JP6298255B2 - Method and jig for preventing floating of underground structure - Google Patents

Method and jig for preventing floating of underground structure Download PDF

Info

Publication number
JP6298255B2
JP6298255B2 JP2013168508A JP2013168508A JP6298255B2 JP 6298255 B2 JP6298255 B2 JP 6298255B2 JP 2013168508 A JP2013168508 A JP 2013168508A JP 2013168508 A JP2013168508 A JP 2013168508A JP 6298255 B2 JP6298255 B2 JP 6298255B2
Authority
JP
Japan
Prior art keywords
floating
levitation
end portion
buried structure
buried
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2013168508A
Other languages
Japanese (ja)
Other versions
JP2015036499A (en
Inventor
内村 太郎
太郎 内村
郁生 東畑
郁生 東畑
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Tokyo NUC
Original Assignee
University of Tokyo NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Tokyo NUC filed Critical University of Tokyo NUC
Priority to JP2013168508A priority Critical patent/JP6298255B2/en
Publication of JP2015036499A publication Critical patent/JP2015036499A/en
Application granted granted Critical
Publication of JP6298255B2 publication Critical patent/JP6298255B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/20Hydro energy

Landscapes

  • Underground Structures, Protecting, Testing And Restoring Foundations (AREA)

Description

本発明は、下水管等の地中埋設構造物について、地震時における地盤の液状化によって生じる浮き上がり等の被害を防止するための方法及び治具に関する。   The present invention relates to a method and a jig for preventing damage such as lifting caused by liquefaction of the ground during an earthquake for underground structures such as sewer pipes.

地震災害時の地盤の液状化により、地下に埋設された下水管などの埋設管が浮き上がる現象が知られている。この場合、自然流下機能を阻害することや埋設管の破損部から液状化した土砂が流入することで管が詰まり、ライフラインである下水管として機能しなくなる等の甚大な被害が発生するため、かかる埋設管の地震時液状化対策は、都市の地震耐久性向上にとって重要な課題となっている。埋設管の浮き上がりは、比重の小さい埋設管が液状化した地盤の浮力によって浮上することによるものであり、そして、埋設管等の地中構造物を設置する際に埋め戻した緩い砂の地盤がこの液状化の原因と考えられている。   It is known that underground pipes such as sewage pipes that have been buried underground will rise due to liquefaction of the ground during an earthquake disaster. In this case, since the natural clogging function is hindered and the liquefied earth and sand flows from the damaged part of the buried pipe, the pipe is clogged, causing serious damage such as failure to function as a sewage pipe that is a lifeline. Measures for liquefaction of buried pipes during earthquakes are an important issue for improving the earthquake durability of cities. The buoyancy of the buried pipe is due to the buoyancy of the buried pipe with a low specific gravity due to the buoyancy of the liquefied ground, and the loose sand ground that was backfilled when installing underground structures such as the buried pipe It is thought to be the cause of this liquefaction.

この液状化対策として、従来は、埋戻し土を90%以上に締め固めること、埋め戻し材料に液状化しにくい砕石などを用いること、埋戻し土を固化させること等が行われてきた。また、その他の手法として、マンホール等の地下構造物の周囲に活性シリカなどの薬剤を注入して改良地盤とすることが提案されている(例えば、特許文献1)。   As countermeasures for this liquefaction, conventionally, the backfilling soil has been compacted to 90% or more, crushed stones that are difficult to liquefy are used as the backfilling material, and the backfilling soil has been solidified. As another method, it has been proposed to inject a chemical such as active silica around an underground structure such as a manhole to obtain an improved ground (for example, Patent Document 1).

特開2008−202219号公報JP 2008-202219 A

しかしながら、従来の方法では、施工品質、浮上防止効果の確実性、施工時間の制約、施工コスト等の面で十分な対策となっていないため、現実に浮上防止対策が施されている下水管は多くないのが現状であった。さらに、既に埋設・設置されて地中にある埋設管については、管を掘り起こすことなく地上からの作業によって浮上防止対策を行う必要がある。   However, the conventional method is not a sufficient measure in terms of construction quality, certainty of anti-floating effect, restriction of construction time, construction cost, etc. There were not many in the current situation. Furthermore, for underground pipes that have already been buried and installed, it is necessary to take measures to prevent ascent by working from the ground without digging up the pipes.

そこで、本発明は、大型の施工設備を必要とせず、既存の埋め戻し施工法を用いて、耐震対策として新設及び既設の地下埋設管のいずれにも適用可能な浮上防止工法を提供することを課題とするものである。   Therefore, the present invention provides an anti-floating method that does not require a large-scale construction facility, and can be applied to both new and existing underground buried pipes as an anti-seismic measure using the existing backfilling construction method. It is to be an issue.

本発明者は、上記課題を解決するべく鋭意検討を行った結果、埋設管等の地中埋設構造物の上方に、支圧板を有する角状治具又は充填剤による柱状の杭部材を安価な施工法により設置するだけで、その浮上抵抗力の付与によって液状化の際における埋設構造物の浮上を効果的に抑制することができることを見出し、これら知見に基づき、本発明を完成するに至った。   As a result of intensive studies to solve the above-mentioned problems, the present inventor inexpensively provided a columnar pile member with a square jig or a filler having a bearing plate above the underground buried structure such as a buried pipe. It was found that the floating of the buried structure during liquefaction can be effectively suppressed by applying the floating resistance force simply by installing by the construction method, and based on these findings, the present invention has been completed. .

