JP6018867B2 - Manufacturing method of backfill material - Google Patents

Manufacturing method of backfill material Download PDF

Info

Publication number
JP6018867B2
JP6018867B2 JP2012219577A JP2012219577A JP6018867B2 JP 6018867 B2 JP6018867 B2 JP 6018867B2 JP 2012219577 A JP2012219577 A JP 2012219577A JP 2012219577 A JP2012219577 A JP 2012219577A JP 6018867 B2 JP6018867 B2 JP 6018867B2
Authority
JP
Japan
Prior art keywords
cement
molten slag
backfill
granulated
compressive strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012219577A
Other languages
Japanese (ja)
Other versions
JP2014070007A (en
Inventor
寿博 宮谷
寿博 宮谷
光也 村田
光也 村田
義広 小野
義広 小野
勇治 関
勇治 関
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Engineering Co Ltd
Original Assignee
Nippon Steel Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Engineering Co Ltd filed Critical Nippon Steel Engineering Co Ltd
Priority to JP2012219577A priority Critical patent/JP6018867B2/en
Publication of JP2014070007A publication Critical patent/JP2014070007A/en
Application granted granted Critical
Publication of JP6018867B2 publication Critical patent/JP6018867B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Description

本発明は、埋戻し材の製造方法に関し、特に、液状化せず再掘削も可能な埋戻し材の製造方法に関する。   The present invention relates to a method for manufacturing a backfill material, and more particularly to a method for manufacturing a backfill material that is not liquefied and can be re-digged.

表層地盤に埋設される電話、ガス、上下水道等の管路施設の埋戻し工事では、埋戻しに使用可能な土砂が枯渇してきたことから、掘削等で発生した建設残土(現地発生土)に水と固化材を加えて混合撹拌することにより、流動性と自硬性を有する流動化処理土を製造して埋戻しに使用する技術が開発されている(例えば特許文献1参照)。   In the backfilling of pipeline facilities such as telephone, gas, water and sewage, etc. buried in the surface ground, the soil that can be used for backfilling has been depleted, so the construction residual soil (locally generated soil) generated by excavation, etc. A technique has been developed in which fluidized soil having fluidity and self-hardness is produced and added to backfill by adding water and a solidifying material and mixing and stirring (see, for example, Patent Document 1).

また、特許文献2では、建設汚泥を埋戻し等の施工材料として再資源化してリサイクル率を向上させることを目的として、建設汚泥を処理して含水率を所定の割合に調整した調整汚泥に、水又は泥水と固化材を混合してなる流動化処理土の発明が開示されている。
さらに、特許文献3では、高品質と安全性とを両立させた埋戻し再生流動化処理材を得ることを目的として、再資源化加工が施された加工溶融スラグと、汚泥を造粒固化して加工された加工再生処理土とを混ぜ合わせて主材を得る主材製造工程と、セメント系固化材と水と現地発生土とを前記主材に加えて混合撹拌する処理材製造工程とを有する埋戻し再生流動化処理材の製造方法の発明が開示されている。
Moreover, in patent document 2, in order to recycle construction sludge as construction materials, such as a backfill and to improve a recycling rate, in the adjustment sludge which processed construction sludge and adjusted the moisture content to the predetermined ratio, An invention of a fluidized soil obtained by mixing water or muddy water and a solidifying material is disclosed.
Furthermore, in Patent Document 3, for the purpose of obtaining a backfill regenerated fluidized material that achieves both high quality and safety, the processed molten slag subjected to recycling processing and sludge are granulated and solidified. The main material manufacturing process to obtain the main material by mixing the processed and reprocessed soil processed by the process, and the processing material manufacturing process of mixing and stirring the cement-based solidified material, water and locally generated soil to the main material The invention of the manufacturing method of the backfill reproduction | regeneration fluidization processing material which has is disclosed.

