JP2008153114A - Solid polymer electrolyte for fuel cell, manufacturing method of solid polymer electrolyte for fuel cell, and fuel cell - Google Patents

Solid polymer electrolyte for fuel cell, manufacturing method of solid polymer electrolyte for fuel cell, and fuel cell Download PDF

Info

Publication number
JP2008153114A
JP2008153114A JP2006341226A JP2006341226A JP2008153114A JP 2008153114 A JP2008153114 A JP 2008153114A JP 2006341226 A JP2006341226 A JP 2006341226A JP 2006341226 A JP2006341226 A JP 2006341226A JP 2008153114 A JP2008153114 A JP 2008153114A
Authority
JP
Japan
Prior art keywords
fuel cell
basic compound
electrolyte
polymer electrolyte
polymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006341226A
Other languages
Japanese (ja)
Other versions
JP5264070B2 (en
Inventor
Manabu Takesawa
学 武沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Samsung SDI Co Ltd
Original Assignee
Samsung SDI Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Samsung SDI Co Ltd filed Critical Samsung SDI Co Ltd
Priority to JP2006341226A priority Critical patent/JP5264070B2/en
Priority to KR1020070052914A priority patent/KR100868757B1/en
Publication of JP2008153114A publication Critical patent/JP2008153114A/en
Application granted granted Critical
Publication of JP5264070B2 publication Critical patent/JP5264070B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/102Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer
    • H01M8/1027Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer having carbon, oxygen and other atoms, e.g. sulfonated polyethersulfones [S-PES]
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/20Manufacture of shaped structures of ion-exchange resins
    • C08J5/22Films, membranes or diaphragms
    • C08J5/2206Films, membranes or diaphragms based on organic and/or inorganic macromolecular compounds
    • C08J5/2218Synthetic macromolecular compounds
    • C08J5/2256Synthetic macromolecular compounds based on macromolecular compounds obtained by reactions other than those involving carbon-to-carbon bonds, e.g. obtained by polycondensation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/102Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer
    • H01M8/103Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer having nitrogen, e.g. sulfonated polybenzimidazoles [S-PBI], polybenzimidazoles with phosphoric acid, sulfonated polyamides [S-PA] or sulfonated polyphosphazenes [S-PPh]
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2379/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen, or carbon only, not provided for in groups C08J2361/00 - C08J2377/00
    • C08J2379/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M2008/1095Fuel cells with polymeric electrolytes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Fuel Cell (AREA)
  • Inert Electrodes (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Conductive Materials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a solid polymer electrolyte for a fuel cell having high heat resistance, high proton conductivity, and capable of manufacturing at a low price, and to provide its manufacturing method and a fuel cell equipped with the electrolyte. <P>SOLUTION: The solid polymer electrolyte for the fuel cell is prepared by adding a basic compound to a fluorocarbon polymer having at least (-CF<SB>2</SB>-CF(M)CH<SB>2</SB>-CF<SB>2</SB>-) structure (wherein M is either one of CX<SB>3</SB>, CX<SB>2</SB>H, and CXH<SB>2</SB>; and X is F), and impregnating at least one kind of acid selected from the group comprising orthophosphoric acid, condensed phosphoric acid, alkyl phosphoric acid and phosphonic acid. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、燃料電池用固体高分子電解質、燃料電池用固体高分子電解質の製造方法及び燃料電池に関するものであり、特に、100℃以上の作動温度条件下において、無加湿あるいは相対湿度50%以下であってもプロトン伝導性に優れ、良好な発電性能を示す固体高分子型燃料電池に関するものである。   The present invention relates to a solid polymer electrolyte for a fuel cell, a method for producing a solid polymer electrolyte for a fuel cell, and a fuel cell, and in particular, under an operating temperature condition of 100 ° C. or higher, no humidification or a relative humidity of 50% or less. However, the present invention relates to a polymer electrolyte fuel cell having excellent proton conductivity and good power generation performance.

燃料電池用高分子電解質膜に関しては、1960年代の開発初期には、炭化水素系の高分子膜に関して多くの研究が進められたが、1968年にデュポン社(E.I.Du Pont de Nemours, Inc.)で、パーフルオロネイトスルフォニック酸からなるナフィオン膜(perfluorinated sulfonic acid;Nafion)の開発に伴って研究が本格化し、特にナフィオン膜は、現在まで定置用燃料電池及び携帯用燃料電池の電解質膜に主に適用され、開発が進んでいる。
しかし、ナフィオン等のパーフルオロスルホン酸膜は、化学的安定性が高いにもかかわらず、製造工程が複雑で非常に高価であるという欠点がある。また、パープルオロスルホン酸膜の場合、疎水性の主鎖と親水性の側鎖が相分離し、いわゆるイオンクラスター構造を形成する。プロトン輸送形態としては、このクラスター構造中に多くの水分子が取り込まれ、スルホン酸基の解離を促進すると同時に水分子の高い運動性を利用することにより、高いプロトン伝導性を発現させることがわかっている。しかしながら、100℃以上の高温条件下においては、水分子の減少によりプロトン伝導性が低下したり、膜自体が形状を保てないため、運転作動温度が70〜80℃に制限されてしまうという問題があった。
Regarding polymer electrolyte membranes for fuel cells, many researches on hydrocarbon polymer membranes were conducted in the early stages of the 1960s. In 1968, EIDu Pont de Nemours, Inc. As a result of the development of perfluorinated sulfonic acid (Nafion) membranes made of perfluoronate sulfonic acid, research has begun in earnest, and in particular, Nafion membranes have been mainly used as electrolyte membranes for stationary fuel cells and portable fuel cells. Applied and developing.
However, perfluorosulfonic acid membranes such as Nafion have the disadvantage that the manufacturing process is complicated and very expensive, despite the high chemical stability. In the case of a purple sulfonic acid membrane, a hydrophobic main chain and a hydrophilic side chain are phase-separated to form a so-called ion cluster structure. As a proton transport form, it is understood that many water molecules are taken into this cluster structure, and the dissociation of the sulfonic acid group is promoted, and at the same time, the high mobility of the water molecules is utilized to express high proton conductivity. ing. However, under a high temperature condition of 100 ° C. or higher, there is a problem that the operating temperature is limited to 70 ° C. to 80 ° C. because proton conductivity is reduced due to a decrease in water molecules and the membrane itself cannot maintain its shape. was there.

高分子電解質膜の高温条件下におけるプロトン伝導性を向上させる目的で、米国特許第5525436号明細書では、塩基性ポリマーであるポリベンズイミダゾール膜(PBI)にリン酸をドープした電解質膜が開示されている。この塩基性ポリマーとリン酸との複合体を形成させた膜は、水がない状態でも塩基性部位とリン酸によるプロトンホッピングにより、プロトン伝導性を示す。しかしながら、炭化水素系電解質膜は耐酸化性の性能は十分でなく、燃料電池として長時間、十分な発電性能を発揮するには欠点を有している。また、PBIはポリマー主鎖中にベンゼン環を有しているため結晶性が高く、分子鎖が剛直であるため分子運動性が低いという問題もある。   For the purpose of improving proton conductivity of polymer electrolyte membrane under high temperature conditions, US Pat. No. 5,525,436 discloses an electrolyte membrane in which polybenzimidazole membrane (PBI), which is a basic polymer, is doped with phosphoric acid. ing. The membrane formed with the complex of the basic polymer and phosphoric acid exhibits proton conductivity even in the absence of water due to proton hopping by the basic site and phosphoric acid. However, the hydrocarbon-based electrolyte membrane does not have sufficient oxidation resistance performance, and has a drawback in that it exhibits sufficient power generation performance for a long time as a fuel cell. Further, PBI has a problem that it has high crystallinity because it has a benzene ring in the polymer main chain and low molecular mobility because the molecular chain is rigid.

特開2001−213987号公報には、エチレン−テトラフルオロエチレン共重合体膜基材(ETFE)に電子線照射法を用いポリビニルピリジンをグラフト重合させ、これにリン酸をドープした高温プロトン伝導性電解質が開示されている。しかし、一般に電子線やγ線などの放射線グラフト反応によって、フッ素樹脂を用いて高いイオン伝導性を有する膜を作製した場合、膜は非常に脆く耐久性に問題がある。また、ポリビニルピリジンがグラフト重合されることによって、ETFEの主鎖にピリジンの重合体が側鎖として結合すると、ETFE自体の結晶性が低下し、これによりETFEの耐熱性が低下し、燃料電池の電解質に用いた場合に耐久性が低下するという問題もあった。
更に、電子線やγ線などの放射線グラフト反応を行うためには、電子線またはγ線の照射装置が必要になり、製造コストが増大するという問題もあった。
米国特許第5525436号明細書 特開2001−213987号公報
Japanese Patent Application Laid-Open No. 2001-213987 discloses a high-temperature proton conductive electrolyte in which polyvinyl pyridine is graft-polymerized on an ethylene-tetrafluoroethylene copolymer film substrate (ETFE) using an electron beam irradiation method, and doped with phosphoric acid. Is disclosed. However, in general, when a film having high ion conductivity is produced using a fluororesin by a radiation graft reaction such as an electron beam or γ-ray, the film is very brittle and has a problem in durability. In addition, when polyvinylpyridine is graft-polymerized and a pyridine polymer is bonded as a side chain to the main chain of ETFE, the crystallinity of ETFE itself is lowered, thereby reducing the heat resistance of ETFE, and the fuel cell. When used as an electrolyte, there is also a problem that durability is lowered.
Furthermore, in order to carry out a radiation graft reaction such as an electron beam or γ-ray, an electron beam or γ-ray irradiation device is required, which increases the manufacturing cost.
US Pat. No. 5,525,436 JP 2001-213987 A

本発明は、上記事情に鑑みてなされたものであって、耐熱性及びプロトン伝導性に優れた燃料電池用固体高分子電解質およびこの電解質を備えた燃料電池を提供することを目的とする。また本発明は、放射線グラフト反応を用いることなく、主鎖の高分子に対して塩基性官能基を有するモノマーを容易に付加することにより、耐熱性及びプロトン伝導性に優れた燃料電池用固体高分子電解質を製造する方法を提供することを目的とする。   The present invention has been made in view of the above circumstances, and an object thereof is to provide a solid polymer electrolyte for a fuel cell excellent in heat resistance and proton conductivity, and a fuel cell provided with the electrolyte. In addition, the present invention can easily add a monomer having a basic functional group to a polymer of the main chain without using a radiation graft reaction, so that the solid state for fuel cells having excellent heat resistance and proton conductivity can be obtained. It aims at providing the method of manufacturing a molecular electrolyte.

上記課題を解決すべく、本発明者らが鋭意研究を重ねて、有機溶媒に可溶な(−CF−CF(CF)CH−CF−)構造を含有するフッ素系ポリマーに対し、有機溶媒中にて種々の塩基性化合物を反応させ導入する研究を進めた結果、N−H基等を含んだ塩基性化合物を選択することで、容易に前記フッ素系ポリマーに塩基性化合物を付加させたポリマーを合成できることを見出した。また、合成されたポリマーは、高温(150℃)における耐熱・耐酸性を有し、該ポリマーにリン酸等をドープさせることにより高いプロトン伝導性を発現することを見出した。
すなわち本発明は以下の構成を採用した。
In order to solve the above problems, superimposed present inventors have conducted extensive studies, soluble (-CF 2 -CF (CF 3) CH 2 -CF 2 -) in an organic solvent to a fluorine-based polymer containing a structural As a result of research on introducing various basic compounds by reacting them in an organic solvent, the basic compound can be easily added to the fluorine-based polymer by selecting a basic compound containing an NH group or the like. It has been found that an added polymer can be synthesized. Further, the synthesized polymer has heat resistance and acid resistance at high temperature (150 ° C.) and has been found to exhibit high proton conductivity by doping the polymer with phosphoric acid or the like.
That is, the present invention employs the following configuration.