すなわち、本発明は、一態様において、
(1)地中の埋設構造物の浮き上がりを防止する方法であって、前記埋設構造物の上方に浮上防止部材を配置し、前記浮上防止部材による重力及び周辺地盤のせん断抵抗力によって、前記埋設構造物の浮上を抑制するための荷重を付加することを特徴とする、方法;
(2)前記浮上防止部材が、支圧板よりなる上端部、前記埋設構造物と継合するための下端部、及び前記上端部と下端部とを連結する1以上の足部を有する角状治具である、上記(1)に記載の方法;
(3)前記上端部が略矩形又は略円形の支圧板よりなる、上記(2)に記載の方法;
(4)前記下端部が凹形の形状である、上記(2)又は(3)に記載の方法;
(5)前記浮上防止部材が、充填剤若しくは固化剤よりなる柱状の杭部材、又は筒状の収容具に充填された砕石若しくは鉄塊を含む杭部材である、上記(1)に記載の方法;
(6)前記充填剤若しくは固化剤が、モルタル、セメント、コンクリート、及びベントナイトからなる群より選択される、上記(5)に記載の方法;
(7)前記杭部材が、既設の埋設構造物の上方を削孔することで生じた空間に前記充填剤を埋め戻すことによって形成される、上記(5)又は(6)に記載の方法;
(8)前記埋設構造物が、下水管である、上記(1)〜(7)のいずれか1に記載の方法;
(9)前記浮上防止部材の上端を地下水位より上方に位置させる、上記(1)〜(8)のいずれか1に記載の方法;
(10)前記浮上防止部材が、前記埋設構造物の100mあたり2〜20本の間隔で配置される、上記(1)〜(9)のいずれか1に記載の方法;
(11)前記浮上防止部材によって前記埋設構造物に作用する力が、以下の式で表される安全率(SF)が1.0以上となる関係を有する、上記(1)〜(10)のいずれか1に記載の方法;
安全率(SF)= 浮上抵抗力(F’)/浮力(F)
(ここで、浮力(F)= (PxAxγ)+(Vxγ)
浮上抵抗力(F’)= Wsurface+Ssurface+W
であり、
式中、Pは、浮上防止部材の設置間隔(m);Aは、埋設構造物の断面積(m);γは、地下水位より下方の液状化層における湿潤単位体積重量(kN/m);Vは、浮上防止部材の体積のうち地下水位より下方の液状化層内の体積(m);Wsurfaceは、浮上防止部材の上方に存在する表層土塊の重量(kN);Ssurfaceは、浮上防止部材の上方に存在する表層土塊と、その周辺地盤とのせん断抵抗力の鉛直成分(kN);及び、Wは、浮上防止部材の重量(kN)である。)
を提供するものである。
That is, the present invention in one aspect,
(1) A method for preventing floating of a buried structure in the ground, wherein a floating prevention member is disposed above the buried structure, and the buried structure is caused by gravity and shear resistance of the surrounding ground by the floating prevention member. Adding a load for suppressing the floating of the structure;
(2) The levitation preventing member has an upper end portion made of a bearing plate, a lower end portion for joining with the embedded structure, and one or more legs that connect the upper end portion and the lower end portion. The method according to (1) above, which is a tool;
(3) The method according to (2) above, wherein the upper end portion is formed of a substantially rectangular or substantially circular bearing plate;
(4) The method according to (2) or (3) above, wherein the lower end portion has a concave shape;
(5) The method according to (1), wherein the levitation preventing member is a columnar pile member made of a filler or a solidifying agent, or a pile member containing crushed stone or an iron block filled in a cylindrical container. ;
(6) The method according to (5), wherein the filler or solidifying agent is selected from the group consisting of mortar, cement, concrete, and bentonite;
(7) The method according to (5) or (6), wherein the pile member is formed by backfilling the filler in a space generated by drilling an upper portion of an existing embedded structure;
(8) The method according to any one of (1) to (7), wherein the embedded structure is a sewer pipe;
(9) The method according to any one of (1) to (8), wherein an upper end of the levitation preventing member is positioned above a groundwater level;
(10) The method according to any one of (1) to (9) above, wherein the levitation preventing members are arranged at intervals of 2 to 20 per 100 m of the embedded structure;
(11) The force acting on the buried structure by the levitation preventing member has a relationship in which a safety factor (SF) represented by the following formula is 1.0 or more, of (1) to (10) above The method according to any one of the above;
Safety factor (SF) = resistance to levitation (F ') / buoyancy (F)
(Where buoyancy (F) = (PxAxγ) + (Vxγ)
Floating resistance (F ') = W surface + S surface + W
And
In the formula, P is the installation interval (m) of the anti-floating member; A is the cross-sectional area (m 2 ) of the buried structure; γ is the wet unit volume weight (kN / m) in the liquefied layer below the groundwater level 3 ); V is the volume in the liquefied layer below the groundwater level in the volume of the anti-lifting member (m 3 ); W surface is the weight of the surface soil block (kN) existing above the anti-lifting member; S The surface is a vertical component (kN) of the shear resistance between the surface soil block above the levitation prevention member and the surrounding ground; and W is the weight (kN) of the levitation prevention member. )
Is to provide.

好ましい態様において、本発明は、
(12)前記浮上防止部材を配置する前に、撮影手段を前記埋設構造物中に挿入することによって、当該埋設構造物における継手部を探索する工程をさらに含む、上記(1)〜(11)のいずれか1に記載の方法;
(13)前記撮影手段が位置情報特定手段を有する、上記(12)に記載の方法;
(14)前記撮影手段がテレビカメラである、上記(12)又は(13)に記載の方法
を提供するものである。
In a preferred embodiment, the present invention provides:
(12) The above-described (1) to (11), further including a step of searching for a joint portion in the embedded structure by inserting a photographing unit into the embedded structure before disposing the levitation preventing member. The method according to any one of
(13) The method according to (12), wherein the photographing unit includes a position information specifying unit;
(14) The method according to (12) or (13) is provided, wherein the photographing unit is a television camera.

また、別の側面において、本発明は、
(15)地中の埋設構造物の上方に配置されて当該埋設構造物の浮き上がりを防止するための角状治具であって、略矩形又は略円形の支圧板よりなる上端部、前記埋設構造物と継合するための凹形の下端部、及び前記上端部と下端部とを連結する1以上の足部を有することを特徴とする、該治具;
(16)前記上端部が略矩形又は略円形の支圧板よりなる、上記(15)に記載の治具;
(17)前記下端部が凹形の形状である、上記(15)又は(16)に記載の治具;
を提供するものである。
In another aspect, the present invention provides:
(15) A rectangular jig that is disposed above an underground buried structure to prevent the buried structure from being lifted, and includes an upper end formed of a substantially rectangular or substantially circular bearing plate, and the buried structure. A jig having a concave lower end for joining with an object, and one or more feet connecting the upper end and the lower end;
(16) The jig according to (15), wherein the upper end portion is formed of a substantially rectangular or substantially circular pressure plate.
(17) The jig according to (15) or (16), wherein the lower end portion has a concave shape;
Is to provide.

本発明によれば、埋設管等の地中埋設構造物の上方に浮上防止部材を設置するだけで、その浮上抵抗力の付与によって液状化の際における埋設構造物の浮上を効果的に抑制し、耐震補強を行うことができるという効果を奏する。当該大型の施工設備を必要とせず、従来の埋め戻し施工法を用いて行うことができるため、施工コストを低減することが可能である。   According to the present invention, it is possible to effectively suppress the floating of the buried structure during liquefaction by providing the floating resistance force only by installing the floating prevention member above the underground buried structure such as a buried pipe. It has the effect of being able to perform seismic reinforcement. The construction cost can be reduced because the large-scale construction equipment is not required and the conventional backfilling construction method can be used.