特開昭63−233115号公報JP-A-63-233115 特開2001−336145号公報JP 2001-336145 A 特開2012−012795号公報JP 2012-012795 A

近年、日本では、大型地震に起因する液状化現象によって下水道管路やマンホール等が浮き上がったり、路面が沈下したりする被害が多発している。一方、これら被害箇所の周辺では、液状化の痕跡が見られないことが報告されている。従って、これらの被害は、管路施設埋設時の埋戻し土が液状化したことが原因であると考えられている。
学識経験者等からなる下水道地震対策技術検討委員会による「管路施設の本復旧にあたっての技術的緊急提言」では、埋戻し土にセメントあるいはセメント系固化剤(セメント系固化材)を添加することにより液状化の発生を防止する場合には、一軸圧縮強度(28日強度)が100kPa〜200kPa、現場強度が50kPa〜100kPaとなるように、セメントを添加することが提言されている。また、採用に当たっては、再掘削の必要性もあわせて検討することとされている。
In recent years, in Japan, liquefaction caused by large earthquakes has caused frequent damages such as sewer pipes and manholes rising and road surfaces sinking. On the other hand, it has been reported that there are no signs of liquefaction around these damaged areas. Therefore, it is considered that these damages are caused by liquefaction of the backfill soil at the time of burying the pipeline facilities.
In the “Technical Urgent Proposal for this restoration of pipeline facilities” by the Sewerage Earthquake Countermeasure Technology Review Committee consisting of academics, etc., add cement or cement-based solidifying agent (cement-based solidifying material) to the backfill soil. In order to prevent the occurrence of liquefaction, it is suggested that cement be added so that the uniaxial compressive strength (28-day strength) is 100 kPa to 200 kPa and the on-site strength is 50 kPa to 100 kPa. In addition, when adopting it, the necessity of re-digging is also considered.

このように、管路施設等の埋戻しに使用される埋戻し材(埋戻し土)には、液状化の発生を防止することに加え、再掘削が可能な一軸圧縮強度を有することが求められている。しかし、上述した従来の流動化処理土の場合、一軸圧縮強度の調整が難しいという問題がある。
また、現地発生土の土質、土性は様々であり、特許文献1、3記載の工法の場合、流動化処理土の配合設計が容易ではないという問題に加え、現地発生土に水と固化材を加えて混合撹拌、もしくはセメント系固化材と水と現地発生土とを主材に加えて混合撹拌しなければならないため、流動化処理土の製造に手間がかかるという問題がある。特許文献2記載の流動化処理土の場合も、建設汚泥の含水率を調整して作製した調整汚泥に、水又は泥水と固化材を添加して撹拌槽で混合撹拌しなければならないため、流動化処理土の製造に手間がかかるという問題がある。
As described above, the backfill material (backfill soil) used for backfilling pipeline facilities and the like is required to have uniaxial compressive strength that enables re-digging in addition to preventing the occurrence of liquefaction. It has been. However, the conventional fluidized soil described above has a problem that it is difficult to adjust the uniaxial compressive strength.
In addition, the soil quality and soil properties of the locally generated soil are various, and in the case of the construction methods described in Patent Documents 1 and 3, in addition to the problem that the blended design of fluidized soil is not easy, water and solidifying material are added to the locally generated soil. Therefore, there is a problem that it takes time to manufacture the fluidized soil because it is necessary to mix and stir the mixture, or to add the cement-based solidifying material, water and locally generated soil to the main material and mix and stir. In the case of fluidized soil described in Patent Document 2, water or mud water and a solidifying material must be added to the adjusted sludge prepared by adjusting the moisture content of the construction sludge and mixed and stirred in a stirring tank. There is a problem that it takes time to manufacture the chlorinated soil.

本発明はかかる事情に鑑みてなされたもので、液状化せず再掘削も可能な一軸圧縮強度を有する埋戻し材を現地で手間をかけずに製造する方法を提供することを目的とする。   The present invention has been made in view of such circumstances, and an object of the present invention is to provide a method for manufacturing a backfilling material having a uniaxial compressive strength that is not liquefied and can be re-digged without taking time and effort.

