JP2008150896A - Method and structure of aseismic reinforcing backfill ground - Google Patents

Method and structure of aseismic reinforcing backfill ground Download PDF

Info

Publication number
JP2008150896A
JP2008150896A JP2006341320A JP2006341320A JP2008150896A JP 2008150896 A JP2008150896 A JP 2008150896A JP 2006341320 A JP2006341320 A JP 2006341320A JP 2006341320 A JP2006341320 A JP 2006341320A JP 2008150896 A JP2008150896 A JP 2008150896A
Authority
JP
Japan
Prior art keywords
buffer layer
back surface
backfill
seismic reinforcement
backfill ground
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006341320A
Other languages
Japanese (ja)
Inventor
Hemanta Hazarika
ハザリカ ヘマンタ
Takahiro Sugano
高弘 菅野
Yoshiaki Kikuchi
喜昭 菊池
Takao Kishida
隆夫 岸田
Yoshio Mitarai
義夫 御手洗
Takeshi Nagatome
健 永留
Hiroyuki Kawai
弘之 川合
Hideo Takeichi
秀雄 武市
Kumar Karmokar Ashok
アショカ・クマル・カルモカル
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bridgestone Corp
Toa Corp
National Institute of Maritime Port and Aviation Technology
Original Assignee
Bridgestone Corp
Toa Corp
National Institute of Maritime Port and Aviation Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bridgestone Corp, Toa Corp, National Institute of Maritime Port and Aviation Technology filed Critical Bridgestone Corp
Priority to JP2006341320A priority Critical patent/JP2008150896A/en
Publication of JP2008150896A publication Critical patent/JP2008150896A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Retaining Walls (AREA)
  • Revetment (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of aseismic reinforcing backfill ground, which contributes to reduction of dynamic earth pressure and hydraulic pressure occurring in the backfill ground developed on a rear surface of a structure at the time of an earthquake, and exerts excellent construction efficiency, and to provide a structure of seismically reinforcing the same. <P>SOLUTION: According to the method, a cushioning layer 6 formed of a mixed material 5 consisting of rubber chips 5a and crushed stones 5b having almost the same particle diameter, is arranged along the rear surface of the structure 1. Then the dynamic earth pressure of the backfill ground 3, occurring due to the earthquake is transmitted via a pressure plate 8 to the cushioning layer 6 which then absorbs the dynamic earth pressure by virtue of elastic deformation of the rubber chips 5a while securing suitable voids therein. Further the voids having excellent water permeability function to reduce increased hydraulic pressure of the backfill ground 3, to thereby prevent liquefaction. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、裏込め地盤の耐震補強工法および構造に関し、さらに詳しくは、地震時に構造物の背面に造成された裏込め地盤に生じる動的な土圧および水圧を低減することができ、施工性に優れた裏込め地盤の耐震補強工法および構造に関するものである。   The present invention relates to a seismic reinforcement method and structure for backfill ground, and more specifically, it can reduce the dynamic earth pressure and water pressure generated in the backfill ground created on the back of the structure during an earthquake. It is related to the seismic reinforcement method and structure of the backfill ground which is excellent in

既設構造物の耐震補強としては、構造物や基礎地盤の物理的な補強のほかに、裏込め部分における地震時土圧の低減と埋め立て地盤から作用する過剰間水圧の消散工法などの方法が挙げられる。地震時土圧の低減方法としては、一般に締固めや固化材の攪拌混合による地盤改良、砕石などの透水性に優れた材料を柱状に配置するバーチカル・ドレーンにより過剰間水圧を消散させる方法が種々提案されている(例えば、特許文献1参照)。   Examples of seismic reinforcement for existing structures include physical reinforcement of structures and foundation ground, as well as methods of reducing earth pressure during earthquakes in the backfill area and dissipating excess water pressure acting on landfills. It is done. As methods for reducing earth pressure during earthquakes, there are various methods to dissipate excess water pressure using vertical drains that are arranged in a columnar shape with materials with excellent water permeability such as crushed stone, and generally ground improvement by compaction and agitation and mixing of solidified materials. It has been proposed (see, for example, Patent Document 1).

その他に構造物の背面にゴムチップを配置して緩衝層を形成することも検討されているが、地下水位以下や海上での施工においては、ゴムチップの比重が小さいため、安定して所定位置にゴムチップを配置することが困難であり施工性に問題があった。
特開2001−11848号公報
In addition, it is also considered to place a rubber chip on the back of the structure to form a buffer layer, but the rubber chip has a low specific gravity in construction below the groundwater level or at sea, so the rubber chip is stably placed in place. It was difficult to arrange and there was a problem in workability.
JP 2001-11848 A

本発明の目的は、地震時に構造物の背面に造成された裏込め地盤に生じる動的な土圧および水圧を低減することができ、施工性に優れた裏込め地盤の耐震補強工法および構造を提供することにある。   The object of the present invention is to reduce the dynamic earth pressure and water pressure generated in the backfill ground created on the back of the structure at the time of an earthquake, and to improve the seismic reinforcement method and structure of the backfill ground with excellent workability. It is to provide.

上記目的を達成するため本発明の裏込め地盤の耐震補強工法は、構造物の背面に造成される裏込め地盤の耐震補強工法であって、粒径が略同一のゴムチップと砕石とを混合した混合材を、前記構造物の背面の上下方向少なくとも一部に沿って配置して緩衝層を形成することを特徴とするものである。   In order to achieve the above object, the seismic reinforcement method for backfilled ground according to the present invention is a seismic strengthening method for backfilled ground created on the back of a structure, in which rubber chips having substantially the same particle size and crushed stone are mixed. The buffer material is formed by arranging the mixed material along at least a part of the back surface of the structure in the vertical direction.

ここで、前記混合材を、前記構造物の背面に沿って該構造物の下端部から上端部まで連続するように配置して緩衝層を形成することもでき、緩衝層の背面に沿って受圧板を配置することもできる。また、混合材を複数の通水性を有する袋状の収容体に予め収容しておき、該混合材を収容した収容体を積み上げて緩衝層を形成することもできる。また、緩衝層の背面を傾斜させて緩衝層の層厚が下方側でより大きくなるようにしてもよい。   Here, the buffer material may be formed by arranging the mixed material so as to be continuous from the lower end portion to the upper end portion of the structure along the back surface of the structure. A plate can also be arranged. Alternatively, the mixed material may be stored in advance in a plurality of bag-shaped containers having water permeability, and the buffer members may be formed by stacking the containers containing the mixed materials. Further, the back surface of the buffer layer may be inclined so that the thickness of the buffer layer becomes larger on the lower side.

また、本発明の裏込め地盤の耐震補強構造は、構造物の背面に造成される裏込め地盤の耐震補強構造であって、前記構造物の背面の上下方向少なくとも一部に沿って、粒径が略同一のゴムチップと砕石とを混合した混合材からなる緩衝層を設けたことを特徴とするものである。   Further, the seismic reinforcement structure of the backfill ground according to the present invention is a seismic reinforcement structure of the backfill ground formed on the back surface of the structure, and has a particle size along at least a part of the back surface of the structure in the vertical direction. Is provided with a buffer layer made of a mixed material obtained by mixing substantially the same rubber chip and crushed stone.