また、新設及び既設の地下埋設管のいずれにも適用可能であり、既に埋設・設置されて地中にある埋設管については、管を掘り起こすことなく地上からの作業によって浮上防止対策を行う必要がある。特に、新設の地下埋設管に適用する場合には、上記のように従来の砂の埋め戻し工程と同じ工程を用いて、支圧板を有する角状治具を地中埋設構造物の上方に埋設するだけで液状化の際の浮上を防止する効果を得ることができ、一方、既設の地下埋設管に適用する場合には、広い範囲を掘り起こすことなく、オーガー等の機械設備を用いて、地上より地中埋設構造物近傍まで削孔してモルタル等の充填剤や固化剤を注入固化する方法や削孔した空洞に筒状のネット等に充填した砕石や鉄塊等の比重の重い物によって浮上防止部材を形成することができる。この場合、浮上防止部材を形成させるための最小限の孔を設けるだけで済むため、施工のコスト及び労力を低減させる効果を奏する。   Also, it can be applied to both new and existing underground pipes. For underground pipes that have already been buried and installed, it is necessary to take measures to prevent ascent by working from the ground without digging up the pipes. is there. In particular, when applied to a new underground pipe, a square jig having a bearing plate is embedded above the underground structure using the same process as the conventional sand backfill process as described above. The effect of preventing levitation during liquefaction can be obtained by simply doing this.On the other hand, when it is applied to existing underground pipes, it is possible to use auger or other mechanical equipment without digging up a wide area. By drilling to the vicinity of underground structures and injecting and solidifying fillers and solidifying agents such as mortar, and by using heavy objects such as crushed stones and iron ingots filled in cylindrical nets in the drilled cavities A floating prevention member can be formed. In this case, since it is only necessary to provide the minimum hole for forming the anti-floating member, the construction cost and labor can be reduced.

さらに、浮上防止部材を配置する前に、位置情報を特定可能なテレビカメラ等の撮影手段を用いて下水管の位置や深さ、継手の箇所を把握することによって、より正確で簡便な施工も可能となる点で、極めて実用的にも優れている。   Furthermore, before placing the anti-floating member, more accurate and simple construction is possible by grasping the position and depth of the sewage pipe and the location of the joint using a photographing means such as a TV camera capable of specifying position information. In terms of being possible, it is also extremely practical.

図1は、本発明の第1の実施形態に係る地盤中の断面図である。FIG. 1 is a cross-sectional view in the ground according to the first embodiment of the present invention. 図2は、本発明の第2の実施形態に係る地盤中の断面図である。FIG. 2 is a cross-sectional view of the ground according to the second embodiment of the present invention. 図3は、本発明において浮上防止部材に作用する浮上抵抗力を示す図である。FIG. 3 is a diagram showing the levitation resistance acting on the levitation preventing member in the present invention. 図4は、実験に用いた浮上防止部材の形状を示す図である。FIG. 4 is a diagram showing the shape of the levitation preventing member used in the experiment. 図5は、実験に用いた模型地盤の構成を示す図である。FIG. 5 is a diagram showing the configuration of the model ground used in the experiment. 図6は、支圧板に作用する浮上力の測定結果を示すグラフである。FIG. 6 is a graph showing the measurement results of the levitation force acting on the bearing plate. 図7は、埋設管の浮き上がり変位の測定結果を示すグラフである。FIG. 7 is a graph showing the measurement results of the floating displacement of the buried pipe. 図8は、埋設管の残留変位と安全率と関係を示すグラフである。FIG. 8 is a graph showing the relationship between the residual displacement of the buried pipe and the safety factor.

以下、本発明の実施形態について、図面を参照しながら説明する。ただし、本発明の範囲はこれらの説明に拘束されることはなく、以下の例示以外についても、本発明の趣旨を損なわない範囲で適宜変更し実施することができる。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. However, the scope of the present invention is not limited to these descriptions, and modifications other than the following examples can be made as appropriate without departing from the spirit of the present invention.

(第1の実施形態)
図1は、本発明の第1の実施形態に係る地中埋設構造物の浮き上がりを防止する方法における地盤中の断面を示す模式図である。
(First embodiment)
FIG. 1 is a schematic diagram showing a cross section in the ground in the method for preventing the underground structure according to the first embodiment of the present invention from being lifted.

埋設構造物1は、特に限定はされないが、好ましくは下水管であり、一般に、円筒形状の塩化ビニール又は鉄筋コンクリートで構成される。その内部の空洞は生活排水や汚水等が流通され、両端は任意の間隔でマンホールに連結している。周辺の埋戻し地盤が液状化した場合に、埋設構造物1に作用する浮力は、地盤が液状化することによる泥水圧である。この液状化時に埋設構造物1の側面に作用する泥水圧は釣り合っているため、埋設構造物1の浮き上がりに影響する力は、鉛直方向に発生する泥水圧による浮力である。   The embedded structure 1 is not particularly limited, but is preferably a sewage pipe, and is generally made of cylindrical vinyl chloride or reinforced concrete. Domestic effluent, sewage, etc. are circulated through the interior cavity, and both ends are connected to manholes at arbitrary intervals. When the surrounding backfill ground is liquefied, the buoyancy acting on the buried structure 1 is muddy water pressure due to the ground becoming liquefied. Since the muddy water pressure acting on the side surface of the buried structure 1 at the time of liquefaction is balanced, the force affecting the floating of the buried structure 1 is the buoyancy due to the muddy water pressure generated in the vertical direction.

図1に示すように、埋設構造物1の上方には、上端部11、足部12、及び下端部13を備えた角状形状を有する治具である浮上防止部材10が配置される。浮上防止部材10の設置は、以下の手順で行われる。まず、一般に下水管等の埋設が行われる場合と同様に、地盤2を所定の深さまで掘削した後に、埋設構造物1を設置する。そして、掘削した隙間に砂等を埋め戻す際に、埋設構造物1の上方に浮上防止部材10を設置したうえで埋め戻す。掘削した場所が道路の場合には、浮上防止部材10の上方にアスファルト舗装が設けられる。上記掘削及び埋め戻しは、当該技術分野において周知の任意の手段によって行うことができる。   As shown in FIG. 1, a floating prevention member 10, which is a jig having a square shape including an upper end portion 11, a foot portion 12, and a lower end portion 13, is disposed above the embedded structure 1. The levitation prevention member 10 is installed in the following procedure. First, the buried structure 1 is installed after excavating the ground 2 to a predetermined depth, as in the case where the sewage pipe is buried. Then, when sand or the like is backfilled in the excavated gap, the antifloating member 10 is installed above the embedded structure 1 and then backfilled. When the excavated place is a road, asphalt pavement is provided above the ascent prevention member 10. The excavation and backfilling can be performed by any means known in the art.