上記目的を達成するため、本発明に係る埋戻し材の製造方法は、無機汚泥にセメントもしくはセメント系固化材を添加して造粒処理を行い、造粒物を形成する工程と、材齢28日における埋戻し材の一軸圧縮強度が100kPa以上200kPa以下となるように設定した混合比で、廃棄物溶融スラグと前記造粒物を混合処理して埋戻し材を製造する工程とを備えることを特徴としている。
ここで、「無機汚泥」は、建設汚泥、浄水場汚泥、採石場洗浄汚泥等の無機物を主体とする汚泥の総称である。また、「廃棄物溶融スラグ」は、廃棄物や下水汚泥の焼却灰等を約1300℃以上の高温で溶融した後、冷却固化させることで生成される生成物である。
In order to achieve the above object, a method for producing a backfilling material according to the present invention includes a step of adding a cement or cement-based solidifying material to inorganic sludge to perform a granulation treatment to form a granulated product, and a material age of 28. And a step of producing a backfill material by mixing the waste molten slag and the granulated material at a mixing ratio set so that the uniaxial compressive strength of the backfill material in the day is 100 kPa or more and 200 kPa or less. It is a feature.
Here, “inorganic sludge” is a general term for sludge mainly composed of inorganic substances such as construction sludge, water purification plant sludge, quarry washing sludge and the like. Further, “waste melting slag” is a product generated by melting and cooling solidification of waste, incinerated ash of sewage sludge, etc. at a high temperature of about 1300 ° C. or higher.

本発明では、無機汚泥にセメントもしくはセメント系固化材を添加して造粒した造粒物と廃棄物溶融スラグを、材齢28日における埋戻し材の一軸圧縮強度が100kPa以上200kPa以下となるように予め設定した混合比で混合するだけで良い。そのため、材料を混合撹拌するための撹拌機を使用する必要が無く、現地で手間をかけずに、液状化せず再掘削も可能な一軸圧縮強度を有する埋戻し材を製造することができる。また、廃棄物溶融スラグと造粒物を混合することで、廃棄物溶融スラグのみの場合に比べて施工性が向上すると共に、造粒物のみの場合に比べて透水性を高めることができる。 In the present invention, the uniaxial compressive strength of the backfill material at a material age of 28 days is adjusted to 100 kPa or more and 200 kPa or less for the granulated product and waste molten slag granulated by adding cement or cement-based solidified material to inorganic sludge. It is only necessary to mix at a preset mixing ratio. Therefore, it is not necessary to use a stirrer for mixing and stirring the materials, and it is possible to manufacture a backfilling material having a uniaxial compressive strength that does not liquefy and can be re-excavated without trouble in the field. Moreover, by mixing the waste molten slag and the granulated product, the workability is improved as compared with the case of only the waste molten slag, and the water permeability can be increased as compared with the case of only the granulated product.

また、本発明に係る埋戻し材の製造方法では、前記廃棄物溶融スラグと前記造粒物を混合処理する際にセメントもしくはセメント系固化材を添加してもよい。
廃棄物溶融スラグの性状に応じてセメントもしくはセメント系固化材を添加することで、埋戻し材の一軸圧縮強度を向上させることができる。
In the method for producing a backfill material according to the present invention, cement or a cement-based solidifying material may be added when the waste molten slag and the granulated material are mixed.
The uniaxial compressive strength of the backfill material can be improved by adding cement or a cement-based solidifying material according to the properties of the waste molten slag.

また、本発明に係る埋戻し材の製造方法では、埋戻し材の一軸圧縮強度を向上させる際に、前記セメントもしくはセメント系固化材に代えて高炉スラグを使用してもよい。 Moreover, in the manufacturing method of the backfill material which concerns on this invention, when improving the uniaxial compressive strength of a backfill material, it may replace with the said cement or cement-type solidification material, and may use blast furnace slag.

また、発明に係る埋戻し材の製造方法では、前記廃棄物溶融スラグと前記造粒物の混合比を、埋戻し材の一軸圧縮強度試験結果に基づいて設定することが望ましい。
廃棄物溶融スラグと造粒物の混合比は、使用する廃棄物溶融スラグと造粒物の性状に依存する。このため、廃棄物溶融スラグと造粒物の混合比が異なるサンプルを数種類作製し、当該サンプルの一軸圧縮強度試験結果に基づいて、廃棄物溶融スラグと造粒物の混合比を決定すれば、施工する埋戻し材の一軸圧縮強度(28日強度)を高い精度で設定することができる。
In the method for producing a backfill material according to the present invention, it is desirable to set a mixing ratio of the waste molten slag and the granulated material based on a uniaxial compressive strength test result of the backfill material.
The mixing ratio of the waste molten slag and the granulated product depends on the properties of the waste molten slag and the granulated product to be used. For this reason, if several types of samples having different mixing ratios of waste molten slag and granulated materials are prepared, and based on the uniaxial compressive strength test results of the samples, the mixing ratio of waste molten slag and granulated materials is determined. The uniaxial compressive strength (28-day strength) of the backfill material to be constructed can be set with high accuracy.

