JP2011235242A - Method for manufacturing granulated improved soil - Google Patents

Method for manufacturing granulated improved soil Download PDF

Info

Publication number
JP2011235242A
JP2011235242A JP2010109511A JP2010109511A JP2011235242A JP 2011235242 A JP2011235242 A JP 2011235242A JP 2010109511 A JP2010109511 A JP 2010109511A JP 2010109511 A JP2010109511 A JP 2010109511A JP 2011235242 A JP2011235242 A JP 2011235242A
Authority
JP
Japan
Prior art keywords
soil
improved soil
waste gypsum
gypsum board
construction sludge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010109511A
Other languages
Japanese (ja)
Other versions
JP5289380B2 (en
Inventor
Takao Seki
隆雄 関
Kanji Hokari
敢治 穂刈
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NIIGATA GARBAGE KK
Original Assignee
NIIGATA GARBAGE KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NIIGATA GARBAGE KK filed Critical NIIGATA GARBAGE KK
Priority to JP2010109511A priority Critical patent/JP5289380B2/en
Publication of JP2011235242A publication Critical patent/JP2011235242A/en
Application granted granted Critical
Publication of JP5289380B2 publication Critical patent/JP5289380B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Processing Of Solid Wastes (AREA)
  • Treatment Of Sludge (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for manufacturing epoch-making granulated improved soil excelling in practicability and safely usable with a sense of security without soil contamination while suppressing the elution of a noxious chemical substance into soil to a soil environmental standard value or lower even if using construction sludge and waste gypsum boards heretofore dumped in a final disposal site.SOLUTION: The method for manufacturing granulated improved soil for recycling construction sludge discharged from a construction site or the like into granulated improved soil includes mixing waste gypsum board powder obtained by crushing waste gypsum boards, into the construction sludge at 50% or less to the weight of the construction sludge to obtain a primary mixture, mixing cement into the primary mixture at 20% or less to the weight of the primary mixture to obtain a secondary mixture, and kneading, drying and solidifying the secondary mixture to manufacture the granulated improved soil.

Description

本発明は、産業廃棄物として最終処理場で廃棄していた建設汚泥と廃石膏ボードとを再利用して、路盤材、埋め戻し材、法面養生、防草材などの建設資材として再利用することができる改質造粒材の製造方法に関するものである。   The present invention reuses construction sludge and waste gypsum board that have been disposed of as final industrial waste, and reuses them as construction materials such as roadbed materials, backfill materials, slope curing, and herbicide materials. The present invention relates to a method for producing a modified granulated material.

従来、建設現場や道路工事などに伴って発生する建設汚泥は、脱水処理した後に産業廃棄物として管理型最終処分場にて埋め立て処理をしていた。しかし、近年、産業廃棄物の最終処分場の残余容量が逼迫しており、その残余年数はあと数年とも言われており、産業廃棄物の排出量の低減と再利用化の検討が喫緊の課題となっている。   Conventionally, construction sludge generated in connection with construction sites or road construction has been dewatered and then landfilled as industrial waste at a managed final disposal site. However, in recent years, the remaining capacity of the final disposal site for industrial waste has become tight, and it is said that the remaining number of years is another few years, and it is urgent to consider the reduction and reuse of industrial waste. It has become a challenge.

このような状況においても、建設汚泥の再資源化率は極めて低い水準にあるのが現状であり、例えば特許文献1などの様々な建設汚泥を再利用した造粒改良土が提案されているが実用化に至っていない。   Even in such a situation, the recycling rate of construction sludge is currently at a very low level. For example, a granulated improved soil that reuses various construction sludges such as Patent Document 1 has been proposed. Not yet commercialized.

また、建物の新築現場や解体現場などの廃材として大量に発生している廃石膏ボードに関しても、建設汚泥と同様に再資源化の検討が急務となっている。   In addition, as with construction sludge, there is an urgent need to consider recycling of waste gypsum boards that are generated in large quantities as waste materials at new construction sites and demolition sites.

この廃石膏ボードは、従来、紙と石膏ボードを分離して安定型最終処分場で処理をしてきたが、2006年以降は、安定型最終処分場での処理ができなくなり、現在では管理型最終処分場で埋め立て処理を行っており、上述した建設汚泥同様に、最終処分場の残余容量を逼迫している要因のひとつとなっている。   This waste gypsum board has been separated from paper and gypsum board and processed at the stable final disposal site. However, after 2006, it can no longer be processed at the stable final disposal site. Landfill processing is performed at the disposal site, and as with the construction sludge described above, this is one of the factors that are constraining the remaining capacity of the final disposal site.

この廃石膏ボードにおいては、生産工場及び新築現場で発生する廃石膏ボードに関しては、大半は再利用される仕組みが確立しているが、最も排出量が多い解体現場で発生する廃石膏ボードに関しては、再利用が進んでおらず、その再利用の割合は総排出量の数%程度に過ぎず、従って、廃石膏ボード全体の再資源化率は、その排出量の比からみると20%前後と非常に低い割合に留まっているのが現状である。   With regard to the waste gypsum board, most of the waste gypsum board that is generated at production sites and new construction sites has been established. Reuse is not progressing, and the rate of reuse is only about a few percent of the total emissions. Therefore, the overall recycling rate of waste gypsum board is around 20% in terms of the ratio of emissions. At present, the ratio is very low.

特開2008−036532号公報JP 2008-036532 A

上述した建設汚泥と廃石膏ボードを再利用して建設資材用の造粒改良土にした場合、この造粒改良土から溶出する化学物質が土壌環境基準値を上回り、土壌汚染を招く可能性があるとして問題視されており、従来提案されている造粒改良土においては、この土壌汚染に関して考慮されていなかったため、このことが実用化に至っていない原因のひとつとなっていた。   If the above-mentioned construction sludge and waste gypsum board are reused to make granulated improved soil for construction materials, the chemical substances eluted from this granulated improved soil may exceed the soil environmental standard value and cause soil contamination. This has been regarded as a problem, and in the conventionally proposed granulated improved soil, this soil contamination has not been taken into consideration, and this has been one of the causes that has not been put into practical use.

具体的には、従来、建設汚泥を造粒改良土として再利用する際には、この建設汚泥を固化させるために固化材としてセメントを用いているが、このセメントは六価クロムを含有しており、通常、コンクリートに用いる場合はセメントの水和物に取り込まれて土壌中に溶出することはないが、造粒改良土に混入させた場合は、この六価クロムとセメントとの水和反応が不十分となる場合があり、このような状態で土壌に埋め戻すと、この造粒改良土から六価クロムが溶出して土壌や地下水などを汚染する可能性がある。   Specifically, conventionally, when construction sludge is reused as granulated improved soil, cement is used as a solidifying material to solidify the construction sludge. This cement contains hexavalent chromium. Usually, when used in concrete, it is taken into the cement hydrate and does not elute into the soil, but when mixed with granulated soil, the hydration reaction between this hexavalent chromium and cement In such a state, if it is backfilled in the soil, hexavalent chromium may be eluted from the granulated improved soil and contaminate the soil or groundwater.