本発明の燃料電池用高分子電解質(以下、電解質と表記する場合がある)は、少なくとも(−CF−CF(M)CH−CF−)構造(但し、MはCX、CXH、CXHの何れかであり、XはFである)を有するフッ素系ポリマーに対して、塩基性化合物が付加されると共に、オルトリン酸、縮合リン酸、アルキルリン酸、ホスホン酸の中から選ばれる少なくとも1種類以上の酸が含浸されてなることを特徴とする。
塩基性化合物としては、NH基を有する化合物が好ましい。
また、本発明の燃料電池用高分子電解質においては、前記塩基性化合物の一部が、前記フッ素系ポリマーを架橋していることが好ましい。
また、本発明の燃料電池用高分子電解質においては、前記フッ素系ポリマーが、ビニリデンフロライド−ヘキサフルオロプロピレン共重合体、ビニリデンフロライド−ヘキサフルオロプロピレン−テトラフルオロエチレン3元共重合体のうちから選ばれる少なくとも1種であることが好ましい。
更に、本発明の燃料電池用高分子電解質においては、前記塩基性化合物が、環内窒素原子を含有する複素環式化合物であることが好ましい。
更にまた、本発明の燃料電池用高分子電解質においては、前記塩基性化合物が、イミダゾール系化合物であることが好ましい。
また、本発明の燃料電池用高分子電解質においては、前記塩基性化合物が、下記式(1)または(2)に示すイミダゾール系化合物であることが好ましい。但し、式(1)において、RはHまたはCNH(mは1〜3の整数)であり、RはHまたはC2n+1(nは1〜3の整数)である。

Figure 2008153114
更に、本発明の燃料電池用高分子電解質においては、前記塩基性化合物が付加されたフッ素系ポリマーが、下記式(3)〜(5)に示す構造を有するものであることが好ましい。但し、式(3)または(4)において、MはCX、CXH、CXHの何れかであり、XはFであり、mは1〜3の整数であり、RはHまたはC2n+1(nは1〜3の整数)である。
Figure 2008153114
The polymer electrolyte for fuel cells of the present invention (hereinafter sometimes referred to as electrolyte) has at least a (—CF 2 —CF (M) CH 2 —CF 2 —) structure (where M is CX 3 , CX 2). H, CXH 2 and X is F), a basic compound is added to the fluoropolymer, and from among orthophosphoric acid, condensed phosphoric acid, alkylphosphoric acid, and phosphonic acid It is characterized by being impregnated with at least one selected acid.
As the basic compound, a compound having an NH group is preferable.
In the polymer electrolyte for a fuel cell of the present invention, it is preferable that a part of the basic compound crosslinks the fluoropolymer.
In the polymer electrolyte for a fuel cell of the present invention, the fluorine-based polymer is selected from vinylidene fluoride-hexafluoropropylene copolymer and vinylidene fluoride-hexafluoropropylene-tetrafluoroethylene terpolymer. It is preferably at least one selected.
Furthermore, in the polymer electrolyte for a fuel cell of the present invention, the basic compound is preferably a heterocyclic compound containing an endocyclic nitrogen atom.
Furthermore, in the polymer electrolyte for fuel cells of the present invention, the basic compound is preferably an imidazole compound.
In the polymer electrolyte for fuel cells of the present invention, the basic compound is preferably an imidazole compound represented by the following formula (1) or (2). However, in the formula (1), R 1 is H or C m H m NH 2 is (m is an integer of 1 to 3), R 2 is H or C n H 2n + 1 (n is an integer of 1 to 3) is there.
Figure 2008153114
Furthermore, in the polymer electrolyte for a fuel cell of the present invention, it is preferable that the fluorine-based polymer to which the basic compound is added has a structure represented by the following formulas (3) to (5). However, in Formula (3) or (4), M is any one of CX 3 , CX 2 H, and CXH 2 , X is F, m is an integer of 1 to 3, and R 2 is H or C n H 2n + 1 (n is an integer of 1 to 3).
Figure 2008153114

次に、本発明の燃料電池用高分子電解質の製造方法は、少なくとも(−CF−CF(M)CH−CF−)構造(但し、MはCX、CXH、CXHの何れかであり、XはFである)を有するフッ素系ポリマーと塩基性化合物とを、有機溶媒に溶解して混合液とし、前記(−CF−CF(M)CH−CF−)構造と前記塩基性化合物との反応を行う工程と、前記反応後の混合液から前記有機溶媒を除去して得た析出物の熱処理を行う工程と、熱処理後の析出物に、オルトリン酸、縮合リン酸、アルキルリン酸、ホスホン酸の中から選ばれる少なくとも1種類以上の酸を含浸させる工程と、を具備してなることを特徴とする。
また、本発明の燃料電池用高分子電解質の製造方法においては、前記フッ素系ポリマーが、ビニリデンフロライド−ヘキサフルオロプロピレン共重合体、ビニリデンフロライド−ヘキサフルオロプロピレン−テトラフルオロエチレン3元共重合体のうちから選ばれる少なくとも1種であることが好ましい。
更に、本発明の燃料電池用高分子電解質の製造方法においては、前記塩基性化合物が、環内窒素原子を含有する複素環式化合物であることが好ましい。
更にまた、本発明の燃料電池用高分子電解質の製造方法においては、前記塩基性化合物が、イミダゾール系化合物であることが好ましい。
また、本発明の燃料電池用高分子電解質の製造方法においては、前記塩基性化合物が、下記式(6)または(7)に示すイミダゾール系化合物であることが好ましい。但し、式(6)において、RはHまたはCNH(mは1〜3の整数)であり、RはHまたはC2n+1(nは1〜3の整数)である。

Figure 2008153114
Next, the method for producing a polymer electrolyte for a fuel cell according to the present invention has at least a (—CF 2 —CF (M) CH 2 —CF 2 —) structure (where M is CX 3 , CX 2 H, CXH 2 ). And X is F) and a basic compound is dissolved in an organic solvent to form a mixed solution, and the above-mentioned (—CF 2 —CF (M) CH 2 —CF 2 —) A step of reacting the structure with the basic compound, a step of heat-treating the precipitate obtained by removing the organic solvent from the mixed solution after the reaction, and orthophosphoric acid, condensation on the precipitate after the heat treatment And impregnating with at least one acid selected from phosphoric acid, alkylphosphoric acid and phosphonic acid.
In the method for producing a polymer electrolyte for a fuel cell according to the present invention, the fluorine-based polymer may be a vinylidene fluoride-hexafluoropropylene copolymer, a vinylidene fluoride-hexafluoropropylene-tetrafluoroethylene terpolymer. It is preferable that it is at least 1 type chosen from these.
Furthermore, in the method for producing a polymer electrolyte for a fuel cell according to the present invention, the basic compound is preferably a heterocyclic compound containing an endocyclic nitrogen atom.
Furthermore, in the method for producing a polymer electrolyte for a fuel cell of the present invention, the basic compound is preferably an imidazole compound.
Moreover, in the manufacturing method of the polymer electrolyte for fuel cells of this invention, it is preferable that the said basic compound is an imidazole type compound shown to following formula (6) or (7). However, in the formula (6), R 1 is H or C m H m NH 2 is (m is an integer of 1 to 3), R 2 is H or C n H 2n + 1 (n is an integer of 1 to 3) is there.
Figure 2008153114

次に、本発明の燃料電池は、一対の電極と各電極の間に配置された電解質膜とを具備してなり、前記電解質膜が、先のいずれかに記載の燃料電池用高分子電解質からなることを特徴とする。
また、本発明の燃料電池においては、前記電極の一部に、先のいずれかに記載の燃料電池用高分子電解質が含有されていることが好ましい。
Next, the fuel cell of the present invention comprises a pair of electrodes and an electrolyte membrane disposed between the electrodes, and the electrolyte membrane is the polymer electrolyte for a fuel cell according to any one of the above. It is characterized by becoming.
In the fuel cell of the present invention, it is preferable that a part of the electrode contains the polymer electrolyte for a fuel cell described above.

本発明の燃料電池用高分子電解質によれば、フッ素系ポリマーに対して塩基性化合物が付加されることによって、塩基性化合物が付加した位置にリン酸等の酸がドープされやすくなり、これによりプロトン伝導性を発現させることができる。また、フッ素系ポリマーに付加される塩基性化合物が単量体であるので、フッ素系ポリマーの結晶性が低下しにくくなり、これによりフッ素系ポリマーの耐熱性が低下することがなく、作動温度が100℃〜200℃程度の燃料電池の高分子電解質として好適に用いることができる。
また、塩基性化合物の一部が、フッ素系ポリマーを架橋しているので、電解質自体の安定性が向上し、これにより、リン酸等の酸を含浸させた状態で100℃〜200℃程度の高温雰囲気に置かれた場合でも電解質が溶解するおそれがない。
また、塩基性化合物として、比較的耐熱性に優れたイミダゾール系化合物が用いられているので、塩基性化合物が付加されたフッ素系ポリマーの耐熱性が低下することがなく、作動温度が100℃〜200℃程度の燃料電池の高分子電解質として好適に用いることができる。
According to the polymer electrolyte for a fuel cell of the present invention, by adding a basic compound to the fluorine-based polymer, an acid such as phosphoric acid is easily doped at the position where the basic compound is added. Proton conductivity can be expressed. In addition, since the basic compound added to the fluorine-based polymer is a monomer, the crystallinity of the fluorine-based polymer is unlikely to decrease, thereby preventing the heat resistance of the fluorine-based polymer from decreasing and the operating temperature from being reduced. It can be suitably used as a polymer electrolyte of a fuel cell at about 100 ° C to 200 ° C.
In addition, since a part of the basic compound crosslinks the fluorine-based polymer, the stability of the electrolyte itself is improved, so that the temperature is about 100 ° C. to 200 ° C. in the state impregnated with an acid such as phosphoric acid. Even when placed in a high temperature atmosphere, there is no risk of the electrolyte dissolving.
In addition, since an imidazole compound having relatively excellent heat resistance is used as the basic compound, the heat resistance of the fluoropolymer to which the basic compound is added does not decrease, and the operating temperature is 100 ° C. to It can be suitably used as a polymer electrolyte of a fuel cell at about 200 ° C.

本発明の燃料電池用高分子電解質の製造方法によれば、特定の構造を有するフッ素系ポリマーと塩基性化合物とを有機溶媒中で反応させることにより、フッ素系ポリマーに塩基性化合物を容易に付加させることができる。また、塩基性化合物を付加させた後のフッ素系ポリマーに熱処理を行うことによって、塩基性化合物の一部が架橋するので、化学的安定性に優れた電解質を製造することができる。   According to the method for producing a polymer electrolyte for a fuel cell of the present invention, a basic compound can be easily added to a fluoropolymer by reacting a fluoropolymer having a specific structure with a basic compound in an organic solvent. Can be made. Moreover, since a part of basic compound bridge | crosslinks by heat-processing to the fluorine-type polymer after adding a basic compound, the electrolyte excellent in chemical stability can be manufactured.

本発明の燃料電池によれば、耐熱性及びプロトン伝導性に優れた上記の電解質を電解質膜として備えているので、100℃〜200℃の作動温度において、無加湿あるいは相対湿度50%以下の条件で作動させた場合であっても良好な発電性能を示すことができる。
また、電極中に電解質が含有されるので、電極内部におけるプロトン伝導度も高めることができる。
According to the fuel cell of the present invention, since the above-mentioned electrolyte excellent in heat resistance and proton conductivity is provided as an electrolyte membrane, a condition of no humidification or a relative humidity of 50% or less at an operating temperature of 100 ° C. to 200 ° C. Even when it is operated with a good power generation performance can be shown.
In addition, since the electrolyte is contained in the electrode, proton conductivity inside the electrode can be increased.

以下、本発明の燃料電池用高分子電解質及びその製造方法並びに燃料電池について詳述する。   Hereinafter, the polymer electrolyte for fuel cells of the present invention, a method for producing the same, and a fuel cell will be described in detail.

[燃料電池用高分子電解質]
本発明に係る燃料電池用高分子電解質(以下、電解質と表記する場合がある)は、特定の構造を有するフッ素系ポリマーに対し、塩基性化合物が付加されると共に、オルトリン酸、縮合リン酸、アルキルリン酸、ホスホン酸の中から選ばれる少なくとも1種類以上の酸が含浸されて構成されている。
[Polymer electrolyte for fuel cells]
The polymer electrolyte for a fuel cell according to the present invention (hereinafter sometimes referred to as an electrolyte) includes a basic compound added to a fluorine-based polymer having a specific structure, orthophosphoric acid, condensed phosphoric acid, It is constituted by impregnating at least one acid selected from alkylphosphoric acid and phosphonic acid.