本発明では、無機汚泥にセメントもしくはセメント系固化材を添加して造粒した造粒物と廃棄物溶融スラグを、材齢28日における埋戻し材の一軸圧縮強度が100kPa以上200kPa以下となるように設定した混合比で混合するだけで良いので、現地で手間をかけずに、液状化せず再掘削も可能な一軸圧縮強度を有する埋戻し材を製造することができる。 In the present invention, the uniaxial compressive strength of the backfill material at a material age of 28 days is adjusted to 100 kPa or more and 200 kPa or less for the granulated product and waste molten slag granulated by adding cement or cement-based solidified material to inorganic sludge. Therefore, it is possible to manufacture a backfilling material having a uniaxial compressive strength that does not liquefy and can be re-excavated without trouble at the site.

本発明の第1の実施の形態に係る埋戻し材の製造方法のフロー図である。It is a flowchart of the manufacturing method of the backfilling material which concerns on the 1st Embodiment of this invention. 本発明の第2の実施の形態に係る埋戻し材の製造方法のフロー図である。It is a flowchart of the manufacturing method of the backfilling material which concerns on the 2nd Embodiment of this invention. 本発明の第3の実施の形態に係る埋戻し材の製造方法のフロー図である。It is a flowchart of the manufacturing method of the backfilling material which concerns on the 3rd Embodiment of this invention.

続いて、添付した図面を参照しつつ、本発明を具体化した実施の形態について説明し、本発明の理解に供する。   Next, embodiments of the present invention will be described with reference to the accompanying drawings to provide an understanding of the present invention.

[第1の実施の形態]
本発明の第1の実施の形態に係る埋戻し材の製造方法について、図1のフロー図を用いて説明する。なお、埋戻し材15の製造は、全工程を工場で実施してもよいが、STEP1を工場で実施し、STEP2を現地で実施しても良いし、あるいは全工程を現地で実施することも可能である。
[First Embodiment]
The manufacturing method of the backfill material which concerns on the 1st Embodiment of this invention is demonstrated using the flowchart of FIG. In addition, although the manufacturing process of the backfill material 15 may be performed at the factory, STEP 1 may be performed at the factory and STEP 2 may be performed locally, or the entire process may be performed locally. Is possible.

(STEP1)無機汚泥10と固化材A11を、ミキサーなどの造粒機(図示省略)に投入して造粒処理ST1し、造粒物18を形成する。無機汚泥10と固化材A11の配合割合は、例えば、1mの無機汚泥10に対して固化材A11を10kg〜50kg程度とすれば良い。
なお、造粒物18は、ペレット状とする必要は無く、塊状化していれば良い。いわゆるダマ状になっていればよく、その大きさは例えば20mm〜30mm程度である。
(STEP 1) The inorganic sludge 10 and the solidified material A11 are put into a granulator (not shown) such as a mixer and granulated ST1 to form a granulated product 18. The mixing ratio of the inorganic sludge 10 and the solidified material A11 may be, for example, about 10 kg to 50 kg of the solidified material A11 with respect to 1 m 3 of inorganic sludge 10.
The granulated product 18 does not have to be in the form of pellets, and may be agglomerated. What is necessary is just to become what is called a dama form, and the magnitude | size is about 20 mm-30 mm, for example.

無機汚泥10は、前述したように、建設汚泥、浄水場汚泥、採石場洗浄汚泥等の無機物を主体とする汚泥である。
また、固化材A11は、セメントもしくはセメント系固化材(セメント系固化剤)である。
As described above, the inorganic sludge 10 is sludge mainly composed of inorganic substances such as construction sludge, water purification plant sludge, and quarry washing sludge.
The solidifying material A11 is cement or a cement-based solidifying material (cement-based solidifying agent).

