式電極台7と一体化されている。第一の電極2は第一の高周波電源8と接続され、第二の電極3は第二の高周波電源9と接続されている。固定電極台6及び可動式電極台7は前記した両電極を支持するとともに、両電極と真空容器1とを絶縁する役割を担っている。
Embodiments of the invention will be described below with reference to the drawings.
A schematic diagram best representing an embodiment of the invention is shown in FIG. A first electrode 2 is disposed in the evacuated conductive vacuum vessel 1, and a second electrode 3 is vertically disposed in the vacuum vessel 1 at a position facing the first electrode 2. Between the two electrodes, there is a movable substrate support member 4 and a substrate to be etched 5 clamped in the movable substrate support member, and the movable substrate support member is movable between the two electrodes. In conjunction with the movement, the substrate to be etched can also move between the two electrodes. The first electrode 2 is integrated with the fixed electrode table 6, and the second electrode 3 is integrated with the movable electrode table 7. The first electrode 2 is connected to the first high-frequency power source 8, and the second electrode 3 is connected to the second high-frequency power source 9. The fixed electrode base 6 and the movable electrode base 7 support both the electrodes described above, and also have a role of insulating both the electrodes and the vacuum vessel 1.

第一の電極2と第二の電極3は二つの用途で使用する。一つはプラズマを生成、維持するための電磁波を放出するために、もう一つは被エッチング基板にバイアスを印加するために用いる。前記二つの電極の面積は被エッチング基板5の加工面の面積以上であれば、その形状にはこだわらないが、基板上に均一なプラズマを生成するため、または基板に均一なバイアスを印加するためには、上下左右対称な構造であることが望ましい。上下左右対称な電極構造の一例としては、円形や長方形などの電極構造があげられる。前記二つの電極は導電性やプラズマ耐性が高く、プラズマに長時間さらされても異物や汚染などの要因とならない材質が望ましい。すなわち、アルミニウム、各種アルミ合金、チタン合金、ステンレス、ボロンドープシリコン等が好ましい。もしくはアルミニウム等の金属表面にアルマイト処理を施したり、アルミナ、チタニア、イットリア等の溶射膜を形成したりした物も好ましい。前記二つの電極は、例えば、一方をプラズマ生成に使用しているとき、他方は基板にバイアスを印加するために使用し、基板の片面を処理する方法や、もしくは両方をプラズマ生成に使用し基板の両面を処理する方法として使用するなど、目的に合わせて使用法を選択することができる。   The first electrode 2 and the second electrode 3 are used in two applications. One is used to emit electromagnetic waves for generating and maintaining plasma, and the other is used to apply a bias to the substrate to be etched. If the area of the two electrodes is equal to or larger than the area of the processed surface of the substrate 5 to be etched, the shape is not particular, but in order to generate a uniform plasma on the substrate or to apply a uniform bias to the substrate In this case, it is desirable to have a vertically and horizontally symmetrical structure. An example of a vertically and horizontally symmetrical electrode structure is a circular or rectangular electrode structure. The two electrodes are preferably made of a material that has high conductivity and plasma resistance and does not cause foreign matter or contamination even when exposed to plasma for a long time. That is, aluminum, various aluminum alloys, titanium alloys, stainless steel, boron-doped silicon and the like are preferable. Alternatively, a material obtained by subjecting a metal surface such as aluminum to an alumite treatment or forming a sprayed film such as alumina, titania or yttria is also preferable. For example, when one of the two electrodes is used for plasma generation, the other is used to apply a bias to the substrate, and a method of processing one side of the substrate or both are used for plasma generation. The usage method can be selected according to the purpose, for example, as a method for processing both sides of the film.

可動式電極台4と固定電極台6内部には、電極に高周波電圧を印加するための導電体や真空容器内にプロセスガスを導入するためのガス導入経路が備わっている。   The movable electrode table 4 and the fixed electrode table 6 are provided with a conductor for applying a high-frequency voltage to the electrodes and a gas introduction path for introducing a process gas into the vacuum vessel.

可動式基板支持部材4は、基板下面支持ホルダー、基板上面支持ホルダーなどの部材から成っており、基板下面支持ホルダーと基板上面支持ホルダーの間に被エッチング基板を設置し、基板下面支持ホルダーと基板上面支持ホルダーにより被エッチング基板を機械的にクランプする機能が備わっている。可動式基板支持部材4にクランプされた被エッチング基板5は、可動式基板支持部材4が第一の支持部材台10上を基板面鉛直方向、つまり矢印aの方向に可動するのに連動し、被エッチング基板も電極間を可動できる。本図では可動式基板支持部材4は第一の支持部材台10上を可動する構造になっているが、電極間を移動できる機構が備わっておれば、その構造にはこだわらない。可動式基板支持部材4と側壁には光等の検出手段を用いた第一の位置決め機構11が備わっており、被エッチング基板5と固定電極台6上に設置された第一の電極2の間の距離を精度よく計測し調整することが可能である。   The movable substrate support member 4 includes members such as a substrate lower surface support holder and a substrate upper surface support holder. The substrate to be etched is installed between the substrate lower surface support holder and the substrate upper surface support holder, and the substrate lower surface support holder and the substrate are arranged. A function of mechanically clamping the substrate to be etched by the upper surface support holder is provided. The substrate to be etched 5 clamped to the movable substrate support member 4 is interlocked with the movable substrate support member 4 moving on the first support member base 10 in the direction perpendicular to the substrate surface, that is, in the direction of the arrow a. The substrate to be etched can also move between the electrodes. In this figure, the movable substrate support member 4 has a structure that can move on the first support member base 10, but if a mechanism that can move between the electrodes is provided, the structure is not particularly concerned. The movable substrate support member 4 and the side wall are provided with a first positioning mechanism 11 using a detecting means such as light, and between the substrate to be etched 5 and the first electrode 2 installed on the fixed electrode table 6. It is possible to accurately measure and adjust the distance.