ここで、緩衝層を構造物の背面の下端部から上端部まで連続的に設けてもよく、緩衝層の背面に沿って受圧板を設けてもよい。また、緩衝層を、混合材を収容した通水性を有する袋状の収容体を複数積み上げて形成する構造にすることもできる。緩衝層の層厚が下方側でより大きくなるように緩衝層の背面が傾斜している構造にすることもできる。ゴムチップおよび砕石の粒径は例えば2mm以上60mm以下にする。   Here, the buffer layer may be provided continuously from the lower end to the upper end of the back surface of the structure, or the pressure receiving plate may be provided along the back surface of the buffer layer. In addition, the buffer layer may be formed by stacking a plurality of bag-like containers having water permeability and containing a mixed material. It is also possible to adopt a structure in which the back surface of the buffer layer is inclined so that the thickness of the buffer layer becomes larger on the lower side. The particle size of the rubber chip and crushed stone is, for example, 2 mm or more and 60 mm or less.

本発明によれば、構造物の背面に土砂等を裏込めすることにより造成した裏込め地盤に、構造物の背面に沿うように形成された略同一粒径のゴムチップと砕石とを混合した混合材からなる緩衝層が、地震の際に適度な空隙を有しつつゴムチップが弾性変形することによって、裏込め地盤に生じる動的な土圧を吸収するとともに、ゴムチップと砕石との空隙による優れた透水性により裏込め地盤の水圧上昇を低減させるので裏込め地盤の液状化現象を抑制することができる。   According to the present invention, the backfill ground formed by backfilling earth and sand etc. on the back surface of the structure is mixed with rubber chips and crushed stones of substantially the same particle size formed along the back surface of the structure. The buffer layer made of wood absorbs the dynamic earth pressure generated in the backfill ground by elastic deformation of the rubber chip while having an appropriate gap in the event of an earthquake, and excellent due to the gap between the rubber chip and the crushed stone Since the water pressure rise of the backfill ground is reduced by the water permeability, the liquefaction phenomenon of the backfill ground can be suppressed.

また、混合材にゴムチップよりも比重の大きい砕石を混合しているので、海水面や地下水面以下に緩衝層を形成する場合であっても、安定して混合材を所定位置に配置することができ施工性が向上する。   Moreover, since the crushed stone having a specific gravity larger than that of the rubber chip is mixed with the mixed material, even when the buffer layer is formed below the seawater surface or the groundwater surface, the mixed material can be stably disposed at a predetermined position. The workability is improved.

また、緩衝層の背面に沿って受圧板を配置することにより、背面土圧の均等かつ効率的な伝達と吸収が可能になる。構造物が新設の際は、この混合材を構造物と受圧板との間に充填した構造にすることで、構造物自体の断面縮小化や構造物の基礎地盤の地盤改良範囲の縮小化が可能になりコストダウンに寄与する。   Further, by arranging the pressure receiving plate along the back surface of the buffer layer, the back surface earth pressure can be transmitted and absorbed evenly and efficiently. When a structure is newly established, a structure in which this mixed material is filled between the structure and the pressure plate can reduce the cross-section of the structure itself and the ground improvement range of the foundation ground of the structure. It becomes possible and contributes to cost reduction.

以下、本発明の裏込め地盤の耐震補強工法および構造を図に示した実施形態に基づいて説明する。   Hereinafter, the seismic reinforcement method and structure of the backfill ground of the present invention will be described based on the embodiments shown in the drawings.

図1に例示するように、ケーソンや擁壁等の構造体1の背面に土砂等の裏込め土4を裏込めして造成された裏込め地盤3が本発明の耐震補強の対象となる。この構造物1は海底のマウンド2上から海上に立設され、その背面に沿って層厚(水平方向の長さ)をほぼ一定にした緩衝層6が形成されている。緩衝層6の上面にはグラベルマット6aが敷設され、背面には受圧板8が沿うように設置され、この受圧板8の背面側が裏込め地盤3になっている。   As illustrated in FIG. 1, a backfill ground 3 formed by backfilling backfill soil 4 such as earth and sand on the back of a structure 1 such as a caisson or a retaining wall is an object of seismic reinforcement of the present invention. The structure 1 is erected on the seabed 2 from above the seabed, and a buffer layer 6 having a substantially constant layer thickness (horizontal length) is formed along the back surface thereof. A gravel mat 6 a is laid on the upper surface of the buffer layer 6, and a pressure receiving plate 8 is installed on the rear surface, and the back side of the pressure receiving plate 8 is the backfill ground 3.

この緩衝層6は、ほぼ同じ粒径のゴムチップ5aおよび砕石5bの混合材5が通水性を有する袋状の収容体7に収容され、この収容体7を複数積み上げることにより形成されていて適度な空隙を有している。空隙率が50〜60%程度確保できれば、混合材5には粒径の程度が異なるゴムチップ5aや砕石5b、その他の混合物が若干混合していてもよい。ゴムチップ5aおよび砕石5bの好ましい粒径は、例えば2mm〜60mmであり、この範囲であると、より適度な空隙とゴムチップ5aの弾性変形を確保でき、優れた緩衝効果を得ることができる。   The buffer layer 6 is formed by storing a mixture 5 of rubber chips 5a and crushed stones 5b having substantially the same particle diameter in a bag-like container 7 having water permeability, and by stacking a plurality of these containers 7. There are voids. As long as the porosity of about 50 to 60% can be ensured, the mixed material 5 may be mixed with rubber chips 5a, crushed stones 5b, and other mixtures having different particle sizes. The preferable particle diameters of the rubber chip 5a and the crushed stone 5b are, for example, 2 mm to 60 mm, and within this range, more appropriate voids and elastic deformation of the rubber chip 5a can be ensured, and an excellent buffering effect can be obtained.

尚、ゴムチップ5aと砕石5bの体積混合割合は、後述する実施例で示すように、予め混合割合を変えた混合材5を用いて緩衝層6の試験サンプルSを作製し、試験サンプルSで測定した緩衝効果(土圧低減効果)を把握しておき、その測定結果と施工現場での必要仕様とに基づいて決定するようにする。   In addition, the volume mixing ratio of the rubber chip 5a and the crushed stone 5b is measured with the test sample S by preparing the test sample S of the buffer layer 6 using the mixed material 5 in which the mixing ratio is changed in advance, as shown in the examples described later. The buffer effect (earth pressure reduction effect) is grasped and determined based on the measurement result and the required specifications at the construction site.