(STEP2)廃棄物溶融スラグ13と造粒物18を、バックホウなどの重機を用いて混合処理ST2し、埋戻し材15を製造する。混合処理ST2における廃棄物溶融スラグ13と造粒物18の混合比は、材齢28日における埋戻し材15の一軸圧縮強度が100kPa以上200kPa以下となるように予め決定しておく。
廃棄物溶融スラグ13と造粒物18の混合比は、使用する廃棄物溶融スラグ13及び造粒物18の性状にもよるが、廃棄物溶融スラグ:造粒物=50体積%:50体積%〜70体積%:30体積%程度である。
(STEP 2) The waste melted slag 13 and the granulated product 18 are mixed and processed ST2 using a heavy machine such as a backhoe, and the backfill material 15 is manufactured. The mixing ratio of the waste molten slag 13 and the granulated product 18 in the mixing process ST2 is determined in advance so that the uniaxial compressive strength of the backfill material 15 at the age of 28 days becomes 100 kPa or more and 200 kPa or less.
The mixing ratio of the waste molten slag 13 and the granulated product 18 depends on the properties of the waste molten slag 13 and the granulated product 18 to be used, but the waste molten slag: the granulated product = 50% by volume: 50% by volume. -70 volume%: About 30 volume%.

なお、廃棄物溶融スラグ13と造粒物18の混合比は、上述したように、使用する廃棄物溶融スラグ13及び造粒物18の性状に依存するため、JIS A1216「土の一軸圧縮試験方法」に従って、廃棄物溶融スラグ13と造粒物18の混合比が異なるサンプルを数種類作製し、当該サンプルの一軸圧縮強度試験結果に基づいて決定することが望ましい。   In addition, since the mixing ratio of the waste melted slag 13 and the granulated product 18 depends on the properties of the waste melted slag 13 and the granulated product 18 to be used as described above, JIS A1216 “Soil uniaxial compression test method” It is desirable that several types of samples having different mixing ratios of the waste molten slag 13 and the granulated product 18 are prepared and determined based on the uniaxial compressive strength test results of the samples.

廃棄物溶融スラグ13は、前述したように、廃棄物や焼却灰等を、ガス化溶融炉や灰溶融炉などの溶融炉で溶融した後、冷却固化させることで生成される生成物である。廃棄物溶融スラグ13の粒度は、例えば、静岡市が公表している「埋戻し材用溶融スラグ取扱基準」の「表2 溶融スラグの粒度範囲」程度とすればよい。
また、廃棄物溶融スラグ13に摩砕処理を施すことにより、スラグ表面に無数の凹凸が形成され、造粒物18との混合状態が向上する。
As described above, the waste melting slag 13 is a product generated by melting and cooling solid waste and incinerated ash in a melting furnace such as a gasification melting furnace or an ash melting furnace. The particle size of the waste molten slag 13 may be, for example, about “Table 2 Molten slag particle size range” in “Standard for handling molten slag for backfill material” published by Shizuoka City.
In addition, by subjecting the waste molten slag 13 to grinding, innumerable irregularities are formed on the surface of the slag, and the mixed state with the granulated product 18 is improved.

製造された埋戻し材15は、液状化せず再掘削も可能な一軸圧縮強度(例えば、28日強度が100kPa以上200kPa以下)を有し、施工後直ちに重機が埋戻し部に進入して作業を行うことができる。また、造粒物のみの場合に比べて透水性も高く、透水係数は1.0×10−4cm/sec以上である。 The manufactured backfill material 15 has a uniaxial compressive strength (for example, a 28-day strength of 100 kPa or more and 200 kPa or less) that is not liquefied and can be re-excavated. It can be performed. Moreover, compared with the case of only a granulated material, water permeability is also high, and a water permeability coefficient is 1.0 * 10 < -4 > cm / sec or more.

[第2の実施の形態]
本発明の第2の実施の形態に係る埋戻し材の製造方法のフロー図を図2に示す。本実施の形態では、造粒物18と廃棄物溶融スラグ13を混合する際に、固化材B12を添加する点が第1の実施の形態と異なっている。
廃棄物溶融スラグ13の性状に応じて固化材B12を添加することで、埋戻し材16の一軸圧縮強度を向上させることができる。
なお、固化材B12は、固化材A11と同じく、セメントもしくはセメント系固化材(セメント系固化剤)である。
[Second Embodiment]
FIG. 2 shows a flow chart of the method for manufacturing the backfill material according to the second embodiment of the present invention. The present embodiment is different from the first embodiment in that the solidifying material B12 is added when the granulated product 18 and the waste molten slag 13 are mixed.
The uniaxial compressive strength of the backfill material 16 can be improved by adding the solidifying material B12 according to the properties of the waste molten slag 13.
The solidifying material B12 is cement or a cement-based solidifying material (cement-based solidifying agent), like the solidifying material A11.