また、上記固化材として石膏を利用する場合もあるが、この石膏を混入した場合は、石膏に含まれるフッ素が溶出し土壌を汚染してしまう。   In some cases, gypsum is used as the solidifying material, but when this gypsum is mixed, fluorine contained in the gypsum is eluted and contaminates the soil.

更に、この石膏として廃石膏ボードを粉砕した廃石膏ボード粉を再利用する場合は、この廃石膏ボート粉に含まれる紙などの有機成分が、地下水に生息する硫酸塩還元細菌の代謝を受けて硫化水素を発生する可能性もある。   Furthermore, when reusing waste gypsum board powder obtained by crushing waste gypsum board as this gypsum, the organic components such as paper contained in this waste gypsum boat powder are subject to the metabolism of sulfate-reducing bacteria inhabiting groundwater. There is also the possibility of generating hydrogen sulfide.

このように建設汚泥や廃石膏ボードを用いて造粒改良土として再資源化しても土壌汚染の可能性が高いために、実用化に至っていない。   Thus, even if it is recycled as granulated improved soil using construction sludge and waste gypsum board, it has not been put into practical use because of the high possibility of soil contamination.

そこで、本発明は、有害な化学物質の土壌中への溶出を土壌環境基準値以下に抑え、土壌汚染のない安全で安心して使用することができる実用性に優れた画期的な造粒改良土の製造方法を提供することを目的とする。   Therefore, the present invention is an epoch-making granulation improvement excellent in practicality that can suppress the elution of harmful chemical substances into the soil below the soil environmental standard value and can be used safely and safely without soil contamination. It aims at providing the manufacturing method of soil.

添付図面を参照して本発明の要旨を説明する。   The gist of the present invention will be described with reference to the accompanying drawings.

建設現場や道路工事現場などから排出される建設汚泥を造粒改良土に再資源化する造粒改良土の製造方法であって、前記建設汚泥に廃石膏ボードを粉砕処理して得た廃石膏ボード粉をこの建設汚泥の重量に対して50%以下の割合で混入して一次混合物を得、この一次混合物にセメントをこの一次混合物の重量に対して20%以下の割合で混入して二次混合物を得、この二次混合物を混練りし乾燥して固化することを特徴とする造粒改良土の製造方法に係るものである。   A method for producing granulated improved soil that recycles construction sludge discharged from construction sites, road construction sites, etc. into granulated improved soil, and waste gypsum obtained by pulverizing waste gypsum board into the construction sludge Board powder is mixed at a ratio of 50% or less with respect to the weight of the construction sludge to obtain a primary mixture, and cement is mixed with the primary mixture at a ratio of 20% or less with respect to the weight of the primary mixture to obtain a secondary mixture. The present invention relates to a method for producing a granulated improved soil, characterized in that a mixture is obtained, the secondary mixture is kneaded, dried and solidified.

また、前記建設汚泥は、脱水処理して含水率40%以下にした脱水ケーキであることを特徴とする請求項1記載の造粒改良土の製造方法に係るものである。   Further, the construction sludge is a dehydrated cake that has been dehydrated to a water content of 40% or less, and relates to the method for producing granulated improved soil according to claim 1.

また、前記廃石膏ボード粉の混入比は、前記建設汚泥の重量に対して30%〜40%とすることを特徴とする請求項1,2のいずれか1項に記載の造粒改良土の製造方法に係るものである。   The mixing ratio of the waste gypsum board powder is 30% to 40% with respect to the weight of the construction sludge, The granulated improved soil according to any one of claims 1 and 2, It relates to a manufacturing method.

また、前記セメントの混入比は、前記一次混合物の重量に対して7%〜15%とすることを特徴とする請求項1〜3のいずれか1項に記載の造粒改良土の製造方法に係るものである。   The method for producing a granulated improved soil according to any one of claims 1 to 3, wherein the mixing ratio of the cement is 7% to 15% with respect to the weight of the primary mixture. It is concerned.

また、前記廃石膏ボード粉に含まれる紙成分は、この廃石膏ボード粉の重量に対して4%以下とすることを特徴とする請求項1〜4のいずれか1項に記載の造粒改良土の製造方法に係るものである。   Moreover, the paper component contained in the said waste gypsum board powder shall be 4% or less with respect to the weight of this waste gypsum board powder, The granulation improvement of any one of Claims 1-4 characterized by the above-mentioned. It relates to a method for producing soil.

また、前記セメントは、高炉セメンであることを特徴とする請求項1〜5のいずれか1項に記載の造粒改良土の製造法に係るものである。   Moreover, the said cement is blast furnace cement, It concerns on the manufacturing method of the granulation improvement soil of any one of Claims 1-5 characterized by the above-mentioned.

本発明は上述のようにしたから、路盤材、埋め戻し材、法面養生、防草材などに利用した際に、再泥化しない強度を有する優れた造粒改良土となり、しかも、土壌中へのフッ素溶出量、六価クロム溶出量を土壌環境基準値以下で管理することができ、更に、硫化水素の発生もない安全且つ安心して使用できる造粒改良土の製造方法となる。   Since the present invention is as described above, when used for roadbed materials, backfill materials, slope curing, herbicide materials, etc., it becomes an excellent granulated improved soil having strength that does not re-mud, and in the soil This makes it possible to control the amount of elution of fluorine and hexavalent chromium to below the soil environmental standard value, and to produce a granulated improved soil that can be used safely and safely without generation of hydrogen sulfide.

また、従来、管理型最終処分場に廃棄していた建設汚泥や廃石膏ボードを再資源化することで、産業廃棄物の排出量を低減し、最終処分場の負荷を軽減することができ、最終処分場の残余年数の延命化につながり、更に、上述したように路盤材や埋め戻し材として利用することができるので、従来、これに使用するために山砂を使用していたが、この山砂を採取することによる自然環境破壊の防止にも貢献することとなる環境にやさしい画期的な造粒改良土の製造方法となる。   In addition, by reusing construction sludge and waste gypsum board that were previously disposed of in a managed final disposal site, the amount of industrial waste discharged can be reduced, and the load on the final disposal site can be reduced. This leads to the prolongation of the remaining years of the final disposal site, and furthermore, as mentioned above, it can be used as a roadbed material and backfill material, so conventionally, mountain sand has been used for this purpose. It will be an environmentally friendly and innovative method for producing improved granulated soil that will contribute to the prevention of destruction of the natural environment by collecting mountain sand.

また、請求項2,3記載の発明においては、建設汚泥の含水率を40%以下に管理することで調湿材である廃石膏ボードの混入量を所定量以下、具体的には、建設汚泥の重量比で30%〜40%にすることができるので、造粒改良土として土壌に埋め戻した際も、フッ素溶出量が土壌環境基準値以下に抑えられ、土壌汚染の心配がない安全な造粒改良土の製造方法となる。   Further, in the inventions of claims 2 and 3, by controlling the moisture content of the construction sludge to 40% or less, the mixing amount of the waste gypsum board as a humidity control material is a predetermined amount or less, specifically, the construction sludge Since it can be 30% to 40% by weight ratio, even when backfilled into the soil as granulated improved soil, the amount of fluorine elution is kept below the soil environmental standard value, and there is no concern about soil contamination. It becomes the manufacturing method of granulation improvement soil.

