JP2008155069A - Method for manufacturing earth and sand alternative material using organic sludge as main raw material - Google Patents

Method for manufacturing earth and sand alternative material using organic sludge as main raw material Download PDF

Info

Publication number
JP2008155069A
JP2008155069A JP2006333920A JP2006333920A JP2008155069A JP 2008155069 A JP2008155069 A JP 2008155069A JP 2006333920 A JP2006333920 A JP 2006333920A JP 2006333920 A JP2006333920 A JP 2006333920A JP 2008155069 A JP2008155069 A JP 2008155069A
Authority
JP
Japan
Prior art keywords
sand
soil
inorganic sludge
sludge
earth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006333920A
Other languages
Japanese (ja)
Inventor
Hidenori Sakihama
秀範 崎濱
Yasushi Higa
靖 比嘉
Masayasu Shinkawa
雅康 新川
Kazuyoshi Kaneshiro
和良 金城
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyu KK
Original Assignee
Sanyu KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyu KK filed Critical Sanyu KK
Priority to JP2006333920A priority Critical patent/JP2008155069A/en
Publication of JP2008155069A publication Critical patent/JP2008155069A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/30Wastewater or sewage treatment systems using renewable energies
    • Y02W10/37Wastewater or sewage treatment systems using renewable energies using solar energy

Landscapes

  • Investigation Of Foundation Soil And Reinforcement Of Foundation Soil By Compacting Or Drainage (AREA)
  • Treatment Of Sludge (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for manufacturing an earth and sand alternative material using organic sludge as a main raw material which has a strength as an earth and sand alternative material, comparable with a natural material, satisfies a profitable manufacturing cost, and prevents the elution of hazardous substances such as heavy metals. <P>SOLUTION: In the method for manufacturing an earth and sand alternative material, at lease one adjuvant among sandy molten slag, concrete debris, glass, recycled material of crushed earthenware, silty coal ash, and gypsum is mixed with the organic sludge, and then a cement-based solidification agent and an elution inhibitor made by chelate bonding an iron salt with a protein hydrolysate are added to perform solidification. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は無機性汚泥を主原料とする天然の土砂材の代わりに使用することができる土砂代替材の製造方法に関する。   The present invention relates to a method for producing a soil-and-sand substitute material that can be used in place of a natural soil-and-sand material mainly composed of inorganic sludge.

土木工事現場での掘削やボーリングによって発生する無機性汚泥は、盛り土などでそのまま再利用できるものは少なく、主に天日乾燥及び脱水され減量化して管理型の最終処分場に埋立処理されてきたが、管理型最終処分場については、近年残容量がひっ迫し差し迫った状況にある。一方、土木用資材として用いられている砂利や土といった資材も、山や海を掘削して採取してきたが、近年自然環境保護の観点から採取が難くなってきた。
そこで、無機性汚泥の再資源化が検討され、開発されたいくつかの技術が提示されている。特許文献1に示されている技術は土木工事の掘削工法から排出される性状の不安定で再利用の難しかった大量の排出汚泥を、短時間で、脱水・造粒固化して、安定した均質の性能の資源として再生する汚泥再資源化方法及びその再資源化装置を提供することを目的としたもので、脱水し含水率を低下した汚泥を原料として、添加剤に固化剤を用いて、混合翼で高速で攪拌混練すると汚泥粒子と残留水分が遠心力により更に分離され、汚泥の多数の微細粒子が固化剤と結合して、粒径が増大し造粒固化されるというものである。
また、特許文献2に示される技術は土木建設工事において発生する無機性汚泥を天日乾燥、脱水処理等の中間処理を施しコンクリートプラントでセメント、細骨材、粗骨材、水と撹拌後型枠に流し込み養生後クラッシャーにて破砕し再生砕石とするものである。
しかし、従来の技術は天然資材と比べて土砂代替材としての強度が弱かったり、製造コストが高く付いたりして殆ど再資源化が実現できていない状況にある。また、これらの技術は使用後雨水等によって有害物質が溶出することにの対応がとられていなかった。
Inorganic sludge generated by excavation and drilling at civil engineering sites is rarely reusable as banking, etc., and has been landfilled in a managed final disposal site mainly by drying and dehydrating in the sun. However, the management-type final disposal site is in a situation where the remaining capacity has become tight in recent years. On the other hand, materials such as gravel and soil used as civil engineering materials have been collected by excavating mountains and seas, but in recent years it has become difficult to collect them from the viewpoint of protecting the natural environment.
Therefore, recycling of inorganic sludge has been studied, and some technologies that have been developed are presented. The technology disclosed in Patent Document 1 is a stable and homogeneous material that can be dehydrated, granulated and solidified in a short time from a large amount of sludge discharged from the excavation method for civil engineering and difficult to reuse. The purpose is to provide a sludge recycling method and its recycling equipment that regenerates as a performance resource, using sludge dehydrated and reduced in water content as a raw material, using a solidifying agent as an additive, When stirring and kneading at high speed with a mixing blade, sludge particles and residual water are further separated by centrifugal force, and a large number of fine particles of sludge are combined with a solidifying agent to increase the particle size and granulate and solidify.
In addition, the technology disclosed in Patent Document 2 is a method in which inorganic sludge generated in civil engineering construction is subjected to intermediate treatment such as sun drying and dehydration, and then cement, fine aggregate, coarse aggregate, water and after-stirring type in a concrete plant. It is poured into a frame and crushed with a crusher after curing, to obtain recycled crushed stone.
However, the conventional technology is in a situation where the recycling as a soil and sand substitute material is weaker than natural materials and the cost of production is high, so that the recycling is hardly realized. In addition, these techniques have not been adapted to elution of harmful substances by rainwater after use.