[第3の実施の形態]
本発明の第3の実施の形態に係る埋戻し材の製造方法のフロー図を図3に示す。本実施の形態では、第2の実施の形態における固化材B12に代えて、高炉スラグ14を添加して埋戻し材17を製造するものであり、固化材B12と同様、埋戻し材17の一軸圧縮強度を向上させることができる。
[Third Embodiment]
FIG. 3 shows a flowchart of the method for manufacturing the backfill material according to the third embodiment of the present invention. In this embodiment, instead of the solidifying material B12 in the second embodiment, the blast furnace slag 14 is added to manufacture the backfilling material 17, and like the solidifying material B12, the uniaxial of the backfilling material 17 is used. Compressive strength can be improved.

以上、本発明の実施の形態について説明してきたが、本発明は何ら上記した実施の形態に記載の構成に限定されるものではなく、特許請求の範囲に記載されている事項の範囲内で考えられるその他の実施の形態や変形例も含むものである。例えば、上記実施の形態では、造粒物と廃棄物溶融スラグを重機を用いて混合するとしているが、作業員がスコップ等を用いて造粒物と廃棄物溶融スラグを混合してもよい。   Although the embodiments of the present invention have been described above, the present invention is not limited to the configurations described in the above-described embodiments, and is considered within the scope of the matters described in the claims. Other embodiments and modifications are also included. For example, in the above-described embodiment, the granulated product and waste molten slag are mixed using a heavy machine. However, an operator may mix the granulated product and waste molten slag using a scoop or the like.

本発明の効果について検証するために実施した検証試験について説明する。なお、以下では、「廃棄物溶融スラグ」を単に「溶融スラグ」と呼ぶ。
表1に、作製したサンプルの一覧を示す。サンプル1とサンプル2には、シャフト炉式直接溶融炉から排出された溶融スラグAを使用し、サンプル3には、プラズマ灰溶融炉から排出された溶融スラグBを使用した。サンプル4のみ、溶融スラグではなく、高炉スラグを使用した。
スラグと造粒物の混合比は、サンプル1、3、4がスラグ:造粒物=60体積%:40体積%、サンプル2のみスラグ:造粒物=70体積%:30体積%とした。
A verification test carried out to verify the effects of the present invention will be described. Hereinafter, “waste molten slag” is simply referred to as “molten slag”.
Table 1 shows a list of prepared samples. Sample 1 and sample 2 used molten slag A discharged from a shaft furnace type direct melting furnace, and sample 3 used molten slag B discharged from a plasma ash melting furnace. Only sample 4 used blast furnace slag instead of molten slag.
The mixing ratio of the slag and the granulated product was set such that samples 1, 3, and 4 were slag: granulated product = 60% by volume: 40% by volume, and only sample 2 was slag: granulated product = 70% by volume: 30% by volume.

Figure 0006018867
Figure 0006018867

使用した溶融スラグは、静岡市が公表している「埋戻し材用溶融スラグ取扱基準」の「表2 溶融スラグの粒度範囲」に適合する粒度を有している。静岡市が規定している溶融スラグの粒度範囲を表2に示す。   The molten slag used has a particle size that conforms to “Table 2 Melt slag particle size range” of “Handling standard for molten slag for backfill materials” published by Shizuoka City. Table 2 shows the particle size range of the molten slag specified by Shizuoka City.

Figure 0006018867
Figure 0006018867

また、造粒物は、無機汚泥と固化材Aをミキサー(造粒機)に投入して混練する(造粒処理)ことにより形成した。無機汚泥には、建設汚泥を脱水機により脱水処理して生成した脱水ケーキを使用し、固化材Aにはセメントを使用した。セメントの添加量は、脱水ケーキ1m当たり40kgとした。作製した造粒物の土質試験結果を表3に示す。 Moreover, the granulated material was formed by putting inorganic sludge and the solidification material A into a mixer (granulating machine) and kneading (granulating treatment). As the inorganic sludge, a dehydrated cake produced by dehydrating construction sludge with a dehydrator was used, and cement was used as the solidified material A. The amount of cement added was 40 kg per 1 m 3 of dehydrated cake. Table 3 shows the soil test results of the granulated material produced.