また、請求項4記載の発明においては、六価クロムの溶出量が土壌環境基準値以下に抑えられるので土壌汚染の心配がなく、しかも、建設資材としての強度は十分な強度を有し再泥化することもない安全性、実用性に優れた造粒改良土の製造方法となる。   Further, in the invention according to claim 4, since the elution amount of hexavalent chromium is suppressed to a soil environmental standard value or less, there is no concern about soil contamination, and the strength as a construction material has sufficient strength. It becomes a method for producing a granulated improved soil that is excellent in safety and practicality.

また、請求項5記載の発明においては、硫化水素の発生の心配がない安全性に優れた造粒改良土の製造方法となる。   In the invention according to claim 5, it is a method for producing a granulated improved soil excellent in safety without worrying about generation of hydrogen sulfide.

また、請求項6記載の発明においては、例えば、ポルトランドセメントに比して六価クロムの含有量が少ないので安全性に優れ、しかも、長期強度においても優れた性能を発揮する実用性に優れた造粒改良土の製造方法となる。   Moreover, in the invention of claim 6, for example, since the content of hexavalent chromium is less than that of Portland cement, it is excellent in safety, and excellent in practicality that exhibits excellent performance even in long-term strength. It becomes the manufacturing method of granulation improvement soil.

本実施例の土質試験結果一覧表である。It is a soil test result list of a present Example.

好適と考える本発明の実施形態を、本発明の作用を示して簡単に説明する。   The preferred embodiment of the present invention will be briefly described by showing the operation of the present invention.

本発明は、建設汚泥に調湿材として混入する廃石膏ボードを粉砕処理して得た石膏ボード粉の割合を50%以下にしたので、造粒改良土として土壌に埋め戻した際に、土壌中に溶出するフッ素の量を土壌環境基準値以下(具体的には0.8mg/l以下)とすることができ、土壌汚染の心配がない安全な造粒改良土の製造方法となる。   In the present invention, the proportion of gypsum board powder obtained by pulverizing waste gypsum board mixed as a humidity control material in construction sludge was reduced to 50% or less. The amount of fluorine eluting into the soil can be reduced to a soil environment standard value or less (specifically 0.8 mg / l or less), and this is a safe method for producing improved granulated soil without worrying about soil contamination.

また、この調湿材を混入することで、固化材として混入するセメントの混入量を少量(具体的には、建設汚泥に石膏粉を混入した一次混合物の重量に対して20%以下)にしても再泥化することがない強度を有する造粒改良土とすることができるので、製造コストの低減が図れ、更に、セメントが含有する六価クロムの土壌への溶出量も土壌環境基準値以下(具体的には0.05mg/l以下)とすることができるので、経済性、安全性に優れた造粒改良土の製造方法となる。   In addition, by mixing this humidity conditioning material, the amount of cement mixed as a solidifying material is reduced to a small amount (specifically, 20% or less based on the weight of the primary mixture in which gypsum powder is mixed into construction sludge). Since it can be made into a granulated improved soil that does not re-sludge, the manufacturing cost can be reduced, and the amount of hexavalent chromium contained in the cement is less than the soil environmental standard value. (Specifically, 0.05 mg / l or less), which is a method for producing a granulated improved soil excellent in economy and safety.

また、本発明は、従来、産業廃棄物として排出していた建設汚泥及び廃石膏ボードを建設資材として再資源化するので、残余能力が逼迫している産業廃棄物の最終処理場の延命化に貢献することができ、更に、この造粒改良土を建設資材、例えば、路盤材や埋め戻し材などに利用することで、従来、山を削って得ていた山砂を使用しなくても済むので、自然破壊を抑制し、環境にやさしい循環型社会を形成するうえで重要な役割を担う画期的な造粒改良土の製造方法となる。   In addition, since the present invention recycles construction sludge and waste gypsum board, which have been discharged as industrial waste, as construction materials, it is possible to extend the life of the final treatment plant for industrial waste that has a short remaining capacity. Furthermore, by using this granulated improved soil for construction materials such as roadbed materials and backfill materials, it is not necessary to use the mountain sand that has been obtained by shaving the mountains. Therefore, it becomes an innovative method for producing improved granulated soil that plays an important role in preventing natural destruction and forming an environmentally friendly recycling society.

また、例えば、建設汚泥に石膏ボード粉を混入する前に、脱水処理を行い含水率40%以下の脱水ケーキにしてから石膏ボード粉を混入することで、この石膏ボード粉の混入比率を低減でき、よりフッ素の溶出量を低減でき、より一層安全性の高い、環境にやさしい造粒改良土の製造方法となる。   Also, for example, before mixing gypsum board powder into construction sludge, dehydration can be performed to make a dehydrated cake with a moisture content of 40% or less, and then gypsum board powder is mixed, thereby reducing the mixing ratio of this gypsum board powder. Thus, the amount of fluorine elution can be reduced, and a safer and more environmentally friendly method for producing granulated improved soil is obtained.

本発明の具体的な実施例について説明する。   Specific examples of the present invention will be described.

本実施例は、建設現場や道路工事現場などから排出される建設汚泥を造粒改良土に再資源化する造粒改良土の製造方法であって、前記建設汚泥に廃石膏ボードを粉砕処理して得た廃石膏ボード粉をこの建設汚泥の重量に対して50%以下の割合で混入して一次混合物を得、この一次混合物にセメントをこの一次混合物の重量に対して20%以下の割合で混入して二次混合物を得、この二次混合物を混練りし乾燥して固化する造粒改良土の製造方法である。   The present embodiment is a method for producing granulated improved soil that recycles construction sludge discharged from construction sites, road construction sites, etc. into granulated improved soil, and pulverizes waste gypsum board into the construction sludge. The waste gypsum board powder obtained in this way was mixed at a ratio of 50% or less with respect to the weight of the construction sludge to obtain a primary mixture, and cement was added to the primary mixture at a ratio of 20% or less with respect to the weight of the primary mixture. This is a method for producing a granulated improved soil in which a secondary mixture is obtained by mixing, the secondary mixture is kneaded, dried and solidified.

この建設現場や道路工事現場などから排出される建設汚泥(無機汚泥)は、泥水と脱水汚泥の二種類の建設汚泥に大別でき、脱水汚泥、即ち、含水率の低い汚泥の場合は、そのまま使用できるが、殆どの建設汚泥は前者のほうであり、この泥水状態の建設汚泥の場合は含水率が高いので、このままでは調湿材、固化材を混入する割合を多くしないときちんと固化せず所定の強度に至らず造粒改良土としての性能が発揮されない(再泥化してしまう)ものとなってしまう。   Construction sludge (inorganic sludge) discharged from construction sites and road construction sites can be broadly divided into two types of construction sludge: mud and dewatered sludge. In the case of dewatered sludge, that is, sludge with a low water content, Although most of the construction sludge is the former, the moisture content of this construction sludge is high, so it will not solidify properly if the ratio of humidity control material and solidification material is not increased. The predetermined strength is not reached, and the performance as the granulated improved soil is not exhibited (re-mud).