特許文献3に示される技術は有害物質の溶出防止の課題が認識されており、被処理物中に含まれる物質を易溶出状態から難溶出状態へと変化させる技術を提供するものである。この発明は、水に溶出し易い物質を含有する被処理物にアロフェンを含有する降下性火山噴出物の風化物を混合し、そして該混合物において該水に溶質し易い物質と該降下性火山噴出物の風化物との結合により難溶出性の化学的複合体を形成するというものである。しかし、示された元素濃度は、ホウ素、フッ素、ヒ素、セレンについてだけであり、初期の目的である重金属についての溶出防止効果について確認することができない。また、アロフェンが主たる溶出防止効果を担うとして軽石等の中にこれがどの程度含有されているものかは採取した軽石によって千差万別であろうことを考えれば、この明細書には当業者が容易に実施できる程度の開示がなされているとはいえない。
特開平9−294998号公報 「汚泥再資源化方法及びその再資源化装置」 平成9年11月18日公開 特開2000−33399号公報 「建設汚泥のリサイクル」 平成12年2月2日公開 特開2006−263509号公報 「水に溶出し易い物質の固定化方法、およびそれにより得られる資材」 平成18年10月5日公開
The technique disclosed in Patent Document 3 recognizes the problem of preventing elution of harmful substances, and provides a technique for changing a substance contained in an object to be processed from an easy elution state to a difficult elution state. According to the present invention, a weathered product of a descending volcanic eruption containing allophane is mixed with an object to be treated containing a substance that is easily eluted in water, and the substance that easily dissolves in water and the descending volcanic eruption in the mixture It forms a difficult-to-elute chemical complex by binding to the weathered product. However, the element concentrations shown are only for boron, fluorine, arsenic, and selenium, and the elution prevention effect for heavy metals, which is the initial purpose, cannot be confirmed. Also, considering that allophane is mainly responsible for the elution prevention effect, how much it is contained in pumice and the like will vary depending on the collected pumice, and those skilled in the art will understand this specification. It cannot be said that disclosure has been made to the extent that it can be easily implemented.
Japanese Patent Laid-Open No. 9-294998 “Sludge Recycling Method and Recycling Apparatus” Published on November 18, 1997 JP 2000-33399 A "Recycling of construction sludge" Published February 2, 2000 JP 2006-263509 A “Method for Immobilizing Substances Easily Eluted in Water, and Materials Obtained thereby” Published on Oct. 5, 2006

本発明の課題は、土砂代替材としての強度が天然資材に匹敵するものであって、製造コストも採算が見合うものである上に、重金属等の有害物質の溶出が防止された無機性汚泥を主原料とした土砂代替材の製造方法を提供することにある。   The problem of the present invention is that the strength as a soil-and-sand substitute is comparable to that of natural materials, and the manufacturing cost is commensurate with the profit, and the inorganic sludge in which the elution of toxic substances such as heavy metals is prevented. The purpose is to provide a method for producing a soil and sand substitute material as a main raw material.

本発明の無機性汚泥を主原料とする土砂代替材の製造方法は、無機性汚泥に砂質の溶融スラグ、コンクリートガラ、ガラス、陶器を破砕した再生資源、シルト質の石炭灰、石膏のうち少なくとも1種からなる補助剤を無機性汚泥に混合した後、セメント系の固化剤と蛋白質加水分解物に鉄塩をキレート結合させた溶出防止剤を加えて固化させるようにした。
また、この無機性汚泥を主原料とする土砂代替材の製造方法において、無機性汚泥が水分を含んでいるときは脱水ケーキとして用いるようにした。
また、この無機性汚泥を主原料とする土砂代替材の製造方法において、その土砂代替材を所望の粒径に形成する方法として、固化させる際に造粒機を用いる方法と、固化させる際は大きな塊とし、その後破砕機を用いて所望の粒径に形成する方法を提示する。
The method for producing a soil-and-sand substitute material using the inorganic sludge of the present invention as a main raw material is: among recycled sludge of sandy molten slag, concrete glass, glass, earthenware, and silty coal ash, gypsum After mixing at least one auxiliary agent with inorganic sludge, a cement-based solidifying agent and a protein hydrolyzate were added with an elution inhibitor obtained by chelating iron salt to solidify the mixture.
Moreover, in the manufacturing method of the earth-and-sand substitute material which uses this inorganic sludge as a main raw material, when the inorganic sludge contained the water | moisture content, it was made to use as a dewatering cake.
In addition, in the method for producing a soil and sand substitute material using inorganic sludge as a main raw material, as a method for forming the earth and sand substitute material to a desired particle size, a method of using a granulator when solidifying and a method of solidifying A method of forming a large lump and then forming it into a desired particle size using a crusher is presented.