可動式電極台7は真空ベローズ12を通して、真空容器の外に突き出した構造になっており、可動式電極台支持部材13が第二の支持部材台14上を基板面鉛直方向、つまり、矢印bの方向に可動するのに連動し、可動できる。これにより、対向する二つの電極間の距離を、所望の条件に合わせた最適な距離に設定することができる。可動式電極台7と側壁には光等の検出手段を用いた第二の位置決め機構15が備わっており、対向する二つの電極間の距離を精度よく計測し調整することが可能である。   The movable electrode table 7 has a structure that protrudes out of the vacuum vessel through the vacuum bellows 12, and the movable electrode table support member 13 moves on the second support member table 14 in the vertical direction of the substrate surface, that is, the arrow b Can move in conjunction with moving in the direction of. Thereby, the distance between two electrodes facing each other can be set to an optimum distance according to a desired condition. The movable electrode base 7 and the side wall are provided with a second positioning mechanism 15 using detection means such as light, and the distance between the two electrodes facing each other can be accurately measured and adjusted.

高周波電源8及び9は、高周波バイアスとしての100kHz以上13.56MHz以下の周波数と、プラズマソースとしての10MHz以上1GHz以下の周波数のうち一方を選択して出力することができ、用途により使い分けることができる。例えば、可動式基板支持部材4を稼動し、被エッチング基板5を第一の電極2に接近させた状態のときは、第一の高周波電源8をバイアス電源として用い、第一の電極2から被エッチング基板にバイアスを印加するために使用する。このとき第二の高周波電源9はソース電源として用い、第二の電極3から電磁波を放出し、プラズマを生成するために使用する。こうすることにより、被エッチング基板に効率よくバイアスを印加した状態でのプラズマエッチングが可能となる。   The high frequency power supplies 8 and 9 can select and output one of a frequency of 100 kHz to 13.56 MHz as a high frequency bias and a frequency of 10 MHz to 1 GHz as a plasma source, and can be selectively used depending on the application. For example, when the movable substrate support member 4 is operated and the substrate to be etched 5 is brought close to the first electrode 2, the first high-frequency power source 8 is used as a bias power source, Used to apply a bias to the etched substrate. At this time, the second high-frequency power source 9 is used as a source power source, and is used to emit electromagnetic waves from the second electrode 3 to generate plasma. By doing so, plasma etching can be performed in a state where a bias is efficiently applied to the substrate to be etched.

磁気ディスク基板のように中央に空孔のある略円環状基板を処理する場合、前記二つの電極上に耐熱ガラス、石英、アルミナ、ジルコニア、窒化シリコン、ポリイミド樹脂などの絶縁体材料でできた中心絶縁体部材16を設けることにより、略円環状基板の空孔を塞ぎ、プラズマやプロセスガスが該空孔から処理面と反対側の面に回りこむのを防止することができる。これにより、一方の被エッチング基板面をプラズマ処理しているときに、反対側の面、つまり、プラズマに直接触れるのが望ましくない面に該空孔から、プラズマやプロセスガスが回り込み、前記反対側の面のパターンが損傷したり汚染したりすることを防ぐことができる。   When processing a substantially annular substrate having a hole in the center like a magnetic disk substrate, a center made of an insulating material such as heat resistant glass, quartz, alumina, zirconia, silicon nitride, polyimide resin on the two electrodes. By providing the insulator member 16, it is possible to close the holes in the substantially annular substrate and prevent the plasma and process gas from flowing from the holes to the surface opposite to the processing surface. As a result, when plasma processing is performed on the surface of one of the substrates to be etched, the plasma or process gas circulates from the holes to the opposite surface, that is, the surface that is not desired to be in direct contact with the plasma. It is possible to prevent the surface pattern from being damaged or contaminated.

図2は第一の高周波電源8と第二の高周波電源9の回路構成の概略である。前記二つの高周波電源は同じ構造をしており、以後両者をまとめてデュアルモード高周波電源と記載する。デュアルモード高周波電源は高周波バイアスを印加するバイアス電源19と高周波パワーを供給するソース電源20からなっており、バイアス電源19は被エッチング基板に効率よくイオンを引き込むために用い、イオンが追随できる100kHz以上13.56MHz以下の周波数が望ましく、また、ソース電源20はプラズマを生成、維持するために用い、電子を加速し効率よくプラズマを発生させる10MHz以上1GHz以下の周波数が望ましい。バイアス電源19とソース電源20はスイッチ21により、両者のうち一方を選択して出力することができる。   FIG. 2 schematically shows the circuit configuration of the first high-frequency power source 8 and the second high-frequency power source 9. The two high-frequency power sources have the same structure, and both are hereinafter collectively referred to as a dual-mode high-frequency power source. The dual-mode high-frequency power supply consists of a bias power supply 19 that applies a high-frequency bias and a source power supply 20 that supplies high-frequency power. The bias power supply 19 is used to efficiently draw ions into the substrate to be etched, and the ions can follow 100 kHz or higher. The frequency of 13.56 MHz or less is desirable, and the source power supply 20 is used to generate and maintain plasma, and the frequency of 10 MHz to 1 GHz that accelerates electrons and efficiently generates plasma is desirable. The bias power source 19 and the source power source 20 can select and output one of them by a switch 21.