浮上防止部材10の上端部11には、浮上防止部材の上方に存在する表層土塊と、その周辺地盤とのせん断抵抗力を生じさせるための平面状の支圧板が設けられている。当該支圧板は、好ましくは略矩形又は略円形であるが、これら以外の形状であることもできる。上端部11からは、好ましくは棒状の足部12が延び、下端部13に連結している。足部12は、1本以上であることができ、上端部11と下端部13の構造安定性の点からは好ましくは2本以上であり、より好ましくは4本である。足部12は、上端部11の支圧板に対して垂直下方に延びることが好ましいが、特定の角度で下方に延びるものであってもよい。   The upper end portion 11 of the levitation prevention member 10 is provided with a planar bearing plate for generating a shear resistance force between the surface soil block existing above the levitation prevention member and the surrounding ground. The bearing plate is preferably substantially rectangular or substantially circular, but may have other shapes. A bar-like foot portion 12 preferably extends from the upper end portion 11 and is connected to the lower end portion 13. The number of the foot portions 12 can be one or more, and preferably two or more, more preferably four from the viewpoint of the structural stability of the upper end portion 11 and the lower end portion 13. The foot portion 12 preferably extends vertically downward with respect to the bearing plate of the upper end portion 11, but may extend downward at a specific angle.

浮上防止部材10の下端部13は、埋設構造物1と安定的に継合するために凹形の形状を有していることが好ましい。埋設構造物1が下水管等の管状構造である場合には、当該管状構造に適合するために下端部13はU字型の断面を有するドーム状の部材であることが望ましい。ただし、埋設構造物1の浮力を受け止めることができるものであれば、その形状は特に限定されない。本明細書において、「継合」とは、浮上防止部材10の下端部13が埋設構造物1に接触又は結合している場合だけでなく、埋設構造物1の浮力を受け止めることができる限り、下端部13と埋設構造物1との隙間に土塊(埋め戻し土)が存在したり、或いは、当該隙間に柔軟性を有する材料を用いる態様をも包含する。
浮上防止部材10は、任意の材料で構成されることができ、好ましくは、金属製である。
It is preferable that the lower end portion 13 of the levitation preventing member 10 has a concave shape in order to stably join the embedded structure 1. When the embedded structure 1 is a tubular structure such as a sewer pipe, the lower end portion 13 is preferably a dome-shaped member having a U-shaped cross section in order to fit the tubular structure. However, the shape is not particularly limited as long as the buoyancy of the embedded structure 1 can be received. In this specification, “joining” means not only when the lower end portion 13 of the anti-lifting member 10 is in contact with or coupled to the embedded structure 1, but as long as the buoyancy of the embedded structure 1 can be received, It includes a mode in which a clot (backfill soil) exists in the gap between the lower end portion 13 and the embedded structure 1 or a flexible material is used for the gap.
The levitation preventing member 10 can be made of any material, and is preferably made of metal.

好ましくは、浮上防止部材10の上端部11は、地盤中の地下水位より上方に位置する。これは、地下水位より上方では液状化現象が生じ難いため、地盤中で液状化が生じた場合でも埋設構造物1の浮力に抵抗するための支圧板によるせん断抵抗力を得ることができるためである。また、上端部11は、好ましくは、アスファルトの下の路盤・路床の下端に接するように設置することができ、この場合は、埋設構造物1に作用する浮力が路盤・路床に直接伝達されて、当該浮力に抵抗することによって埋設構造物1の浮き上がりを抑制することができる。   Preferably, the upper end portion 11 of the levitation preventing member 10 is located above the groundwater level in the ground. This is because a liquefaction phenomenon is unlikely to occur above the groundwater level, so that even when liquefaction occurs in the ground, it is possible to obtain a shear resistance force by a bearing plate for resisting the buoyancy of the embedded structure 1. is there. Further, the upper end portion 11 can be preferably installed so as to be in contact with the lower end of the roadbed / roadbed under the asphalt. In this case, the buoyancy acting on the buried structure 1 is directly transmitted to the roadbed / roadbed. Then, the floating of the embedded structure 1 can be suppressed by resisting the buoyancy.

浮上防止部材10は、前記地中埋設構造物の100mあたり2〜20本、好ましくは100mあたり5〜20本の間隔で配置される。浮上防止部材10は、等間隔で配置されることが好ましい。なお、後述の式(1)及び(2)を用いて、前記埋設構造物の100m当たりに働く浮力に対して1本当たりの浮上抵抗力から求められる最適な本数とすることもできる。   The levitation preventing members 10 are arranged at intervals of 2 to 20 per 100 m of the underground buried structure, preferably 5 to 20 per 100 m. The levitation preventing members 10 are preferably arranged at equal intervals. In addition, it can also be set as the optimal number calculated | required from the levitation resistance per one with respect to the buoyancy which works per 100 m of the said embedded structure using Formula (1) and (2) mentioned later.

以上で説明した第1の実施形態に係る方法は、埋設構造物1を新設する場合、又は地震等で被災してしまった埋設構造物1を一旦削孔したうえで修理・交換を行い再度埋め戻す場合に好適である。   In the method according to the first embodiment described above, the buried structure 1 is newly installed, or the buried structure 1 damaged by an earthquake or the like is once drilled, repaired and replaced, and then buried again. It is suitable for returning.

(第2の実施形態)
図2は、本発明の第2の実施形態に係る地中埋設構造物の浮き上がりを防止する方法における地盤中の断面を示す模式図である。
(Second Embodiment)
Drawing 2 is a mimetic diagram showing the section in the ground in the method of preventing the floating of the underground buried structure concerning the 2nd embodiment of the present invention.