(フッ素系ポリマー)
本発明に係る電解質を構成するフッ素系ポリマーは、少なくとも(−CF−CF(M)CH−CF−)構造(但し、MはCX、CXH、CXHの何れかであり、XはFである)を有するフッ素系ポリマーである。このようなフッ素系ポリマーとしては、例えば、ビニリデンフロライドとヘキサフルオロプロピレンとが結合した構造を有するポリマーを例示できる。また、電解質を製造する観点からは、フッ素系ポリマーとして、N−メチルピロリドン(NMP)、ジメチルアセトアミド(DMAc)、N,N−ジメチルホルムアミド(DMF)や酢酸エチル等の有機溶媒に溶解するものが好ましい。このようなフッ素系ポリマーとしては、例えば、ビニリデンフロライド−ヘキサフルオロプロピレン共重合体またはビニリデンフロライド−ヘキサフルオロプロピレン−テトラフルオロエチレン3元共重合体を例示できる。これらのポリマーはいずれも、前記Mが電子吸引基であるCF基となっている。そして、このCF基の存在によって、CF基が結合する炭素原子と、この炭素原子に隣接するとともに2つの水素原子が結合する炭素原子との間で電子雲の偏りが生じ、CF基が結合する炭素原子がσ−となり、水素原子が結合する炭素原子がσ+となっている。そして後述するように、水素原子が結合する炭素原子に、塩基性化合物が付加されて本発明に係る電解質が構成される。
(Fluoropolymer)
The fluorine-based polymer constituting the electrolyte according to the present invention has at least a (—CF 2 —CF (M) CH 2 —CF 2 —) structure (where M is any one of CX 3 , CX 2 H, and CXH 2 ). , X is F). An example of such a fluorine-based polymer is a polymer having a structure in which vinylidene fluoride and hexafluoropropylene are bonded. From the viewpoint of producing an electrolyte, a fluorine polymer that dissolves in an organic solvent such as N-methylpyrrolidone (NMP), dimethylacetamide (DMAc), N, N-dimethylformamide (DMF), or ethyl acetate. preferable. Examples of such a fluoropolymer include vinylidene fluoride-hexafluoropropylene copolymer or vinylidene fluoride-hexafluoropropylene-tetrafluoroethylene terpolymer. All of these polymers are CF 3 groups in which M is an electron withdrawing group. Then, the presence of the CF 3 group, the carbon atom to which a CF 3 group is attached, it occurs deviation in the electron cloud between the carbon atom bonded two hydrogen atoms as well as adjacent to the carbon atom, a CF 3 group The carbon atom to which is bonded is σ−, and the carbon atom to which a hydrogen atom is bonded is σ +. As will be described later, a basic compound is added to a carbon atom to which a hydrogen atom is bonded to constitute an electrolyte according to the present invention.

(塩基性化合物)
本発明に係る電解質を構成する塩基性化合物は、NH基を有し、かつ環内窒素原子を含有する複素環式化合物の単量体が好ましい。このような塩基性化合物としては、例えば、下記の式(8)または(9)に示すイミダゾール系化合物を用いることが好ましい。ここで、式(8)におけるRはHまたはCNH(mは1〜3の整数)であり、RはHまたはC2n+1(nは1〜3の整数)である。式(8)または(9)に示すイミダゾール化合物にはNH基が備えられており、このNH基の窒素が、フッ素系ポリマーにおける水素原子が結合された炭素原子に結合する。また、イミダゾール化合物に含まれる環内窒素原子の部位にリン酸等の酸がドープされる。
(Basic compound)
The basic compound constituting the electrolyte according to the present invention is preferably a monomer of a heterocyclic compound having an NH group and containing an endocyclic nitrogen atom. As such a basic compound, for example, an imidazole compound represented by the following formula (8) or (9) is preferably used. Here, R 1 in Formula (8) is H or C m H m NH 2 (m is an integer of 1 to 3), and R 2 is H or C n H 2n + 1 (n is an integer of 1 to 3). is there. The imidazole compound represented by the formula (8) or (9) is provided with an NH group, and nitrogen of the NH group is bonded to a carbon atom to which a hydrogen atom in the fluorine-based polymer is bonded. Further, an acid such as phosphoric acid is doped at the site of the nitrogen atom in the ring contained in the imidazole compound.

Figure 2008153114
Figure 2008153114

上記一般式(8)及び(9)に示す化合物の中でも特に、下記(10)〜(14)に示す塩基性化合物がより好ましい。   Among the compounds represented by the general formulas (8) and (9), basic compounds represented by the following (10) to (14) are more preferable.

Figure 2008153114
Figure 2008153114

(酸)
本発明に係る電解質を構成する酸は、オルトリン酸、縮合リン酸、アルキルリン酸、ホスホン酸の中から選ばれる少なくとも1種類以上の酸が好ましい。電解質おける酸の含有率(ドープ量)は、10質量%以上500質量%以下の範囲が好ましく、50質量%以上400質量%以下の範囲がより好ましい。酸の含有率がこの範囲よりも少ないと、プロトン伝導度が低下するので好ましくない。また、酸の含有率がこの範囲を越えると、燃料電池の作動温度である100℃乃至200℃の温度範囲における化学的安定性が低下するので好ましくない。
(acid)
The acid constituting the electrolyte according to the present invention is preferably at least one acid selected from orthophosphoric acid, condensed phosphoric acid, alkylphosphoric acid, and phosphonic acid. The acid content (doping amount) in the electrolyte is preferably in the range of 10% by mass to 500% by mass, and more preferably in the range of 50% by mass to 400% by mass. If the acid content is less than this range, the proton conductivity decreases, which is not preferable. On the other hand, if the acid content exceeds this range, the chemical stability in the temperature range of 100 ° C. to 200 ° C., which is the operating temperature of the fuel cell, is not preferable.

(電解質の構造)
本発明に係る電解質は、上述のようにフッ素系ポリマーに塩基性化合物が付加され、更に酸が含浸されて構成されている。塩基性化合物が付加されたフッ素系ポリマーは、下記式(15)乃至下記式(17)に示す構造を有しているものと考えられる。式(15)または(16)において、MはCX、CXH、CXHの何れかであり、XはFであり、mは1〜3の整数であり、RはHまたはC2n+1(nは1〜3の整数)である。
下記式(15)は、式(8)におけるRがH(水素)のイミダゾール化合物が付加した例である。また、下記式(16)は、式(8)におけるRがC2mNH基のイミダゾール化合物が付加した例である。更に、下記式(17)は、式(9)に示すベンズイミダゾール化合物が付加した例である。
(Electrolyte structure)
As described above, the electrolyte according to the present invention is configured by adding a basic compound to a fluoropolymer and further impregnating with an acid. The fluoropolymer to which a basic compound is added is considered to have a structure represented by the following formula (15) to the following formula (17). In the formula (15) or (16), M is any one of CX 3 , CX 2 H, and CXH 2 , X is F, m is an integer of 1 to 3, and R 2 is H or C n H 2n + 1 (n is an integer of 1 to 3).
The following formula (15) is an example in which an imidazole compound in which R 1 in formula (8) is H (hydrogen) is added. Further, the following formula (16) is an example in which an imidazole compound in which R 1 in the formula (8) is a C m H 2m NH 2 group is added. Furthermore, the following formula (17) is an example in which a benzimidazole compound represented by the formula (9) is added.

Figure 2008153114
Figure 2008153114

いずれの場合も、イミダゾール化合物のNH基の窒素原子が、フッ素系ポリマー中の水素原子が結合する炭素原子に結合することによって、イミダゾール化合物がフッ素系ポリマーに付加していると考えられる。これにより、イミダゾール化合物に含まれる環内窒素原子がそのままの状態で残され、この環内窒素原子の位置に酸がドープされるものと考えられる。
また、付加したイミダゾール化合物に対して、更に別のイミダゾール化合物が付加することはないものと考えられる。すなわち、フッ素系ポリマーに対してイミダゾール化合物の単量体が付加するのであり、イミダゾール化合物の重合体が付加するのではない。このため、本発明に係る電解質は、フッ素系ポリマーからなる主鎖ポリマーに、塩基性化合物からなる単量体が付加した構造を有するものとなり、これによりフッ素系ポリマーの結晶性が大幅に低下することがなく、耐熱性が向上するものと考えられる。
In any case, it is considered that the imidazole compound is added to the fluoropolymer by bonding the nitrogen atom of the NH group of the imidazole compound to the carbon atom to which the hydrogen atom in the fluoropolymer is bonded. Thereby, it is considered that the ring nitrogen atom contained in the imidazole compound is left as it is, and the acid is doped at the position of the ring nitrogen atom.
Moreover, it is thought that another imidazole compound does not add with respect to the added imidazole compound. That is, the imidazole compound monomer is added to the fluoropolymer, and the imidazole compound polymer is not added. For this reason, the electrolyte according to the present invention has a structure in which a monomer composed of a basic compound is added to a main chain polymer composed of a fluorine-based polymer, which greatly reduces the crystallinity of the fluorine-based polymer. It is considered that the heat resistance is improved.

また、本発明に係る電解質においては、付加した塩基性化合物の一部が、フッ素系ポリマーの主鎖同士を架橋していることが好ましい。塩基性化合物の一部が架橋することによって電解質の化学的安定性が向上するので、酸が含浸された状態で燃料電池の作動温度である100℃乃至200℃の環境下に置かれた場合でも、電解質が溶解することがない。
ただし、塩基性化合物の全部が架橋してしまうと、酸が含浸されなくなるので好ましくない。架橋度は、フッ素系ポリマーに塩基性化合物を付加させた後の熱処理条件を制御することによって調整できる。
Moreover, in the electrolyte which concerns on this invention, it is preferable that a part of added basic compound bridge | crosslinks the main chains of a fluorine-type polymer. Since the chemical stability of the electrolyte is improved by crosslinking a part of the basic compound, even when it is placed in an environment where the operating temperature of the fuel cell is 100 ° C. to 200 ° C. in the state of being impregnated with an acid. The electrolyte does not dissolve.
However, if all of the basic compound is crosslinked, the acid is not impregnated, which is not preferable. The degree of crosslinking can be adjusted by controlling the heat treatment conditions after adding the basic compound to the fluoropolymer.