本図ではバイアス電源とソース電源を異なる周波数領域で記載したが、周波数領域が1MHz以上100MHz以下の場合、バイアス電源とソース電源を同じ周波数で用いることもできる。このとき、バイアス電源から出力する電圧とソース電源から出力する電圧の位相が180°ずれていることが望ましい。これは、位相を半周期ずらすことで対向する電極間にプラズマを閉じ込めやすくするためである。また、バイアス電源とソース電源を同じ周波数で用いた場合、高周波電源の内部構造はバイアス電源もしくはソース電源のどちらか一方のみでよく、スイッチも必要ないためコストの削減に繋がる。   In this figure, the bias power source and the source power source are described in different frequency regions. However, when the frequency region is 1 MHz to 100 MHz, the bias power source and the source power source can be used at the same frequency. At this time, it is desirable that the phase of the voltage output from the bias power supply and the voltage output from the source power supply are shifted by 180 °. This is to make it easier to confine plasma between the opposing electrodes by shifting the phase by a half period. Further, when the bias power source and the source power source are used at the same frequency, the internal structure of the high frequency power source may be only one of the bias power source and the source power source, and no switch is required, leading to cost reduction.

可動式基板支持部材4の構造の一例を図3Aに、囲み線Xの拡大図を図3Bに、可動式基板支持部材を移動させ可動式基板支持部材と電極が密着したときの模式図を図3Cに示す。可動式基板支持部材は基板下面支持ホルダー22と基板上面支持ホルダー23、基板支持棒24からなり、図3Aのように被エッチング基板5を両面から挟み、保持する構造をとる。これ以後、基板下面支持ホルダーと基板上面支持ホルダーをまとめて、基板支持ホルダーと記載する。基板支持ホルダーの基板を支持している最外周部は基板面から0.5mm突出した構造をとる。これは図3C に示すように可動式基板支持部材4を電極2に密着させたとき、基板5と電極2の間に隙間をあけ、両者を非接触にすることで基板表面に形成されたパターンの損傷を防ぐためである。   An example of the structure of the movable substrate support member 4 is shown in FIG. 3A, an enlarged view of the encircling line X is shown in FIG. 3B, and a schematic diagram when the movable substrate support member is brought into close contact with the movable substrate support member is shown. Shown in 3C. The movable substrate support member includes a substrate lower surface support holder 22, a substrate upper surface support holder 23, and a substrate support rod 24, and has a structure that holds and holds the substrate 5 to be etched from both sides as shown in FIG. 3A. Hereinafter, the substrate lower surface support holder and the substrate upper surface support holder are collectively referred to as a substrate support holder. The outermost periphery supporting the substrate of the substrate support holder has a structure protruding 0.5 mm from the substrate surface. As shown in FIG. 3C, when the movable substrate support member 4 is brought into close contact with the electrode 2, a gap is formed between the substrate 5 and the electrode 2 so that they are not in contact with each other. This is to prevent damage.

基板と電極の間に隙間をあけ、両者を非接触にする構造であれば、電極の一部が突出しており、基板と電極の間に隙間をあける構造であっても構わない。このとき、電極上の突出部は、可動式基板支持部材を電極に密着させたとき、突出部が被エッチング基板上に形成されたパターンと接触しない位置になければならない。また、可動式基板部材と電極を密着させたとき、電極面と被エッチング基板面が平行になっていることが望ましく、突出部は全て等しい高さで揃っていることが望ましい。   A structure in which a gap is formed between the substrate and the electrode and the both are brought into contact with each other as long as the electrode is partially protruded and the gap is formed between the substrate and the electrode may be employed. At this time, the protrusion on the electrode must be in a position where the protrusion does not contact the pattern formed on the substrate to be etched when the movable substrate support member is brought into close contact with the electrode. Further, when the movable substrate member and the electrode are brought into close contact with each other, it is desirable that the electrode surface and the surface of the substrate to be etched are parallel to each other, and it is desirable that all the protruding portions are aligned at the same height.

可動式基板支持部材は耐熱ガラス、石英、アルミナ、ジルコニア等の絶縁材料が望ましい。これは基板支持ホルダーで消費されるバイアス電力を低減し、印加されるバイアス電力の大部分を基板上に形成されるプラズマで消費するためである。可動式基板支持部材と電極の接触時に両者にかかる圧力により、基板支持部材内部にある基板5、基板支持部材、電極の破損を防ぐため、図3Bに示すように、基板下面支持ホルダー・基板上面支持ホルダーの内部にステンレスバネなどプラズマや熱に耐性のある伸縮材25を挿入するのが望ましい。伸縮材25により、基板を設置した基板支持部材を高速で電極側に移動し、基板支持部材と電極が衝突したとしても、衝撃を和らげ、基板、基板支持部材、電極の破損を防止できる。また、伸縮材が基板にかかる圧力を低減するため、基板支持部材を電極側に一定の圧力で押しながら加工処理でき、基板支持部材と電極の密着性をあげた状態でエッチングすることが可能である。これにより、基板側面から処理面と反対側の面にプラズマとプロセスガスが回り込む量を低減できる。   The movable substrate support member is preferably an insulating material such as heat resistant glass, quartz, alumina, zirconia. This is because the bias power consumed by the substrate support holder is reduced, and most of the applied bias power is consumed by the plasma formed on the substrate. In order to prevent damage to the substrate 5, the substrate support member, and the electrode inside the substrate support member due to the pressure applied to both of the movable substrate support member and the electrode, as shown in FIG. It is desirable to insert a stretchable material 25 that is resistant to plasma and heat, such as a stainless spring, into the support holder. Even if the substrate support member on which the substrate is installed is moved to the electrode side at a high speed by the elastic material 25 and the substrate support member and the electrode collide, the impact can be mitigated and the substrate, the substrate support member, and the electrode can be prevented from being damaged. In addition, since the elastic material reduces the pressure applied to the substrate, it can be processed while pressing the substrate support member toward the electrode with a constant pressure, and it is possible to perform etching with increased adhesion between the substrate support member and the electrode. is there. This can reduce the amount of plasma and process gas that flows from the side surface of the substrate to the surface opposite to the processing surface.