本発明の無機性汚泥を主原料とする土砂代替材の製造方法は、無機性汚泥を主原料とし、また補助材として産業廃棄物を利用して土砂代替材を製造することにより、従来管理型や安定型の最終処分場に埋立て処分されてきた無機性汚泥や産業廃棄物を環境に安全な素材として再資源化することができ、管理型及び安定型の最終処分場の延命化に寄与することができる。
本発明の無機性汚泥を主原料とする土砂代替材の製造方法は、溶出防止剤として蛋白質加水分解物に鉄塩をキレート結合させたものを使うものであるから、無機性汚泥を主原料として産業廃棄物を利用した補助材を用いても、そこに含まれる重金属等の有害物質を効果的に溶出防止でき、環境に対して安全で且つ高品質の土砂代替材を製造することができる。すなわち、自然環境の保護に大いに寄与することができる。
The manufacturing method of the earth and sand substitute material using the inorganic sludge of the present invention as the main raw material is based on the conventional management type by manufacturing the earth and sand substitute material using the inorganic sludge as the main raw material and using industrial waste as an auxiliary material. Inorganic sludge and industrial waste that have been landfilled at stable final disposal sites can be recycled as environmentally safe materials, contributing to the extension of life of managed and stable final disposal sites. can do.
Since the method for producing a soil-and-sand substitute material using the inorganic sludge of the present invention as the main raw material uses a protein hydrolyzate chelated with an iron salt as an elution inhibitor, the inorganic sludge is used as the main raw material. Even if an auxiliary material using industrial waste is used, harmful substances such as heavy metals contained therein can be effectively prevented from leaching, and an environmentally safe and high-quality soil substitute material can be produced. That is, it can greatly contribute to the protection of the natural environment.

以下、本発明を添付図面に示す実施形能に基づいて説明する。図1は、本発明の実施の第1形能による無機性汚泥を主原料とする土砂代替材の製造方法の工程を示す概略説明図である。主原料である無機性汚泥Aとは、シールド掘削機或いはボーリングマシン等によって排出された建設汚泥や河川や池を浚渫した際に排出される浚渫汚泥や砕石場において砕石を水洗した際に発生する土質分を含む砕石汚泥等である。また補助材Bとは、砂質の溶融スラグやコンクリートガラ、ガラス、陶器を破砕した再生資源及びシルト質の石炭灰や石膏等であり、少なくともこれらの1種を無機性汚泥Aに混合して固化する。この固化の際この補助材Bが核となり、土砂代替材Eが形成されることにより、その強度が増し天然素材に劣らない高品質の土砂代替材を製造することができる。特に無機性汚泥Aに加える補助材Bとしては溶融スラグと石炭灰をほぼ等重量で混合したものを使用した場合、堅く機械的な強度の高い土砂代替材が生成されることが確認できた。
本発明に用いる固化材Cには、セメント系の固化材や生石灰・消石灰等の無機系の固化材が用いられる。また、溶出防止剤Dは、固化材Cとしてセメント系の固化材を用いた際に「土壌の汚染にかかわる環境基準」の基準を満足させる目的のために用いる薬剤で重金属等の溶出を抑えることにより環境に対して安全な土砂代替材Eを製造するためのものである。有害物質の溶出を効果的に防止するためにどのような溶出防止剤を使用するかは極めて重要な技術事項となる。本発明では、この溶出防止剤Dに蛋白質加水分解物に鉄塩をキレート結合させたものを使うものとした。
Hereinafter, the present invention will be described based on the embodiment shown in the accompanying drawings. FIG. 1 is a schematic explanatory diagram illustrating the steps of a method for producing a soil and sand substitute material using inorganic sludge as a main raw material according to the first formability of the present invention. Inorganic sludge A, the main raw material, is generated when construction sludge discharged by shield excavators or boring machines, dredged sludge discharged when dredging rivers and ponds, and when crushed stones are washed in quarries. Crushed stone sludge containing soil. The auxiliary material B is sandy molten slag, concrete glass, glass, recycled resources obtained by crushing earthenware, silty coal ash, gypsum, etc., and at least one of these is mixed with inorganic sludge A. Solidify. In the solidification, the auxiliary material B serves as a core, and the earth and sand substitute material E is formed, so that a high-quality earth and sand substitute material that increases its strength and is not inferior to a natural material can be manufactured. In particular, as the auxiliary material B added to the inorganic sludge A, it was confirmed that when a mixture of molten slag and coal ash with substantially equal weight was used, a soil and sand substitute material having high mechanical strength was generated.
As the solidifying material C used in the present invention, a cement-based solidifying material or an inorganic solidifying material such as quicklime or slaked lime is used. Anti-elution agent D is a chemical that is used for the purpose of satisfying the standard of “Environmental Standards Concerning Soil Contamination” when cement-based solidifying material is used as solidifying material C, and suppresses elution of heavy metals and the like. This is for producing earth and sand substitute material E that is safe for the environment. It is an extremely important technical matter to determine what kind of anti-elution agent is used to effectively prevent the elution of harmful substances. In the present invention, the elution inhibitor D obtained by chelating a protein salt with an iron salt is used.