[燃料電池用高分子電解質の製造方法]
次に、本発明に係る電解質の製造方法について説明する。この製造方法は、反応工程、熱処理工程及び含浸工程から概略構成される。
(反応工程)
まず、(−CF−CF(M)CH−CF−)構造を有するフッ素系ポリマーと塩基性化合物とを用意し、これらを有機溶媒に溶解して混合液とする。
フッ素系ポリマーと塩基性化合物はそれぞれ、同一種類の有機溶媒に溶解してもよく、異なる種類の有機溶媒にそれぞれ溶解してから有機溶媒同士を混合してもよい。異なる種類の有機溶媒を用いる場合は、それぞれ相溶性のある溶媒が好ましい。フッ素系ポリマー用の有機溶媒としては、例えば、N−メチルピロリドン(NMP)、N,N-ジメチルホルムアミド(DMF)、酢酸エチル等のエステル系溶剤、ケトン系溶剤等が好ましい。
フッ素系ポリマーがVdF−HFPの場合はNMPやDMF等が好ましく、VdF−HFP−TFEの場合は酢酸エチル(エステル系溶剤)、アセトン、メチルエチルケトン(ケトン系溶剤)等が好ましい。
また、塩基性化合物用の溶媒としては、NMP、ジメチルアセトアミド(DMAc)、N,N-ジメチルホルムアミド(DMF)、水等が好ましい。
上記フッ素系ポリマーを溶解する溶媒のうち、NMP、DMF、DMAcおよび酢酸エチルは相互に相溶性があるので、塩基性化合物の溶媒としてこれらに可溶な化合物を選択すればよい。また、酢酸エチルは水と相溶性があるので、水を塩基性化合物の溶剤にも利用できる。
また、フッ素系ポリマーと塩基性化合物の混合比は、質量比でフッ素系ポリマー:塩基性化合物=9:1乃至1:1の範囲が好ましく、8:1乃至2:1の範囲がより好ましい。塩基性化合物が少ないと、リン酸等の含浸率が低下するので好ましくない。また、塩基性化合物が過剰になると、電解質の化学的安定性が低下するので好ましくない。
[Method for producing polymer electrolyte for fuel cell]
Next, the manufacturing method of the electrolyte which concerns on this invention is demonstrated. This manufacturing method is roughly composed of a reaction process, a heat treatment process, and an impregnation process.
(Reaction process)
First, a fluorine-based polymer having a (—CF 2 —CF (M) CH 2 —CF 2 —) structure and a basic compound are prepared, and these are dissolved in an organic solvent to obtain a mixed solution.
Each of the fluorine-based polymer and the basic compound may be dissolved in the same type of organic solvent, or may be dissolved in different types of organic solvents and then mixed with each other. When different types of organic solvents are used, compatible solvents are preferable. As the organic solvent for the fluorine polymer, for example, N-methylpyrrolidone (NMP), N, N-dimethylformamide (DMF), ester solvents such as ethyl acetate, ketone solvents, and the like are preferable.
When the fluorine-based polymer is VdF-HFP, NMP, DMF, or the like is preferable. When VdF-HFP-TFE is used, ethyl acetate (ester solvent), acetone, methyl ethyl ketone (ketone solvent), or the like is preferable.
Moreover, as a solvent for a basic compound, NMP, dimethylacetamide (DMAc), N, N-dimethylformamide (DMF), water and the like are preferable.
Among the solvents for dissolving the fluoropolymer, NMP, DMF, DMAc, and ethyl acetate are compatible with each other. Therefore, a compound soluble in these may be selected as the solvent for the basic compound. Further, since ethyl acetate is compatible with water, water can be used as a solvent for basic compounds.
The mixing ratio of the fluorine-based polymer and the basic compound is preferably in the range of fluorine-based polymer: basic compound = 9: 1 to 1: 1 by mass ratio, and more preferably in the range of 8: 1 to 2: 1. If the amount of the basic compound is small, the impregnation rate of phosphoric acid and the like is not preferable. An excess of the basic compound is not preferable because the chemical stability of the electrolyte is lowered.

次に、混合溶液を、有機溶媒および塩基性化合物の沸点温度以下の温度で加熱することにより、フッ素系ポリマーに塩基性化合物を付加させる。なお、この反応は、室温で行うことも可能であるが、反応の促進ならびに反応時間の短縮化のために加熱することが好ましい。加熱温度は溶媒および塩基性化合物の沸点によって異なるが、好ましくは溶媒および塩基性化合物の沸点以下とすることが好ましい。ただし、還流機構を備えた装置を用いることが可能であれば、沸点以上の温度で加熱してもよい。   Next, the basic solution is added to the fluoropolymer by heating the mixed solution at a temperature equal to or lower than the boiling point of the organic solvent and the basic compound. Note that this reaction can be performed at room temperature, but it is preferable to heat the reaction in order to accelerate the reaction and shorten the reaction time. The heating temperature varies depending on the boiling points of the solvent and the basic compound, but is preferably set to be equal to or lower than the boiling points of the solvent and the basic compound. However, heating may be performed at a temperature equal to or higher than the boiling point as long as an apparatus including a reflux mechanism can be used.

(熱処理工程)
次に、反応工程後の混合液から有機溶媒を除去して析出物を得る。具体的には例えば、反応後の混合液をガラス板上にキャスティングしてから、溶媒を加熱除去することによって、膜状の析出物を得る。析出物の膜厚は、混合溶液のキャスティング量を調整することで制御できる。このキャスティング法によって、溶媒の除去と電解質の成形を同時に行うことができる。
次に、成膜した析出物を熱処理する。この熱処理によって、析出物中の塩基性化合物の一部を架橋させる。熱処理温度及び時間は適宜設定すればよいが、目安として、後述する含浸工程における酸の含浸率が低下しない程度に設定すればよい。
(Heat treatment process)
Next, the organic solvent is removed from the mixed solution after the reaction step to obtain a precipitate. Specifically, for example, after the reaction mixture is cast on a glass plate, the solvent is removed by heating to obtain a film-like precipitate. The film thickness of the precipitate can be controlled by adjusting the casting amount of the mixed solution. By this casting method, it is possible to simultaneously remove the solvent and form the electrolyte.
Next, the deposited precipitate is heat treated. By this heat treatment, a part of the basic compound in the precipitate is crosslinked. The heat treatment temperature and time may be set as appropriate, but as a guide, the heat treatment temperature and time may be set to such an extent that the acid impregnation rate in the impregnation step described later does not decrease.

(含浸工程)
次に、熱処理後の析出物に、リン酸等の酸を含浸させる。このとき、リン酸等の含浸を行う時間、温度は、析出物の種類等によって適切に選択することができる。時間の短縮化のためには、リン酸等を加熱することが好ましい。ただし、過度の高温においてリン酸等を含浸すると析出物の物性が変化する可能性があるため、適切な温度を設定する必要がある。
以上により、本発明に係る電解質が製造される。
(Impregnation process)
Next, the precipitate after the heat treatment is impregnated with an acid such as phosphoric acid. At this time, the time and temperature at which the impregnation with phosphoric acid or the like is performed can be appropriately selected depending on the type of precipitates and the like. In order to shorten the time, it is preferable to heat phosphoric acid or the like. However, if phosphoric acid or the like is impregnated at an excessively high temperature, the physical properties of the precipitate may change, so an appropriate temperature needs to be set.
Thus, the electrolyte according to the present invention is manufactured.

[燃料電池]
図1に、本実施形態の燃料電池の一例を示す分解斜視図を示し、図2には、図1の燃料電池を構成する膜−電極接合体の断面模式図を示す。
図1に示す燃料電池1は、2つの単セル11が一対のホルダ12、12に狭持されて概略構成されている。単セル11は、膜−電極接合体10と、膜−電極接合体10の厚み方向両側に配置されたバイポーラプレート20、20とから構成され、作動温度100℃〜200℃、湿度が無加湿若しくは相対湿度50%以下の条件で作動するものである。バイポーラプレート20、20は、導電性を有する金属またはカーボン等から構成されており、膜−電極接合体10にそれぞれ接合することで、集電体として機能するとともに、膜−電極接合体10の触媒層に対して、酸素および燃料を供給する。
また、図1に示す燃料電池1は、単セル11の数が2つだが、数は2つに限らず、燃料電池に要求される特性に応じて数十〜数百程度まで増やしてもよい。
[Fuel cell]
FIG. 1 is an exploded perspective view showing an example of the fuel cell of the present embodiment, and FIG. 2 is a schematic sectional view of a membrane-electrode assembly constituting the fuel cell of FIG.
The fuel cell 1 shown in FIG. 1 has a schematic configuration in which two single cells 11 are sandwiched between a pair of holders 12 and 12. The single cell 11 includes a membrane-electrode assembly 10 and bipolar plates 20 and 20 disposed on both sides in the thickness direction of the membrane-electrode assembly 10, and has an operating temperature of 100 ° C. to 200 ° C. and humidity is not humidified or It operates under conditions of relative humidity of 50% or less. The bipolar plates 20 and 20 are made of conductive metal, carbon, or the like, and function as current collectors by being joined to the membrane-electrode assembly 10 respectively, and the catalyst of the membrane-electrode assembly 10. Supply oxygen and fuel to the bed.
The fuel cell 1 shown in FIG. 1 has two single cells 11, but the number is not limited to two, and may be increased to several tens to several hundreds depending on the characteristics required for the fuel cell. .

膜−電極接合体10は、図2に示すように、電解質膜100と、電解質膜100の厚み方向両側に配置された触媒層110、110’と、触媒層110、110’にそれぞれ積層された第1の気体拡散層121、121’と、第1の気体拡散層121、121’にそれぞれ積層された第2の気体拡散層120、120’とから構成されている。触媒層110、110’と、第1の気体拡散層121、121’と、第2の気体拡散層120、120’とによって一対の電極が構成されている。
電解質膜100は、上述の燃料電池用高分子電解質からなるものであり、フッ素系ポリマーに対して塩基性化合物が付加され、かつリン酸等の酸が含浸されて構成されている。電解質膜100の膜厚は、20μm〜200μm程度の範囲が好ましい。
As shown in FIG. 2, the membrane-electrode assembly 10 was laminated on the electrolyte membrane 100, the catalyst layers 110 and 110 ′ disposed on both sides in the thickness direction of the electrolyte membrane 100, and the catalyst layers 110 and 110 ′, respectively. The first gas diffusion layers 121 and 121 ′ and the second gas diffusion layers 120 and 120 ′ stacked on the first gas diffusion layers 121 and 121 ′, respectively. The catalyst layers 110 and 110 ′, the first gas diffusion layers 121 and 121 ′, and the second gas diffusion layers 120 and 120 ′ constitute a pair of electrodes.
The electrolyte membrane 100 is made of the above-described polymer electrolyte for fuel cells, and is configured by adding a basic compound to a fluoropolymer and impregnating an acid such as phosphoric acid. The thickness of the electrolyte membrane 100 is preferably in the range of about 20 μm to 200 μm.

触媒層110、110’は、燃料極及び酸素極として機能するものであって、カーボンブラック等を主体とする触媒材料と、この触媒材料を固化成形するバインダとが含まれてそれぞれ構成された多孔質体である。触媒材料は、触媒物質がカーボンブラック等に担持されて構成されている。触媒物質は、水素の酸化反応及び酸素の還元反応を促進する金属であれば、特に限定されないが、例えば鉛、鉄、マンガン、コバルト、クロム、ガリウム、バナジウム、タングステン、ルテニウム、イリジウム、パラジウム、白金、ロジウムまたはそれらの合金を挙げることができる。こうした金属または合金をカーボンブラック等に担持させることによって触媒材料を構成できる。
バインダは、耐熱性に優れたフッ素樹脂を用いても良く、本発明に係る燃料電池用高分子電解質を用いてもよい。バインダとして燃料電池用高分子電解質を用いることで、触媒層110、110’内部のプロトン拡散を効率よく行なわれ、触媒層110、110’のインピーダンスが低下して燃料電池の出力が向上する。
また、バインダとしてフッ素樹脂を用いる場合は、融点が400℃以下のフッ素樹脂が好ましく、そのようなフッ素樹脂としてポリ四フッ化エチレン、テトラフルオロエチレン−パーフルオロアルキルビニルエーテル共重合体、ポリフッ化ビニリデン、テトラフルオロエチレン・ヘキサフルオロエチレン共重合体、パーフルオロエチレン等といった疎水性および耐熱性に優れた樹脂を用いることができる。疎水性結着剤を添加することにより、発電反応に伴って生成した水によって触媒層110、110’が過剰に濡れるのを防止することができ、燃料極及び酸素極内部における燃料ガス及び酸素の拡散阻害を防止することができる。
The catalyst layers 110 and 110 ′ function as a fuel electrode and an oxygen electrode, and each of the catalyst layers 110 and 110 ′ includes a catalyst material mainly composed of carbon black or the like and a binder that solidifies and forms the catalyst material. It is a sexual body. The catalyst material is configured such that a catalyst substance is supported on carbon black or the like. The catalyst material is not particularly limited as long as it is a metal that promotes the oxidation reaction of hydrogen and the reduction reaction of oxygen. For example, lead, iron, manganese, cobalt, chromium, gallium, vanadium, tungsten, ruthenium, iridium, palladium, platinum , Rhodium or alloys thereof. A catalyst material can be constituted by supporting such a metal or alloy on carbon black or the like.
As the binder, a fluororesin excellent in heat resistance may be used, or the polymer electrolyte for fuel cells according to the present invention may be used. By using the polymer electrolyte for the fuel cell as the binder, proton diffusion inside the catalyst layers 110 and 110 ′ can be efficiently performed, and the impedance of the catalyst layers 110 and 110 ′ is lowered to improve the output of the fuel cell.
When a fluororesin is used as the binder, a fluororesin having a melting point of 400 ° C. or lower is preferable. As such a fluororesin, polytetrafluoroethylene, tetrafluoroethylene-perfluoroalkylvinylether copolymer, polyvinylidene fluoride, Resins excellent in hydrophobicity and heat resistance such as tetrafluoroethylene / hexafluoroethylene copolymer and perfluoroethylene can be used. By adding the hydrophobic binder, it is possible to prevent the catalyst layers 110 and 110 ′ from being wetted excessively by the water generated during the power generation reaction, and the fuel gas and oxygen inside the fuel electrode and the oxygen electrode can be prevented. Diffusion inhibition can be prevented.