本図では基板支持ホルダー内に被エッチング基板を一枚保持した状態を示しているが、基板支持ホルダー内に2枚以上の被エッチング基板を保持する構造であっても構わない。この場合、当然のことながら、一回のエッチングで処理できる基板枚数が増え、スループットの向上に繋がる。   Although this figure shows a state in which one substrate to be etched is held in the substrate support holder, a structure in which two or more substrates to be etched are held in the substrate support holder may be employed. In this case, as a matter of course, the number of substrates that can be processed by one etching increases, leading to an improvement in throughput.

図7に本発明を用いてエッチングを行っている際の模式図を示す。本模式図は、被エッチング基板を装着した可動式基板支持部材4を電極2に密着させ、第一の高周波電源8をバイアス電源として、第二の高周波電源9をソース電源として使用し、エッチングを行っている様子を表している。被エッチング基板を装着した可動式基板支持部材を電極3に密着させ、第二の高周波電源9をバイアス電源として、第一の高周波電源8をソース電源として使用する際は、図7の模式図を左右反対にし、高周波電源8を高周波電源9に、電極2を電極3に代えることで同様に表される。   FIG. 7 shows a schematic diagram when etching is performed using the present invention. In this schematic diagram, the movable substrate supporting member 4 with the substrate to be etched is brought into close contact with the electrode 2, the first high frequency power source 8 is used as a bias power source, the second high frequency power source 9 is used as a source power source, and etching is performed. It shows how it is going. When the movable substrate support member mounted with the substrate to be etched is brought into close contact with the electrode 3 and the second high frequency power source 9 is used as a bias power source and the first high frequency power source 8 is used as a source power source, the schematic diagram of FIG. In the same way, the high frequency power supply 8 is replaced with the high frequency power supply 9 and the electrode 2 is replaced with the electrode 3.

被エッチング基板4と電極2の間には隙間201が設けられており、被エッチング基板4と電極2を非接触にすることで、被エッチング基板に形成されたパターンの損傷を防ぐことができる。また、被エッチング基板5上には電極3から放射された電磁波により生成されたプラズマ203が存在しており、電極2には高周波バイアス電源より周波数100kHz以上13.56MHz以下のバイアスが印加されている。被エッチング基板上に形成されたプラズマ203と被エッチング基板4の間には、被エッチング基板4にバイアスを印加することにより、イオンシース202が形成される。この状態を電気的な等価回路で表したのが、図8である。ここで、隙間201は、高周波バイアスに対して、キャパシタンス成分とみなせ、シース203は、あるインピーダンスを持った非線形素子とみなせる。   A gap 201 is provided between the substrate to be etched 4 and the electrode 2, and by making the substrate to be etched 4 and the electrode 2 non-contact, damage to the pattern formed on the substrate to be etched can be prevented. Further, the plasma 203 generated by the electromagnetic wave radiated from the electrode 3 exists on the substrate 5 to be etched, and a bias having a frequency of 100 kHz to 13.56 MHz is applied to the electrode 2 from a high frequency bias power source. An ion sheath 202 is formed between the plasma 203 formed on the substrate to be etched and the substrate 4 to be etched by applying a bias to the substrate 4 to be etched. FIG. 8 shows this state as an electrical equivalent circuit. Here, the gap 201 can be regarded as a capacitance component with respect to the high-frequency bias, and the sheath 203 can be regarded as a non-linear element having a certain impedance.

図8において、Z201は隙間201の単位面積あたりの高周波インピーダンスを、Z202は被エッチング基板4上部に形成されるシース202の単位面積あたりの高周波インピーダンスを示している。本等価回路では、被エッチング基板4、プラズマ203は導体とみなし省略した。   In FIG. 8, Z201 represents a high-frequency impedance per unit area of the gap 201, and Z202 represents a high-frequency impedance per unit area of the sheath 202 formed on the upper portion of the substrate 4 to be etched. In this equivalent circuit, the substrate to be etched 4 and the plasma 203 are regarded as conductors and omitted.

図9は図8の等価回路を用い、隙間dの厚さ、つまり、高周波インピーダンスZ201を変化させたとき、シースを模擬した高周波インピーダンスZ202で消費される電力密度の印加電圧依存性を具体的に見積もった結果である。図9の縦軸は隙間201の厚さdを変化させたときに高周波インピーダンスZ202で消費される電力密度を示し、横軸は第一の高周波電源8からの出力電圧の振幅を示している。ここでは、第一の高周波電源8から出力されるバイアス電圧の周波数を800kHz、隙間202の比誘電率を1、プラズマ密度を1.0×1010 ( / c m3)、プラズマの電子温度を2eVとして見積もってある。 FIG. 9 shows the applied voltage dependence of the power density consumed by the high-frequency impedance Z202 that simulates the sheath when the thickness of the gap d, that is, the high-frequency impedance Z201 is changed, using the equivalent circuit of FIG. This is the estimated result. The vertical axis in FIG. 9 indicates the power density consumed by the high frequency impedance Z202 when the thickness d of the gap 201 is changed, and the horizontal axis indicates the amplitude of the output voltage from the first high frequency power supply 8. Here, the frequency of the bias voltage output from the first high-frequency power supply 8 is 800 kHz, the relative permittivity of the gap 202 is 1, the plasma density is 1.0 × 10 10 (/ cm 3 ), and the plasma electron temperature is 2 eV. It is.