従って、泥水などの含水率の高い建設汚泥の場合は、凝集・沈殿、pH調整を行った後、例えば赤外線水分計などの含水率測定器を用いて脱水状態を確認しながら(含水率を確認しながら)脱水処理(例えば、フィルタープレス脱水処理)を行い、所定の含水率に調整した脱水ケーキにしている。   Therefore, in the case of construction sludge with a high water content such as mud, after coagulation / sedimentation and pH adjustment, check the dehydration state using a water content measuring device such as an infrared moisture meter (confirm the water content). While performing dehydration treatment (for example, filter press dehydration treatment) to obtain a dehydrated cake adjusted to a predetermined moisture content.

この脱水処理は、時間を長くすればそれだけ建設汚泥に含まれる水分を搾り出すことができ含水率の低い脱水ケーキを得ることができるので、後述する調湿材や固化材を混入する割合を少なくすることができるが、その反面、処理時間を長くすることで、処理能力(作業効率)を低下させ、更に費用も多く掛かってしまう問題が生じてしまう。   This dehydration process can squeeze out the moisture contained in the construction sludge as long as the time is extended, so that a dehydrated cake with a low moisture content can be obtained. However, on the other hand, by prolonging the processing time, there arises a problem that the processing capacity (working efficiency) is lowered and the cost is increased.

そこで、本実施例では、この脱水処理の時間を最適化し、得られる脱水ケーキの含水率が30%〜40%になるように調整している。   Therefore, in this example, the time for this dehydration treatment is optimized, and the moisture content of the obtained dehydrated cake is adjusted to be 30% to 40%.

この含水率30%〜40%に調整した脱水ケーキに、調湿材をこの脱水ケーキの重量に対して50%以下の割合で混入して一次混合物を得る作業を行う。   The dehydrated cake adjusted to a moisture content of 30% to 40% is mixed with a humidity adjusting material at a ratio of 50% or less with respect to the weight of the dehydrated cake to obtain a primary mixture.

この調湿材には、建物の新築現場や解体現場などの廃材として大量に発生している廃石膏ボード粉を採用しており、具体的には、この廃石膏ボード粉は、廃石膏ボードを破砕機で破砕処理し、破砕した廃石膏ボードを分離装置に掛けて、この廃石膏ボードと紙成分とを分離し、紙成分を分離した廃石膏ボードを更に粒度選別装置で処理して粒状及び粉状の廃石膏ボード粉にしている。   This humidity control material uses waste gypsum board powder that is generated in large quantities as waste material at new construction sites and demolition sites. Specifically, this waste gypsum board powder is made of waste gypsum board. The waste gypsum board that has been crushed by the crushing machine is put on a separation device, the waste gypsum board and the paper component are separated, and the waste gypsum board from which the paper component has been separated is further processed by a particle size sorting device. Powdered waste gypsum board powder.

また、この廃石膏ボード粉は、上述したように分離装置で殆どの紙成分を排除しているが、100%の紙成分を排除することはできず、この紙成分(有機成分)を含んだ造粒改良土を土壌に埋め戻した際には、この紙成分が地下水に生息する硫酸塩還元細菌の代謝を受けて硫化水素を発生させる要因となる。従って、廃石膏ボード粉に含まれる紙成分が多いと、造粒改良土に含まれる紙成分(有機成分)も多くなり、土壌に埋め戻した際に硫化水素を発生する危険性が高くなり、環境問題が生じたり、人体への影響も懸念される。   In addition, as described above, the waste gypsum board powder excludes most of the paper components by the separation device, but 100% of the paper components cannot be excluded, and this paper component (organic component) is included. When the granulated improved soil is backfilled in the soil, this paper component becomes a factor that generates hydrogen sulfide due to the metabolism of sulfate-reducing bacteria inhabiting the groundwater. Therefore, if there are many paper components contained in waste gypsum board powder, there will be more paper components (organic components) contained in the granulated improved soil, and there is a higher risk of generating hydrogen sulfide when backfilled in the soil. There are concerns about environmental problems and effects on the human body.

一般的には、この廃石膏ボード粉に含まれる紙成分が、廃石膏ボード粉の重量に対して5%以上含んでいると、硫化水素を発生する危険性があると言われているが、本実施例は、この廃石膏ボード粉に含まれる紙成分、即ち、有機成分を前述した分離装置によって排除し、この廃石膏ボード粉の重量に対して4%以下となるように処理しているので、本実施例における製造方法で製造した造粒改良土を土壌に埋め戻しても、硫化水素を発生することはなく、安心して使用することができる。   Generally, if the paper component contained in this waste gypsum board powder contains 5% or more of the weight of the waste gypsum board powder, it is said that there is a risk of generating hydrogen sulfide. In this example, the paper component, that is, the organic component contained in the waste gypsum board powder is removed by the above-described separation device, and the waste gypsum board powder is processed so as to be 4% or less based on the weight of the waste gypsum board powder. Therefore, even if the granulated improved soil produced by the production method in the present embodiment is backfilled in the soil, hydrogen sulfide is not generated and can be used with confidence.

また、廃石膏ボード粉を脱水ケーキに混入する量は、上述したように建設汚泥の重量で決定するが、その割合は建設汚泥に含まれる水分の量によって変わってくる。   Further, the amount of waste gypsum board powder mixed in the dewatered cake is determined by the weight of the construction sludge as described above, but the ratio varies depending on the amount of water contained in the construction sludge.

即ち、例えば、同じ重量の含水率40%の建設汚泥と含水率50%の建設汚泥とに、例えば含水率40%の建設汚泥に対して適量である割合で廃石膏ボード粉を混入した場合、得られた一次混合物は、含水率40%の建設汚泥は所望の含水率に調整された一次混合物となるが、含水率50%の建設汚泥は調湿材が不足し水っぽい状態の一次混合物となってしまう。従って、含水率50%の建設汚泥で得られた一次混合物は、このあと混入する固化材の量を含水率40%の建設汚泥で得られた一次混合物よりも多く混入しなければ、きちんと固化せず再泥化してしまう可能性がある。   That is, for example, when waste gypsum board powder is mixed in the same amount of construction sludge having a moisture content of 40% and construction sludge having a moisture content of 50%, for example, in a proportion appropriate to construction sludge having a moisture content of 40%. In the obtained primary mixture, construction sludge with a moisture content of 40% becomes a primary mixture adjusted to a desired moisture content, but construction sludge with a moisture content of 50% becomes a primary mixture that is damp and lacks humidity control materials. End up. Therefore, the primary mixture obtained from construction sludge with a moisture content of 50% will solidify properly unless the amount of solidified material to be mixed in is greater than the primary mixture obtained with construction sludge with a moisture content of 40%. There is a possibility of re-mudging.

従って、一次混合物の含水率が一定でないと、固化材と混入する割合をその都度調整しなければならないので、手間が架かり、作業効率が低下してしまうし、コストも掛かってしまう。   Therefore, if the water content of the primary mixture is not constant, the ratio of mixing with the solidified material must be adjusted each time, which takes time, reduces work efficiency, and increases costs.