更に、触媒層110、110’には、導電材を添加してもよい。導電材としては、電気伝導性物質であればどのようなものでもよく、各種金属や炭素材料などが挙げられる。例えば、アセチレンブラック等のカーボンブラック、活性炭および黒鉛等が挙げられ、これらを単独あるいは混合して使用される。   Furthermore, a conductive material may be added to the catalyst layers 110 and 110 '. As the conductive material, any conductive material may be used, and various metals and carbon materials may be used. Examples thereof include carbon black such as acetylene black, activated carbon and graphite, and these are used alone or in combination.

第1の気体拡散層121、121’及び第2の気体拡散層120、120’はそれぞれ、たとえばカーボンシート等から形成されており、バイポーラプレート20、20を介して供給された酸素および燃料を触媒層110、110’の全面に拡散させる。   The first gas diffusion layers 121 and 121 ′ and the second gas diffusion layers 120 and 120 ′ are each formed of, for example, a carbon sheet, and catalyze oxygen and fuel supplied via the bipolar plates 20 and 20. Diffusion over the entire surface of the layers 110, 110 ′.

この膜−電極接合体10を含む燃料電池1は、100℃〜200℃の温度で作動し、一方の触媒層側にバイポーラプレート20を介して燃料として例えば水素が供給され、他方の触媒層側にはバイポーラプレート20を介して酸化剤として例えば酸素が供給される。そして、一方の触媒層において水素が酸化されてプロトンが生じ、このプロトンが電解質膜4を伝導して他方の触媒層に到達し、他方の触媒層においてプロトンと酸素が電気化学的に反応して水を生成するとともに、電気エネルギーを発生させる。
なお、燃料として供給される水素は、炭化水素若しくはアルコールの改質により発生された水素でもよく、また、酸化剤として供給される酸素は、空気に含まれる状態で供給されても良い。
The fuel cell 1 including the membrane-electrode assembly 10 operates at a temperature of 100 ° C. to 200 ° C., for example, hydrogen is supplied as fuel to the one catalyst layer side via the bipolar plate 20, and the other catalyst layer side For example, oxygen is supplied as an oxidizing agent through the bipolar plate 20. Then, hydrogen is oxidized in one catalyst layer to generate protons, and the protons pass through the electrolyte membrane 4 to reach the other catalyst layer, and the proton and oxygen react electrochemically in the other catalyst layer. In addition to producing water, it generates electrical energy.
The hydrogen supplied as the fuel may be hydrogen generated by reforming hydrocarbons or alcohols, and the oxygen supplied as the oxidant may be supplied in a state of being included in the air.

上記の燃料電池用高分子電解質によれば、フッ素系ポリマーに対して塩基性化合物が付加されることによって、塩基性化合物が付加した位置にリン酸等の酸がドープされやすくなり、これによりプロトン伝導性を発現させることができる。また、フッ素系ポリマーに付加される塩基性化合物が単量体であるので、フッ素系ポリマーの結晶性が低下しにくくなり、これによりフッ素系ポリマーの耐熱性が低下することがなく、作動温度が100℃〜200℃程度の燃料電池の高分子電解質として好適に用いることができる。
また、塩基性化合物の一部が、フッ素系ポリマーを架橋しているので、電解質自体の安定性が向上し、これにより、リン酸等の酸を含浸させた状態で100℃〜200℃程度の高温雰囲気に置かれた場合でも電解質が溶解するおそれがない。
また、塩基性化合物として、比較的耐熱性に優れたイミダゾール系化合物が用いられているので、塩基性化合物が付加されたフッ素系ポリマーの耐熱性が低下することがなく、作動温度が100℃〜200℃程度の燃料電池の高分子電解質として好適に用いることができる。
According to the above polymer electrolyte for fuel cells, by adding a basic compound to the fluorine-based polymer, an acid such as phosphoric acid is easily doped at the position where the basic compound is added, thereby Conductivity can be expressed. In addition, since the basic compound added to the fluorine-based polymer is a monomer, the crystallinity of the fluorine-based polymer is unlikely to decrease, thereby preventing the heat resistance of the fluorine-based polymer from decreasing and the operating temperature from being reduced. It can be suitably used as a polymer electrolyte of a fuel cell at about 100 ° C to 200 ° C.
In addition, since a part of the basic compound crosslinks the fluorine-based polymer, the stability of the electrolyte itself is improved, so that the temperature is about 100 ° C. to 200 ° C. in the state impregnated with an acid such as phosphoric acid. Even when placed in a high temperature atmosphere, there is no risk of the electrolyte dissolving.
In addition, since an imidazole compound having relatively excellent heat resistance is used as the basic compound, the heat resistance of the fluoropolymer to which the basic compound is added does not decrease, and the operating temperature is 100 ° C. to It can be suitably used as a polymer electrolyte of a fuel cell at about 200 ° C.

また、上記の製造方法によれば、特定の構造を有するフッ素系ポリマーと塩基性化合物とを有機溶媒中で反応させることにより、フッ素系ポリマーに塩基性化合物を容易に付加させることができる。また、塩基性化合物を付加させた後のフッ素系ポリマーに熱処理を行うことによって、塩基性化合物の一部が架橋するので、化学的安定性に優れた電解質を安価に製造することができる。   Moreover, according to said manufacturing method, a basic compound can be easily added to a fluorine-type polymer by making the fluorine-type polymer which has a specific structure, and a basic compound react in an organic solvent. Moreover, since a part of basic compound bridge | crosslinks by heat-processing to the fluorine-type polymer after adding a basic compound, the electrolyte excellent in chemical stability can be manufactured cheaply.

更に、上記の燃料電池によれば、耐熱性及びプロトン伝導性に優れ、かつ撥水性にも優れた上記の電解質を電解質膜として備えているので、100℃〜200℃の作動温度において、無加湿あるいは相対湿度50%以下の条件で作動させた場合であっても良好な発電性能を示すことができる。
また、電極中に電解質が含有されるので、電極内部におけるプロトン伝導度も高めることができる。
Furthermore, according to the fuel cell, since the electrolyte membrane is provided with the electrolyte having excellent heat resistance and proton conductivity and excellent water repellency, it is not humidified at an operating temperature of 100 ° C. to 200 ° C. Or even if it is a case where it operate | moves on the conditions of relative humidity 50% or less, favorable electric power generation performance can be shown.
In addition, since the electrolyte is contained in the electrode, proton conductivity inside the electrode can be increased.

以下、実施例を挙げて本発明をさらに詳しく説明するが、本発明は下記例によって限定されるものではない。   EXAMPLES Hereinafter, although an Example is given and this invention is demonstrated in more detail, this invention is not limited by the following example.

「実施例1:電解質膜の製造例」
(実験例1)
フッ素系ポリマーとしてポリビニリデンフロライド(呉羽化学工業製、KF Polymer W#1100(以下、PVdFと表記))を用意し、このPVdFをN−メチルピロリドン(以下、NMPと表記)に溶解させて20質量%溶液とした。また、塩基性化合物としてイミダゾール(以下、Imと表記)をNMPに溶解させて20質量%溶液とした。
そして、PVdFの20質量%溶液とImの20質量%溶液とを重量比でPVdF:Im=4:1の割合で混合し、NMPの沸点以下の温度(80℃)で還流させながら攪拌し反応させた。反応時間は60時間であった。
反応後の反応溶液をガラス基板上にキャスティングし、その後、加熱温度150℃、加熱時間30分の条件で溶媒を除去し、最後に180℃、2時間の条件で熱処理を行い、高分子膜とした。高分子膜の膜厚は25μmであった。
そして、得られた高分子膜を85%リン酸溶液中に60℃、4時間含浸させてリン酸をドープさせた。このようにして、実験例1の電解質膜を製造した。
得られた電解質膜について、リン酸ドープ率を測定した。ドープ率は、高分子膜の質量(g)をWとし、リン酸ドープ後の電解質膜の質量(g)をWとし、ドープ率(%)=100×(W−W)/Wの式で求めた。結果を表1に示す。
"Example 1: Production example of electrolyte membrane"
(Experimental example 1)
Polyvinylidene fluoride (manufactured by Kureha Chemical Industry Co., Ltd., KF Polymer W # 1100 (hereinafter referred to as PVdF)) is prepared as a fluorine-based polymer, and this PVdF is dissolved in N-methylpyrrolidone (hereinafter referred to as NMP). A mass% solution was obtained. Further, imidazole (hereinafter referred to as Im) as a basic compound was dissolved in NMP to obtain a 20% by mass solution.
Then, a 20% by mass solution of PVdF and a 20% by mass solution of Im are mixed at a weight ratio of PVdF: Im = 4: 1, and stirred and refluxed at a temperature below the boiling point of NMP (80 ° C.). I let you. The reaction time was 60 hours.
The reaction solution after the reaction is cast on a glass substrate, and then the solvent is removed under the conditions of a heating temperature of 150 ° C. and a heating time of 30 minutes, and finally heat treatment is performed at 180 ° C. for 2 hours, did. The film thickness of the polymer film was 25 μm.
Then, the obtained polymer film was impregnated in an 85% phosphoric acid solution at 60 ° C. for 4 hours to dope phosphoric acid. In this way, the electrolyte membrane of Experimental Example 1 was manufactured.
The phosphoric acid dope rate was measured about the obtained electrolyte membrane. The doping rate is defined as W 1 is the mass (g) of the polymer membrane, W 2 is the mass (g) of the electrolyte membrane after phosphoric acid doping, and the doping rate (%) = 100 × (W 2 −W 1 ) / It was determined by the formula W 1. The results are shown in Table 1.

(実験例2)
フッ素系ポリマーとしてビニリデンフロライド−ヘキサフルオロプロピレン共重合体(ARKEMA社製、KYNAR2821(以下、VdF−HFPと表記))を用い、VdF−HFPをNMPに溶解させた20質量%溶液とImをNMPに溶解させた20質量%溶液との混合溶液を、NMPの沸点以下の温度(60℃)、60時間の条件で還流させながら攪拌し反応させたこと以外は上記実験例1と同様にして、実験例2の電解質膜を製造した。なお、高分子膜の膜厚は25μmであった。
得られた電解質膜について、リン酸ドープ率を測定した。結果を表1に示す。
(Experimental example 2)
Using a vinylidene fluoride-hexafluoropropylene copolymer (ARKEMA, KYNAR2821 (hereinafter referred to as VdF-HFP)) as a fluorine-based polymer, 20% by mass solution of VdF-HFP dissolved in NMP and Im were added to NMP. In the same manner as in Experimental Example 1 except that the mixed solution with the 20% by mass solution dissolved in was stirred and reacted at a temperature lower than the boiling point of NMP (60 ° C.) at 60 ° C. for 60 hours. The electrolyte membrane of Experimental Example 2 was manufactured. The film thickness of the polymer film was 25 μm.
The phosphoric acid dope rate was measured about the obtained electrolyte membrane. The results are shown in Table 1.