図9の結果より、隙間dの厚さが3mm以上からシースを模擬した高周波インピーダンスZ202で消費される電力密度が0.1(W/cm2)未満になり、ほとんどシースで電力が消費されない、すなわち、被エッチング基板にバイアスがかかりにくくなる。そのため、隙間dの厚さは3mm未満でなければならない。隙間dは被エッチング基板を保持した稼動式基板支持部材と電極を密着させたとき、被エッチング基板と電極の間にできる空間の距離であり、基板支持ホルダーの突出部の高さと同値とみなせる。すなわち、基板支持ホルダーの突出部の高さは3mm未満でなければならない。本図では、プラズマ密度を1.0×1010( / cm3)と見積もったが、プラズマ密度がより高密度になった場合、被エッチング基板にバイアスがかかりにくくなる。そのため、効率よく被エッチング基板にバイアスを印加するためには該突出部の高さは1mm以下であることが望ましい。 From the result of FIG. 9, the power density consumed by the high-frequency impedance Z202 simulating the sheath from the thickness of the gap d of 3 mm or more is less than 0.1 (W / cm 2 ), and almost no power is consumed in the sheath, It becomes difficult to apply a bias to the substrate to be etched. For this reason, the thickness of the gap d must be less than 3 mm. The gap d is the distance of the space formed between the substrate to be etched and the electrode when the electrode is brought into close contact with the working substrate support member holding the substrate to be etched, and can be regarded as the same as the height of the protrusion of the substrate support holder. That is, the height of the protrusion of the substrate support holder must be less than 3 mm. In this figure, the plasma density is estimated to be 1.0 × 10 10 (/ cm 3 ). However, when the plasma density becomes higher, the substrate to be etched is less likely to be biased. For this reason, in order to efficiently apply a bias to the substrate to be etched, the height of the protruding portion is preferably 1 mm or less.

被エッチング基板に効率よくバイアスを印加するためには、被エッチング基板と電極が非接触、つまり、隙間dの厚さが0mmを超過している限り、小さければ、小さい程、望ましい。しかし、突出部の高さが0.05mm未満では寸法誤差一割以下の加工精度を持ち、基板支持ホルダーの突出部を作製することが困難となる。そのため、該突出部の高さが0.05mm未満では、可動式基板支持部材と電極を密着させたとき、被エッチング基板と電極の隙間の寸法に一割以上のばらつきが生じ、面内分布よく被エッチング基板を加工することが難しくなる。そのため、該基板支持ホルダーの突出部の高さは0.05mm以上であることが望ましい。   In order to efficiently apply a bias to the substrate to be etched, it is desirable that the substrate to be etched is not in contact with the electrode, that is, as long as the thickness of the gap d exceeds 0 mm, the smaller the smaller. However, if the height of the protruding portion is less than 0.05 mm, the processing accuracy is less than 10% of the dimensional error, and it becomes difficult to manufacture the protruding portion of the substrate support holder. For this reason, when the height of the protruding portion is less than 0.05 mm, when the movable substrate support member and the electrode are brought into close contact with each other, the gap between the substrate to be etched and the electrode has a variation of more than 10%, and the in-plane distribution is good. It becomes difficult to process the etching substrate. Therefore, the height of the protruding portion of the substrate support holder is desirably 0.05 mm or more.

図10は、ガラス部材上にフォトレジスト材を塗布したSi基板を配置した場合と、そのままフォトレジスト材を塗布したSi基板を配置した場合のフォトレジスト材のエッチングレートを計測した実験結果を示す。該実験において、プロセスガスはアルゴンと酸素を混合したガスを用いた。また、図11のd値はガラスの比誘電率を4とし、比誘電率1の真空層つまり、図9で用いた隙間dの厚さに換算した、換算膜厚を表す。シース消費電力とエッチングレートは対応した関係にあることがわかっており、図10の実験結果は図9のd=0.25mmの計算結果と同じ傾向を示している。このことから図9における見積もりが正しいことがわかる。   FIG. 10 shows the experimental results of measuring the etching rate of the photoresist material when the Si substrate coated with the photoresist material is disposed on the glass member and when the Si substrate coated with the photoresist material is disposed as it is. In the experiment, a mixed gas of argon and oxygen was used as the process gas. Further, the d value in FIG. 11 represents a converted film thickness in which the relative permittivity of the glass is 4, and the vacuum layer having the relative permittivity of 1, that is, the thickness of the gap d used in FIG. It is known that the sheath power consumption and the etching rate have a corresponding relationship, and the experimental result of FIG. 10 shows the same tendency as the calculation result of d = 0.25 mm in FIG. This shows that the estimate in FIG. 9 is correct.

以上のことから、該基板支持ホルダーの突出部の高さは0mmを超過し、3mm未満でなければならず、被エッチング基板に効率よくバイアスを印加し、面内分布よく被エッチング基板を加工するためには該突出部の高さは0.05mm以上1mm以下であることが望ましい。   From the above, the height of the protruding portion of the substrate support holder must be greater than 0 mm and less than 3 mm, and a bias is efficiently applied to the substrate to be etched and the substrate to be etched is processed with good in-plane distribution. For this purpose, it is desirable that the height of the protruding portion be 0.05 mm or more and 1 mm or less.

電極の構造の一例を図4Aに、図4AのOX断面図を図4Bに示す。ガス導入経路26から導入されたプロセスガスは電極内に多数ある直径0.1mm以上5mm以下のガス噴出孔27から噴出され、基板表面のプロセスガス濃度を均一にする。電極台28は固定電極台6と可動式電極台7の両者を模式的に表したものを示し、電極29とは第一の電極2と第二の電極3の両者を模式的に表したものを示す。   An example of the structure of the electrode is shown in FIG. 4A, and an OX sectional view of FIG. 4A is shown in FIG. 4B. The process gas introduced from the gas introduction path 26 is ejected from a large number of gas ejection holes 27 having a diameter of 0.1 mm to 5 mm in the electrode to make the process gas concentration on the substrate surface uniform. The electrode base 28 is a schematic representation of both the fixed electrode base 6 and the movable electrode base 7, and the electrode 29 is a schematic representation of both the first electrode 2 and the second electrode 3. Indicates.