ゴムチップ5aは、例えば、使用済みタイヤを破砕したもの(タイヤチップ)を用いることができ、これによれば、使用済みタイヤを有効利用することができる。砕石5bは、コンクリート再生砕石など種々の砕石やこれらに類するものでよく、ゴムチップ5aと砕石5bの比重は、それぞれ1.10〜1.20、2.60〜2.80程度である。   As the rubber chip 5a, for example, a crushed used tire (tire chip) can be used, and according to this, the used tire can be effectively used. The crushed stone 5b may be various crushed stones such as concrete recycled crushed stone or the like, and the specific gravity of the rubber chip 5a and the crushed stone 5b is about 1.10 to 1.20 and about 2.60 to 2.80, respectively.

収容体7は、例えば、ジオテキスタイルと呼ばれる土木等の用途に使用される高分子材料からなる織布や不織布、編物等で構成される。その他、通水性を有し、混合材5を保持できるものであれば、収容体7として用いることができる。   The container 7 is made of, for example, a woven fabric, a nonwoven fabric, a knitted fabric, or the like made of a polymer material used for civil engineering or the like called geotextile. In addition, the container 7 can be used as long as it has water permeability and can hold the mixed material 5.

次に、この裏込め地盤3の耐震補強構造を構築するための本発明の耐震補強工法を例示する。   Next, the seismic reinforcement method of the present invention for constructing the seismic reinforcement structure of the backfill ground 3 will be exemplified.

まず、構造体1を新設し、その背面に新たに裏込め地盤3を造成する場合は、図2に例示するように工場や施工現場において、予め構造体1の背面から間隔をあけて受圧板8を立設し、構造体1の背面と受圧板8との間の幅方向両端部に仕切り壁を設けて、混合材5を配置する箱状のスペースを設けておく。この仕切り壁は、緩衝層6による緩衝効果を妨げないように剛性の低いものとする。   First, when the structure 1 is newly established and the backfill ground 3 is newly created on the back surface thereof, the pressure receiving plate is previously spaced from the back surface of the structure body 1 at the factory or construction site as illustrated in FIG. 8, a partition wall is provided at both ends in the width direction between the back surface of the structure 1 and the pressure receiving plate 8, and a box-like space for arranging the mixed material 5 is provided. The partition wall is assumed to have low rigidity so as not to hinder the buffering effect of the buffer layer 6.

そして、構造体1の背面と受圧板8との間にゴムチップ5aおよび砕石5bの混合材5を予め収容した収容体7を上下に積み重ねて充填することにより緩衝層6を形成する。本発明では混合材5は、収容体7に収容せずに直接、構造体1の背面と受圧板8との間に投入して充填するようにしてもよい。   And the buffer layer 6 is formed by stacking up and down and filling the container 7 which previously accommodated the mixed material 5 of the rubber chip 5a and the crushed stone 5b between the back surface of the structure 1 and the pressure receiving plate 8. FIG. In the present invention, the mixed material 5 may be charged directly between the back surface of the structure 1 and the pressure receiving plate 8 without being accommodated in the accommodating body 7.

受圧板8は図3に例示するように、上下に複数分割したものを順次、上方に連結するようにして施工を進めることもできる。   As illustrated in FIG. 3, the pressure receiving plate 8 can be constructed in such a manner that a plurality of the pressure receiving plates 8 that are divided into upper and lower portions are sequentially connected upward.

このように、構造体1の背面に沿って構造物1の下端部から上端部まで連続するように混合材5を配置して緩衝層6を形成した後、受圧板8の背面に裏込め土4を裏込めして裏込め地盤3を造成する。   As described above, after the mixed material 5 is arranged along the back surface of the structure 1 so as to be continuous from the lower end portion to the upper end portion of the structure 1 to form the buffer layer 6, the backfilling soil is formed on the back surface of the pressure receiving plate 8. 4 is backed up and back ground 3 is created.

この耐震補強工法では、混合材5にゴムチップ5aよりも比重の大きい砕石5bを混合しているので、海水面や地下水面以下に緩衝層6を形成する場合であっても、安定して混合材5を所定位置に配置することができ、施工性が著しく向上する。   In this seismic strengthening method, the mixed material 5 is mixed with the crushed stone 5b having a specific gravity larger than that of the rubber chip 5a. Therefore, even when the buffer layer 6 is formed below the seawater surface or the groundwater surface, the mixed material is stably provided. 5 can be arrange | positioned in a predetermined position, and workability improves remarkably.

混合材5は施工現場で収容体7に収容してもよいが、予め工場等で収容しておくと、周囲に混合材5を撒き散らすことがなく、施工時間の短縮を図ることもできる。また、混合材5を収容体7に収容し、この収容体7を積み上げて緩衝層6を形成すると混合材5を周囲に拡散させることなく、かつ迅速に作業を行なうことができる。また、混合材5を収容体7に収容しておくと施工後に地中で不用意に拡散することがなく、地震時の動的な土圧および水圧の緩衝効果が損なわれにくくなる。   The mixed material 5 may be stored in the container 7 at the construction site. However, if the mixed material 5 is stored in advance in a factory or the like, the mixed material 5 is not scattered around and the construction time can be shortened. Further, when the mixed material 5 is accommodated in the accommodating body 7 and the accommodating bodies 7 are stacked to form the buffer layer 6, the work can be quickly performed without diffusing the mixed material 5 around. Moreover, if the mixed material 5 is accommodated in the accommodating body 7, it will not spread carelessly in the ground after construction, and the buffering effect of dynamic earth pressure and water pressure during an earthquake will not be easily impaired.

裏込め地盤3は、地震により加振されると裏込め地盤3の裏込め土(裏込め砂)4の粒子間の水圧が急上昇して液状化現象が生じ易い。また、動的な土圧が構造物1に作用して構造物1に過大な負荷がかかるが、本発明の耐震補強構造によれば、地震の際に、構造体1と裏込め地盤3とに挟まれた緩衝層6では、ゴムチップ5aと砕石5bとの間に適度な空隙を確保しつつ、ゴムチップ5aが弾性変形する。この弾性変形によって動的な水平土圧は吸収されて低減し、かつ緩衝層6の有する適度な空隙による優れた透水性により裏込め地盤3の水圧上昇が低減されるため、液状化現象を抑制することができる。さらに、構造体1に作用する土圧も低減する。   When the backfill ground 3 is vibrated by an earthquake, the water pressure between the particles of the backfill soil (backfill sand) 4 of the backfill ground 3 rises rapidly and a liquefaction phenomenon is likely to occur. Moreover, although dynamic earth pressure acts on the structure 1 and an excessive load is applied to the structure 1, according to the earthquake-proof reinforcement structure of the present invention, the structure 1 and the backfill ground 3 In the buffer layer 6 sandwiched between the rubber chips 5a, the rubber chips 5a are elastically deformed while securing an appropriate gap between the rubber chips 5a and the crushed stones 5b. Due to this elastic deformation, the dynamic horizontal earth pressure is absorbed and reduced, and the water pressure rise of the backfill ground 3 is reduced due to the excellent water permeability due to the moderate gap of the buffer layer 6, thereby suppressing the liquefaction phenomenon. can do. Furthermore, the earth pressure acting on the structure 1 is also reduced.