(実験例3)
フッ素系ポリマーとしてビニリデンフロライド−ヘキサフルオロプロピレン−テトラフルオロエチレン三元重合体(3M社製、Dyneon THV 220A(VdF:40モル%、HFP:20モル%、TFE:40モル%)(以下、VdF-HFP-TFEと表記))を酢酸エチルに溶解させて20質量%溶液とし、VdF−HFP−TFEの20質量%溶液とImをNMPに溶解させた20質量%溶液との混合溶液を、温度60℃、60時間の条件で還流させながら攪拌し反応させたこと以外は上記実験例1と同様にして、実験例3の電解質膜を製造した。なお、高分子膜の膜厚は25μmであった。
得られた電解質膜について、リン酸ドープ率を測定した。結果を表1に示す。
(Experimental example 3)
Vinylidene fluoride-hexafluoropropylene-tetrafluoroethylene terpolymer as a fluoropolymer (manufactured by 3M, Dyneon THV 220A (VdF: 40 mol%, HFP: 20 mol%, TFE: 40 mol%) (hereinafter, VdF -HFP-TFE)) is dissolved in ethyl acetate to form a 20 mass% solution, and a mixed solution of a 20 mass% solution of VdF-HFP-TFE and a 20 mass% solution in which Im is dissolved in NMP is heated to a temperature. An electrolyte membrane of Experimental Example 3 was produced in the same manner as in Experimental Example 1 except that the reaction was performed while stirring under reflux at 60 ° C. for 60 hours. The film thickness of the polymer film was 25 μm.
The phosphoric acid dope rate was measured about the obtained electrolyte membrane. The results are shown in Table 1.

Figure 2008153114
Figure 2008153114

表1に示すように、実験例1の電解質膜については、リン酸のドープ率が0%であり、ほとんどドープされないことが判明した。実験例1においては、PVdFとImを混合して反応させたところ、反応がほとんど進まず、PVdFにImに付加させることがほとんど不可能であった。これは、PVdF中に、(−CF−CF(CF)CH−CF−)構造が存在しないためにImの付加反応が進行しなかったことによるものと考えられる。
一方、表1に示すように、実験例2及び3の電解質膜については、リン酸のドープ率がそれぞれ10%、43%となり、リン酸を高分子膜中に含浸できることが判明した。これは、VdF−HFP及びVdF−HFP−TFE中にそれぞれ、Imが付加されたためと考えられる。VdF−HFP及びVdF−HFP−TFE中にはそれぞれ、(−CF−CF(CF)CH−CF−)構造が存在するためにImの付加反応が進行したことによるものと考えられる。
As shown in Table 1, it was found that the electrolyte membrane of Experimental Example 1 had a phosphoric acid doping rate of 0% and was hardly doped. In Experimental Example 1, when PVdF and Im were mixed and reacted, the reaction hardly proceeded and it was almost impossible to add PVdF to Im. This is considered to be because the addition reaction of Im did not proceed because the (—CF 2 —CF (CF 3 ) CH 2 —CF 2 —) structure does not exist in PVdF.
On the other hand, as shown in Table 1, the electrolyte membranes of Experimental Examples 2 and 3 had phosphoric acid doping rates of 10% and 43%, respectively, and it was found that phosphoric acid could be impregnated into the polymer membrane. This is probably because Im was added to VdF-HFP and VdF-HFP-TFE, respectively. In VdF-HFP and VdF-HFP-TFE, there is a (—CF 2 —CF (CF 3 ) CH 2 —CF 2 —) structure, which is considered to be due to the progress of the addition reaction of Im. .

図3には、実験例3におけるリン酸を含浸させる前の高分子膜のFT−IRのスペクトルの測定結果を示す。図3には、VdF−HFP−TFE単独のスペクトルと、Imのスペクトルも同時に示す。
図3に示すように、実験例3のスペクトルの700〜1500cm−1の間には、VdF−HFP−TFE単独のスペクトルには見られない幾つかの吸収ピークが認められる。実験例3において検出された吸収ピークの一部には、Imのスペクトルの吸収ピークと重なる吸収ピークもある。
このように、実験例3のスペクトルは、VdF−HFP−TFE単独のスペクトルに比べると、スペクトルパターンが明らかに異なっており、これはImが付加したためと考えられる。
In FIG. 3, the measurement result of the spectrum of FT-IR of the polymer film before impregnating the phosphoric acid in Experimental example 3 is shown. FIG. 3 shows the spectrum of VdF-HFP-TFE alone and the spectrum of Im simultaneously.
As shown in FIG. 3, several absorption peaks not observed in the spectrum of VdF-HFP-TFE alone are observed between 700 and 1500 cm −1 of the spectrum of Experimental Example 3. Some of the absorption peaks detected in Experimental Example 3 also have an absorption peak that overlaps with the absorption peak of the Im spectrum.
Thus, the spectrum of Experimental Example 3 is clearly different from the spectrum of VdF-HFP-TFE alone, which is thought to be due to the addition of Im.

また、図4には、実験例3のリン酸を含浸させる前の高分子膜のTG(加熱減量)の測定結果を示す。図4には、VdF−HFP−TFE単独のTG曲線と、ImのTG曲線も同時に示す。
図4に示すように、実験例3のTG曲線は、200℃を超えた付近から緩やかな減量が始まっており、Imの減量開始温度である150℃付近では全く減量が起きていないことが分かる。これは、フッ素系ポリマー中にImが単に含浸されているのではなく、フッ素系ポリマーにImが化学的に結合していることを示すものである。
また、実験例3の高分子膜は、燃料電池の作動温度である100〜200℃の間では、ほとんど減量が見られず、熱安定性に優れていることが分かる。
FIG. 4 shows the TG (heating loss) measurement results of the polymer film before impregnating with phosphoric acid of Experimental Example 3. FIG. 4 also shows a TG curve of VdF-HFP-TFE alone and an Im TG curve.
As shown in FIG. 4, in the TG curve of Experimental Example 3, it is understood that a gradual weight reduction starts from around 200 ° C., and no weight reduction occurs at around 150 ° C., which is the Im weight reduction start temperature. . This indicates that Im is not impregnated in the fluorine-based polymer but Im is chemically bonded to the fluorine-based polymer.
In addition, it can be seen that the polymer membrane of Experimental Example 3 has almost no weight loss between 100 and 200 ° C., which is the operating temperature of the fuel cell, and is excellent in thermal stability.

「実施例2:電解質の製造例」
(実験例4〜8)
フッ素系ポリマーとして上記のVdF−HFP−TFEを用意し、このVdF−HFP−TFEを酢酸エチルに溶解させて20質量%溶液とした。また、塩基性化合物としてイミダゾール、1−メチルイミダゾール、2−メチルイミダゾール、2−エチルイミダゾール及びベンズイミダゾールをそれぞれ、NMPに溶解させて20質量%溶液とした。
そして、VdF−HFP−TFEの20質量%溶液と、各種塩基性化合物の20質量%溶液とを重量比で4:1の割合で混合し、温度60℃で還流させながら攪拌し反応させた。反応時間は60時間であった。
反応後の反応溶液をガラス基板上にキャスティングし、その後、加熱温度150℃、加熱時間30分の条件で溶媒を除去し、最後に180℃、2時間の条件で熱処理を行い、各種の高分子膜とした。なお、それぞれの高分子膜の膜厚は25μmであった。
そして、各高分子膜を85%リン酸溶液中に60℃、4時間含浸させてリン酸をドープさせた。このようにして実験例4〜8の電解質膜を製造した。
得られた電解質膜について、実施例1と同様にしてリン酸ドープ率を測定した。結果を表2に示す。
“Example 2: Production example of electrolyte”
(Experimental Examples 4 to 8)
The above-mentioned VdF-HFP-TFE was prepared as a fluorine-based polymer, and this VdF-HFP-TFE was dissolved in ethyl acetate to obtain a 20% by mass solution. Further, imidazole, 1-methylimidazole, 2-methylimidazole, 2-ethylimidazole and benzimidazole were dissolved in NMP as basic compounds to form a 20% by mass solution.
And the 20 mass% solution of VdF-HFP-TFE and the 20 mass% solution of various basic compounds were mixed by the ratio of 4: 1 by weight ratio, and it stirred and made it react, making it recirculate | reflux at the temperature of 60 degreeC. The reaction time was 60 hours.
The reaction solution after the reaction is cast on a glass substrate, and then the solvent is removed under the conditions of a heating temperature of 150 ° C. and a heating time of 30 minutes. A membrane was obtained. The film thickness of each polymer film was 25 μm.
Each polymer film was impregnated with phosphoric acid by impregnating the polymer film in an 85% phosphoric acid solution at 60 ° C. for 4 hours. In this way, electrolyte membranes of Experimental Examples 4 to 8 were manufactured.
About the obtained electrolyte membrane, it carried out similarly to Example 1, and measured the phosphoric acid dope rate. The results are shown in Table 2.

Figure 2008153114
Figure 2008153114

表2に示すように、実験例5の電解質膜については、リン酸のドープ率が0%であり、ほとんどドープされないことが判明した。実験例5においては、イミダゾールのNH基のHがCHに置換された1−メチルイミダゾールを用いたが、この1−メチルイミダゾールは、フッ素系ポリマーに対して反応活性があるNH基が存在しないために、フッ素系ポリマーに対して反応することがなく、このためにリン酸がほとんどドープしなかったものと考えられる。
また、実験例8の電解質については、リン酸のドープ率が1%と低いことが判明した。実験例8で用いたベンズイミダゾールは、NH基を有しているので反応活性があるものと予想されたが、なにか他の要因で付加反応が進まなかったものと考えられる。
As shown in Table 2, it was found that the electrolyte membrane of Experimental Example 5 had a phosphoric acid doping rate of 0% and was hardly doped. In Experimental Example 5, 1-methylimidazole in which H of the NH group of imidazole was substituted with CH 3 was used, but this 1-methylimidazole does not have an NH group reactive to a fluorine-based polymer. Therefore, there is no reaction with respect to the fluorine-based polymer, and it is considered that phosphoric acid was hardly doped for this reason.
Further, it was found that the electrolyte of Experimental Example 8 had a low phosphoric acid doping rate of 1%. The benzimidazole used in Experimental Example 8 was expected to have a reaction activity because it had an NH group, but it is considered that the addition reaction did not proceed due to some other factor.

「実施例3:電解質膜の製造例」
フッ素系ポリマーとして上記のVdF−HFP−TFEを用意し、このVdF−HFP−TFEを酢酸エチルに溶解させて20質量%溶液とした。また、塩基性化合物としてイミダゾールをNMPに溶解させて20質量%溶液とした。
そして、VdF−HFP−TFEの20質量%溶液と、各種塩基性化合物の20質量%溶液とを、重量比で9:1、4:1、3:1及び2:1の割合でそれぞれ混合し、温度60℃で還流させながら攪拌し反応させた。反応時間は60時間であった。なお、フッ素系ポリマーとイミダゾールの合計量に対するイミダゾールの比率はそれぞれ、10質量%(混合比9:1)、20質量%(混合比4:1)、25質量%(混合比3:1)及び33.3質量%(混合比2:1)とした。
"Example 3: Production example of electrolyte membrane"
The above-mentioned VdF-HFP-TFE was prepared as a fluorine-based polymer, and this VdF-HFP-TFE was dissolved in ethyl acetate to obtain a 20% by mass solution. Further, imidazole as a basic compound was dissolved in NMP to obtain a 20% by mass solution.
Then, a 20 mass% solution of VdF-HFP-TFE and a 20 mass% solution of various basic compounds were mixed at a weight ratio of 9: 1, 4: 1, 3: 1 and 2: 1, respectively. The mixture was stirred and reacted while refluxing at a temperature of 60 ° C. The reaction time was 60 hours. The ratio of imidazole to the total amount of fluoropolymer and imidazole is 10% by mass (mixing ratio 9: 1), 20% by mass (mixing ratio 4: 1), 25% by mass (mixing ratio 3: 1) and It was set to 33.3 mass% (mixing ratio 2: 1).