電極29は冷却路30を備えており、冷媒を流すことにより電極を冷却することができる。本図では電極29内に冷却路が備わっているが、電極を効率よく冷却できる構造であれば、電極台29内に冷却路が備わっていても構わない。電極をバイアス源として用いる場合は、ガス導入経路26からHeなど熱伝導率のよいガスを電極と基板の隙間にパージすることにより、基板と電極の間の熱伝導率が向上し、電極と供に基板を冷却することも可能である。   The electrode 29 includes a cooling path 30, and the electrode can be cooled by flowing a refrigerant. In this figure, a cooling path is provided in the electrode 29, but a cooling path may be provided in the electrode base 29 as long as the electrode can be efficiently cooled. When using an electrode as a bias source, purging a gas having good thermal conductivity, such as He, from the gas introduction path 26 into the gap between the electrode and the substrate, the thermal conductivity between the substrate and the electrode is improved, and the electrode is supplied. It is also possible to cool the substrate.

また、前記したように、電極表面に備えつけた中心絶縁体部材16が、略円環状被エッチング基板中央の空孔を塞ぐことで、略円環状被エッチング基板中央の空孔からプラズマやプロセスガスが処理面と反対側の面に回りこみ、処理面と反対側の面が汚染されることを防ぐ構造となっている。   In addition, as described above, the central insulator member 16 provided on the electrode surface closes the hole in the center of the substantially annular substrate to be etched, so that plasma or process gas is emitted from the hole in the center of the substantially annular substrate to be etched. It has a structure that goes around the surface opposite to the processing surface and prevents contamination of the surface opposite to the processing surface.

次に可動式基板支持部材の動作図を表す図5を用い、被エッチング基板5の表裏両面をエッチングする方法を述べる。ここで表面とは可動式電極台側の基板面、裏面とは固定電極台側の基板面を指す。   Next, a method for etching both the front and back surfaces of the substrate to be etched 5 will be described with reference to FIG. 5 showing an operation diagram of the movable substrate support member. Here, the front surface refers to the substrate surface on the movable electrode table side, and the back surface refers to the substrate surface on the fixed electrode table side.

表面を加工する場合は、基板5を装着した可動式基板支持部材4を第一の電極2と密着させ、図5(A)の形態にする。その後、第二の高周波電源9はソース電源として、第一の高周波電源8はバイアス電源として使用し、基板の表面をエッチングする。つまり、第二の高周波電源が出力した高周波を第二の電極3が電磁波として放出し、第一のガス導入経路31から導入されたプロセスガスをプラズマ化する。同時に、第一の高周波電源8はバイアス電源として使用し、第一の電極2に近接した被エッチング基板5に効率よくバイアス電圧を印加することができる。このとき、第二のガス導入経路32から第一の電極2と被エッチング基板5の隙間にHeなど熱伝導率のよい気体をパージすることにより、基板を冷却しながら加工することができる。   In the case of processing the surface, the movable substrate support member 4 on which the substrate 5 is mounted is brought into close contact with the first electrode 2 to form the configuration shown in FIG. Thereafter, the second high frequency power source 9 is used as a source power source and the first high frequency power source 8 is used as a bias power source to etch the surface of the substrate. That is, the high frequency output from the second high frequency power source is emitted from the second electrode 3 as an electromagnetic wave, and the process gas introduced from the first gas introduction path 31 is turned into plasma. At the same time, the first high-frequency power supply 8 is used as a bias power supply, and a bias voltage can be efficiently applied to the substrate to be etched 5 adjacent to the first electrode 2. At this time, by purging a gas having good thermal conductivity such as He from the second gas introduction path 32 into the gap between the first electrode 2 and the substrate to be etched 5, the substrate can be processed while being cooled.

裏面を加工する場合も同様に、基板5を装着した可動式基板支持部材4を第二の電極3と密着させ、図5(B)の形態にする。その後、第一の高周波電源8はソース電源として、第二の高周波電源9はバイアス電源として使用し、基板の裏面をエッチングする。つまり、第一の高周波電源が出力した高周波を第一の電極2が電磁波として放出し、第二のガス導入経路32から導入されたプロセスガスをプラズマ化する。同時に、第二の高周波電源はバイアス電源として使用し、第二の電極3に近接した被エッチング基板5に効率よくバイアス電圧を印加することができる。このとき、第一のガス導入経路31から第二の電極3と被エッチング基板5の隙間にHeなど熱伝導率のよい気体をパージすることにより、基板を冷却しながら加工することができる。   Similarly, when processing the back surface, the movable substrate support member 4 on which the substrate 5 is mounted is brought into close contact with the second electrode 3 to form the configuration shown in FIG. 5 (B). Thereafter, the first high frequency power supply 8 is used as a source power supply, and the second high frequency power supply 9 is used as a bias power supply, and the back surface of the substrate is etched. That is, the first electrode 2 emits the high frequency output from the first high frequency power source as an electromagnetic wave, and the process gas introduced from the second gas introduction path 32 is turned into plasma. At the same time, the second high frequency power supply can be used as a bias power supply, and a bias voltage can be efficiently applied to the substrate to be etched 5 adjacent to the second electrode 3. At this time, by purging a gas having good thermal conductivity such as He from the first gas introduction path 31 into the gap between the second electrode 3 and the substrate to be etched 5, the substrate can be processed while being cooled.