そこで、本実施例では、建設汚泥の含水率が少ない場合は廃石膏ボード粉を混入する割合を少なくし、含水率が多い場合は廃石膏ボード粉を混入する割合を多くし、一次混合物の土質状態を略一定となるように調整し、この後混入する固化材の量を一定量に設定して処理を行えるようにしている。   Therefore, in this example, when the moisture content of the construction sludge is low, the proportion of waste gypsum board powder mixed is reduced, and when the moisture content is high, the proportion of waste gypsum board powder mixed is increased, and the soil quality of the primary mixture is increased. The state is adjusted to be substantially constant, and the amount of solidified material mixed thereafter is set to a constant amount so that the processing can be performed.

また、この廃石膏ボード粉にはフッ素が含まれており、この廃石膏ボード粉を混入する割合が増加すると、造粒改良土中に含まれるフッ素の量も増加し、例えば、この造粒改良土を土壌に埋め戻した際に、造粒改良土からのフッ素溶出量が増え、土壌環境基準値以上(0.8mg/l以上)のフッ素が土壌中に溶出してしまう可能性がある。   In addition, this waste gypsum board powder contains fluorine. If the proportion of this waste gypsum board powder increases, the amount of fluorine contained in the granulation improved soil also increases. For example, this granulation improvement When the soil is backfilled in the soil, the amount of fluorine eluted from the granulated improved soil increases, and fluorine above the soil environmental standard value (0.8 mg / l or more) may be eluted in the soil.

従って、上述したように、調湿材としての廃石膏ボード粉を混入する割合が少ないと、建設汚泥中の含水率が高く固化し難くいため、固化材のセメントを混入する割合を多くしなければならず、その結果、製造コストが増大するという問題が生じ、また、廃石膏ボード粉を混入する割合が多いと、フッ素溶出量が土壌環境基準値以上になり、土壌汚染を引き起こしてしまうという問題が生じる。   Therefore, as described above, if the proportion of waste gypsum board powder used as a humidity control material is small, the moisture content in the construction sludge is high and difficult to solidify. As a result, there is a problem that the manufacturing cost increases, and if there is a large proportion of waste gypsum board powder mixed in, the amount of fluorine elution will exceed the soil environmental standard value and cause soil contamination. Occurs.

そこで、本実施例では、脱水処理後の脱水ケーキの含水率を30%〜40%の範囲になるように管理し、更に、廃石膏ボード粉を混入する割合を、この脱水ケーキの含水率に合わせて適宜最適な割合で混入することで、上述の不具合を解消し、低コストで、且つ環境にやさしい造粒改良土の製造方法としている。   Therefore, in this example, the moisture content of the dehydrated cake after the dehydration treatment is managed to be in the range of 30% to 40%, and the ratio of mixing the waste gypsum board powder is further included in the moisture content of the dehydrated cake. In addition, the above-mentioned problems are solved by mixing at an optimal ratio as appropriate, and the manufacturing method of the granulated improved soil is low-cost and environmentally friendly.

また、本実施例では、廃石膏ボード粉を混入する割合は、土壌汚染が生じないこと、即ち、土壌管理基準値以上のフッ素の溶出が無いことを最優先にした条件設定を行った。そのため、廃石膏ボード粉の混入割合に対するフッ素の溶出試験を行い、最適な廃石膏ボード粉の混入割合を設定することとした。   Moreover, in this example, the ratio of mixing the waste gypsum board powder was set such that the highest priority was given to no soil contamination, that is, no elution of fluorine above the soil management reference value. Therefore, the elution test of fluorine with respect to the mixing ratio of waste gypsum board powder was conducted, and the optimal mixing ratio of waste gypsum board powder was set.

フッ素の溶出試験の結果は、表1に示すように、混入率50%でもフッ素溶出量は土壌環境基準値以下(0.8mg/l以下)となることが確認されたが、同時に、廃石膏ボード粉を混入しない脱水ケーキのみでもフッ素溶出量が0.21mg/lあることが確認された。即ち、建設現場や道路工事現場などから排出される建設汚泥自体、既にフッ素が含有していることになる。   As shown in Table 1, the results of the elution test for fluorine confirmed that the elution amount of fluorine was below the soil environmental standard value (0.8 mg / l or less) even at a mixing rate of 50%. It was confirmed that the fluorine elution amount was 0.21 mg / l even with only the dehydrated cake not mixed with board powder. In other words, the construction sludge itself discharged from the construction site or road construction site already contains fluorine.

Figure 2011235242
Figure 2011235242

従って、試験結果では混入率50%までは土壌環境基準値以下の溶出量であることが確認されたが、建設汚泥中のフッ素含有量のバラツキや安全性を考慮し、本実施例の廃石膏ボード粉の混入率は脱水ケーキの重量に対して40%以下に設定することとした。   Therefore, although it was confirmed from the test results that the elution amount was below the soil environmental standard value up to a contamination rate of 50%, the waste gypsum of this example was considered in consideration of the variation in fluorine content in construction sludge and safety. The board powder mixing rate was set to 40% or less with respect to the weight of the dehydrated cake.

更に具体的には、脱水処理後の建設汚泥の含水率を30%〜40%となるように管理しているので、廃石膏ボード粉の混入量は、建設汚泥の含水率によってその都度決定することとし、例えば、建設汚泥の含水率が30%の場合は廃石膏ボード粉の混入率を30%に設定し、建設汚泥の含水率が40%の場合は廃石膏ボード粉の混入率を40%に設定するようにした。   More specifically, since the moisture content of the construction sludge after dehydration is controlled to be 30% to 40%, the amount of waste gypsum board powder mixed is determined each time depending on the moisture content of the construction sludge. For example, when the moisture content of construction sludge is 30%, the mixing rate of waste gypsum board powder is set to 30%, and when the moisture content of construction sludge is 40%, the mixing rate of waste gypsum board powder is set to 40%. Set to%.

このようにして、建設汚泥を脱水処理して得た含水率30%〜40%の脱水ケーキに、この脱水ケーキの重量に対して30%〜40%の割合で廃石膏ボード粉を混入し一次混合物を得て、この一次混合物に固化材としてセメントを混入して二次混合物を得ている。   In this way, waste gypsum board powder was mixed in a dehydrated cake with a water content of 30% to 40% obtained by dehydrating construction sludge in a proportion of 30% to 40% with respect to the weight of the dehydrated cake. A mixture is obtained, and cement as a solidifying material is mixed into the primary mixture to obtain a secondary mixture.

このセメントは、造粒改良土にした際、造粒改良土が水分を吸収しても再泥化しない強度まで固化させるためのものである。   This cement is for solidifying to a strength that does not cause re-mudging even when the granulated improved soil absorbs moisture when it is made into granulated improved soil.

また、この固化材に使用するセメントには、六価クロムが含まれており、この六価クロムが土壌中に大量に溶出すると土壌や地下水を汚染し、環境問題を引き起こしてしまう可能性がある。そのため、六価クロムの溶出量は、土壌環境基準値である0.05mg/l以下に抑えなければならず、この六価クロムの溶出量を抑えるためには、固化材であるセメントの混入割合をできるだけ少量に抑えることが重要となる。   In addition, the cement used in this solidifying material contains hexavalent chromium, and if this hexavalent chromium is eluted in large amounts in the soil, it may contaminate the soil and groundwater, causing environmental problems. . Therefore, the elution amount of hexavalent chromium must be suppressed to a soil environment standard value of 0.05 mg / l or less, and in order to reduce the elution amount of hexavalent chromium, the mixing ratio of cement as a solidifying material It is important to keep the amount as small as possible.