図1を用い本発明の第1実施形態について説明する。前記のような無機性汚泥Aと補助材Bの少なくても1種を解砕・混合・混練・造粒の機能を兼ね備えた造粒装置2に投入し、解砕・混合を施した後、固化材Cを全重量の4〜18%になる量だけ造粒装置2に投入し混合・混練そして造粒の工程を踏んで造粒固化させる。この際、補助材Bが核となり土砂代替材Eの強度を増すものとなる。この際、使用する無機性汚泥Aと補助材Bから検査において有害物質が検出された場合には、溶出防止剤Dを混練の工程時に造粒装置2に投入する。本発明では溶出防止剤Dに前述した蛋白質加水分解物に鉄塩をキレート結合させたものを使うことにより重金属等の溶出を効果的に抑えることができ、環境に対して安全で且つ高品質の土砂代替材Eを製造することができる。また、この図1に示す実施形能において場合によっては、無機性汚泥Aと補助材Bの少なくても1種とほぼ同時に固化材Cを造粒装置2に投入して解砕・混合・混練・造粒の工程を踏んで造粒固化させてもよい。
本発明の実施の第2形態による無機性汚泥を主原料とする土砂代替材の製造方法は、水分を多量に含水した無機性汚泥Aを用いる場合である。その場合には図1において破線で示したように無機性汚泥Aを直接造粒装置2に投入せずに、脱水装置1に投入して脱水処理した脱水ケーキを造粒装置2に投入するステップを踏むようにする。なお、他の工程と動作は前述した実施の形態で説明したものと同様であるので、重複する説明は省略する。
A first embodiment of the present invention will be described with reference to FIG. At least one of the inorganic sludge A and the auxiliary material B as described above is put into a granulating apparatus 2 having a function of crushing, mixing, kneading, and granulating, and after crushing and mixing, The solidifying material C is added to the granulating apparatus 2 in an amount of 4 to 18% of the total weight, followed by mixing, kneading and granulating steps to granulate and solidify. At this time, the auxiliary material B serves as a core and increases the strength of the earth and sand substitute material E. At this time, when a harmful substance is detected in the inspection from the inorganic sludge A and the auxiliary material B to be used, the dissolution inhibitor D is put into the granulator 2 during the kneading process. In the present invention, elution of heavy metals and the like can be effectively suppressed by using the above-described protein hydrolyzate obtained by chelating an iron salt to the dissolution inhibitor D, which is environmentally safe and of high quality. The earth and sand substitute material E can be manufactured. Further, in the embodiment shown in FIG. 1, depending on the case, at least one of the inorganic sludge A and the auxiliary material B may be put into the granulator 2 almost simultaneously with pulverization / mixing / kneading. -Granulation and solidification may be performed through a granulation process.
The manufacturing method of the earth-and-sand substitute material which uses the inorganic sludge as a main raw material by the 2nd form of implementation of this invention is a case where the inorganic sludge A containing a lot of water | moisture contents is used. In that case, as shown by the broken line in FIG. 1, the inorganic sludge A is not directly fed into the granulator 2, but the dehydrated cake that has been dehydrated by being fed into the dehydrator 1 is put into the granulator 2. To step on. Since other steps and operations are the same as those described in the above-described embodiment, a duplicate description is omitted.

図2は本発明の実施の第3形態による無機性汚泥を主原料とする土砂代替材の製造方法の工程を示す概略説明図である。なお、前途した実施の形態で説明したものと同様の機能を有する材料には同一の符号を付して重複する説明は省略する。前途した無機性汚泥Aと補助材Bの少なくても1種を解砕・混合・混練の機能を兼ね備えた混合・混練機3に投入し解砕・混合させた後、固化材Cを全重量の4〜18%になる量だけ混合・混練機3に投入し混合・混練の工程を踏む。これを適宜の容器に流し込んで塊の形態で固化させる。固化させた後破砕機4を用いて固化物を破砕して適宜の大きさの粒とし、土砂代替材Eを製造するものである。この際、使用する無機性汚泥Aと補助材Bから検査において有害物質が検出された場合には、溶出防止剤Dを混練の工程時に混合・混練機3に投入する。本実施形態でも先の例と同様に溶出防止剤Dに蛋白質加水分解物に鉄塩をキレート結合させたものを使う。これにより重金属等の溶出を効果的に抑えることができ、環境に対して安全で且つ高品質の土砂代替材Eを製造することができることは先の例と同様である。また、この図2に示す実施形能においても場合によっては、無機性汚泥Aと補助材Bの少なくても1種とほぼ同時に固化材Cを混合・混練機3に投入して解砕・混合・混練・造粒の工程を踏んで造粒固化させてもよい。
本発明の実施の第4形態による無機性汚泥を主原料とする土砂代替材の製造方法は、水分を多量に含水した無機性汚泥Aを用いる場合である。その場合には図2において破線で示したように無機性汚泥Aを直接混合・混練機3に投入せずに、脱水装置1に投入して脱水処理した脱水ケーキを混合・混練機3に投入するステップを踏むようにする。
FIG. 2: is schematic explanatory drawing which shows the process of the manufacturing method of the earth-and-sand substitute material which uses the inorganic sludge as a main raw material by 3rd Embodiment of this invention. In addition, the same code | symbol is attached | subjected to the material which has the same function as what was demonstrated in previous embodiment, and the overlapping description is abbreviate | omitted. At least one of the inorganic sludge A and auxiliary material B, which has been put forward, is put into a mixing / kneading machine 3 having a function of crushing / mixing / kneading and pulverized / mixed. Is added to the mixing / kneading machine 3 in an amount of 4 to 18%, and the mixing / kneading step is performed. This is poured into a suitable container and solidified in the form of a lump. After solidifying, the solidified material is crushed by using the crusher 4 to obtain particles of an appropriate size, and the earth and sand substitute material E is produced. At this time, when a harmful substance is detected in the inspection from the inorganic sludge A and the auxiliary material B to be used, the dissolution inhibitor D is introduced into the mixing / kneading machine 3 during the kneading process. Also in this embodiment, the elution inhibitor D obtained by chelating an iron salt to a protein hydrolyzate is used as in the previous example. Thus, elution of heavy metals and the like can be effectively suppressed, and the environment-safe and high-quality earth and sand substitute material E can be produced as in the previous example. Also, in the embodiment shown in FIG. 2, depending on the case, at least one of the inorganic sludge A and the auxiliary material B is almost simultaneously added to the mixing / kneading machine 3 for crushing / mixing. -The kneading and granulating steps may be followed by granulation and solidification.
The manufacturing method of the earth and sand substitute material which uses the inorganic sludge as a main raw material by the 4th form of implementation of this invention is a case where the inorganic sludge A containing a lot of water | moisture contents is used. In that case, as shown by the broken line in FIG. 2, the inorganic sludge A is not directly fed into the mixing / kneading machine 3, but the dehydrated cake that has been put into the dehydrating apparatus 1 and dehydrated is fed into the mixing / kneading machine 3. Take steps to do.