反応後の各反応溶液をガラス基板上にキャスティングし、その後、加熱温度150℃、加熱時間30分の条件で溶媒を除去し、最後に180℃、2時間の条件で熱処理を行い、各種の高分子膜とした。なお、高分子膜の膜厚は25μmであった。
そして、各高分子膜を85%リン酸溶液中に60℃、4時間含浸させてリン酸をドープさせた。このようにして、各種の電解質膜を製造した。
得られた電解質膜について、リン酸のドープ率を測定した。ドープ率と、フッ素系ポリマーとイミダゾールの合計量に対するイミダゾールの比率との関係を図5に示す。
Each reaction solution after the reaction is cast on a glass substrate, and then the solvent is removed under the conditions of a heating temperature of 150 ° C. and a heating time of 30 minutes, and finally heat treatment is performed at 180 ° C. for 2 hours. A molecular film was obtained. The film thickness of the polymer film was 25 μm.
Each polymer film was impregnated with phosphoric acid by impregnating the polymer film in an 85% phosphoric acid solution at 60 ° C. for 4 hours. In this way, various electrolyte membranes were produced.
About the obtained electrolyte membrane, the dope rate of phosphoric acid was measured. FIG. 5 shows the relationship between the doping rate and the ratio of imidazole to the total amount of fluoropolymer and imidazole.

図5に示すように、イミダゾールの比率が高まるにつれて、ドープ率も向上することが分かる。但し、イミダゾールの比率が33.3質量%の電解質膜については、付加反応は順調に進行して均質な高分子膜が得られたが、高分子膜をリン酸に含浸させたところ、強度が不足して膜の形状を維持するのが困難な状態であり、ドープ率の測定が不可能であった。   As shown in FIG. 5, it can be seen that as the ratio of imidazole increases, the doping rate also improves. However, for the electrolyte membrane having an imidazole ratio of 33.3% by mass, the addition reaction proceeded smoothly and a homogeneous polymer membrane was obtained. However, when the polymer membrane was impregnated with phosphoric acid, the strength was It was insufficient to maintain the shape of the film, and the dope rate could not be measured.

「実施例4:電解質膜の製造例」
フッ素系ポリマーとしてVdF−HFP−TFEを用意し、このVdF−HFP−TFEを酢酸エチルに溶解させて20質量%溶液とした。また、塩基性化合物としてイミダゾールをNMPに溶解させて20質量%溶液とした。
そして、VdF−HFP−TFEの20質量%溶液と、各種塩基性化合物の20質量%溶液とを、重量比で3:1の割合で混合し、温度60℃で還流させながら攪拌し反応させた。反応時間は60時間であった。なお、フッ素系ポリマーとイミダゾールの合計量に対するイミダゾールの比率は25質量%であった。
"Example 4: Production example of electrolyte membrane"
VdF-HFP-TFE was prepared as a fluorine-based polymer, and this VdF-HFP-TFE was dissolved in ethyl acetate to obtain a 20% by mass solution. Further, imidazole as a basic compound was dissolved in NMP to obtain a 20% by mass solution.
Then, a 20% by mass solution of VdF-HFP-TFE and a 20% by mass solution of various basic compounds were mixed at a weight ratio of 3: 1 and stirred and reacted while refluxing at a temperature of 60 ° C. . The reaction time was 60 hours. The ratio of imidazole to the total amount of fluoropolymer and imidazole was 25% by mass.

反応後の各反応溶液をガラス基板上にキャスティングし、その後、加熱温度150℃、加熱時間30分の条件で溶媒を除去し、最後に180℃、2〜4時間の条件で熱処理を行い、各種の高分子膜とした。なお、高分子膜の膜厚は25μmであった。
そして、各高分子膜を85%リン酸溶液中に60℃、4時間含浸させてリン酸をドープさせた。このようにして、各種の電解質膜を製造した。
得られた電解質膜について、リン酸のドープ率を測定した。ドープ率と、熱処理時間との関係を表3に示す。
Each reaction solution after the reaction is cast on a glass substrate, then the solvent is removed under the conditions of a heating temperature of 150 ° C. and a heating time of 30 minutes, and finally heat treatment is performed under the conditions of 180 ° C. and 2 to 4 hours. The polymer film was made. The film thickness of the polymer film was 25 μm.
Each polymer film was impregnated with phosphoric acid by impregnating the polymer film in an 85% phosphoric acid solution at 60 ° C. for 4 hours. In this way, various electrolyte membranes were produced.
About the obtained electrolyte membrane, the dope rate of phosphoric acid was measured. Table 3 shows the relationship between the doping rate and the heat treatment time.

Figure 2008153114
Figure 2008153114

表3に示すように、熱処理時間が2時間から3時間になると、ドープ率が大幅に低下することが分かる。これは、熱処理時間の増大と共にイミダゾールによる架橋反応が進行し、リン酸のドープサイトが減少したためと考えられる。なお、熱処理時間が4時間の電解質膜については、高分子膜をリン酸に含浸させたところ、膜が脆くなって裂けてしまい、ドープ率の測定が不可能であった。   As shown in Table 3, it can be seen that when the heat treatment time is changed from 2 hours to 3 hours, the doping rate is significantly reduced. This is presumably because the cross-linking reaction with imidazole progressed as the heat treatment time increased, and the phosphoric acid dope sites decreased. In the case of an electrolyte membrane having a heat treatment time of 4 hours, when the polymer membrane was impregnated with phosphoric acid, the membrane became brittle and torn, making it impossible to measure the doping rate.

「実施例5:電解質膜のプロトン伝導度」
次に、実施例4における熱処理時間が2時間の電解質膜について、プロトン伝導度を測定した。プロトン伝導度は、電解質膜を2枚の白金電極(直径13mm)で挟み、複素インピーダンス測定より得られた抵抗値からプロトン伝導度を求め、更にプロトン伝導度の温度依存性も測定した。結果を図6に示す。
“Example 5: Proton conductivity of electrolyte membrane”
Next, proton conductivity of the electrolyte membrane having a heat treatment time of 2 hours in Example 4 was measured. The proton conductivity was measured by sandwiching the electrolyte membrane between two platinum electrodes (diameter 13 mm), obtaining the proton conductivity from the resistance value obtained from the complex impedance measurement, and measuring the temperature dependence of the proton conductivity. The results are shown in FIG.

熱処理時間が2時間の電解質膜は、150℃におけるプロトン伝導度が5.8×10−3(S/cm)を示した。また図6に示すように、測定温度範囲(60℃〜150℃)において安定したプロトン伝導性を示すことが分かる。 The electrolyte membrane with a heat treatment time of 2 hours had a proton conductivity at 150 ° C. of 5.8 × 10 −3 (S / cm). Moreover, as shown in FIG. 6, it turns out that the proton conductivity stable in the measurement temperature range (60 degreeC-150 degreeC) is shown.

「実施例6:発電特性」
実施例4における熱処理時間が2時間の電解質膜を用いて、燃料電池を製造した場合の特性を評価した。
まず、白金が50質量%担持されたカーボン粉末を含む触媒層を形成し、この触媒層をカーボン多孔質体上に積層して燃料電池用の多孔質電極とした。
そして、一対の上記多孔質電極の間に、実施例4における熱処理時間が2時間の電解質膜を挟み込んで単セルとした。燃料として水素を100cc/分の流量で、酸化剤として空気を200cc/分の流量でそれぞれ供給して、150℃、無加湿の条件にて発電試験を行った。結果を図7に示す。
図7に示すように、開路電圧0〜0.6A/cmの電流密度において0.9〜0.5V程度の電圧が得られた。このように本発明に係る電解質膜は、高温無加湿条件で運転可能である。また、リン酸のドープ率が比較的低いにも関わらず、優れた発電性能を示した。
“Example 6: Power generation characteristics”
Using the electrolyte membrane with a heat treatment time of 2 hours in Example 4, the characteristics when a fuel cell was produced were evaluated.
First, a catalyst layer containing carbon powder carrying 50% by mass of platinum was formed, and this catalyst layer was laminated on a carbon porous body to obtain a porous electrode for a fuel cell.
Then, an electrolyte membrane having a heat treatment time of 2 hours in Example 4 was sandwiched between the pair of porous electrodes to form a single cell. Hydrogen was supplied as a fuel at a flow rate of 100 cc / min and air as an oxidant was supplied at a flow rate of 200 cc / min, and a power generation test was conducted at 150 ° C. and without humidification. The results are shown in FIG.
As shown in FIG. 7, a voltage of about 0.9 to 0.5 V was obtained at a current density of an open circuit voltage of 0 to 0.6 A / cm 2 . As described above, the electrolyte membrane according to the present invention can be operated under a high temperature non-humidified condition. Moreover, although the doping rate of phosphoric acid was relatively low, excellent power generation performance was exhibited.

図1は、本発明の実施形態である燃料電池の要部を示す斜視分解図である。FIG. 1 is a perspective exploded view showing a main part of a fuel cell according to an embodiment of the present invention. 図2は、図1の燃料電池に備えられた膜−電極接合体を示す断面模式図である。FIG. 2 is a schematic cross-sectional view showing the membrane-electrode assembly provided in the fuel cell of FIG. 図3は、実験例3のリン酸ドープ前の電解質膜、イミダゾール及びVdF−HFP−TFEのFT−IRスペクトルを示すグラフである。FIG. 3 is a graph showing the FT-IR spectrum of the electrolyte membrane before doping with phosphate, imidazole, and VdF-HFP-TFE in Experimental Example 3. 図4は、実験例3のリン酸ドープ前の電解質膜、イミダゾール及びVdF−HFP−TFEの加熱減量曲線を示すグラフである。FIG. 4 is a graph showing a heating loss curve of the electrolyte membrane before the phosphoric acid doping of Experimental Example 3, imidazole, and VdF-HFP-TFE. 図5は、実施例3における、リン酸のドープ率とフッ素ポリマーとイミダゾールの合量に対するイミダゾールの比率との関係を示すグラフである。FIG. 5 is a graph showing the relationship between the doping rate of phosphoric acid and the ratio of imidazole to the total amount of fluoropolymer and imidazole in Example 3. 図6は、実施例5における、プロトン伝導度の温度依存性を示すグラフである。FIG. 6 is a graph showing temperature dependence of proton conductivity in Example 5. 図7は、実施例6における、電池電圧と電流密度との関係を示すグラフである。FIG. 7 is a graph showing the relationship between battery voltage and current density in Example 6.

符号の説明Explanation of symbols

1…燃料電池、10… 膜−電極接合体、20…バイポーラプレート、100…電解質膜(燃料電池用高分子電解質)、110、110’…触媒層、120、120’、121,121’…気体拡散層   DESCRIPTION OF SYMBOLS 1 ... Fuel cell, 10 ... Membrane-electrode assembly, 20 ... Bipolar plate, 100 ... Electrolyte membrane (polymer electrolyte for fuel cells), 110, 110 '... Catalyst layer, 120, 120', 121, 121 '... Gas Diffusion layer

Claims (14)