緩衝層6の背面に設けた受圧板8は、地震時の揺れによる土圧を緩衝層6に分散させて伝達するので、緩衝層6の広い範囲で動的な土圧を吸収することが可能になる。即ち、受圧板8を設けることで、背面土圧を均等かつ効率的に緩衝層6に伝達、吸収させて一段と優れた緩衝効果を得ることができる。受圧板8は、土圧を緩衝層6に分散して伝えることができれば特に限定されず、例えば、鉄板や矢板鋼板を用いることができる。受圧板8は透水性を持たせるために、有孔構造にすることもできる。
また、上記のように新設の構造物1の背面と受圧板8との間に混合材5を充填した構造にすることで、地震時に構造物1に作用する水平土圧の低減と裏込め地盤3の過剰間隙水圧の消散、これらに起因する転倒モーメントや端し圧が低減し、構造物1の底面幅や壁厚の縮小、基礎地盤の地盤改良幅の低減など基礎地盤を含めた断面構造全体の縮小化により、構造物1などの構成部材の製造コストや施工に必要なコストを抑えることも可能になる。
Since the pressure receiving plate 8 provided on the back surface of the buffer layer 6 transmits the earth pressure caused by the shaking at the time of the earthquake dispersed to the buffer layer 6, it is possible to absorb the dynamic earth pressure in a wide range of the buffer layer 6. become. That is, by providing the pressure receiving plate 8, the earth pressure on the back surface can be transmitted and absorbed to the buffer layer 6 evenly and efficiently to obtain a more excellent buffering effect. The pressure receiving plate 8 is not particularly limited as long as the earth pressure can be distributed and transmitted to the buffer layer 6. For example, an iron plate or a sheet pile steel plate can be used. The pressure receiving plate 8 can have a perforated structure in order to provide water permeability.
In addition, by using a structure in which the mixed material 5 is filled between the back surface of the new structure 1 and the pressure plate 8 as described above, the horizontal earth pressure acting on the structure 1 during an earthquake is reduced and the backfill ground Sectional structure including the foundation ground, such as dissipating the excess pore water pressure of 3 and reducing the falling moment and edge pressure resulting from these, reducing the bottom width and wall thickness of the structure 1, and reducing the ground improvement width of the foundation ground By reducing the overall size, it is possible to reduce the manufacturing cost of the structural member such as the structure 1 and the cost required for construction.

本発明では、緩衝層6の背面に受圧板8を設けない耐震補強構造にすることもでき、受圧板8を設けない場合や受圧板8にすき間や貫通孔を設けた場合は、地震の際に裏込め地盤3に含まれている水分が、適度な空隙を有している緩衝層6の混合材5の粒子間を通過して表面に流出することができる。このように緩衝層6がドレーンとして機能する場合は、裏込め地盤3の水圧上昇が抑制されることによる液状化現象防止効果を得ることができる。   In the present invention, a seismic reinforcement structure in which the pressure receiving plate 8 is not provided on the back surface of the buffer layer 6 can be provided. The moisture contained in the backfill ground 3 can pass between the particles of the mixed material 5 of the buffer layer 6 having an appropriate gap and flow out to the surface. Thus, when the buffer layer 6 functions as a drain, the effect of preventing the liquefaction phenomenon by suppressing the increase in water pressure of the backfill ground 3 can be obtained.

次に、既設の構造物1の背面の裏込め地盤3を耐震補強する場合について説明する。   Next, the case where the backfill ground 3 on the back surface of the existing structure 1 is seismically reinforced will be described.

図4に例示するように、構造物1の背面に裏込め石4aがある場合や控え工がある場合には、まず、構造物1の背面を安定勾配で掘削して、緩衝層6を形成するスペースを確保する。次いで、図5に例示するように構造物1の背面から所定間隔あけて受圧板8を立設し、構造物1の背面と受圧板8の間に混合材5を収容した収容体7を順次、積み上げて緩衝層6を形成する。緩衝層6を形成した後、受圧板8の背面側には裏込め土4を埋め戻して耐震補強構造を構築する。   As illustrated in FIG. 4, when there is a backfill stone 4 a on the back surface of the structure 1 or when there is a construction work, first, the back surface of the structure 1 is excavated with a stable gradient to form the buffer layer 6. To secure space. Next, as illustrated in FIG. 5, the pressure receiving plate 8 is erected at a predetermined interval from the back surface of the structure 1, and the container 7 containing the mixed material 5 is sequentially placed between the back surface of the structure 1 and the pressure receiving plate 8. The buffer layer 6 is formed by stacking. After the buffer layer 6 is formed, the backfill soil 4 is backfilled on the back side of the pressure receiving plate 8 to construct an earthquake resistant reinforcement structure.

図6に例示するように、構造物1の背面に裏込め石4aや控え工がない場合は、構造物1の背面から所定間隔をあけて受圧板8と山留め18とを打設して、構造物1と山留め18の間の裏込め土4を掘削、除去して緩衝層6を形成するスペースを確保する。次いで、構造物1と山留め18の間のスペースに混合材6を投入、充填して緩衝層6を形成する。構造物1の背面に裏込め石4aや控え工がない場合にも、構造物1の背面を安定勾配で掘削して、緩衝層6を形成するスペースを確保し、構造物1の背面から所定間隔あけて受圧板8を立設し、この構造物1の背面と受圧板8の間に混合材5を収容した収容体7を順次、積み上げて緩衝層6を形成することもできる。   As illustrated in FIG. 6, when there is no backfilling stone 4 a or a guard on the back surface of the structure 1, the pressure receiving plate 8 and the mountain stopper 18 are driven at a predetermined interval from the back surface of the structure 1, The backfill soil 4 between the structure 1 and the pile 18 is excavated and removed to secure a space for forming the buffer layer 6. Next, the buffer material 6 is formed by charging and filling the mixed material 6 into the space between the structure 1 and the pile 18. Even when there are no backfill stones 4a and no back work on the back surface of the structure 1, the back surface of the structure 1 is excavated with a stable gradient to secure a space for forming the buffer layer 6, and from the back surface of the structure 1 to a predetermined value. The buffer plate 6 can also be formed by standing up the pressure receiving plate 8 at intervals and sequentially stacking the accommodating bodies 7 containing the mixed material 5 between the back surface of the structure 1 and the pressure receiving plate 8.

緩衝層6は、上述した種々の実施形態のように構造物1の背面に沿って構造物1の下端部から上端部まで連続的に形成するだけでなく、必要な緩衝性能が得られるのであれば、構造物1の背面の上下方向一部に沿って形成することもできる。   The buffer layer 6 may not only be formed continuously from the lower end portion to the upper end portion of the structure 1 along the back surface of the structure 1 as in the various embodiments described above, but the necessary buffer performance may be obtained. For example, it can also be formed along a part in the vertical direction of the back surface of the structure 1.