図3は、本発明の実施の第5形態による無機性汚泥を主原料とする土砂代替材の製造方法の工程を示す概略説明図である。なお、前述した実施の形態で説明したものと同様の機能を有する材料及び装置・機器には同一の符号を付して重複する説明は省略する。前途した無機性汚泥Aと補助材Bの少なくても1種を混合・混練機3に投入し解砕・混合した後、固化材Cを全重量の4〜18%になる量だけ混合・混練機3に投入し混合・混練の工程を踏む。その後、造粒装置2に送り込んで造粒固化させて土砂代替材Eを製造するものである。本実施形態でも先の例と同様に溶出防止剤Dに蛋白質加水分解物に鉄塩をキレート結合させたものを使う。これにより重金属等の溶出を効果的に抑えることができ、環境に対して安全で且つ高品質の土砂代替材Eを製造することができることは先の例と同様である。
上記図3に示す実施形態において無機性汚泥Aと補助材Bの少なくても1種と固化材Cを混合・混練機3にほぼ同時に投入して解砕・混合・混練の工程を踏んだ後、造粒装置2に送り込んで造粒固化して土砂代替材Eを製造してもよく、なお、必要に応じて溶出防止材Dを混練工程に混合・混練機3に投入して重金属等の溶出を抑えて土砂代替材Eを製造するものである。
本発明の実施の第6形態による無機性汚泥を主原料とする土砂代替材の製造方法は、水分を多量に含水した無機性汚泥Aを用いる場合である。その場合には図3において破線で示したように無機性汚泥Aを直接混合・混練機3に投入せずに、脱水装置1に投入して脱水処理した脱水ケーキを混合・混練機3に投入するステップを踏むようにする。
FIG. 3: is schematic explanatory drawing which shows the process of the manufacturing method of the earth-and-sand substitute material which uses the inorganic sludge by the 5th Embodiment of this invention as a main raw material. In addition, the same code | symbol is attached | subjected to the material, apparatus, and apparatus which have the function similar to what was demonstrated in embodiment mentioned above, and the overlapping description is abbreviate | omitted. At least one kind of the inorganic sludge A and auxiliary material B, which has been put forward, is put into the mixing / kneading machine 3 and pulverized / mixed, and then the solidified material C is mixed / kneaded in an amount of 4-18% of the total weight. The machine 3 is charged and the mixing and kneading steps are performed. Then, it sends to the granulator 2 and is made to granulate and solidify, and the earth-and-sand substitute material E is manufactured. Also in this embodiment, the elution inhibitor D obtained by chelating an iron salt to a protein hydrolyzate is used as in the previous example. Thus, elution of heavy metals and the like can be effectively suppressed, and the environment-safe and high-quality earth and sand substitute material E can be produced as in the previous example.
In the embodiment shown in FIG. 3, after at least one kind of inorganic sludge A and auxiliary material B and solidifying material C are introduced into the mixing / kneading machine 3 almost simultaneously, and the steps of crushing / mixing / kneading are performed. Alternatively, the soil and sand substitute material E may be produced by sending it to the granulating device 2 and granulating and solidifying, and if necessary, the elution preventing material D may be added to the mixing and kneading machine 3 in the kneading process to remove heavy metals, etc. Sediment substitute material E is produced while suppressing elution.
The method for producing a soil-and-sand substitute material using inorganic sludge as a main raw material according to the sixth embodiment of the present invention is a case where inorganic sludge A containing a large amount of water is used. In that case, as shown by the broken line in FIG. 3, the inorganic sludge A is not directly fed into the mixing / kneading machine 3, but the dehydrated cake that has been put into the dehydrating apparatus 1 and dehydrated is fed into the mixing / kneading machine 3. Take steps to do.