Figure 0006018867
Figure 0006018867

作製したサンプル1〜4について、JIS A1216「土の一軸圧縮試験方法」に従って、一軸圧縮強度試験を実施した。一軸圧縮強度試験結果の一覧を表4に示す。同表より以下のことがわかる。
(1)サンプル1の材齢28日における一軸圧縮強度の平均値は259kN/mであり、液状化を抑止できる強度を有しているが、管路施設等の維持管理のための再掘削が困難であると予想される。
(2)サンプル2及び3の材齢28日における一軸圧縮強度の平均値は198kN/m及び165kN/mであり、液状化せず再掘削も可能な一軸圧縮強度である100kPa〜200kPaの範囲に入っている。
(3)サンプル4の材齢28日における一軸圧縮強度の平均値は2680kN/mと高強度であるため、液状化は十分に防止できるが、再掘削が非常に困難になると予想される。
The produced samples 1 to 4 were subjected to a uniaxial compressive strength test according to JIS A1216 “Soil Uniaxial Compression Test Method”. Table 4 shows a list of uniaxial compressive strength test results. The following can be seen from the table.
(1) The average value of uniaxial compressive strength at the age of 28 days of sample 1 is 259 kN / m 2 and has the strength to prevent liquefaction, but it is re-excavated for maintenance management of pipeline facilities etc. Is expected to be difficult.
(2) Sample 2 and the average value of the uniaxial compressive strength at 3 at the age of 28 days is 198kN / m 2 and 165kN / m 2, re-digging without liquefaction is possible uniaxial compressive strength 100kPa~200kPa of Is in range.
(3) Since the average value of uniaxial compressive strength at the age of 28 days of sample 4 is as high as 2680 kN / m 2 , liquefaction can be sufficiently prevented, but re-excavation is expected to be very difficult.

Figure 0006018867
Figure 0006018867

また、JIS A1218「土の透水試験方法」に従って、サンプル1〜4について実施した透水試験結果によれば、サンプル1〜4の透水係数は、4.46×10−3cm/sec〜5.92×10−3cm/sであった。 Moreover, according to the permeability test result implemented about the samples 1-4 according to JIS A1218 "Soil permeability test method", the permeability coefficient of the samples 1-4 is 4.46 * 10 < -3 > cm / sec-5.92. × 10 −3 cm / s.

10:無機汚泥、11:固化材A、12:固化材B、13:廃棄物溶融スラグ、14:高炉スラグ、15、16、17:埋戻し材、18:造粒物 10: Inorganic sludge, 11: Solidified material A, 12: Solidified material B, 13: Waste molten slag, 14: Blast furnace slag, 15, 16, 17: Backfill material, 18: Granulated material

Claims (4)

無機汚泥にセメントもしくはセメント系固化材を添加して造粒処理を行い、造粒物を形成する工程と、
材齢28日における埋戻し材の一軸圧縮強度が100kPa以上200kPa以下となるように設定した混合比で、廃棄物溶融スラグと前記造粒物を混合処理して埋戻し材を製造する工程とを備えることを特徴とする埋戻し材の製造方法。
Adding a cement or cement-based solidifying material to inorganic sludge and performing granulation to form a granulated product;
A process of producing a backfill material by mixing waste molten slag and the granulated material at a mixing ratio set so that the uniaxial compressive strength of the backfill material at a material age of 28 days is 100 kPa or more and 200 kPa or less. A method for producing a backfill material, comprising:
請求項1記載の埋戻し材の製造方法において、前記廃棄物溶融スラグと前記造粒物を混合処理する際にセメントもしくはセメント系固化材を添加することを特徴とする埋戻し材の製造方法。 The method for producing a backfill material according to claim 1, wherein cement or a cement-based solidifying material is added when the waste molten slag and the granulated material are mixed. 請求項2記載の埋戻し材の製造方法において、前記廃棄物溶融スラグと前記造粒物を混合処理する際に前記セメントもしくはセメント系固化材に代えて高炉スラグを使用することを特徴とする埋戻し材の製造方法。 3. The method for producing a backfill material according to claim 2, wherein a blast furnace slag is used instead of the cement or cement-based solidified material when the waste molten slag and the granulated material are mixed. A method of manufacturing the return material. 請求項1〜3のいずれか1項に記載の埋戻し材の製造方法において、前記廃棄物溶融スラグと前記造粒物の混合比を、埋戻し材の一軸圧縮強度試験結果に基づいて設定することを特徴とする埋戻し材の製造方法。   In the manufacturing method of the backfill material of any one of Claims 1-3, the mixing ratio of the said waste molten slag and the said granulated material is set based on the uniaxial compressive strength test result of a backfill material. The manufacturing method of the backfilling material characterized by this.
JP2012219577A 2012-10-01 2012-10-01 Manufacturing method of backfill material Active JP6018867B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012219577A JP6018867B2 (en) 2012-10-01 2012-10-01 Manufacturing method of backfill material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012219577A JP6018867B2 (en) 2012-10-01 2012-10-01 Manufacturing method of backfill material