また、本実施例では、このセメントに高炉セメントを採用しており、この高炉セメントは、一般的なポルトランドセメントに比べて六価クロムの含有量が少ないこと、更には、長期強度において優れた性能を発揮する特徴があるため、造粒改良土への採用は非常に好適なものである。   Also, in this example, blast furnace cement is adopted as this cement, and this blast furnace cement has less hexavalent chromium content than general Portland cement, and further has excellent performance in long-term strength. Therefore, it is very suitable for use in granulated improved soil.

本実施例では、上述した六価クロムの溶出量を考慮し、且つ、造粒改良土にした際の再泥化しないための条件として、この高炉セメントの混入割合を一次混合物の重量に対して7%以上とすることを実験から得ている。しかし、一次混合物中の含水率にはある程度のバラツキがあるので、安全率を考慮して最終的な高炉セメントの混入割合は、一次混合物の重量に対して10%とした。   In this example, considering the elution amount of hexavalent chromium described above, and as a condition for preventing re-mudging when the granulated improved soil is used, the mixing ratio of this blast furnace cement is based on the weight of the primary mixture. It is obtained from experiments that it should be 7% or more. However, since the water content in the primary mixture varies to some extent, the final blast furnace cement mixing ratio is 10% with respect to the weight of the primary mixture in consideration of the safety factor.

また、この一次混合物に対して10%の割合で高炉セメントを混入した際の六価クロムの溶出量は0.02mg/l以下であり、土壌環境基準値である0.05mg/lを十分クリアする結果を得ている。   Moreover, the elution amount of hexavalent chromium when blast furnace cement is mixed at a rate of 10% with respect to this primary mixture is 0.02 mg / l or less, sufficiently clearing the soil environment standard value of 0.05 mg / l. To get results.

このようにして得た二次混合物を混練造粒機で混練し造粒固化させ、更に、造粒固化した造粒改良土を約4週間養生して強度の向上を図っている。   The secondary mixture thus obtained is kneaded and granulated by a kneading granulator, and the granulated and improved granulated soil is cured for about 4 weeks to improve the strength.

また、本実施例では、上述に示した造粒改良土の製造方法で製造した造粒改良土の土質性状について土質試験を行い、造粒改良土として有効であることを確認している。   In this example, a soil test was conducted on the soil properties of the granulated improved soil produced by the method for producing the granulated improved soil described above, and it was confirmed that the soil was effective as the granulated improved soil.

尚、土質試験に用いた造粒改良土は、含水率30%の脱水ケーキに、この脱水ケーキの重量に対して30%の割合で廃石膏ボード粉を混入し、この一次混合物の重量に対して10%の割合で高炉セメントを混入して得られたものである。   In addition, the granulated improved soil used in the soil test was mixed with waste gypsum board powder in a proportion of 30% of the weight of the dehydrated cake in a dehydrated cake with a moisture content of 30%, and the weight of this primary mixture It was obtained by mixing blast furnace cement at a rate of 10%.

以下に、土質試験の結果を示す(試験結果一覧は図1参照)。   The results of soil tests are shown below (see Fig. 1 for a list of test results).

土粒子の密度試験においては、3つの容器に夫々試料を入れ、異なるピクノメーターで測定した結果、土粒子の密度は、2.654g/cm〜2.669g/cmであり、平均密度は、2.663g/cmであった。 In the soil particle density test, the samples were placed in three containers and measured with different pycnometers. As a result, the soil particle density was 2.654 g / cm 3 to 2.669 g / cm 3 , and the average density was It was 2.663 g / cm 3 .

また、土の含水比試験においては、3つの容器に夫々試料を入れ、炉乾燥前後の質量差から含水比を算出した結果、21.7%〜22.8%、平均含水比は、22.4%であり、自然含水比はそれほど高い数値ではない結果が得られた。   In the soil moisture content test, samples were placed in three containers, and the moisture content was calculated from the mass difference before and after oven drying. As a result, the average moisture content was 21.7% to 22.8%. The result was 4%, and the natural moisture content was not so high.

また、土の粒度試験においては、細粒分が多く、石分を除いた75mm未満の土質材料に対して砂分(粒径0.075mm〜2mm)が27%、シルト分(粒径0.005mm〜0.075mm)と粘土分(粒径0.005mm未満)とを合わせたものが73%であり、最大粒径は2mmであった。   In the soil particle size test, the sand content (particle size: 0.075 mm to 2 mm) is 27% and the silt content (particle size: 0. 005 mm to 0.075 mm) and clay (particle size less than 0.005 mm) were 73%, and the maximum particle size was 2 mm.

また、コンシステンシー(土の液性限界・塑性限界試験)においては、何れの結果もNP(Non Plastic)であり、水分を加えても再泥化しない結果が得られた。   Further, in the consistency (soil liquid limit / plastic limit test), all results were NP (Non Plastic), and a result of not re-mudging even when moisture was added was obtained.

また、突固めによる土の締固め試験(締固め特性)においては、試験方法は、B−c、即ち、突固め方法の種類はB(ランマー質量2.5kg、モールド内径15cm、突固め層数3層、突固め回数55回/層、許容最大粒径37.5mm)、試料の準備方法及び使用方法はc(湿潤法で非繰返し法)を採用した。その結果、最大乾燥密度は、1.095g/cmであり、最適含水比は、46.9%であった。 Moreover, in the soil compaction test (consolidation characteristics) by tamping, the test method is Bc, that is, the type of tamping method is B (rammer mass 2.5 kg, mold inner diameter 15 cm, number of tamped layers). 3 layers, tamping frequency 55 times / layer, allowable maximum particle size 37.5 mm), c (wet method, non-repetitive method) was used as a sample preparation method and usage method. As a result, the maximum dry density was 1.095 g / cm 3 and the optimum water content ratio was 46.9%.

また、CBR試験においては、試験方法は締固めた土で行い、膨張比は0.38%、貫入試験後の含水比は54.0%、平均CBR値は37.2%であり、このようにCBR試験においては高い数値が得られ、基礎地盤支持力が十分にあり、軟弱地盤対策にも十分使用することができる結果が得られた。   Moreover, in the CBR test, the test method is performed with compacted soil, the expansion ratio is 0.38%, the moisture content after the penetration test is 54.0%, and the average CBR value is 37.2%. In addition, in the CBR test, a high numerical value was obtained, the foundation ground support force was sufficient, and a result that could be used sufficiently for soft ground countermeasures was obtained.

また、土懸濁液のpH試験においては、pH値10.0であり、ややアルカリ性を示す結果となった。これは、固化材にセメントを採用しているためと考える。   Further, in the pH test of the soil suspension, the pH value was 10.0, which was slightly alkaline. This is probably because cement is used as the solidifying material.

また、コーン指数試験結果においては、貫入不能であり、トラフィカビリティーが良好で、盛土作業に際して施工性が良い結果が得られた。   In addition, in the result of the cone index test, the penetration was impossible, the trafficability was good, and the workability was good in the embankment work.

このように、上記の土質試験の結果から、本実施例に示す製造方法で製造した造粒改良土は、細粒土分の多い土質であるが、固化材である高炉セメントによって粘着力も期待できる性状を有し、更に、締め固めた後は十分な強度も得られるので、建設資材用造粒改良土として問題なく使用することができることが確認できた。   Thus, from the result of the above soil test, the granulated improved soil produced by the production method shown in the present example is a soil with a lot of fine-grained soil, but adhesive strength can also be expected by the blast furnace cement which is a solidifying material. Since it has properties and sufficient strength can be obtained after compaction, it was confirmed that it could be used without problems as a granulated improved soil for construction materials.

即ち、土木構造物などの裏込材、埋め戻し材として使用する場合は、一般的に圧縮性(変形)が小さい、所要の強度が得られる施工性・埋設物周辺の充填性・安定性などの品質が求められるが、本実施例で示す造粒改良土の製造方法で製造した造粒改良土は、粒度が細かく、構造物の隙間に十分充填でき、圧縮性も小さく、支持力も問題なく、しかも、埋設物周辺への悪影響を与えるような化学物質も含んでおらず、更に、細粒分が多く構造物に損傷を与えることがなく施工性も容易な造粒改良土となる。   In other words, when used as a backing material or backfill material for civil engineering structures, etc., the compressibility (deformation) is generally small, the workability to obtain the required strength, the filling property and stability around the buried object, etc. However, the improved granulated soil produced by the method for producing improved granulated soil shown in this example has a fine particle size, can be sufficiently filled in the gaps in the structure, has low compressibility, and has no problem with its bearing capacity. Moreover, it does not contain any chemical substances that have an adverse effect on the surroundings of the buried object, and further, it is a granulated improved soil that has a large amount of fine particles and does not damage the structure and is easy to work.

尚、本発明は、本実施例に限られるものではなく、各構成要件の具体的構成は適宜設計し得るものである。   The present invention is not limited to the present embodiment, and the specific configuration of each component can be designed as appropriate.

Claims (6)

建設現場や道路工事現場などから排出される建設汚泥を造粒改良土に再資源化する造粒改良土の製造方法であって、前記建設汚泥に廃石膏ボードを粉砕処理して得た廃石膏ボード粉をこの建設汚泥の重量に対して50%以下の割合で混入して一次混合物を得、この一次混合物にセメントをこの一次混合物の重量に対して20%以下の割合で混入して二次混合物を得、この二次混合物を混練りし乾燥して固化することを特徴とする造粒改良土の製造方法。   A method for producing granulated improved soil that recycles construction sludge discharged from construction sites, road construction sites, etc. into granulated improved soil, and waste gypsum obtained by pulverizing waste gypsum board into the construction sludge Board powder is mixed at a ratio of 50% or less with respect to the weight of the construction sludge to obtain a primary mixture, and cement is mixed with the primary mixture at a ratio of 20% or less with respect to the weight of the primary mixture to obtain a secondary mixture. A method for producing a granulated improved soil, characterized in that a mixture is obtained, the secondary mixture is kneaded, dried and solidified. 前記建設汚泥は、脱水処理して含水率40%以下にした脱水ケーキであることを特徴とする請求項1記載の造粒改良土の製造方法。   The method for producing granulated improved soil according to claim 1, wherein the construction sludge is a dehydrated cake that has been dehydrated to a water content of 40% or less. 前記廃石膏ボード粉の混入比は、前記建設汚泥の重量に対して30%〜40%とすることを特徴とする請求項1,2のいずれか1項に記載の造粒改良土の製造方法。   The method for producing granulated improved soil according to any one of claims 1 and 2, wherein the mixing ratio of the waste gypsum board powder is 30% to 40% with respect to the weight of the construction sludge. . 前記セメントの混入比は、前記一次混合物の重量に対して7%〜15%とすることを特徴とする請求項1〜3のいずれか1項に記載の造粒改良土の製造方法。   The method for producing granulated improved soil according to any one of claims 1 to 3, wherein a mixing ratio of the cement is 7% to 15% with respect to a weight of the primary mixture. 前記廃石膏ボード粉に含まれる紙成分は、この廃石膏ボード粉の重量に対して4%以下とすることを特徴とする請求項1〜4のいずれか1項に記載の造粒改良土の製造方法。   The paper component contained in the waste gypsum board powder is 4% or less based on the weight of the waste gypsum board powder. The granulated improved soil according to any one of claims 1 to 4, Production method. 前記セメントは、高炉セメンであることを特徴とする請求項1〜5のいずれか1項に記載の造粒改良土の製造法。   The method for producing granulated improved soil according to any one of claims 1 to 5, wherein the cement is blast furnace cement.
JP2010109511A 2010-05-11 2010-05-11 Method for producing granulated improved soil Active JP5289380B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010109511A JP5289380B2 (en) 2010-05-11 2010-05-11 Method for producing granulated improved soil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010109511A JP5289380B2 (en) 2010-05-11 2010-05-11 Method for producing granulated improved soil

Publications (2)

Publication Number Publication Date
JP2011235242A true JP2011235242A (en) 2011-11-24
JP5289380B2 JP5289380B2 (en) 2013-09-11

Family

ID=45323813

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010109511A Active JP5289380B2 (en) 2010-05-11 2010-05-11 Method for producing granulated improved soil

Country Status (1)

Country Link
JP (1) JP5289380B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011168703A (en) * 2010-02-19 2011-09-01 Manabu Iwamatsu Soil hardener for light-weight banking
JP2014176793A (en) * 2013-03-14 2014-09-25 Keiwa Kogyo Kk Method for producing reusable granulated material from gypsum board waste material