図2に示す第2の実施形態は、図1における上端部11、足部12、及び下端部13を備えた浮上防止部材10に代えて、柱状の浮上防止部材20を用いたこと以外は、図1で示した第1の実施形態と同様である。ただし、柱状の浮上防止部材20を用いる場合であっても、地盤の表層からの抵抗力を得るために、その上端に上記第1の実施形態の場合と同様の支圧板を設けることもできる。   In the second embodiment shown in FIG. 2, except for using the columnar levitation preventing member 20 instead of the levitation preventing member 10 having the upper end portion 11, the foot portion 12, and the lower end portion 13 in FIG. 1, This is the same as the first embodiment shown in FIG. However, even when the columnar levitation preventing member 20 is used, in order to obtain a resistance force from the surface layer of the ground, a bearing plate similar to that in the case of the first embodiment can be provided at the upper end.

浮上防止部材20は、充填剤や固化剤によって形成された柱状の杭部材、又は筒状の収容具に充填された砕石や鉄塊等の比重の大きい物を含む杭部材である、であり、好ましくは円筒状である。当該充填剤又は固化剤は、周囲の土壌よりも比重の高いものが用いられるが、例えばモルタル、セメント、コンクリート、又はベントナイトが好ましい。場合によって、当該浮上防止部材の総重量を増加させるため或いは強度を高めるために、金属や鋼材をこれらに混合してもよく、また、鉄製の心棒を有していてもよい。   The levitation preventing member 20 is a columnar pile member formed by a filler or a solidifying agent, or a pile member including a large specific gravity such as a crushed stone or an iron ingot filled in a cylindrical container, Preferably it is cylindrical. As the filler or solidifying agent, one having a specific gravity higher than that of the surrounding soil is used. For example, mortar, cement, concrete, or bentonite is preferable. In some cases, in order to increase the total weight of the levitation preventing member or to increase the strength, a metal or a steel material may be mixed with them, or an iron mandrel may be provided.

第2の実施形態に係る方法を既設の埋設構造物1に対して適用する場合、オーガー等の当該技術分野において周知の掘削機械を用いて、埋設構造物1の深さまで地盤2を削孔し、それによって生じた空間に上記充填剤を注入し固化させることによって浮上防止部材20を形成させることができる。浮上防止部材を構成するための空間(穴)は、直径50〜200mmであることができ、好ましくは直径100〜200mmである。従って、当該技術分野において一般的に用いられている機械及び工法によって比較的狭い範囲を削孔するだけで実施できるため、既設の埋設構造物1を耐震補強する場合に有益である。   When the method according to the second embodiment is applied to the existing embedded structure 1, the ground 2 is drilled to the depth of the embedded structure 1 using an excavating machine known in the technical field such as an auger. The float prevention member 20 can be formed by injecting and solidifying the filler into the space formed thereby. The space (hole) for constituting the levitation preventing member can have a diameter of 50 to 200 mm, and preferably has a diameter of 100 to 200 mm. Therefore, since it can be carried out by simply drilling a relatively narrow range by a machine and construction method generally used in the technical field, it is useful when the existing embedded structure 1 is seismically reinforced.

また、埋設構造物1の新設において第2の実施形態に係る方法を適用する場合には、上記第1の実施形態と同様に埋設構造物1を設置して埋め戻す際に、例えば、型枠として塩化ビニール管などを埋設構造物1の上方に設置し、その内部に上記充填剤を注入・固化することによって、浮上防止部材20を形成させることもできる。   In addition, when the method according to the second embodiment is applied in newly installing the embedded structure 1, when the embedded structure 1 is installed and backfilled as in the first embodiment, for example, a formwork It is also possible to form the anti-floating member 20 by installing a vinyl chloride pipe or the like above the buried structure 1 and injecting and solidifying the filler into the inside thereof.

上記第1の実施形態と同様に、浮上防止部材20の上端は、地盤中の地下水位より上方に位置することが好ましく、アスファルトの下の路盤・路床の下端に接する位置までの延びていることがより好ましい。   As in the first embodiment, the upper end of the levitation preventing member 20 is preferably located above the groundwater level in the ground, and extends to a position in contact with the lower end of the roadbed / basement under the asphalt. It is more preferable.

(埋設構造物内の事前探索工程)
本発明の方法では、浮上防止部材を配置する前に、撮影手段を下水管等の埋設構造物1の中に挿入することによって、その正確な位置や継手箇所等の継手部を探索する工程をさらに含むことができる。これによって、埋設構造物1のどの部分に浮上防止対策の施工を実施する必要があるか等を予め決定することができ、より正確で簡便な施工が可能となる。例えば、下水管の継ぎ手部分は、液状化による浮き上がりによって損傷を受ける可能性が高い箇所であり、本発明による耐震補強を行う必要が高いので、かかる箇所を予め施工位置として特定できることは実用上有益である。
(Preliminary search process in the buried structure)
In the method of the present invention, before placing the anti-floating member, the step of searching for a joint portion such as its exact position or joint location by inserting the photographing means into the buried structure 1 such as a sewer pipe is performed. Further can be included. This makes it possible to determine in advance in which part of the embedded structure 1 it is necessary to implement the anti-floating measure, thereby enabling more accurate and simple construction. For example, the joint portion of the sewer pipe is a portion that is highly likely to be damaged by floating due to liquefaction, and it is highly necessary to perform seismic reinforcement according to the present invention. It is.

当該撮影手段は、下水管等の埋設構造物1の内部の映像を撮影できるとともに、その位置情報を把握できる必要がある。例えば、GPS等によって位置情報を特定可能であり、かつ遠隔操作可能なテレビカメラであることが好ましい。 The photographing means needs to be able to photograph an image inside the embedded structure 1 such as a sewer pipe and to grasp position information thereof. For example, it is preferable that the position information can be specified by GPS or the like and the television camera can be remotely operated.