例えば、ケーソンの背面に裏込め土を裏込めした裏込め地盤の縮小モデルを、振動台試験機によって加振した際の最大土圧を測定すると、図15、16のようなデータが得られる。この測定に用いた縮小モデルは、ケーソンの背面に沿って上下方向全長(600mm)に裏込め土として砕石を裏込めしたモデルA(緩衝層なし)、ケーソンの背面に沿って上下方向全長(600mm)に裏込め土として粒径約20mmのゴムチップのみを裏込めして緩衝層を設けたモデルB(緩衝層有り)、ケーソンの背面の上下方向上半分(300mm)を粒径約20mmのゴムチップのみからなる緩衝層を設け、上下方向下半分(300mm)を砕石のままとしたモデルC(上半分緩衝層有り)の3種類である。   For example, when the maximum earth pressure when a reduced model of backfill ground with backfill soil backed on the back of the caisson is vibrated with a shaking table tester is measured, data as shown in FIGS. The reduced model used for this measurement is model A (no buffer layer) backed with crushed stone as backfilling soil along the backside of the caisson (600mm) in the vertical direction, and the overall length (600mm) along the back of the caisson. Model B (with a buffer layer) with only a rubber chip with a particle size of about 20 mm as the back-filling soil and a buffer layer provided on the back side of the caisson, and a rubber chip with a particle size of about 20 mm. The model C (with the upper half buffer layer) is provided with a buffer layer made of

この振動台試験機による測定は、それぞれのモデルのケーソン背面に土圧計を設置し、水平方向に約680galの加速度で加振し、その際に測定された最大土圧を図15、16に示している。図15におけるプロットは丸形がモデルA、ひし形がモデルB、図16におけるプロットは丸形がモデルA、三角形がモデルCのデータを示している。   Measurements using this shaking table tester were carried out by installing a earth pressure gauge on the back of the caisson of each model and applying vibration at an acceleration of about 680 gal in the horizontal direction. The maximum earth pressure measured at that time is shown in FIGS. ing. The plots in FIG. 15 indicate the data of model A, the diamonds are model B, and the plots in FIG. 16 indicate the data of model A in the circles and model C in the triangles.

図15の結果から緩衝層を設けたモデルBでは、モデルAに比べて最大土圧が約50%程度低減でき、図16の結果からもモデルCの緩衝層を設けたケーソンの上半分の範囲(ケーソンの底面から300〜600mm)では、モデルAに比べて最大土圧が約50%程度低減できることが分かる。また、モデルCの緩衝層を設けていない下半分の範囲においてもモデルAに比べて最大土圧が10%程度低減可能であることが分かる。このモデルCの下半分の範囲の土圧低減は、上半分の範囲を砕石からゴムチップに置き換えたことによる軽量化に起因すると考えられる。   From the result of FIG. 15, in the model B provided with the buffer layer, the maximum earth pressure can be reduced by about 50% as compared with the model A. From the result of FIG. In (300 to 600 mm from the bottom of the caisson), it can be seen that the maximum earth pressure can be reduced by about 50% compared to the model A. In addition, it can be seen that the maximum earth pressure can be reduced by about 10% in comparison with the model A even in the lower half range where the buffer layer of the model C is not provided. It is considered that the earth pressure reduction in the lower half of the model C is due to weight reduction by replacing the upper half with crushed stones and rubber chips.

このように、構造物1の背面の上下方向一部に緩衝層6を設けても相当の土圧低減効果を得られることが分かり、このデータは、本発明のようなゴムチップ5aと砕石5bとの混合材5からなる緩衝層6にも当てはまると考えられる。したがって、必要な緩衝性能が得られるように、緩衝層6を構造物1の背面の上下方向一部に沿って形成することもできる。   Thus, it can be seen that even if the buffer layer 6 is provided on a part of the rear surface of the structure 1 in the vertical direction, a considerable earth pressure reduction effect can be obtained, and this data includes the rubber chip 5a and the crushed stone 5b as in the present invention. It is considered that this also applies to the buffer layer 6 made of the mixed material 5. Therefore, the buffer layer 6 can be formed along a part of the back surface of the structure 1 in the vertical direction so that the required buffer performance can be obtained.

構造物1の背面の一部に沿って緩衝層6を形成するには、例えば、図7に示すように既設の構造物1の背面を構造物1の上下方向中途の必要深さまで安定勾配で掘削して緩衝層6を形成するスペースを確保する。次いで、掘削により確保したスペースの底部に一段目の受圧板8を構造物1の背面から所定間隔をあけて設置し、受圧板8と構造物1の背面の間に混合材5を投入、充填した後、受圧板8の背面側に裏込め土4を埋め戻して一段目の施工を完了する。以後、同様に二段目、三段目の施工を繰り返す。このように、上下方向に複数に分割して段階的に混合材5を投入、充填して、図8に例示するような構造物1の背面の上半分に沿った緩衝層6を形成することができる。   In order to form the buffer layer 6 along a part of the back surface of the structure 1, for example, as shown in FIG. 7, the back surface of the existing structure 1 is formed with a stable gradient to a required depth halfway in the vertical direction of the structure 1 A space for excavating and forming the buffer layer 6 is secured. Next, a first-stage pressure plate 8 is installed at a predetermined distance from the back of the structure 1 at the bottom of the space secured by excavation, and the mixed material 5 is charged between the pressure plate 8 and the back of the structure 1 and filled. After that, the backfill soil 4 is backfilled on the back side of the pressure receiving plate 8 to complete the first stage construction. Thereafter, the second and third steps are repeated in the same manner. In this way, the buffer material 6 is formed along the upper half of the back surface of the structure 1 as illustrated in FIG. Can do.

この実施形態では、緩衝層6の形成範囲を所定の緩衝性能を得るために必要な最低限の範囲にすることができるので、コストを抑えて短工期で施工を行なうことができる。緩衝層6の形成範囲は、構造物1の背面の上半分の範囲に限定されず、下半分の範囲や上下方向中央の一部の範囲など、必要に応じて任意の範囲に緩衝層6を形成することができる。また、受圧板8を複数に分割せずに一体化したものを用いて緩衝層6を形成することもでき、受圧板8を設けずに混合材5を投入、充填して緩衝層6を形成することもできる。   In this embodiment, since the formation range of the buffer layer 6 can be set to a minimum range necessary for obtaining a predetermined buffer performance, the construction can be performed in a short construction period with a reduced cost. The formation range of the buffer layer 6 is not limited to the upper half range of the back surface of the structure 1, and the buffer layer 6 may be placed in an arbitrary range as necessary, such as a lower half range or a partial range in the vertical center. Can be formed. Further, the buffer layer 6 can be formed by using the pressure receiving plate 8 that is integrated without being divided into a plurality of parts, and the buffer layer 6 is formed by charging and filling the mixed material 5 without providing the pressure receiving plate 8. You can also

また、新設や既設の構造物1に関わらず、図9に例示するように、緩衝層6の層厚が下方側でより大きくなるように緩衝層6の背面が傾斜している耐震補強構造にすることもできる。この緩衝層6は、下方側でより大きな土圧が生じる裏込め地盤3の圧力分布に合わせて層厚を下方側でより大きくしているので、無駄なく効率的に緩衝効果を得ることができる。   Moreover, regardless of the new structure or the existing structure 1, as illustrated in FIG. 9, the seismic reinforcement structure in which the back surface of the buffer layer 6 is inclined so that the layer thickness of the buffer layer 6 becomes larger on the lower side. You can also Since the buffer layer 6 has a larger layer thickness on the lower side in accordance with the pressure distribution of the backfill ground 3 where a greater earth pressure is generated on the lower side, the buffer effect can be obtained efficiently without waste. .