本発明によって生成された無機性汚泥を主原料とする土砂代替材の1実施例について報告する。砕石汚泥と脱硫石膏と普通ポルトラントセメントを造粒装置に投入して解砕・混合した後、本発明に係る蛋白質加水分解物に鉄塩をキレート結合させた溶出防止剤を造粒装置に投入して混練・造粒工程を踏むことにより造粒固化して土砂代替材を製造した。この実施例の原料等の配合割合は表1に示すとおりであった。

Figure 2008155069
この原料を図1に示す実施形態1によって造粒固化して土砂代替材を製造したものを試料として県の認定試験機関(株式会社南西環境研究所)に依頼して溶出試験を行った。その際の結果を表2に示す。
Figure 2008155069
検査方法は最右欄に示される方法によってなされ、1リットル当たりの含有量に換算して環境基準値と比較させて本実施例の結果を示している。なお、この基準値*1は平成3年8月環境庁告示第46号(最終改正:平成13年3月環境省告示第16号)によるもの、計量方法における環告第64号*2は環境大臣が定める排水基準に係る検査方法であって、昭和49年9月環境庁告示第64号(最終改正:平成13年6月環境省告示第37号)、環告第59号*3は環境大臣が定める水質汚濁に係る環境基準の検査方法であって、昭和46年12月環境庁告示第59号(最終改正:平成15年11月環境省告示第123号)、総理府令第66号*4は農用地土壌汚染対策地域の指定要件に係る銅の量の検定の方法を定める省令であって、昭和47年10月総理府令第66号(最終改正:平成12年8月総理府令第94号)によるものである。この溶出試験結果の中で、コンクリート系物質から溶出されやすい有害物質として六価クロムは基準値0.05以下の0.04,セレンは基準値0.01以下の0.004,そしてホウ素は基準値1以下の0.01であった。その他の重金属などいずれの着目物質についても環境基準をクリアーしていることが確認できた。 An example of a soil and sand substitute material using inorganic sludge produced by the present invention as a main raw material will be reported. Crushed stone sludge, desulfurized gypsum and ordinary portrant cement are put into a granulator, crushed and mixed, and then an elution inhibitor made by chelating iron salt with the protein hydrolyzate according to the present invention is put into the granulator. Then, by carrying out a kneading and granulating process, the granulated solidified material was produced. The blending ratio of raw materials and the like in this example is as shown in Table 1.
Figure 2008155069
The raw material was granulated and solidified according to Embodiment 1 shown in FIG. 1 to produce a soil and sand substitute material, and a dissolution test was conducted by requesting a prefectural authorized testing organization (Nanbu Environmental Research Institute Co., Ltd.). The results are shown in Table 2.
Figure 2008155069
The inspection method is performed by the method shown in the rightmost column, and the result of this example is shown by converting the content per liter and comparing it with the environmental standard value. This standard value * 1 is based on the Environment Agency Notification No. 46 (final revision: Ministry of the Environment Notification No. 16 March 2001), and the Notification Method No. 64 * 2 in the measurement method is the environment. This is an inspection method according to the wastewater standards set by the Minister, and the Environment Agency Notification No. 64 (Final Revision: Ministry of the Environment Notification No. 37 in June 2001) and Notification No. 59 * 3 This is an inspection method for environmental standards related to water pollution established by the Minister. Environment Agency Notification No. 59 in December 1971 (final revision: Ministry of the Environment Notification No. 123 in November 2003), Prime Minister's Ordinance No. 66 * 4 is a ministerial ordinance that establishes the method of testing the amount of copper pertaining to the designated requirements for agricultural land and soil pollution control areas. In October 1972, Prime Minister's Ordinance No. 66 (final revision: Prime Minister's Ordinance No. 94 in August 2000) ). Among the leaching test results, hexavalent chromium as a harmful substance that is likely to be eluted from concrete materials was 0.04 with a reference value of 0.05 or less, selenium was 0.004 with a reference value of 0.01 or less, and boron was 0.01 with a reference value of 1 or less. . It was confirmed that the environmental standards were cleared for all the substances of interest such as other heavy metals.

また、この実施例によって生成された土砂代替材についてのコーン指数試験を県の認定試験機関(株式会社シビルエンジニアリング)に依頼して行った。コーン指数とは、コーンベネトロメーターを土中のある深さまで貫入させるのに要する力をコーンの底面積で除した値である。JIS A 1228に準拠しておこなったコーン指数試験では1,939KN/mとの結果が出た。建設省令で定められた土質区分基準は表3に示すとおりであって、この値は第2種建設発生土(砂質土、礫質土及びこれらに準ずるもの)の基準値である800KN/m以上を大きくクリアーしたものであった。

Figure 2008155069
Moreover, the cone index test about the earth-and-sand substitute material produced | generated by this Example was requested from the authorized test organization (Civil Engineering Co., Ltd.) of the prefecture. The cone index is a value obtained by dividing the force required for penetrating the cone-venometer to a certain depth in the soil by the bottom area of the cone. In a cone index test conducted in accordance with JIS A 1228, a result of 1,939 KN / m 3 was obtained. The soil classification criteria stipulated by the Ministry of Construction Ordinance are as shown in Table 3, and this value is the standard value for Type 2 construction generated soil (sandy soil, gravelly soil and similar materials), 800 KN / m It was a big clear of 3 or more.
Figure 2008155069

本発明によって生成された無機性汚泥を主原料とする土砂代替材の他の実施例について報告する。建設現場から排出された汚泥(含水比400%)を図1に示した本発明の第2実施形態で処理したものである。泥水のように水分が多いことからそのまま用いることはできないのでまず脱水装置1で脱水し、脱水ケーキ(含水比67%)としたものと溶融スラグと高炉セメントB種を造粒装置2に投入して解砕・混合した後、本発明に係る蛋白質加水分解物に鉄塩をキレート結合させた溶出防止剤を造粒装置2に投入して混練・造粒工程をふみ造粒固化して土砂代替材を製造した。なお、この実施例の原料等の配合割合はを表4に示すとおりであった。

Figure 2008155069
この原料を図1に示す実施形態2によって造粒固化して土砂代替材を製造したものを試料として県の認定試験機関(株式会社南西環境研究所)に依頼して溶出試験を行った。その際の結果を表5に示す。
Figure 2008155069
この溶出試験結果の中で、コンクリート系物質から溶出されやすい有害物質として六価クロムは基準値0.05以下の0.01,セレンは基準値0.01以下の0.001,そしてホウ素は基準値1以下の0.01であった。その他の重金属などいずれの着目物質についても環境基準をクリアーしていることが確認できた。 Another embodiment of a soil and sand substitute material using inorganic sludge produced by the present invention as a main raw material will be reported. The sludge discharged from the construction site (water content ratio 400%) is treated in the second embodiment of the present invention shown in FIG. Since it cannot be used as it is because of its high water content like muddy water, it is first dehydrated with the dehydrator 1 and dehydrated cake (moisture content 67%), molten slag and blast furnace cement B type are put into the granulator 2. After pulverizing and mixing, an antielution agent obtained by chelating iron salt to the protein hydrolyzate according to the present invention is added to the granulating device 2 and the kneading and granulating process is mixed and granulated and solidified to replace soil The material was manufactured. In addition, the blending ratios of the raw materials and the like in this example are as shown in Table 4.
Figure 2008155069
The raw material was granulated and solidified according to Embodiment 2 shown in FIG. 1 to produce a soil and sand substitute material, and a dissolution test was conducted by requesting a prefectural authorized test organization (Southwest Environmental Research Institute Co., Ltd.). The results are shown in Table 5.
Figure 2008155069
Among the leaching test results, hexavalent chromium as a hazardous substance that is likely to be eluted from concrete-based materials was 0.01 with a reference value of 0.05 or less, selenium was 0.001 with a reference value of 0.01 or less, and boron was 0.01 with a reference value of 1 or less. . It was confirmed that the environmental standards were cleared for all the substances of interest such as other heavy metals.

また、この実施例によって生成された土砂代替材についてのコーン指数試験を県の認定試験機関(財団法人沖縄県建設技術センター)に依頼して行った。JIS A 1228に準拠しておこなった締め固めた土のコーン指数試験では1,657KN/mとの結果が出た。この値は第2種建設発生土(砂質土、礫質土及びこれらに準ずるもの)の基準値である800KN/m以上を大きくクリアーしたものであった。 Moreover, the corn index test about the earth-and-sand substitute material produced | generated by this Example was conducted by requesting the accredited test organization (Okinawa Prefecture Construction Technology Center). A cone index test of compacted soil conducted in accordance with JIS A 1228 yielded a result of 1,657 KN / m 3 . This value was obtained by increased cleared 800 kN / m 3 or more is a reference value of the second type of construction waste soil (sandy soil, gravelly soil and equivalent thereto).

上記の実施例の試験結果によって、本発明の無機性汚泥を主原料とする土砂代替材の製造方法によれば、土砂代替材としての強度が天然資材に匹敵するものであって、製造コストも採算が見合うものである上に、重金属等の有害物質の溶出が防止された無機性汚泥を主原料とした土砂代替材の製造方法を提供できることが確認できた。特にコンクリート系物質から溶出されやすい有害物質として六価クロムについての確かな安全性について確認が採れたことは意義深い。   According to the test results of the above examples, according to the method for producing a soil and sand substitute material using the inorganic sludge of the present invention as a main raw material, the strength as a soil and sand substitute material is comparable to that of a natural material, and the production cost is also low. In addition to being profitable, it was confirmed that a method for producing a soil and sand substitute material using inorganic sludge in which elution of toxic substances such as heavy metals was prevented as a main raw material could be provided. In particular, it is significant that we have confirmed the safety of hexavalent chromium as a harmful substance that is easily eluted from concrete materials.

本発明の第1実施形態と第2実施形態を説明するブロック図である。It is a block diagram explaining 1st Embodiment and 2nd Embodiment of this invention. 本発明の第3実施形態と第4実施形態を説明するブロック図である。It is a block diagram explaining 3rd Embodiment and 4th Embodiment of this invention. 本発明の第5実施形態と第6実施形態を説明するブロック図である。It is a block diagram explaining 5th Embodiment and 6th Embodiment of this invention.

符号の説明Explanation of symbols

A 無機性汚泥 B 補助材
C 固化材 D 溶出防止剤
E 土砂代替材 1 脱水装置
2 造粒装置 3 混合・混練機
4 破砕機
A Inorganic sludge B Auxiliary material C Solidified material D Elution inhibitor E Sediment substitute 1 Dehydrator 2 Granulator 3 Mixing / kneading machine 4 Crusher

Claims (4)

無機性汚泥に砂質の溶融スラグ、コンクリートガラ、ガラス、陶器を破砕した再生資源、シルト質の石炭灰、石膏のうち少なくとも1種からなる補助剤を無機性汚泥に混合した後、セメント系の固化剤と蛋白質加水分解物に鉄塩をキレート結合させた溶出防止剤を加えて固化させてなる無機性汚泥を主原料とする土砂代替材の製造方法。   After mixing the sludge with sandy molten slag, concrete glass, glass, recycled resources obtained by crushing pottery, silt coal ash, and at least one auxiliary agent of gypsum into the inorganic sludge, cement type A method for producing a soil-and-sand substitute material comprising, as a main raw material, inorganic sludge obtained by solidifying a solidifying agent and a protein hydrolyzate by adding an elution inhibitor obtained by chelating iron salt. 無機性汚泥が水分を含んでいるときは脱水ケーキとして用いることを特徴とする請求項1に記載の無機性汚泥を主原料とする土砂代替材の製造方法。   When the inorganic sludge contains moisture, it is used as a dehydrated cake. The method for producing a soil and sand substitute material using inorganic sludge as a main material according to claim 1. 固化させる際は造粒機を用いて所望の粒径に形成するものである請求項1または2に記載の無機性汚泥を主原料とする土砂代替材の製造方法。   The method for producing a soil-and-sand substitute material using inorganic sludge as a main raw material according to claim 1 or 2, wherein the solidified material is formed into a desired particle size using a granulator. 固化させる際は大きな塊とし、その後破砕機を用いて所望の粒径に形成するものである請求項1または2に記載の無機性汚泥を主原料とする土砂代替材の製造方法。   3. The method for producing a soil-and-sand substitute material using inorganic sludge as a main material according to claim 1 or 2, which is formed into a large lump when solidified and then formed into a desired particle size using a crusher.
JP2006333920A 2006-11-27 2006-12-12 Method for manufacturing earth and sand alternative material using organic sludge as main raw material Pending JP2008155069A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006333920A JP2008155069A (en) 2006-11-27 2006-12-12 Method for manufacturing earth and sand alternative material using organic sludge as main raw material

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006318394 2006-11-27
JP2006333920A JP2008155069A (en) 2006-11-27 2006-12-12 Method for manufacturing earth and sand alternative material using organic sludge as main raw material

Publications (1)

Publication Number Publication Date
JP2008155069A true JP2008155069A (en) 2008-07-10

Family

ID=39656576

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006333920A Pending JP2008155069A (en) 2006-11-27 2006-12-12 Method for manufacturing earth and sand alternative material using organic sludge as main raw material

Country Status (1)

Country Link
JP (1) JP2008155069A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101824820A (en) * 2010-04-20 2010-09-08 武汉华荣科技发展有限责任公司 Construction process for reclamation by hydraulic filling of silt and device thereof
JP2011235242A (en) * 2010-05-11 2011-11-24 Niigata Garbage Kk Method for manufacturing granulated improved soil
CN105821888A (en) * 2016-03-28 2016-08-03 北京中岩大地科技股份有限公司 Backfill method and device of shore-connecting zone
CN108086297A (en) * 2017-11-24 2018-05-29 东南大学 A kind of ectopic activities magnesia carbonization curing sludge indigenous method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101824820A (en) * 2010-04-20 2010-09-08 武汉华荣科技发展有限责任公司 Construction process for reclamation by hydraulic filling of silt and device thereof
JP2011235242A (en) * 2010-05-11 2011-11-24 Niigata Garbage Kk Method for manufacturing granulated improved soil
CN105821888A (en) * 2016-03-28 2016-08-03 北京中岩大地科技股份有限公司 Backfill method and device of shore-connecting zone
CN105821888B (en) * 2016-03-28 2018-08-10 北京中岩大地科技股份有限公司 Connect the earth-filling method and device of bank band
CN108086297A (en) * 2017-11-24 2018-05-29 东南大学 A kind of ectopic activities magnesia carbonization curing sludge indigenous method

Similar Documents

Publication Publication Date Title
JP5766110B2 (en) Method for producing modified soil
Jang et al. Solidification and stabilization of Pb, Zn, Cd and Cu in tailing wastes using cement and fly ash
CN114632798B (en) Multistage pretreatment system and method for engineering muck
JP2007131804A (en) Soil backfilling material
JP2008155069A (en) Method for manufacturing earth and sand alternative material using organic sludge as main raw material
JP2006265885A (en) Treating method of construction sludge generated in cellular shield construction method
JP2024138031A (en) Soil solidification material, manufacturing method for soil solidification material, and soil solidification method
JP4506184B2 (en) High water content mud treatment method, high water content mud treatment agent, and granulated treated soil production method from high water content mud soil
Chan et al. Integrated waste and water management in mining and metallurgical industries
JP6489936B2 (en) Manufacturing method of backfill material
EP2982450A1 (en) In-situ process for stabilization and solidification of contaminated soil into composite material - building material
JP5533690B2 (en) Granular materials for civil engineering work
Krause et al. The beneficial reuse of dredged material for upland disposal
JP2008137842A (en) Method of manufacturing artificial aggregate using construction waste
JP3839642B2 (en) Method for producing fluidized soil
JP2005041750A (en) Industrial waste regenerated aggregate and method of producing the same
US20200038924A1 (en) Method for producing a binder for the conditioning of sludges, soils containing water and for the neutralization of acids
JP2005179428A (en) Fluidization treatment method of construction emission
KR20190099179A (en) Method of Producing Substitute for Ground Material of Base Course from Waste Adsorbents
JP6018867B2 (en) Manufacturing method of backfill material
KR102562863B1 (en) Method for Manufacturing Waste Recycled Construction Material Containing Hazardous Heavy Metal And Hazardous Organic Compound
JP5835120B2 (en) Method for producing modified soil
JP2004197356A (en) Soil column material, soil column, and construction method for soil column
JP2005083030A (en) Reclamation method
JP2008256078A (en) Manufacturing method for pipe protection material using excavated soil, production plant of pipe protection material for practicing the method and pipe protection material manufactured by the production plant

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100106

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100512