(浮上防止部材の安全率の算定)
本発明の方法において、地盤の液状化の際に埋設構造物1に作用する浮力(F)と浮上防止部材10又は20に作用する浮上抵抗力(F’)は、以下の式で表される関係を有する。
浮力(F)= (PxAxγ)+(Vxγ) …式(1)
浮上抵抗力(F’)= Wsurface+Ssurface+W …式(2)
(Calculation of safety factor for anti-floating member)
In the method of the present invention, the buoyancy (F) acting on the buried structure 1 and the levitation resistance (F ′) acting on the levitation preventing member 10 or 20 when the ground is liquefied are expressed by the following equations. Have a relationship.
Buoyancy (F) = (PxAxγ) + (Vxγ) (1)
Floating resistance (F ′) = W surface + S surface + W (2)

式中、Pは、浮上防止部材の設置間隔(m);Aは、埋設構造物の断面積(m);γは、地下水位より下方の液状化層における湿潤単位体積重量(湿潤密度ともいう。)(kN/m);Vは、浮上防止部材の体積のうち地下水位より下方の液状化層内の体積(m);Wsurfaceは、浮上防止部材の上方に存在する表層土塊の重量(kN);Ssurfaceは、浮上防止部材の上方に存在する表層土塊と、その周辺地盤とのせん断抵抗力の鉛直成分(kN);及び、Wは、浮上防止部材の重量(kN)である。 In the formula, P is the installation interval (m) of the anti-floating member; A is the cross-sectional area (m 2 ) of the buried structure; γ is the wet unit volume weight (both wet density) in the liquefied layer below the groundwater level. (KN / m 3 ); V is the volume of the liquefied layer below the groundwater level (m 3 ) of the volume of the levitation prevention member; W surface is the surface soil block existing above the levitation prevention member S surface is the vertical component (kN) of the shear resistance between the surface soil block above the levitation prevention member and the surrounding ground; and W is the weight (kN) of the levitation prevention member. It is.

これらのパラメータについては、図3に模式的に示しているが、当業者であれば当該図面を参照することでその意味を容易に理解できるであろう。   These parameters are schematically shown in FIG. 3, but those skilled in the art can easily understand the meaning by referring to the drawings.

そして、浮力(F)と浮上抵抗力(F’)を用いて安全率(SF)を以下のように表すことができる。
安全率(SF)= 浮上抵抗力(F’)/浮力(F) …式(3)
ここで、浮力(F)が浮上抵抗力(F’)より大きくなると(すなわち、SFが1.0未満)、埋設構造物1の浮き上がりが生じることになるから、安全率(SF)が1.0以上となる場合に、本発明の方法による浮き上がり防止効果が得られることが計算できる。 なお、図3では、第1の実施形態の浮上防止部材10を用いて示しているが、第2の実施形態の浮上防止部材20を用いる場合でも同様に上記の関係式が適用可能である。
The safety factor (SF) can be expressed as follows using the buoyancy (F) and the levitation resistance (F ′).
Safety factor (SF) = levitation resistance (F ′) / buoyancy (F) Equation (3)
Here, when the buoyancy (F) is larger than the levitation resistance (F ′) (that is, SF is less than 1.0), the buried structure 1 is lifted, so that the safety factor (SF) is 1. It can be calculated that the effect of preventing lifting by the method of the present invention can be obtained when it is 0 or more. In FIG. 3, the floating prevention member 10 according to the first embodiment is used, but the above relational expression can be similarly applied even when the floating prevention member 20 according to the second embodiment is used.

上記の関係式から明らかなように、浮上抵抗力(F’)は、浮上防止部材の上面の面積に依存するから、所望の安全率(SF)を得るために、第1の実施形態では上端部11の支圧板の面積、及び第2の実施形態では柱状の杭部材の直径等を当該関係式を参照して適宜調整することが可能である。また、浮上防止部材自体の重量(W)もまた浮上抵抗力(F’)に影響するため、浮上防止部材の材料(特に、第2の実施形態における充填剤)を調整することで所望の重量とすることもできる。   As apparent from the above relational expression, the floating resistance force (F ′) depends on the area of the upper surface of the floating prevention member. Therefore, in order to obtain a desired safety factor (SF), the upper end in the first embodiment is used. The area of the bearing plate of the part 11 and the diameter of the columnar pile member in the second embodiment can be appropriately adjusted with reference to the relational expression. In addition, since the weight (W) of the floating prevention member itself also affects the floating resistance (F ′), a desired weight can be obtained by adjusting the material of the floating prevention member (particularly, the filler in the second embodiment). It can also be.

一方、浮力(F)は、浮上防止部材の設置間隔(P)に依存するため、上記関係式に基づいて、浮上防止部材の設置間隔を予め設定することが可能である点で有益である。   On the other hand, since the buoyancy (F) depends on the installation interval (P) of the levitation preventing member, it is advantageous in that the installation interval of the levitation prevention member can be set in advance based on the above relational expression.

本発明の方法における浮上防止部材による浮き上がり防止の効果を観測するため、小規模の模型地盤を用いて実験を行った。   In order to observe the effect of preventing lifting by the lifting prevention member in the method of the present invention, an experiment was conducted using a small-scale model ground.

実験に用いた浮上防止部材は、図4に示すように上記第1の実施形態に対応する角状治具である。当該治具の上端部の支圧板内には、埋設管の浮力を計測するためのロードセルを設けることで、上向きの力を計測することが可能である。地盤の表層を礫又は砂地盤とし、正方形の支圧板の1辺の長さ(L)及びその設置深度(D)を種々の値とした複数の条件につき実験を行った。条件を表1に示す。

Figure 0006298255
The levitation prevention member used in the experiment is a square jig corresponding to the first embodiment as shown in FIG. An upward force can be measured by providing a load cell for measuring the buoyancy of the buried pipe in the bearing plate at the upper end of the jig. The experiment was conducted under a plurality of conditions in which the surface layer of the ground was gravel or sand, and the length (L) of one side of the square bearing plate and the installation depth (D) were various values. The conditions are shown in Table 1.
Figure 0006298255

図5に実験に用いた模型地盤の概要を示す。長さ270cm、幅40cm、深さ50cmであり、底から20cmの位置に埋設管を設置した。埋設管の両端はヒンジ境界となるよう支持することで、実際のマンホールとの接続を再現している。   Fig. 5 shows the outline of the model ground used in the experiment. The buried pipe was installed at a position of 270 cm in length, 40 cm in width, 50 cm in depth, and 20 cm from the bottom. By supporting both ends of the buried pipe as hinge boundaries, the connection with the actual manhole is reproduced.

実施例1において、支圧板の位置を土槽に完全固定することで加振による埋設管の浮き上がり力を測定した結果を図6に示す。浮き上がり力の最大値は74.3Nであった。   In Example 1, the result of having measured the lifting force of the buried pipe by vibration by completely fixing the position of the bearing plate to the earth tub is shown in FIG. The maximum value of the lifting force was 74.3N.