この耐震補強構造も、上記に例示した種々の実施形態の工法により構築することができる。緩衝層6の背面に沿って受圧板8を設けることもでき、混合材5を収容した収容体7を複数、順次積み上げて緩衝層6を形成することもできる。   This seismic reinforcement structure can also be constructed by the construction methods of the various embodiments exemplified above. A pressure receiving plate 8 can be provided along the back surface of the buffer layer 6, and the buffer layer 6 can also be formed by sequentially stacking a plurality of containers 7 containing the mixed material 5.

粒径をほぼ同じ(平均粒径10mm)に揃えたゴムチップ(比重約1.15)および砕石(比重約2.70)を用いて表1に示すように、ゴムチップと砕石との体積混合率のみを変えた緩衝層の試験サンプルSを4種類(実施例1、2、比較例1、2)用意し、各試験サンプルSについて下記に示す土圧測定を実施して土圧低減効果を確認した。その結果を図12〜14に示す。表1のゴムチップ混合率とは、ゴムチップおよび砕石の合計体積に対するゴムチップの体積割合である。   As shown in Table 1 using rubber chips (specific gravity of about 1.15) and crushed stones (specific gravity of about 2.70) having the same particle size (average particle size of 10 mm), only the volume mixing ratio of rubber chips and crushed stones 4 types of test samples S (Examples 1 and 2 and Comparative Examples 1 and 2) were prepared, and the earth pressure measurement was performed on each test sample S to confirm the earth pressure reduction effect. . The results are shown in FIGS. The rubber chip mixing ratio in Table 1 is the volume ratio of rubber chips to the total volume of rubber chips and crushed stone.

Figure 2008150896
Figure 2008150896

[土圧測定]
土圧測定装置9は図10に示すように、剛体の載荷板12(直径19.5cm)の上に荷重計13を備え、その上にポール15を立設し、ポール15には重錘14(重量294N(30kg))を挿通し、ポール15の上端部には、重錘14を落下させる落下装置17を設けて構成されている。図11に示すように、内径20mm、高さ60cmのアクリル樹脂円筒と鋼製枠からなるモールド10の底部に土圧計11を設置し、その上に予め均一に混合した試験サンプルSを所定の層厚(9cm、18.5cm、37cm、50cm)にセットするとともに、試験サンプルSの上面に土圧測定装置9の載荷板12を載置し、荷重計13およびに土圧計11に測定データを入力する制御装置16を接続する。次いで、荷重計13に対する落下高さ60cmにして重錘14を自由落下させて、荷重計13および土圧計11により荷重を測定した。荷重計13による測定荷重は試験サンプルS上面の土圧(反力)であり、土圧計11による測定荷重は試験サンプルS下面の土圧(伝達力)である。
[Measure earth pressure]
As shown in FIG. 10, the earth pressure measuring device 9 includes a load meter 13 on a rigid loading plate 12 (diameter 19.5 cm), and a pole 15 is erected on the load meter 13. (Weight 294N (30 kg)) is inserted, and the upper end of the pole 15 is provided with a dropping device 17 for dropping the weight 14. As shown in FIG. 11, a soil pressure gauge 11 is installed at the bottom of a mold 10 made of an acrylic resin cylinder having an inner diameter of 20 mm and a height of 60 cm and a steel frame, and a test sample S that has been mixed uniformly in advance is placed on a predetermined layer. The thickness (9 cm, 18.5 cm, 37 cm, 50 cm) is set, the loading plate 12 of the earth pressure measuring device 9 is placed on the upper surface of the test sample S, and the measurement data is input to the load gauge 13 and the earth pressure gauge 11 The control device 16 to be connected is connected. Next, the weight 14 was dropped freely with a drop height of 60 cm with respect to the load meter 13, and the load was measured with the load meter 13 and earth pressure gauge 11. The load measured by the load meter 13 is the earth pressure (reaction force) on the upper surface of the test sample S, and the load measured by the earth pressure meter 11 is the earth pressure (transmitting force) on the lower surface of the test sample S.

尚、試験サンプルSは、モールド10にゴムチップと砕石との混合材を高さ80cmの一定条件で落下、充填し、表面を均して作製する。その際に計測、算出した空中密度および空隙率を表1に記載している。また、アクリル樹脂円筒の内壁にはシリコングリースを塗布して摩擦を低減した。   The test sample S is prepared by dropping and filling the mold 10 with a mixture of rubber chips and crushed stone under a constant condition of 80 cm in height and leveling the surface. Table 1 shows the air density and porosity measured and calculated at that time. Also, silicon grease was applied to the inner wall of the acrylic resin cylinder to reduce friction.

図12は、比較例1(砕石のみからなる試験サンプル)を基準にして各試験サンプルSの層厚と試験サンプルS上面の土圧低減率の関係を示している。図13は、比較例1を基準にして各試験サンプルSの層厚と試験サンプルS下面の土圧低減率の関係を示している。図14は、横軸をゴムチップ混合率にして図13を書き換えたものであり、比較例1を基準にして各試験サンプルSのゴムチップ混合率と試験サンプルS下面の土圧低減率の関係を示している。図12、13におけるプロットは、丸形が実施例1(ゴムチップ混合率25%)、三角形が実施例2(ゴムチップ混合率50%)、四角形が比較例1(ゴムチップ混合率0%)、ひし形が比較例2(ゴムチップ混合率100%)を示し、図14におけるプロットは、丸形が試験サンプルSの層厚50cm、三角形が層厚37cm、四角形が層厚18.5cm、ひし形が層厚9cmの場合を示している。   FIG. 12 shows the relationship between the layer thickness of each test sample S and the earth pressure reduction rate on the upper surface of the test sample S with reference to Comparative Example 1 (test sample consisting only of crushed stone). FIG. 13 shows the relationship between the layer thickness of each test sample S and the earth pressure reduction rate on the lower surface of the test sample S with reference to Comparative Example 1. FIG. 14 is a rewrite of FIG. 13 with the horizontal axis as the rubber chip mixing rate, and shows the relationship between the rubber chip mixing rate of each test sample S and the earth pressure reduction rate on the lower surface of the test sample S based on Comparative Example 1. ing. The plots in FIGS. 12 and 13 are a round shape for Example 1 (rubber chip mixing rate of 25%), a triangle for Example 2 (rubber chip mixing rate of 50%), a square for Comparative Example 1 (rubber chip mixing rate of 0%), and a rhombus. Comparative Example 2 (rubber chip mixing ratio 100%) is shown, and the plot in FIG. 14 shows that the round shape has a layer thickness of 50 cm, the triangle has a layer thickness of 37 cm, the square has a layer thickness of 18.5 cm, and the rhombus has a layer thickness of 9 cm. Shows the case.