Publications (2)

Publication Number Publication Date
JP2014070007A JP2014070007A (en) 2014-04-21
JP6018867B2 true JP6018867B2 (en) 2016-11-02

Family

ID=50745553

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012219577A Active JP6018867B2 (en) 2012-10-01 2012-10-01 Manufacturing method of backfill material

Country Status (1)

Country Link
JP (1) JP6018867B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6489936B2 (en) * 2015-05-25 2019-03-27 新日鉄住金エンジニアリング株式会社 Manufacturing method of backfill material

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3552302B2 (en) * 1994-10-07 2004-08-11 宇部興産株式会社 Solidified material for fluidized backfill method
JP2006175413A (en) * 2004-12-24 2006-07-06 Nippon Steel Corp Method for improving construction sludge property and apparatus used for it
JP4999967B2 (en) * 2010-06-30 2012-08-15 坂本建設株式会社 Backfill recycled fluidized material and method for producing the same

Also Published As

Publication number Publication date
JP2014070007A (en) 2014-04-21

Similar Documents

Publication Publication Date Title
Trejo et al. Sustainable development using controlled low-strength material
JP6489936B2 (en) Manufacturing method of backfill material
JP4999967B2 (en) Backfill recycled fluidized material and method for producing the same
JP6018867B2 (en) Manufacturing method of backfill material
KR100805676B1 (en) Making method of fluid soil
JP2008155069A (en) Method for manufacturing earth and sand alternative material using organic sludge as main raw material
EP2982450A1 (en) In-situ process for stabilization and solidification of contaminated soil into composite material - building material
JP7465052B2 (en) Manufacturing method for improved soil with high water content
JP2001019956A (en) Lime-improved soil mortar, its production and fluidization treating method of construction using the same
JP2000256669A (en) Soil mortar using lime-treated soil and banking method using same
JP2010007273A (en) Ground and base-course improving material, constituted by mixing rock muck, refuse-molten slug and stabilizer together
CN103145383A (en) Building material utilizing seabed sludge and preparation method of building material
JP2005179428A (en) Fluidization treatment method of construction emission
JP3839642B2 (en) Method for producing fluidized soil
JP4743679B2 (en) Water-improving soil-improving solidified material, method for producing water-improving improved soil, and water-sealing
KR20100060928A (en) A manufacturing method of flowing soil including coal dust
JP2005041750A (en) Industrial waste regenerated aggregate and method of producing the same
KR102464468B1 (en) Backfill and its manufacturing method for sewer pipes using recycled soil
JP2007131805A (en) Improved ground material
JP2007126838A (en) Construction method using covering sand
Murakami et al. Recycling and treatment of construction sludge
JP5725270B2 (en) Caisson filling
JP5835120B2 (en) Method for producing modified soil
KR102492810B1 (en) Construction methods and production facilities of safe eco-friendly construction materials(filler material and ground improvement material) using low carbon green cement
KR102097590B1 (en) Improved dredged soil comprising steel slag and temporary road using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150407

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160219

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160302

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160406

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160614

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160801

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160913

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161003

R150 Certificate of patent or registration of utility model

Ref document number: 6018867

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250