少なくとも(−CF−CF(M)CH−CF−)構造(但し、MはCX、CXH、CXHの何れかであり、XはFである)を有するフッ素系ポリマーに対して、塩基性化合物が付加されると共に、オルトリン酸、縮合リン酸、アルキルリン酸、ホスホン酸の中から選ばれる少なくとも1種類以上の酸が含浸されてなることを特徴とする燃料電池用高分子電解質。 A fluorine-based polymer having at least a (—CF 2 —CF (M) CH 2 —CF 2 —) structure (where M is any one of CX 3 , CX 2 H, and CXH 2 , and X is F) On the other hand, a basic compound is added and at least one acid selected from orthophosphoric acid, condensed phosphoric acid, alkylphosphoric acid and phosphonic acid is impregnated. Molecular electrolyte. 前記塩基性化合物の一部が、前記フッ素系ポリマーを架橋していることを特徴とする請求項1に記載の燃料電池用高分子電解質。   2. The polymer electrolyte for fuel cells according to claim 1, wherein a part of the basic compound crosslinks the fluoropolymer. 前記フッ素系ポリマーが、ビニリデンフロライド−ヘキサフルオロプロピレン共重合体、ビニリデンフロライド−ヘキサフルオロプロピレン−テトラフルオロエチレン3元共重合体のうちから選ばれる少なくとも1種であることを特徴とする請求項1または請求項2に記載の燃料電池用高分子電解質。   The fluoropolymer is at least one selected from vinylidene fluoride-hexafluoropropylene copolymer and vinylidene fluoride-hexafluoropropylene-tetrafluoroethylene terpolymer. The polymer electrolyte for fuel cells according to claim 1 or 2. 前記塩基性化合物が、環内窒素原子を含有する複素環式化合物であることを特徴とする請求項1乃至請求項3の何れかに記載の燃料電池用高分子電解質。   The polymer electrolyte for fuel cells according to any one of claims 1 to 3, wherein the basic compound is a heterocyclic compound containing an endocyclic nitrogen atom. 前記塩基性化合物が、イミダゾール系化合物であることを特徴とする請求項1乃至請求項4の何れかに記載の燃料電池用高分子電解質。   The polymer electrolyte for a fuel cell according to any one of claims 1 to 4, wherein the basic compound is an imidazole compound. 前記塩基性化合物が、下記式(1)または(2)に示すイミダゾール系化合物であることを特徴とする請求項1乃至請求項5の何れかに記載の燃料電池用高分子電解質。
Figure 2008153114
但し、式(1)において、RはHまたはCNH(mは1〜3の整数)であり、RはHまたはC2n+1(nは1〜3の整数)である。
The polymer electrolyte for a fuel cell according to any one of claims 1 to 5, wherein the basic compound is an imidazole compound represented by the following formula (1) or (2).
Figure 2008153114
However, in the formula (1), R 1 is H or C m H m NH 2 is (m is an integer of 1 to 3), R 2 is H or C n H 2n + 1 (n is an integer of 1 to 3) is there.
前記塩基性化合物が付加されたフッ素系ポリマーが、下記式(3)〜(5)に示す構造を有するものであることを特徴とする請求項1乃至請求項6のいずれかに記載の燃料電池用高分子電解質。
Figure 2008153114
但し、式(3)または(4)において、MはCX、CXH、CXHの何れかであり、XはFであり、mは1〜3の整数であり、RはHまたはC2n+1(nは1〜3の整数)である。
The fuel cell according to any one of claims 1 to 6, wherein the fluorine-based polymer to which the basic compound has been added has a structure represented by the following formulas (3) to (5). For polymer electrolytes.
Figure 2008153114
However, in Formula (3) or (4), M is any one of CX 3 , CX 2 H, and CXH 2 , X is F, m is an integer of 1 to 3, and R 2 is H or C n H 2n + 1 (n is an integer of 1 to 3).
少なくとも(−CF−CF(M)CH−CF−)構造(但し、MはCX、CXH、CXHの何れかであり、XはFである)を有するフッ素系ポリマーと塩基性化合物とを、有機溶媒に溶解して混合液とし、前記(−CF−CF(M)CH−CF−)構造と前記塩基性化合物との反応を行う工程と、
前記反応後の混合液から前記有機溶媒を除去して得た析出物の熱処理を行う工程と、
熱処理後の析出物に、オルトリン酸、縮合リン酸、アルキルリン酸、ホスホン酸の中から選ばれる少なくとも1種類以上の酸を含浸させる工程と、を具備してなることを特徴とする燃料電池用高分子電解質の製造方法。
A fluorine-based polymer having at least a (—CF 2 —CF (M) CH 2 —CF 2 —) structure (where M is any of CX 3 , CX 2 H, CXH 2 , and X is F); A step of dissolving a basic compound in an organic solvent to form a mixed solution, and reacting the (—CF 2 —CF (M) CH 2 —CF 2 —) structure with the basic compound;
Performing a heat treatment of the precipitate obtained by removing the organic solvent from the mixed solution after the reaction;
A step of impregnating the precipitate after the heat treatment with at least one acid selected from orthophosphoric acid, condensed phosphoric acid, alkylphosphoric acid, and phosphonic acid. A method for producing a polymer electrolyte.
前記フッ素系ポリマーが、ビニリデンフロライド−ヘキサフルオロプロピレン共重合体、ビニリデンフロライド−ヘキサフルオロプロピレン−テトラフルオロエチレン3元共重合体のうちから選ばれる少なくとも1種であることを特徴とする請求項8に記載の燃料電池用高分子電解質の製造方法。   The fluoropolymer is at least one selected from vinylidene fluoride-hexafluoropropylene copolymer and vinylidene fluoride-hexafluoropropylene-tetrafluoroethylene terpolymer. 9. A method for producing a polymer electrolyte for a fuel cell according to 8. 前記塩基性化合物が、環内窒素原子を含有する複素環式化合物であることを特徴とする請求項8または請求項9に記載の燃料電池用高分子電解質の製造方法。   The method for producing a polymer electrolyte for a fuel cell according to claim 8 or 9, wherein the basic compound is a heterocyclic compound containing an endocyclic nitrogen atom. 前記塩基性化合物が、イミダゾール系化合物であることを特徴とする請求項8乃至請求項10の何れかに記載の燃料電池用高分子電解質の製造方法。   The method for producing a polymer electrolyte for a fuel cell according to any one of claims 8 to 10, wherein the basic compound is an imidazole compound. 前記塩基性化合物が、下記式(6)または(7)に示すイミダゾール系化合物であることを特徴とする請求項8乃至請求項11の何れかに記載の燃料電池用高分子電解質の製造方法。
Figure 2008153114
但し、式(6)において、RはHまたはCNH(mは1〜3の整数)であり、RはHまたはC2n+1(nは1〜3の整数)である。
The method for producing a polymer electrolyte for a fuel cell according to any one of claims 8 to 11, wherein the basic compound is an imidazole compound represented by the following formula (6) or (7).
Figure 2008153114
However, in the formula (6), R 1 is H or C m H m NH 2 is (m is an integer of 1 to 3), R 2 is H or C n H 2n + 1 (n is an integer of 1 to 3) is there.
一対の電極と各電極の間に配置された電解質膜とを具備してなり、前記電解質膜が、請求項1乃至請求項7のいずれかに記載の燃料電池用高分子電解質からなることを特徴とする燃料電池。   A fuel cell polymer electrolyte according to any one of claims 1 to 7, wherein the electrolyte membrane comprises a pair of electrodes and an electrolyte membrane disposed between the electrodes. A fuel cell. 前記電極の一部に、請求項1乃至請求項7のいずれかに記載の燃料電池用高分子電解質が含有されていることを特徴とする請求項13に記載の燃料電池。   14. The fuel cell according to claim 13, wherein a part of the electrode contains the polymer electrolyte for a fuel cell according to claim 1.
JP2006341226A 2006-12-19 2006-12-19 Solid polymer electrolyte for fuel cell, method for producing solid polymer electrolyte for fuel cell, and fuel cell Active JP5264070B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2006341226A JP5264070B2 (en) 2006-12-19 2006-12-19 Solid polymer electrolyte for fuel cell, method for producing solid polymer electrolyte for fuel cell, and fuel cell
KR1020070052914A KR100868757B1 (en) 2006-12-19 2007-05-30 Solid polymer electrolyte for fuel cell, manufacturing method thereof, and fuel cell using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006341226A JP5264070B2 (en) 2006-12-19 2006-12-19 Solid polymer electrolyte for fuel cell, method for producing solid polymer electrolyte for fuel cell, and fuel cell

Publications (2)

Publication Number Publication Date
JP2008153114A true JP2008153114A (en) 2008-07-03
JP5264070B2 JP5264070B2 (en) 2013-08-14

Family

ID=39655073

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006341226A Active JP5264070B2 (en) 2006-12-19 2006-12-19 Solid polymer electrolyte for fuel cell, method for producing solid polymer electrolyte for fuel cell, and fuel cell

Country Status (2)

Country Link
JP (1) JP5264070B2 (en)
KR (1) KR100868757B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009158373A (en) * 2007-12-27 2009-07-16 Samsung Sdi Co Ltd Polyelectrolyte for fuel cell and manufacturing method therefor, membrane electrode assembly, and fuel cell

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8480917B2 (en) 2008-12-12 2013-07-09 Samsung Electronics Co., Ltd. Solid electrolyte polymer, polymer actuator using cross-linked polyvinylidene fluoride-based polymer, and method of manufacturing the polymer actuator

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005209520A (en) * 2004-01-23 2005-08-04 Samsung Sdi Co Ltd Gel electrolyte, electrode for fuel cell, fuel cell and method of manufacturing gel electrolyte

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5525436A (en) * 1994-11-01 1996-06-11 Case Western Reserve University Proton conducting polymers used as membranes
JP3766861B2 (en) 1999-03-01 2006-04-19 独立行政法人産業技術総合研究所 Bipolar membrane fuel cell using solid polymer electrolyte membrane
JP2004311212A (en) * 2003-04-07 2004-11-04 Samsung Electronics Co Ltd Proton conducting film and its manufacturing method and fuel cell

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005209520A (en) * 2004-01-23 2005-08-04 Samsung Sdi Co Ltd Gel electrolyte, electrode for fuel cell, fuel cell and method of manufacturing gel electrolyte

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009158373A (en) * 2007-12-27 2009-07-16 Samsung Sdi Co Ltd Polyelectrolyte for fuel cell and manufacturing method therefor, membrane electrode assembly, and fuel cell

Also Published As

Publication number Publication date
JP5264070B2 (en) 2013-08-14
KR100868757B1 (en) 2008-11-17
KR20080057126A (en) 2008-06-24

Similar Documents

Publication Publication Date Title
JP5209949B2 (en) Cathode electrode for fuel cell, method for producing the cathode electrode, and phosphoric acid fuel cell employing the cathode electrode
EP1788655B1 (en) Polymer membrane for fuel cell, method of preparing same, and membrane-electrode assemby for fuel cell comprising same
JP4999039B2 (en) Ion conductive binder
JP4870360B2 (en) FUEL CELL ELECTRODE, FUEL CELL, AND METHOD FOR PRODUCING FUEL CELL ELECTRODE
JP4290615B2 (en) Membrane electrode assembly, fuel cell stack, fuel cell system, and method of manufacturing membrane electrode assembly
JP5264070B2 (en) Solid polymer electrolyte for fuel cell, method for producing solid polymer electrolyte for fuel cell, and fuel cell
KR20110124698A (en) Electrode for fuel cell, preparing method thereof, and membrane electrode assembly and fuel cell employing the same
JP4684935B2 (en) Cathode electrode for fuel cell and fuel cell
JP4597835B2 (en) PROTON CONDUCTIVE ELECTROLYTE MEMBRANE FOR FUEL CELL, ITS MANUFACTURING METHOD, AND FUEL CELL
EP2128185B1 (en) Polymer and membrane-electrode assembly for fuel cell, and fuel cell system including the same
EP2036927B1 (en) Ionic polymer particle dispersion liquid and method for producing the same
KR100956652B1 (en) Crosslinking polymer electrolyte membranes, Method for preparing thereof and Fuel cell comprising the electrolyte membranes
KR20140108977A (en) Supporter for fuel cell, method of preparing same, and electrode for fuel cell, membrane-electrode assembly for a fuel cell and fuel cell system including same
JP5280047B2 (en) POLYMER ELECTROLYTE FOR FUEL CELL AND METHOD FOR PRODUCING THE SAME, MEMBRANE ELECTRODE ASSEMBLY, AND FUEL CELL
JP5079306B2 (en) Polymer electrolyte membrane for fuel cell, membrane-electrode assembly, and fuel cell
JP4593420B2 (en) Proton conducting electrolyte for fuel cell, method for producing proton conducting electrolyte for fuel cell, and fuel cell
KR20110125189A (en) Electrode for fuel cell, membrane electrode assembly and fuel cell having the same, and preparing method of electrode for fuel cell
JP2004327141A (en) Electrode catalyst for fuel cell, its manufacturing method, and fuel cell
JP2009158372A (en) Binder composition for fuel cell, membrane electrode assembly, and fuel cell
JP2005011697A (en) Proton exchange material and fuel cell electrode using the same
JP4271390B2 (en) Method for producing electrode structure for polymer electrolyte fuel cell and polymer electrolyte fuel cell
KR100649569B1 (en) Method of preparing membrane-electrode for fuel cell
JP4687038B2 (en) Manufacturing method of electrolyte membrane for fuel cell
KR20100072967A (en) Graft copolymer electrolyte membranes and preparation method thereof
JP2009087607A (en) Fuel cell and member therefor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090224

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120216

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120313

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120611

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121221

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130315

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130409

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130430

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5264070

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250