Citations (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5594692A (en) * 1979-01-09 1980-07-18 Mitsui Constr Co Ltd Method of disposing of water-containing soil
JPS5698280A (en) * 1979-12-29 1981-08-07 Chiyoda Chem Eng & Constr Co Ltd Method for deodorizing and enhancing strength of hydrous soft soil having bad smell
JPS5815583A (en) * 1981-07-20 1983-01-28 Chiyoda Chem Eng & Constr Co Ltd Method of increasing strength of water-containing soft soil using fly ash modified with sulfuric acid
JPS6186992A (en) * 1984-10-04 1986-05-02 Masao Sato Treatment of sludge water
JPS61187731A (en) * 1985-02-14 1986-08-21 千代田化工建設株式会社 Artificial fish bank
JPH08229531A (en) * 1995-02-28 1996-09-10 Yoshizawa Sekkai Kogyo Kk Method for caking industrial waste having high content of water
JP2000061496A (en) * 1998-08-21 2000-02-29 Eko System:Kk Sludge solidifying treatment
JP2001115485A (en) * 1999-10-14 2001-04-24 Norio Moriya Treatment method and treatment device for construction soil
JP2003062597A (en) * 2001-08-23 2003-03-04 Kochi Recycle Center:Kk Method for recycling sludge of construction work
JP2003126894A (en) * 2001-10-25 2003-05-07 Mitsubishi Heavy Ind Ltd Method and apparatus for treating generated earth and method for producing granular material
JP2003313554A (en) * 2002-04-25 2003-11-06 Yagi Unso:Kk Method for treating mud by utilizing waste gypsum board
JP2004067399A (en) * 2002-08-01 2004-03-04 Kochi Recycle Center:Kk Method of producing regenerated sand from construction sludge
JP2004244625A (en) * 2003-01-24 2004-09-02 Nippon Shokubai Co Ltd Agent for treating wet soil and method for granulating wet soil
JP2005270783A (en) * 2004-03-24 2005-10-06 Japan Science & Technology Agency Sludge treatment method using gypsum waste
JP2006225475A (en) * 2005-02-16 2006-08-31 Komurisu:Kk Solidifier and method for improving solidification of soil by using the solidifier
JP2007161895A (en) * 2005-12-14 2007-06-28 Masahito Mori Method for recycling waste plasterboard, soil-improving agent using waste plasterboard and improved soil
JP2008036532A (en) * 2006-08-07 2008-02-21 Ohtsubo Saiseki:Kk The effective use method for construction sludge
JP2008155069A (en) * 2006-11-27 2008-07-10 Sanyu:Kk Method for manufacturing earth and sand alternative material using organic sludge as main raw material
JP2009185220A (en) * 2008-02-08 2009-08-20 Daiei Kogyo:Kk Soil improvement solidifying material
JP2010024771A (en) * 2008-07-23 2010-02-04 Yamatakagumi:Kk Manufacturing method of lightweight base material for civil engineering work which comprises granulated object
JP2010241979A (en) * 2009-04-07 2010-10-28 Masahito Mori Improved soil and method of manufacturing improved soil

Patent Citations (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5594692A (en) * 1979-01-09 1980-07-18 Mitsui Constr Co Ltd Method of disposing of water-containing soil
JPS5698280A (en) * 1979-12-29 1981-08-07 Chiyoda Chem Eng & Constr Co Ltd Method for deodorizing and enhancing strength of hydrous soft soil having bad smell
JPS5815583A (en) * 1981-07-20 1983-01-28 Chiyoda Chem Eng & Constr Co Ltd Method of increasing strength of water-containing soft soil using fly ash modified with sulfuric acid
JPS6186992A (en) * 1984-10-04 1986-05-02 Masao Sato Treatment of sludge water
JPS61187731A (en) * 1985-02-14 1986-08-21 千代田化工建設株式会社 Artificial fish bank
JPH08229531A (en) * 1995-02-28 1996-09-10 Yoshizawa Sekkai Kogyo Kk Method for caking industrial waste having high content of water
JP2000061496A (en) * 1998-08-21 2000-02-29 Eko System:Kk Sludge solidifying treatment
JP2001115485A (en) * 1999-10-14 2001-04-24 Norio Moriya Treatment method and treatment device for construction soil
JP2003062597A (en) * 2001-08-23 2003-03-04 Kochi Recycle Center:Kk Method for recycling sludge of construction work
JP2003126894A (en) * 2001-10-25 2003-05-07 Mitsubishi Heavy Ind Ltd Method and apparatus for treating generated earth and method for producing granular material
JP2003313554A (en) * 2002-04-25 2003-11-06 Yagi Unso:Kk Method for treating mud by utilizing waste gypsum board
JP2004067399A (en) * 2002-08-01 2004-03-04 Kochi Recycle Center:Kk Method of producing regenerated sand from construction sludge
JP2004244625A (en) * 2003-01-24 2004-09-02 Nippon Shokubai Co Ltd Agent for treating wet soil and method for granulating wet soil
JP2005270783A (en) * 2004-03-24 2005-10-06 Japan Science & Technology Agency Sludge treatment method using gypsum waste
JP2006225475A (en) * 2005-02-16 2006-08-31 Komurisu:Kk Solidifier and method for improving solidification of soil by using the solidifier
JP2007161895A (en) * 2005-12-14 2007-06-28 Masahito Mori Method for recycling waste plasterboard, soil-improving agent using waste plasterboard and improved soil
JP2008036532A (en) * 2006-08-07 2008-02-21 Ohtsubo Saiseki:Kk The effective use method for construction sludge
JP2008155069A (en) * 2006-11-27 2008-07-10 Sanyu:Kk Method for manufacturing earth and sand alternative material using organic sludge as main raw material
JP2009185220A (en) * 2008-02-08 2009-08-20 Daiei Kogyo:Kk Soil improvement solidifying material
JP2010024771A (en) * 2008-07-23 2010-02-04 Yamatakagumi:Kk Manufacturing method of lightweight base material for civil engineering work which comprises granulated object
JP2010241979A (en) * 2009-04-07 2010-10-28 Masahito Mori Improved soil and method of manufacturing improved soil

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011168703A (en) * 2010-02-19 2011-09-01 Manabu Iwamatsu Soil hardener for light-weight banking
JP2014176793A (en) * 2013-03-14 2014-09-25 Keiwa Kogyo Kk Method for producing reusable granulated material from gypsum board waste material

Also Published As

Publication number Publication date
JP5289380B2 (en) 2013-09-11

Similar Documents

Publication Publication Date Title
Amrani et al. Phosphogypsum recycling: New horizons for a more sustainable road material application
Wu et al. Utilization of solid wastes/byproducts from paper mills in Controlled Low Strength Material (CLSM)
KR100921334B1 (en) Environment-conscious embankment material using high-volume industrial waste and manufacturing method thereby
Wang et al. Recycling fresh concrete waste: A review
JP6184149B2 (en) Fired product
Tempest et al. Characterization and Demonstration of Reuse Applications ofSewage Sludge Ash
Zmemla et al. A phosphogypsum‐based road material with enhanced mechanical properties for sustainable environmental remediation
Disfani et al. Geotechnical characteristics of stabilised aged biosolids
JP4846876B1 (en) Manufacturing method of materials made from incinerated ash
CN105417978A (en) Cement additive for curing organic waste and application of cement additive
JP4999967B2 (en) Backfill recycled fluidized material and method for producing the same
KR100773991B1 (en) Solidification method of dredged soils
WO2014024828A1 (en) Construction filler
JP5289380B2 (en) Method for producing granulated improved soil
JP5533690B2 (en) Granular materials for civil engineering work
Moses et al. The impact of compactive effort on the long term hydraulic conductivity of compacted foundry sand treated with bagasse ash and permeated with municipal solid waste landfill leachate
KR20060136325A (en) Solidification method of dredged soils
JP2014218860A (en) Soil improvement method using sludge powder
JP6633885B2 (en) Manufacturing method of earthwork material
JP2009028639A (en) Sludge treatment method
JP5186610B1 (en) Fired product
JP2005169379A (en) Pelletizer, producing method of ground material using the pelletizer, ground material obtained by the producing method and recycling method of the ground material
SATO et al. Applicability of sewage sludge ash (SSA) for paving materials: A study on using SSA as filler for asphalt mixture and base course material
JP6286816B2 (en) Manufacturing method for artificial ground block
KR101252124B1 (en) Package road with cement zero binder having a function of water permeability using paper mill ludge and coarsening ratio and thereof packaging method

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120420

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120514

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120712

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130110

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130121

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130520

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130604

R150 Certificate of patent or registration of utility model

Ref document number: 5289380

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250