図12〜14の結果から、ゴムチップと砕石を混合した実施例1、2は、ゴムチップのみからなる比較例2には及ばないが、ある程度の土圧低減効果を有し、ゴムチップの混合率を変えることにより所望の土圧低減効果を得られることがわかる。   From the results of FIGS. 12 to 14, Examples 1 and 2 in which rubber chips and crushed stone were mixed did not reach Comparative Example 2 consisting only of rubber chips, but had a certain earth pressure reduction effect and changed the mixing ratio of rubber chips. It can be seen that the desired earth pressure reduction effect can be obtained.

本発明の裏込め地盤の耐震補強構造を例示する側面断面図である。It is side surface sectional drawing which illustrates the seismic reinforcement structure of the backfill ground of this invention. 図1の裏込め地盤の耐震補強構造を構築する耐震補強工法を例示する説明図である。It is explanatory drawing which illustrates the earthquake-proof reinforcement construction method which constructs the earthquake-proof reinforcement structure of the backfill ground of FIG. 図2の耐震補強工法の別の例を示す説明図である。It is explanatory drawing which shows another example of the earthquake-proof reinforcement construction method of FIG. 裏込め石が設置された既設の構造物の背面の裏込め地盤を耐震補強する際の工法を例示する説明図である。It is explanatory drawing which illustrates the construction method at the time of carrying out earthquake-proof reinforcement of the back-filling ground of the back of the existing structure in which the back-filling stone was installed. 図4の次の工程を例示する説明図である。FIG. 5 is an explanatory diagram illustrating the next process of FIG. 4. 裏込め石や控え工が無い既設の構造物の背面の裏込め地盤を耐震補強する際の工法を例示する説明図である。It is explanatory drawing which illustrates the construction method at the time of carrying out earthquake-proof reinforcement of the back-filling ground of the back of the existing structure without a back-filling stone and a back-up work. 構造物の背面の上下方向一部に沿って緩衝層を形成する工法を例示する説明図である。It is explanatory drawing which illustrates the construction method which forms a buffer layer along the up-down direction part of the back surface of a structure. 図7の工法により完成した耐震補強構造を例示する側面断面図である。It is side surface sectional drawing which illustrates the earthquake-proof reinforcement structure completed by the construction method of FIG. 本発明の裏込め地盤の耐震補強構造の別の実施形態を例示する側面断面図である。It is side surface sectional drawing which illustrates another embodiment of the seismic reinforcement structure of the backfill ground of this invention. 土圧測定装置を例示する斜視図である。It is a perspective view which illustrates an earth pressure measuring device. 土圧測定装置による土圧測定方法を示す説明図である。It is explanatory drawing which shows the earth pressure measuring method by an earth pressure measuring apparatus. 土圧測定による試験サンプルの層厚と試験サンプル上面の土圧低減率との関係を示すグラフ図である。It is a graph which shows the relationship between the layer thickness of the test sample by earth pressure measurement, and the earth pressure reduction rate of the test sample upper surface. 土圧測定による試験サンプルの層厚と試験サンプル下面の土圧低減率との関係を示すグラフ図である。It is a graph which shows the relationship between the layer thickness of the test sample by earth pressure measurement, and the earth pressure reduction rate of the test sample lower surface. 土圧測定によるゴムチップ混合率と試験サンプル下面の土圧低減率との関係を示すグラフ図である。It is a graph which shows the relationship between the rubber chip mixing rate by earth pressure measurement, and the earth pressure reduction rate of a test sample lower surface. 振動台実験による緩衝層(モデルB)の土圧低減効果を例示するグラフ図である。It is a graph which illustrates the earth pressure reduction effect of the buffer layer (model B) by a shaking table experiment. 振動台実験による緩衝層(モデルC)の土圧低減効果を例示するグラフ図である。It is a graph which illustrates the earth pressure reduction effect of the buffer layer (model C) by a shaking table experiment.

符号の説明Explanation of symbols

1 構造物
2 マウンド
3 裏込め地盤
4 裏込め土
4a 裏込め石
5 混合材
5a ゴムチップ
5b 砕石
6 緩衝層
6a グラベルマット
7 収容体
8 受圧板
9 土圧測定装置
10 モールド
11 土圧計
12 載荷板
13 荷重計
14 重錘
15 ポール
16 制御装置
17 落下装置
DESCRIPTION OF SYMBOLS 1 Structure 2 Mound 3 Backfill ground 4 Backfill soil 4a Backfill stone 5 Mixed material
5a Rubber chip 5b Crushed stone 6 Buffer layer
6a Gravel mat 7 Container 8 Pressure receiving plate 9 Earth pressure measuring device 10 Mold 11 Earth pressure meter 12 Loading plate 13 Load meter 14 Weight 15 Pole 16 Control device 17 Drop device

Claims (11)