同様に、実施例2〜5及び比較例1について、加振による埋設管の浮き上がり量(cm)の時間変化の結果を図7に示す。液状化の発生に伴い、全てのケースで埋設管の浮き上がりが観測されたが、実施例2及び3(Horn.2及び3)では、表層の礫地盤の沈下に伴う治具と埋設管のわずかな沈下が確認された。これは、浮き上がり力に対して十分な抵抗があったことを示すものである。一方のその他のケースでは、加振終了時まで浮上が観測されており、抵抗は不十分であったことが示唆される。   Similarly, with respect to Examples 2 to 5 and Comparative Example 1, FIG. 7 shows the results of changes over time in the amount of floating (cm) of the buried pipe due to vibration. With the occurrence of liquefaction, floating of the buried pipe was observed in all cases, but in Examples 2 and 3 (Horn. 2 and 3), the jig and buried pipe accompanying the subsidence of the gravel ground in the surface layer were slightly Sedimentation was confirmed. This indicates that there was sufficient resistance against the lifting force. In the other case, levitation was observed until the end of excitation, suggesting that the resistance was insufficient.

図8に、各実験条件における安全率(SF)を算定した結果に対する、加振後の浮き上がり量(残留変位)の実験結果のプロットを示す。図中の破線に示すように、安全率が1.0を上回ると浮き上がり変位が小さくなり、逆に1.0を下回ると変位が大きくなるという関係であることが分かる。これは、算出した安全率の値によって、液状化における埋設管の浮き上がり量を予測することが可能であることが実証するものである。   FIG. 8 shows a plot of the experimental result of the lift amount (residual displacement) after vibration against the result of calculating the safety factor (SF) under each experimental condition. As shown by the broken line in the figure, it can be seen that the lifted displacement decreases when the safety factor exceeds 1.0, and conversely, the displacement increases when it falls below 1.0. This demonstrates that the amount of floating of the buried pipe in liquefaction can be predicted by the calculated safety factor value.

Claims (14)

地中の埋設構造物の浮き上がりを防止する方法であって、
前記埋設構造物の上方に浮上防止部材を配置し、前記浮上防止部材による重力及び周辺地盤のせん断抵抗力によって、前記埋設構造物の浮上を抑制するための荷重を付加すること
前記浮上防止部材の上端を地下水位より上方に位置させること、又は前記浮上防止部材の上端を舗装アスファルトの下方の路盤若しくは路床の下端に接するように設置すること;及び
前記浮上防止部材によって前記埋設構造物に作用する力が、以下の式で表される安全率(SF)が1.0以上となる関係を有すること
安全率(SF)= 浮上抵抗力(F’)/浮力(F)
(ここで、浮力(F)= (PxAxγ)+(Vxγ)
浮上抵抗力(F’)= W surface +S surface +W
であり、
式中、Pは、浮上防止部材の設置間隔(m);Aは、埋設構造物の断面積(m );γは、地下水位より下方の液状化層における湿潤単位体積重量(kN/m );Vは、浮上防止部材の体積のうち地下水位より下方の液状化層内の体積(m );W surface は、浮上防止部材の上方に存在する表層土塊の重量(kN);S surface は、浮上防止部材の上方に存在する表層土塊と、その周辺地盤とのせん断抵抗力の鉛直成分(kN);及び、Wは、浮上防止部材の重量(kN)である。)
を特徴とする、該方法。
A method for preventing the floating of underground structures,
Disposing a floating prevention member above the buried structure, and applying a load for suppressing the floating of the buried structure by the gravity and the shear resistance of the surrounding ground by the floating prevention member ;
Placing the upper end of the levitation prevention member above the groundwater level, or installing the upper end of the levitation prevention member so as to contact the lower end of the roadbed or roadbed below the paved asphalt; and
The force acting on the buried structure by the levitation preventing member has a relationship that the safety factor (SF) represented by the following formula is 1.0 or more.
Safety factor (SF) = resistance to levitation (F ') / buoyancy (F)
(Where buoyancy (F) = (PxAxγ) + (Vxγ)
Floating resistance (F ') = W surface + S surface + W
And
In the formula, P is the installation interval (m) of the anti-floating member; A is the cross-sectional area (m 2 ) of the buried structure ; γ is the wet unit volume weight (kN / m) in the liquefied layer below the groundwater level 3 ); V is the volume in the liquefied layer below the groundwater level in the volume of the anti-lifting member (m 3 ); W surface is the weight of the surface soil block (kN) existing above the anti-lifting member; S The surface is a vertical component (kN) of the shear resistance between the surface soil block above the levitation prevention member and the surrounding ground; and W is the weight (kN) of the levitation prevention member. )
Characterized by the above.
前記浮上防止部材が、支圧板よりなる上端部、前記埋設構造物と継合するための下端部、及び前記上端部と下端部とを連結する1以上の足部を有する角状治具である、請求項1に記載の方法。 The levitation preventing member is a square jig having an upper end portion made of a bearing plate, a lower end portion for joining with the embedded structure, and one or more feet connecting the upper end portion and the lower end portion. The method of claim 1. 前記上端部が略矩形又は略円形の支圧板よりなる、請求項2に記載の方法。 The method according to claim 2, wherein the upper end portion is a substantially rectangular or substantially circular pressure plate. 前記下端部が凹形の形状である、請求項2又は3に記載の方法。 The method according to claim 2 or 3, wherein the lower end has a concave shape. 前記浮上防止部材が、充填剤若しくは固化剤よりなる柱状の杭部材、又は筒状の収容具に充填された砕石若しくは鉄塊を含む杭部材である、請求項1に記載の方法。 The method according to claim 1, wherein the anti-floating member is a columnar pile member made of a filler or a solidifying agent, or a pile member containing crushed stone or an iron block filled in a cylindrical container. 前記充填剤若しくは固化剤が、モルタル、セメント、コンクリート、及びベントナイトからなる群より選択される、請求項5に記載の方法。 6. The method of claim 5, wherein the filler or solidifying agent is selected from the group consisting of mortar, cement, concrete, and bentonite. 前記杭部材が、既設の埋設構造物の上方を削孔することで生じた空間に形成される、請求項5又は6に記載の方法。 The method according to claim 5 or 6, wherein the pile member is formed in a space generated by drilling a hole above an existing embedded structure. 前記埋設構造物が、下水管である、請求項1〜7のいずれか1項に記載の方法。 The method according to claim 1, wherein the embedded structure is a sewer pipe. 前記浮上防止部材が、前記埋設構造物の100mあたり2〜20本の間隔で配置される、請求項1〜のいずれか1項に記載の方法。 The method according to any one of claims 1 to 8 , wherein the levitation preventing members are arranged at intervals of 2 to 20 per 100 m of the embedded structure. 前記浮上防止部材を配置する前に、撮影手段を前記埋設構造物中に挿入することによって、当該埋設構造物における継手部を探索する工程をさらに含む、請求項1〜のいずれか1項に記載の方法。 Before placing the floating preventing member, by inserting the photographing means in said buried structure, further comprising the step of searching a joint portion of the buried structure, to any one of claims 1-9 The method described. 前記撮影手段が位置情報特定手段を有する、請求項10に記載の方法。 The method according to claim 10 , wherein the photographing unit includes a position information specifying unit. 前記撮影手段がテレビカメラである、請求項10又は11に記載の方法。 The method according to claim 10 or 11 , wherein the photographing means is a television camera. 地中の埋設構造物の上方に配置されて当該埋設構造物の浮き上がりを防止するための角状治具であって、支圧板よりなる上端部、前記埋設構造物と継合するための下端部、及び前記上端部と下端部とを連結する1以上の足部を有し、
前記下端部が充填剤若しくは固化剤よりなる部材、又は筒状の収容具に充填された砕石若しくは鉄塊を含む部材であること
を特徴とする、該治具。
An angular jig that is disposed above the underground buried structure to prevent the buried structure from being lifted, and includes an upper end portion made of a bearing plate and a lower end portion for joining with the buried structure. and possess one or more of the foot portion connecting the upper and lower ends,
The jig, wherein the lower end portion is a member made of a filler or a solidifying agent, or a member containing crushed stone or an iron block filled in a cylindrical container .
前記上端部が略矩形又は略円形の支圧板よりなる、請求項13に記載の治具。 The jig according to claim 13 , wherein the upper end portion is a substantially rectangular or substantially circular pressure plate.
JP2013168508A 2013-08-14 2013-08-14 Method and jig for preventing floating of underground structure Expired - Fee Related JP6298255B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013168508A JP6298255B2 (en) 2013-08-14 2013-08-14 Method and jig for preventing floating of underground structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013168508A JP6298255B2 (en) 2013-08-14 2013-08-14 Method and jig for preventing floating of underground structure