また、基板にバイアス電圧を印加する必要がない場合は、図5(C)の形態にし、第一の高周波電源と第二の高周波電源をともにソース電源として使用し、第一のガス導入経路と第二のガス導入経路から同時にプロセスガスを導入し、被エッチング基板の表裏両面に接する対称なプラズマを生成する。こうすることにより、被エッチング基板の表裏両面を一度に処理することができる。   In addition, when it is not necessary to apply a bias voltage to the substrate, the configuration shown in FIG. 5C is used, and both the first high-frequency power source and the second high-frequency power source are used as source power sources, and the first gas introduction path and A process gas is simultaneously introduced from the second gas introduction path to generate symmetrical plasma in contact with both the front and back surfaces of the substrate to be etched. By doing so, both front and back surfaces of the substrate to be etched can be processed at a time.

図6に本発明の第二の実施形態を示す。電極2、電極3、被エッチング基板5を真空容器内に横に配置した場合も図7の構造で、電極2、電極3、被エッチング基板5を真空容器内に縦に配置した図1と同様にエッチング可能である。   FIG. 6 shows a second embodiment of the present invention. When the electrode 2, the electrode 3, and the substrate to be etched 5 are arranged horizontally in the vacuum vessel, the structure of FIG. 7 is also used, and the electrode 2, the electrode 3, and the substrate to be etched 5 are vertically arranged in the vacuum vessel as in FIG. It can be etched.

本発明による、装置形態の第一の実施形態の概略を示す図である。1 is a schematic diagram of a first embodiment of an apparatus configuration according to the present invention. 本発明で用いた、高周波電源の一例を示す模式図である。It is a schematic diagram which shows an example of the high frequency power supply used by this invention. 本発明で用いた、可動式基板支持部材の構造の一例を示す模式図である。It is a schematic diagram which shows an example of the structure of the movable board | substrate support member used by this invention. 本発明で用いた、導電体部材の構造の一例を示す模式図である。It is a schematic diagram which shows an example of the structure of the conductor member used by this invention. 本発明により、基板両面を加工する方法を示す動作図である。It is an operation | movement figure which shows the method of processing both surfaces of a substrate by this invention. 本発明による、装置形態の第二の実施形態の概略を示す図である。It is a figure which shows the outline of 2nd embodiment of an apparatus form by this invention. 本発明を用いてエッチングをおこなっている際の模式図である。It is a schematic diagram at the time of performing etching using the present invention. 図8を電気的な等価回路で表した図である。It is the figure which represented FIG. 8 with the electrical equivalent circuit. 隙間201の厚さに対する、シース消費電力の変化を見積もった図である。FIG. 6 is a diagram in which changes in sheath power consumption with respect to the thickness of a gap 201 are estimated. 隙間201の厚さに対する、エッチングレートの変化を実験した結果である。It is the result of experimenting the change of the etching rate with respect to the thickness of the gap 201.

符号の説明Explanation of symbols

1:真空容器、2:第一の電極、3:第二の電極、4:可動式基板支持部材、5:被エッチング基板、6:固定電極台、7:可動式電極台、8:第一の高周波電源、9:第二の高周波電源、10:第一の支持部材台、11:第一の位置決め機構、12:真空ベローズ、13:可動式電極台支持部材、14:第二の支持部材台、15:第二の位置決め機構、16:中心絶縁体部材、19:バイアス電源、20:ソース電源、21:スイッチ、22:基板下面支持ホルダー、23:基板上面支持ホルダー、24:基板支持棒、25:伸縮材、26:ガス導入経路、27:ガス噴出孔、28:電極台、29:電極、30:冷却路、31:第一のガス導入経路、32:第二のガス導入経路。 1: vacuum container, 2: first electrode, 3: second electrode, 4: movable substrate support member, 5: substrate to be etched, 6: fixed electrode table, 7: movable electrode table, 8: first 9: second high frequency power supply, 10: first support member base, 11: first positioning mechanism, 12: vacuum bellows, 13: movable electrode base support member, 14: second support member 15: Second positioning mechanism 16: Center insulator member 19: Bias power source 20: Source power source 21: Switch 22: Substrate lower surface support holder 23: Substrate upper surface support holder 24: Substrate support rod 25: stretchable material, 26: gas introduction path, 27: gas ejection hole, 28: electrode base, 29: electrode, 30: cooling path, 31: first gas introduction path, 32: second gas introduction path.

Claims (6)

真空容器内に保持された被エッチング基板に対して、該被エッチング基板に対向配置された電極に高周波電圧を印加してプラズマを生成し、当該プラズマを用いて前記被エッチング基板をエッチングするプラズマエッチング装置において、
前記被エッチング基板、基板を支持する可動式基板支持部材を有し、
前記電極と前記被エッチング基板は、被エッチング基板の片面をエッチングした後、前記可動式基板支持部材が前記被エッチング基板に対し鉛直方向に可動し、被エッチング基板の該片面とは反対側の面をエッチングすることを特徴とするプラズマエッチング装置。
Plasma etching for generating plasma by applying a high-frequency voltage to an electrode opposed to the substrate to be etched held in a vacuum vessel, and etching the substrate to be etched using the plasma In the device
The substrate to be etched, a movable substrate support member that supports the substrate,
After the electrode and the substrate to be etched are etched on one side of the substrate to be etched, the movable substrate support member is moved in the vertical direction with respect to the substrate to be etched, and the surface opposite to the one side of the substrate to be etched A plasma etching apparatus characterized by etching.
真空容器内に保持された中央部に空孔を有する円環状の被エッチング基板に対し、当該被エッチング基板に対向配置された電極に高周波電圧を印加してプラズマを生成し、当該プラズマを用いて前記被エッチング基板をエッチングするプラズマエッチング装置において、
前記電極に設けられた、前記円環状被エッチング基板の空孔を埋める絶縁体部材を備えたことを特徴とするプラズマエッチング装置。
A plasma is generated by applying a high frequency voltage to an electrode disposed opposite to the substrate to be etched with respect to an annular substrate to be etched having a hole in the center held in the vacuum vessel, and using the plasma In the plasma etching apparatus for etching the substrate to be etched,
A plasma etching apparatus comprising an insulator member provided in the electrode and filling a hole of the annular substrate to be etched.
請求項1または2記載のプラズマエッチング装置において、
前記可動式基板支持部材の被エッチング基板を支持している最外周部分が前記可動式基板に保持された被エッチング基板表面より0mmより大きく3mm未満の範囲で突出しており、可動式基板支持部材の突出部が前記電極に接することで、被エッチング基板と電極の間に隙間をあけ、被エッチング基板と電極の接触を防ぐことを特徴とするプラズマエッチング装置。
The plasma etching apparatus according to claim 1 or 2,
The outermost peripheral part supporting the substrate to be etched of the movable substrate support member protrudes from the surface of the substrate to be etched held by the movable substrate in a range of 0 mm to less than 3 mm, and the movable substrate support member A plasma etching apparatus characterized in that a contact between the substrate to be etched and the electrode is prevented by contacting the electrode with the protruding portion, thereby preventing contact between the substrate to be etched and the electrode.
請求項1から3のいずれか1項に記載の電極、被エッチング基板、被エッチング基板を支持する可動式基板支持部材において、前記基板支持部材内に伸縮材を挿入することにより、前記伸縮材が電極や被エッチング基板や可動式基板支持部材にかかる衝撃を吸収し、衝撃により電極や被エッチング基板や可動式基板支持部材の破損を防ぐことを特徴とするプラズマエッチング装置。   The movable substrate support member that supports the electrode, the substrate to be etched, and the substrate to be etched according to any one of claims 1 to 3, wherein the stretch material is inserted into the substrate support member so that the stretch material is A plasma etching apparatus that absorbs an impact applied to an electrode, a substrate to be etched, and a movable substrate support member, and prevents the electrode, the substrate to be etched, and the movable substrate support member from being damaged by the impact. 請求項1または2記載のプラズマエッチング装置において、
前記高周波電源が基板にバイアスを印加するバイアス電圧とプラズマを生成するためのソース電圧の2種類の高周波電圧のうち、一方を選択して出力できることを特徴とするプラズマエッチング装置。
The plasma etching apparatus according to claim 1 or 2,
The plasma etching apparatus characterized in that the high-frequency power source can select and output one of two types of high-frequency voltages: a bias voltage for applying a bias to the substrate and a source voltage for generating plasma.
請求項1から5に記載のプラズマエッチング装置を用いて被エッチング基板にエッチングを施すエッチング方法。   An etching method for etching a substrate to be etched using the plasma etching apparatus according to claim 1.
JP2006336488A 2006-12-14 2006-12-14 Plasma etching apparatus Pending JP2008153249A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006336488A JP2008153249A (en) 2006-12-14 2006-12-14 Plasma etching apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006336488A JP2008153249A (en) 2006-12-14 2006-12-14 Plasma etching apparatus

Publications (1)

Publication Number Publication Date
JP2008153249A true JP2008153249A (en) 2008-07-03

Family

ID=39655161

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006336488A Pending JP2008153249A (en) 2006-12-14 2006-12-14 Plasma etching apparatus

Country Status (1)

Country Link
JP (1) JP2008153249A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010032754A1 (en) * 2008-09-19 2010-03-25 株式会社アルバック Magnetic recording medium manufacturing method
JP2010102815A (en) * 2008-07-31 2010-05-06 Canon Anelva Corp Substrate processing apparatus and magnetic recording medium manufacturing method
JP2010212028A (en) * 2009-03-09 2010-09-24 Epson Toyocom Corp Plasma treatment device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010102815A (en) * 2008-07-31 2010-05-06 Canon Anelva Corp Substrate processing apparatus and magnetic recording medium manufacturing method
WO2010032754A1 (en) * 2008-09-19 2010-03-25 株式会社アルバック Magnetic recording medium manufacturing method
JP2010212028A (en) * 2009-03-09 2010-09-24 Epson Toyocom Corp Plasma treatment device

Similar Documents

Publication Publication Date Title
US10804072B2 (en) Plasma processing apparatus
US10020172B2 (en) Plasma processing apparatus, plasma processing method and storage medium for storing program for executing the method
KR102644272B1 (en) electrostatic chuck assembly
KR100924855B1 (en) Loading table for plasma processing apparatus and plasma processing apparatus
US8597463B2 (en) Inductively coupled plasma processing apparatus
JP5227264B2 (en) Plasma processing apparatus, plasma processing method, program
KR100652982B1 (en) Plasma processing method and apparatus
KR100652983B1 (en) Plasma processing apparatus and method
JP5702968B2 (en) Plasma processing apparatus and plasma control method
JP5125024B2 (en) Mounting table for plasma processing apparatus and plasma processing apparatus
JP2008159097A (en) Substrate holder, etching process of substrate and manufacturing method of magnetic recording medium
KR102569911B1 (en) Focus ring and substrate processing apparatus
KR20120109389A (en) Plasma processing apparatus and plasma processing method
KR101756853B1 (en) Substrate processing method and substrate processing apparatus
US20100078129A1 (en) Mounting table for plasma processing apparatus
JP2011119708A (en) Substrate holding device and plasma processing device
JP5323303B2 (en) Plasma processing equipment
WO2001039559A1 (en) Method and apparatus for plasma treatment
JP2008153249A (en) Plasma etching apparatus
JP4837189B2 (en) Substrate holding mechanism and substrate processing apparatus
JP2008251857A (en) Plasma processor
JP5270751B2 (en) Plasma processing apparatus and magnetic recording medium manufacturing method
JP5621176B2 (en) Magnetic recording medium
JP2009102705A (en) Plasma etching apparatus, method for manufacturing magnetic recording medium, and magnetic recording medium
JP2010061717A (en) Etching device and method for etching magnetic disk