構造物の背面に造成される裏込め地盤の耐震補強工法であって、粒径が略同一のゴムチップと砕石とを混合した混合材を、前記構造物の背面の上下方向少なくとも一部に沿って配置して緩衝層を形成する裏込め地盤の耐震補強工法。   A seismic reinforcement method for backfill ground created on the back side of a structure, wherein a mixed material in which rubber chips and crushed stones having substantially the same particle size are mixed is disposed along at least a part of the back side of the structure in the vertical direction. Seismic reinforcement method for backfill ground that is placed to form a buffer layer. 前記混合材を、前記構造物の背面に沿って該構造物の下端部から上端部まで連続するように配置する請求項1に記載の裏込め地盤の耐震補強工法。   The seismic reinforcement method for a backfill ground according to claim 1, wherein the mixed material is arranged so as to be continuous from the lower end portion to the upper end portion of the structure along the back surface of the structure. 前記緩衝層の背面に沿って受圧板を配置する請求項1または2に記載の裏込め地盤の耐震補強工法。   The seismic reinforcement method for a backfill ground according to claim 1 or 2, wherein a pressure receiving plate is disposed along the back surface of the buffer layer. 前記混合材を複数の通水性を有する袋状の収容体に予め収容しておき、該混合材を収容した収容体を積み上げて前記緩衝層を形成する請求項1〜3のいずれかに記載の裏込め地盤の耐震補強工法。   The said mixed material is previously accommodated in the bag-shaped accommodating body which has several water permeability, The said accommodating body was accommodated, and the said buffer layer is formed in any one of Claims 1-3. Seismic reinforcement method for backfill ground. 前記緩衝層の背面を傾斜させて前記緩衝層の層厚が下方側でより大きくなるようにした請求項1〜4のいずれかに記載の裏込め地盤の耐震補強工法。   The seismic reinforcement method for a backfill ground according to any one of claims 1 to 4, wherein the back surface of the buffer layer is inclined so that the layer thickness of the buffer layer becomes larger on the lower side. 構造物の背面に造成される裏込め地盤の耐震補強構造であって、前記構造物の背面の上下方向少なくとも一部に沿って、粒径が略同一のゴムチップと砕石とを混合した混合材からなる緩衝層を設けた裏込め地盤の耐震補強構造。   A seismic reinforcement structure for backfill ground created on the back surface of a structure, comprising a mixture of rubber chips and crushed stone having substantially the same particle size along at least a part of the back surface of the structure in the vertical direction Seismic reinforcement structure for backfill ground with a buffer layer. 前記緩衝層を前記構造物の背面の下端部から上端部まで連続するように設けた請求項6に記載の裏込め地盤の耐震補強構造。   The seismic reinforcement structure for a backfill ground according to claim 6, wherein the buffer layer is provided so as to be continuous from the lower end portion to the upper end portion of the back surface of the structure. 前記緩衝層の背面に沿って受圧板を設けた請求項6または7に記載の裏込め地盤の耐震補強構造。   The seismic reinforcement structure for backfilled ground according to claim 6 or 7, wherein a pressure receiving plate is provided along the back surface of the buffer layer. 前記緩衝層が、前記混合材を収容した通水性を有する袋状の収容体を複数積み上げて形成されている請求項6〜8のいずれかに記載の裏込め地盤の耐震補強構造。   The seismic reinforcement structure for a backfill ground according to any one of claims 6 to 8, wherein the buffer layer is formed by stacking a plurality of bag-like containers having water permeability that contain the mixed material. 前記緩衝層の層厚が下方側でより大きくなるように前記緩衝層の背面が傾斜している請求項6〜9のいずれかに記載の裏込め地盤の耐震補強構造。   The seismic reinforcement structure for a backfill ground according to any one of claims 6 to 9, wherein the back surface of the buffer layer is inclined so that the thickness of the buffer layer becomes larger on the lower side. 前記ゴムチップおよび砕石の粒径が2mm以上60mm以下である請求項6〜10のいずれかに記載の裏込め地盤の耐震補強構造。   The seismic reinforcement structure for backfilled ground according to any one of claims 6 to 10, wherein the rubber chips and crushed stone have a particle size of 2 mm or more and 60 mm or less.
JP2006341320A 2006-12-19 2006-12-19 Method and structure of aseismic reinforcing backfill ground Pending JP2008150896A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006341320A JP2008150896A (en) 2006-12-19 2006-12-19 Method and structure of aseismic reinforcing backfill ground

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006341320A JP2008150896A (en) 2006-12-19 2006-12-19 Method and structure of aseismic reinforcing backfill ground

Publications (1)

Publication Number Publication Date
JP2008150896A true JP2008150896A (en) 2008-07-03

Family

ID=39653360

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006341320A Pending JP2008150896A (en) 2006-12-19 2006-12-19 Method and structure of aseismic reinforcing backfill ground

Country Status (1)

Country Link
JP (1) JP2008150896A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101410784B1 (en) * 2013-01-25 2014-06-24 주식회사 서영엔지니어링 Vertical wall structure and construction method using thesame
JP2014189978A (en) * 2013-03-26 2014-10-06 Joji Yamashita Construction method of leaning type retaining wall
CN111395085A (en) * 2020-04-29 2020-07-10 中国铁路经济规划研究院有限公司 Roadbed transition structure
CN114775681A (en) * 2022-04-15 2022-07-22 南京工业大学 A kind of retaining wall anti-seismic device with layered water bladder and application method thereof
CN116703166A (en) * 2023-08-07 2023-09-05 山东新巨龙能源有限责任公司 Coal mine filling mining geological risk assessment method based on data mining

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101410784B1 (en) * 2013-01-25 2014-06-24 주식회사 서영엔지니어링 Vertical wall structure and construction method using thesame
JP2014189978A (en) * 2013-03-26 2014-10-06 Joji Yamashita Construction method of leaning type retaining wall
CN111395085A (en) * 2020-04-29 2020-07-10 中国铁路经济规划研究院有限公司 Roadbed transition structure
CN114775681A (en) * 2022-04-15 2022-07-22 南京工业大学 A kind of retaining wall anti-seismic device with layered water bladder and application method thereof
CN114775681B (en) * 2022-04-15 2023-06-13 南京工业大学 Retaining wall anti-seismic device with layered water bags and application method thereof
CN116703166A (en) * 2023-08-07 2023-09-05 山东新巨龙能源有限责任公司 Coal mine filling mining geological risk assessment method based on data mining
CN116703166B (en) * 2023-08-07 2023-10-20 山东新巨龙能源有限责任公司 Coal mine filling mining geological risk assessment method based on data mining

Similar Documents

Publication Publication Date Title
Boushehrian et al. Experimental and numerical investigation of the bearing capacity of model circular and ring footings on reinforced sand
JP4098777B2 (en) How to reduce the possibility of liquefaction of the basic soil
JP6944164B1 (en) Ground improvement method and improved ground structure
JP5984085B2 (en) Foundation structure and foundation construction method
JP2018537606A (en) Method for forming stable foundation ground
JP2008150896A (en) Method and structure of aseismic reinforcing backfill ground
JP5984083B2 (en) Foundation structure and foundation construction method
US10676890B2 (en) Retaining wall system, method of supporting same, and kit for use in constructing same
JP2010090592A (en) Reinforced soil pile, method for manufacturing the same, and method for computing strength of spread foundation
JP4711618B2 (en) Retaining wall
JP7554501B2 (en) Rapid consolidation and compaction methods for remediation of various layers of soil and intermediate geological materials in soil piles.
US11124937B1 (en) Rapid consolidation and compaction method for soil improvement of various layers of soils and intermediate geomaterials in a soil deposit
JP2005016196A (en) Construction method for embankment on backside of substructure
Bakr The Impact of the unsupported excavation on the boundary of the active zone in medium, stiff and very stiff clay
KR101129678B1 (en) Mesh foundation construction method using hollow blocks
JP7115817B2 (en) Reinforced soil wall using large sandbags and retaining method using large sandbags
JPH0552366B2 (en)
CN211228586U (en) Foundation structure of machine tool
JP3196470U (en) Seismic isolation structure
Prasad et al. Failure mechanism and slope factors for a footing resting on slopes
JP5863915B1 (en) Liquefaction countermeasure structure on site
JP2005314926A (en) Foundation structure of building and its construction method
JP2004150032A (en) Foundation structure for building, and its design method
JP6298255B2 (en) Method and jig for preventing floating of underground structure
US11261576B1 (en) Rapid consolidation and compaction method for soil improvement of various layers of soils and intermediate geomaterials in a soil deposit