Publications (2)

Publication Number Publication Date
JP2015036499A JP2015036499A (en) 2015-02-23
JP6298255B2 true JP6298255B2 (en) 2018-03-20

Family

ID=52687103

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013168508A Expired - Fee Related JP6298255B2 (en) 2013-08-14 2013-08-14 Method and jig for preventing floating of underground structure

Country Status (1)

Country Link
JP (1) JP6298255B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109457748B (en) * 2018-12-28 2023-09-05 江苏徐工工程机械研究院有限公司 Double round slot milling machine

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54164306A (en) * 1978-06-15 1979-12-27 Kubota Ltd Floating preventive structure of buried light pipe
JPS576176A (en) * 1980-06-06 1982-01-13 Sekisui Chemical Co Ltd Floating-up preventing method of buried pipe
JPS59219588A (en) * 1983-05-27 1984-12-10 日本鋼管株式会社 Method of ground liquefaction countermeasure construction ofburied duct
JPH0814352B2 (en) * 1990-10-19 1996-02-14 株式会社クボタ Pipe floating prevention method
SE9303796L (en) * 1993-02-11 1994-08-12 Sundolitt Ab Method of relieving and isolating pipelines and apparatus thereof
JPH07286356A (en) * 1994-04-18 1995-10-31 Japan Found Eng Co Ltd Method of floatation and settlement preventive construction of underground buried pipe
JP3373124B2 (en) * 1997-02-05 2003-02-04 株式会社クボタ In-pipe inspection equipment
JP2006183779A (en) * 2004-12-27 2006-07-13 Nakaken Baseless construction method for buried pipe
JP5382900B2 (en) * 2006-03-29 2014-01-08 公益財団法人鉄道総合技術研究所 How to prevent underground structures from floating due to liquefaction
JP2008202219A (en) * 2007-02-16 2008-09-04 Penta Ocean Construction Co Ltd Construction method for preventing lift of underground structure
JP5314252B2 (en) * 2007-03-20 2013-10-16 矢内 誠 Pipeline structure
JP5726007B2 (en) * 2011-07-27 2015-05-27 松原建設株式会社 Ground improvement method

Also Published As

Publication number Publication date
JP2015036499A (en) 2015-02-23

Similar Documents

Publication Publication Date Title
JP6166264B2 (en) How to build a retaining wall
KR100964796B1 (en) Method for constructing the steel pipe-concrete composite pile structurized of burying and unifying into the bedrock, and a pile construction
CN104452829B (en) A kind of pile-raft foundation float Structure and construction method
KR101194594B1 (en) Construction method of the concrete filled steel tube column
KR101664368B1 (en) A cast-in place pile arrangement method for head of concrete pile exposed to outside using geo tube
KR101545307B1 (en) Construction method of complex temporary facility with bottom grouting for weak ground
CN110258582B (en) Inclined support foundation pit supporting structure based on steel pipe pile and Lassen steel plate and construction method
CN110685286A (en) Deep foundation pit supporting construction process for adjacent road under complex geological condition
CN105464074B (en) A kind of artificial digging pile high polymer grouting safeguard structure and its construction method
Godavarthi et al. Contiguous pile wall as a deep excavation supporting system
CN107653878A (en) Cast-in-situ bored pile is reusable to be longitudinally separated formula steel pile casting construction
CN111335912B (en) Large-pipe-diameter mechanical pipe jacking construction process for soft soil foundation in collapsible loess area
CN110241863B (en) Soft soil foundation pit excavation process pipe gallery deformation control device and control method thereof
KR101117924B1 (en) Composite type steel temporary construction and construction method thereof
JP6298255B2 (en) Method and jig for preventing floating of underground structure
JP2007169927A (en) Earthquake resisting manhole structure and its manufacturing method
CN204326119U (en) A kind of pile-raft foundation float Structure
JP5975726B2 (en) Ground structure and ground improvement method
JP5300163B1 (en) Steel pile rooting method
CN106013238B (en) A kind of big earthing open trench tunnel subsidence control method of soft stratum
JP4856737B2 (en) Foundation reinforcement method for existing houses
JP5140515B2 (en) Installation method of underground floor pillar and construction method of underground structure
JP7265451B2 (en) Floating prevention method for underground buried objects
KR101058628B1 (en) Retaining wall construction structure using landscape stones
JP2014109190A (en) Foot protection method for steel pile

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160721

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170424

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170606

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170803

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180130

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180223

R150 Certificate of patent or registration of utility model

Ref document number: 6298255

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees