JP2008150313A - Method for producing high-purity terephthalic acid - Google Patents

Method for producing high-purity terephthalic acid Download PDF

Info

Publication number
JP2008150313A
JP2008150313A JP2006338842A JP2006338842A JP2008150313A JP 2008150313 A JP2008150313 A JP 2008150313A JP 2006338842 A JP2006338842 A JP 2006338842A JP 2006338842 A JP2006338842 A JP 2006338842A JP 2008150313 A JP2008150313 A JP 2008150313A
Authority
JP
Japan
Prior art keywords
terephthalic acid
ppm
cta
aqueous solution
microorganisms
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006338842A
Other languages
Japanese (ja)
Other versions
JP5031354B2 (en
Inventor
Hiroshi Tomita
博 冨田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Chemicals Inc
Original Assignee
Mitsui Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Chemicals Inc filed Critical Mitsui Chemicals Inc
Priority to JP2006338842A priority Critical patent/JP5031354B2/en
Priority to CN2007101998405A priority patent/CN101205182B/en
Publication of JP2008150313A publication Critical patent/JP2008150313A/en
Application granted granted Critical
Publication of JP5031354B2 publication Critical patent/JP5031354B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for producing high-purity terephthalic acid by which the frequency of catalyst exchange is reduced by suppressing the reduction of the activities of the catalyst for hydrogenation by long-term use, and the catalyst cost can be reduced. <P>SOLUTION: The method for producing the high-purity terephthalic acid includes (I) a step for forming a crude terephthalic acid slurry by mixing the crude terephthalic acid obtained by the liquid-phase oxidation of para-xylene with water, (II) a step for forming an aqueous crude terephthalic acid solution by heating and dissolving the crude terephthalic acid slurry, (III) a step for subjecting the aqueous solution of the crude terephthalic acid to hydrogenation process, (IV) a step for crystallizing the terephthalic acid from the aqueous terephthalic acid solution after hydrogenation, and (V) a step for subjecting the obtained terephthalic acid slurry to solid-liquid separation. The method is characterized by the content of microorganisms contained in the water to be mixed with the crude terephthalic acid in the step (I) and regulated so as to be ≤4,000/g based on the measurement value (1-10 μm) by RION. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は高純度テレフタル酸の製造方法に関し、より詳細には、パラキシレンの液相酸化によって得られる粗テレフタル酸のスラリーを調製する際に、粗テレフタル酸と混合する水に含まれる不純物の含有量を低減して高純度テレフタル酸を製造方法に関する。   The present invention relates to a method for producing high-purity terephthalic acid, and more specifically, the inclusion of impurities contained in water mixed with crude terephthalic acid when preparing a slurry of crude terephthalic acid obtained by liquid phase oxidation of para-xylene. The present invention relates to a method for producing high-purity terephthalic acid by reducing the amount.

分子状酸素含有ガスによりパラキシレンを液相で酸化するとテレフタル酸(以下、「TA」とも記す。)の他に、4−カルボキシベンズアルデヒド(以下、「4−CBA」とも記す。)を含む粗テレフタル酸(以下、「CTA」とも記す。)が生成する。ポリエステル等の製造において、4−CBAを多く含むCTAは品質悪化を招くため、原料として高純度テレフタル酸(以下、「PTA」とも記す。)が要求され、上記CTAの精製が必要になる。   Oxidation of para-xylene in a liquid phase with a molecular oxygen-containing gas results in crude terephthalate containing 4-carboxybenzaldehyde (hereinafter also referred to as “4-CBA”) in addition to terephthalic acid (hereinafter also referred to as “TA”). An acid (hereinafter also referred to as “CTA”) is generated. In the production of polyester and the like, CTA containing a large amount of 4-CBA causes a deterioration in quality. Therefore, high-purity terephthalic acid (hereinafter also referred to as “PTA”) is required as a raw material, and the CTA needs to be purified.

CTAの精製方法としては水素添加処理が知られている(たとえば、特開4−66553号公報参照)。この方法では、CTAを高温高圧下で水に完全溶解してCTA水溶液を調製し、この水溶液をパラジウムなどの貴金属系触媒の存在下に水素添加処理して、TAに共晶しやすい4−CBAを、共晶しにくいパラトルイル酸(以下、「p−TA」とも記す。)に転化する。その後、段階的に降温降圧してTAスラリーを調製し、固液分離してろ過物を乾燥することにより、4−CBAが極微量含まれるPTAが得られる。   As a method for purifying CTA, hydrogenation treatment is known (see, for example, JP-A-4-66553). In this method, CTA is completely dissolved in water at high temperature and high pressure to prepare a CTA aqueous solution. This aqueous solution is subjected to hydrogenation treatment in the presence of a noble metal catalyst such as palladium and 4-CBA which is easy to eutect with TA. Is converted to p-toluic acid (hereinafter also referred to as “p-TA”) which is difficult to eutectic. Thereafter, the temperature is lowered stepwise to prepare TA slurry, solid-liquid separation is performed, and the filtrate is dried to obtain PTA containing a very small amount of 4-CBA.

上記水素添加処理は、反応器に、パラジウムなどの貴金属を担持した固体触媒の固定床を作製し、この固定床にCTA水溶液を通液しながら水素を供給することにより行われる。このとき、反応器の温度はほぼ一定に保たれ、水溶液の空間速度および線速度も一定に制御されるため、理論的には、PTA中の4−CBA含有量はほぼ一定に保たれる。   The hydrogenation treatment is performed by preparing a fixed bed of a solid catalyst carrying a noble metal such as palladium in a reactor and supplying hydrogen while passing an aqueous CTA solution through the fixed bed. At this time, the temperature of the reactor is kept almost constant, and the space velocity and linear velocity of the aqueous solution are also kept constant. Therefore, theoretically, the 4-CBA content in the PTA is kept almost constant.

ところが、実際には、パラジウムなどの貴金属は、水素添加処理量、すなわち触媒ライフが長くなるにつれて活性が徐々に低下し、PTA中の4−CBA含有量が徐々に増大する。そこで、PTA中の4−CBA含有量を一定に保つには、触媒ライフが長くなるにつれて水素分圧を徐々に高くするなどの措置が必要であるが、水素分圧が反応器の耐圧から決定される上限値になると、触媒を部分交換せざるを得ず、多大な費用がかかるという問題があった。このため、触媒活性の低下をできる限り抑制する必要がある。   However, in practice, the activity of noble metals such as palladium gradually decreases as the hydrogenation treatment amount, that is, the catalyst life becomes longer, and the 4-CBA content in the PTA gradually increases. Therefore, in order to keep the 4-CBA content in the PTA constant, it is necessary to take measures such as gradually increasing the hydrogen partial pressure as the catalyst life increases, but the hydrogen partial pressure is determined from the pressure resistance of the reactor. When the upper limit is reached, there is a problem in that the catalyst must be partially replaced, and a great amount of cost is required. For this reason, it is necessary to suppress the fall of catalyst activity as much as possible.

たとえば、特開平9−263566号公報には、CTA中に不純物として含まれるCoやMnなどの金属、装置の腐食により生じるCu、Crなどの重金属のマスキングによる活性低下を防ぐために、特定の活性炭を担体として使用し、これにパラジウムなどの貴金属を担持した触媒が提案されている。   For example, Japanese Patent Laid-Open No. 9-263666 discloses a specific activated carbon in order to prevent a decrease in activity due to masking of metals such as Co and Mn contained as impurities in CTA and heavy metals such as Cu and Cr caused by corrosion of equipment. A catalyst that is used as a carrier and carries a noble metal such as palladium has been proposed.

また、特開2000−37633号公報には、特開平9−263566号公報に記載の触媒の活性低下をさらに抑制するために、特定の物理的形状を有し、硫黄含有量が少ない造粒活性炭を担体とし、これにパラジウムなどの貴金属を担持した触媒が提案されている。   Japanese Patent Laid-Open No. 2000-37633 discloses a granulated activated carbon having a specific physical shape and a low sulfur content in order to further suppress the activity reduction of the catalyst described in Japanese Patent Laid-Open No. 9-263666. There has been proposed a catalyst in which a noble metal such as palladium is supported.

しかしながら、実際のプラントでは、このような触媒を使用しても、まだ触媒活性の低下が起こるため、さらなる改良が求められている。
特開平4−66553号公報 特開平9−263566号公報 特開2000−37633号公報
However, in an actual plant, even if such a catalyst is used, the catalytic activity still decreases, so further improvement is required.
JP-A-4-66553 JP-A-9-263666 JP 2000-37633 A

本発明は、上記のような従来技術に伴う問題を解決しようとするものであって、長時間使用による水素添加用触媒の活性低下を抑制して触媒交換頻度を低減し、触媒コストを削減できる高純度テレフタル酸の製造方法を提供することを目的としている。   The present invention is intended to solve the problems associated with the prior art as described above, and can reduce the catalyst replacement frequency by suppressing the decrease in the activity of the hydrogenation catalyst due to long-term use, thereby reducing the catalyst cost. It aims at providing the manufacturing method of high purity terephthalic acid.

本発明者らは、上記問題点を解決すべく鋭意研究した結果、実際のプラントにおいて、粗テレフタル酸スラリーを調製する際に粗テレフタル酸と混合する水として使用される工業用純水の品質が、触媒活性の低下の原因の1つであることを見出した。   As a result of diligent research to solve the above problems, the present inventors have found that the quality of industrial pure water used as water mixed with crude terephthalic acid when preparing a crude terephthalic acid slurry in an actual plant is high. The inventors have found that this is one of the causes of a decrease in catalyst activity.

工業用純水は、通常、河川水を取水して種々の処理を施して製造され、貯蔵・循環される。たとえば、砂利などの不溶性無機物や金属酸化物などは凝集、沈殿、砂ろ過、活性炭ろ過、マイクロメーターオーダーの異物除去が可能な精密ろ過、限外ろ過等により除去され、金属イオンなどのカチオンや硫酸イオンなどのアニオンはイオン交換処理等を施すことにより除去される。ところが、微生物類などの非常に小さな粒状物は、殺菌後のろ過工程で完全に除去されず、処理水に残存することがある。このような粒状物のうち、微生物類などの増殖可能な粒状物は、貯蔵・循環中に増殖してその濃度が増大する。本発明者らは、この貯蔵・循環中に増殖した微生物類などの増殖可能な粒状物が、パラジウムなどの水素添加用触媒の活性低下の原因の1つであることを見出し、本発明を完成するに至った。   Industrial pure water is usually produced by taking river water and applying various treatments, and is stored and circulated. For example, insoluble inorganic substances such as gravel and metal oxides are removed by agglomeration, precipitation, sand filtration, activated carbon filtration, microfiltration capable of removing foreign matters on the micrometer order, ultrafiltration, etc., and cations such as metal ions and sulfuric acid. Anions such as ions are removed by ion exchange treatment or the like. However, very small particulate matter such as microorganisms may not be completely removed in the filtration step after sterilization and may remain in the treated water. Among such granular materials, the proliferative granular materials such as microorganisms grow during storage and circulation, and the concentration thereof increases. The present inventors have found that the proliferative particulate matter such as microorganisms grown during the storage and circulation is one of the causes of the decrease in the activity of the hydrogenation catalyst such as palladium, and completed the present invention. It came to do.

すなわち、本発明に係る高純度テレフタル酸の製造方法は、
(I)パラキシレンの液相酸化によって得られる粗テレフタル酸と水とを混合して粗テレフタル酸スラリーを形成する工程、(II)該粗テレフタル酸スラリーを加熱溶解して粗テレフタル酸水溶液を形成する工程、(III)該粗テレフタル酸水溶液を水素添加処理する
工程、(IV)水素添加後のテレフタル酸水溶液からテレフタル酸を晶析させる工程、(V)得られたテレフタル酸スラリーを固液分離する工程を含む高純度テレフタル酸の製造方法において、
前記工程(I)で粗テレフタル酸と混合する水に含まれる微生物類の含有量を、RION計測値(1〜10μm)基準で4000個/g以下に調整することを特徴とする。
That is, the method for producing high-purity terephthalic acid according to the present invention includes:
(I) A step of forming a crude terephthalic acid slurry by mixing crude terephthalic acid obtained by liquid phase oxidation of para-xylene and water, and (II) forming a crude terephthalic acid aqueous solution by heating and dissolving the crude terephthalic acid slurry. (III) Step of hydrogenating the crude terephthalic acid aqueous solution, (IV) Step of crystallizing terephthalic acid from the terephthalic acid aqueous solution after hydrogenation, (V) Solid-liquid separation of the obtained terephthalic acid slurry In the method for producing high-purity terephthalic acid including the step of:
The content of microorganisms contained in the water mixed with the crude terephthalic acid in the step (I) is adjusted to 4000 / g or less based on the RION measurement value (1 to 10 μm).

本発明では、前記工程(I)で粗テレフタル酸と水を混合したスラリーに含まれる、S、Cr、Ni、Ca、Cu、Zn、MgおよびPbからなる群から選択される少なくとも1種の元素の含有量を、下記(a)〜(h)の条件に調整することが好ましい。
(a)S :1ppm以下
(b)Cr:5ppm以下
(c)Ni:5ppm以下
(d)Ca:5ppm以下
(e)Cu:5ppm以下
(f)Zn:5ppm以下
(g)Mg:5ppm以下
(h)Pb:3ppm以下
また、本発明では、粗テレフタル酸と混合する水を混合直前にマイクロフィルターで精密ろ過して前記微生物類の含有量を調整することが好ましい。
In the present invention, at least one element selected from the group consisting of S, Cr, Ni, Ca, Cu, Zn, Mg and Pb contained in the slurry obtained by mixing the crude terephthalic acid and water in the step (I). The content of is preferably adjusted to the following conditions (a) to (h).
(A) S: 1 ppm or less (b) Cr: 5 ppm or less (c) Ni: 5 ppm or less (d) Ca: 5 ppm or less (e) Cu: 5 ppm or less (f) Zn: 5 ppm or less (g) Mg: 5 ppm or less ( h) Pb: 3 ppm or less In the present invention, it is preferable to adjust the content of the microorganisms by microfiltration of water mixed with crude terephthalic acid using a microfilter immediately before mixing.

本発明によると、粗テレフタル酸と混合する水に含まれる不純物、特に微生物類などの増殖可能な粒状物の濃度を低減することにより、パラジウムなどの貴金属系触媒の活性低
下を抑制でき、その結果、触媒の寿命が長くなり、触媒交換頻度が低減され、触媒コストを削減できる。
According to the present invention, by reducing the concentration of impurities contained in the water mixed with the crude terephthalic acid, particularly the concentration of proliferative particulate matter such as microorganisms, it is possible to suppress the decrease in the activity of noble metal-based catalysts such as palladium. The life of the catalyst is prolonged, the frequency of catalyst replacement is reduced, and the catalyst cost can be reduced.

本発明に係る高純度テレフタル酸の製造方法は、(I)パラキシレンの液相酸化によって得られる粗テレフタル酸と水とを混合して粗テレフタル酸スラリーを形成する工程、(II)該粗テレフタル酸スラリーを加熱溶解して粗テレフタル酸水溶液を形成する工程、(III)該粗テレフタル酸水溶液をパラジウムなどの貴金属系触媒を用いて水素添加処理す
る工程、(IV)水素添加後のテレフタル酸水溶液からテレフタル酸を晶析させる工程、(V)得られたテレフタル酸スラリーを固液分離する工程を含む。
The method for producing high-purity terephthalic acid according to the present invention comprises (I) a step of mixing crude terephthalic acid obtained by liquid phase oxidation of paraxylene and water to form a crude terephthalic acid slurry, and (II) the crude terephthalic acid. A step of heating and dissolving the acid slurry to form a crude terephthalic acid aqueous solution; (III) a step of hydrogenating the crude terephthalic acid aqueous solution using a noble metal catalyst such as palladium; and (IV) a terephthalic acid aqueous solution after hydrogenation. And (V) a step of solid-liquid separation of the obtained terephthalic acid slurry.

(I)スラリー形成工程:
この工程では、パラキシレンの液相酸化によって得られる粗テレフタル酸と水とを混合して粗テレフタル酸スラリーを形成する。パラキシレンの液相酸化は、一般にテレフタル酸の製造に用いられる酸化反応器により実施することができる。酸化反応器は、パラキシレン等の原料、触媒、溶媒を収容し、これらの原料等を補給しながら空気を吹込んで連続液相酸化を行うことができるものが好ましい。
(I) Slurry forming step:
In this step, a crude terephthalic acid slurry is formed by mixing crude terephthalic acid obtained by liquid phase oxidation of para-xylene and water. The liquid phase oxidation of paraxylene can be carried out in an oxidation reactor generally used for the production of terephthalic acid. The oxidation reactor preferably contains a raw material such as para-xylene, a catalyst, and a solvent, and can perform continuous liquid phase oxidation by blowing air while replenishing these raw materials.

上記パラキシレンの液相酸化は通常、溶媒および触媒を用いて行われる。前記溶媒としては、酢酸、プロピオン酸、n−酪酸、イソ酪酸、n−吉草酸、トリメチル酢酸、カプロン酸などの脂肪酸、あるいはこれらと水との混合物を例示できる。これらのうち、酢酸と水との混合溶媒が好ましい。前記触媒としては、重金属、臭素、およびこれらの化合物が挙げられ、重金属としてはニッケル、コバルト、鉄、クロム、マンガン等が挙げられる。これらの触媒は、好ましくは反応系に溶解する形で使用される。前記触媒としては、コバルト化合物とマンガン化合物と臭素化合物とを併用することが好ましく、コバルト化合物の使用量は溶媒に対してコバルト換算で通常10〜10,000ppm、好ましくは100〜3000ppmである。また、マンガン化合物はコバルトに対するマンガンの原子比で0.001〜2が好ましく、臭素化合物はコバルトに対する臭素の原子比で0.1〜5が好ましい。   The liquid phase oxidation of paraxylene is usually performed using a solvent and a catalyst. Examples of the solvent include fatty acids such as acetic acid, propionic acid, n-butyric acid, isobutyric acid, n-valeric acid, trimethylacetic acid, caproic acid, and mixtures of these with water. Of these, a mixed solvent of acetic acid and water is preferable. Examples of the catalyst include heavy metals, bromine, and compounds thereof. Examples of heavy metals include nickel, cobalt, iron, chromium, manganese, and the like. These catalysts are preferably used in the form of being dissolved in the reaction system. As said catalyst, it is preferable to use a cobalt compound, a manganese compound, and a bromine compound together, and the usage-amount of a cobalt compound is 10-10,000 ppm normally in conversion of cobalt with respect to a solvent, Preferably it is 100-3000 ppm. Further, the manganese compound preferably has an atomic ratio of manganese to cobalt of 0.001 to 2, and the bromine compound preferably has an atomic ratio of bromine to cobalt of 0.1 to 5.

パラキシレンの液相酸化は通常、分子状酸素含有ガスを用いて行われる。このような酸素含有ガスとしては通常、酸素を不活性ガスで稀釈した希釈酸素ガスが用いられ、例えば空気や酸素を富化した空気が使用される。酸化反応の温度は通常150〜270℃、好ましくは170〜220℃であり、圧力は少なくとも反応温度において混合物が液相を保持できる圧力以上であり、通常0.5〜4MPa(ゲージ圧)である。さらに反応時間は装置の大きさ等によるが、滞留時間として通常20分〜180分程度である。反応系内の水分濃度は通常3〜30重量%であり、好ましくは5〜15重量%である。   The liquid phase oxidation of para-xylene is usually performed using a molecular oxygen-containing gas. As such an oxygen-containing gas, a diluted oxygen gas obtained by diluting oxygen with an inert gas is usually used. For example, air or air enriched with oxygen is used. The temperature of the oxidation reaction is usually 150 to 270 ° C., preferably 170 to 220 ° C., and the pressure is at least the pressure at which the mixture can maintain a liquid phase at the reaction temperature, and usually 0.5 to 4 MPa (gauge pressure). . Further, although the reaction time depends on the size of the apparatus, etc., the residence time is usually about 20 minutes to 180 minutes. The water concentration in the reaction system is usually 3 to 30% by weight, preferably 5 to 15% by weight.

上記の液相酸化反応により得られたCTAは、固液分離により液相酸化反応における母液から分離して回収される。回収されたCTAは、不純物として4−CBAを通常0.1〜0.4重量%程度含有している。   CTA obtained by the liquid phase oxidation reaction is separated and recovered from the mother liquor in the liquid phase oxidation reaction by solid-liquid separation. The recovered CTA usually contains about 4-0.4% by weight of 4-CBA as an impurity.

このような4−CBAを含むCTAと水とを混合槽において混合してCTAスラリーを形成する。上記混合槽は一般にテレフタル酸の製造に用いられるものを使用することができる。上記CTAスラリーのCTA濃度は、通常10〜40重量%、好ましくは24〜30重量%である。   CTA containing such 4-CBA and water are mixed in a mixing tank to form a CTA slurry. The said mixing tank can use what is generally used for manufacture of a terephthalic acid. The CTA concentration of the CTA slurry is usually 10 to 40% by weight, preferably 24 to 30% by weight.

CTAと混合する水としては、実際のプラントでは、通常、工業用純水が用いられる。本発明では、この工業用純水中の微生物類の含有量を、RION計測値(1〜10μm)基準で、4000個/g以下に調整する。ここで、RION計測値とは、リオン(株)製
のパーティクルカウンタ(型番:KL−01、加圧注入方式、CH1〜CH4;1〜10μm)を用いて測定した値である。
As water to be mixed with CTA, industrial pure water is usually used in an actual plant. In the present invention, the content of microorganisms in this industrial pure water is adjusted to 4000 cells / g or less based on the RION measurement value (1 to 10 μm). Here, the RION measurement value is a value measured using a particle counter (model number: KL-01, pressure injection method, CH1 to CH4; 1 to 10 μm) manufactured by Rion Co., Ltd.

工業用純水中の微生物類の含有量を上記範囲に調整することにより、後述する水素添加触媒の活性低下を抑制することができる。一方、微生物類は高温高圧下では増殖しないが、微生物類の含有量が上記範囲を超えると、高温高圧下でも一部が不溶性の不純物として触媒担体の細孔に残留し、細孔内のTAの拡散を阻害するおそれがある。   By adjusting the content of microorganisms in the industrial pure water to the above range, it is possible to suppress the activity reduction of the hydrogenation catalyst described later. On the other hand, microorganisms do not grow under high temperature and high pressure, but if the content of microorganisms exceeds the above range, some of them remain as insoluble impurities in the pores of the catalyst support even under high temperature and high pressure, and TA inside the pores. There is a risk of inhibiting the diffusion of.

一般に、工業用純水中の微生物類の含有量は、原水を塩素殺菌した後、砂ろ過や活性炭処理することによって低減することができる。しかしながら、塩素殺菌により微生物類の含有量を上記範囲まで低減するには、原水に過剰の塩素を投入するため、十分なアニオン交換処理が必要となり、経済的に好ましくない。また、当該塩素投入によって純水中の塩素濃度が上がると、水素添加工程や後続の製品乾燥工程でのハロゲン腐食の原因となるおそれがある。反対に、塩素の投入量を制限すると、処理後の水に殺菌しきれない微生物類が残留するおそれがある。   In general, the content of microorganisms in industrial pure water can be reduced by sand filtration or activated carbon treatment after sterilizing raw water with chlorine. However, in order to reduce the content of microorganisms to the above range by chlorine sterilization, excessive chlorine is introduced into the raw water, which requires a sufficient anion exchange treatment, which is economically undesirable. Moreover, if the chlorine concentration in pure water increases due to the introduction of chlorine, there is a risk of causing halogen corrosion in the hydrogenation process or the subsequent product drying process. On the other hand, if the input amount of chlorine is limited, microorganisms that cannot be sterilized may remain in the treated water.

たとえば、Zoogloeaに代表される凝集性細菌類は、純水製造プロセスの配管内のような、遮光された貧栄養場で増殖することが知られている。また、Scenedesmus、Euglenaなど一部の藻類には、配管内など暗所でも成長・増殖するものもある。このような微生物類が処理後の水に残留した場合、工業用純水を処理してから粗テレフタル酸と混合するまでの間に、水処理装置内(特に、アニオン交換塔内や交換塔出口側ドラム内)や比較的滞留時間の長い配管内で増殖し、水素添加触媒の充填層に入ることで、触媒活性が低下する。   For example, it is known that aggregating bacteria represented by Zoogloea grow in a shaded oligotrophic field such as in the piping of a pure water production process. Some algae such as Scenedesmus and Euglena also grow and proliferate even in dark places such as in pipes. If such microorganisms remain in the treated water, the water treatment apparatus (especially in the anion exchange tower and the exchange tower outlet) is treated between the treatment of the industrial pure water and the mixing with the crude terephthalic acid. The catalyst activity is reduced by growing in the pipe in the side drum) or in a pipe having a relatively long residence time and entering the packed bed of the hydrogenation catalyst.

したがって、上記不具合を防ぐために、本発明では、上記工業用純水を、粗テレフタル酸と混合する直前にマイクロフィルターで精密ろ過し、微生物類計測数(RION計測値)を4000個/g以下にする。   Therefore, in order to prevent the above problems, in the present invention, the industrial pure water is microfiltered with a microfilter immediately before mixing with crude terephthalic acid, and the number of microorganisms measured (RION measurement value) is 4000 pieces / g or less. To do.

また、パラジウムなどの貴金属系触媒は、硫酸イオン、ハロゲンイオンなどのアニオンによって被毒されやすい。特に、硫酸イオンや硫化水素により触媒金属が硫化物に変化すると触媒活性が著しく低下する。実際のプラントでは、上記アニオンは工業用純水に含まれていることが多く、本発明では、これらのアニオン濃度を低減することが好ましく、特に、CTAと上記工業純水を混合することで得られるスラリー中の硫黄濃度を1ppm以下に調整することが好ましい。工業用純水中の硫酸イオンは工業用純水を処理する際に用いられるアニオン交換装置の空間速度や線速度を適性レベルに制御することにより低減することができる。   In addition, noble metal catalysts such as palladium are easily poisoned by anions such as sulfate ions and halogen ions. In particular, when the catalyst metal is changed to sulfide by sulfate ions or hydrogen sulfide, the catalytic activity is remarkably lowered. In an actual plant, the anions are often contained in industrial pure water. In the present invention, it is preferable to reduce the concentration of these anions, and in particular, it is obtained by mixing CTA and the industrial pure water. It is preferable to adjust the sulfur concentration in the resulting slurry to 1 ppm or less. Sulfate ions in industrial pure water can be reduced by controlling the space velocity and linear velocity of an anion exchange apparatus used when processing industrial pure water to an appropriate level.

パラジウムなどの貴金属系触媒の他の被毒物質として、Cr、Ni、Ca、Cu、Zn、Mg、Pbおよびこれらの化合物も挙げられる。これらの被毒物質は、特に貴金属を活性炭などの多孔性担体に担持した場合に、担体の細孔を閉塞するおそれがあるため、CTAと上記工業純水を混合して得られるスラリー中の濃度を、元素濃度で、Cr、Ni、Ca、Cu、Zn、Mgは5ppm以下、Pbは3ppm以下に低減することが好ましい。工業用純水中のこれらの被毒物質の濃度は、水処理における砂ろ過処理(不溶物ろ過)やカチオン交換処理(金属イオン除去)を強化することにより低減することができる。なお、上記被毒物質は、パラキシレンの液相酸化工程のプロセス材料から腐食、溶出することもあり、工業用純水だけでなく、粗テレフタル酸にも含まれる可能性がある。この場合には、酸化工程後の固液分離を強化したり、固液分離にリンス洗浄タイプの分離機を用いる場合にはリンスを強化するなどの方法によって、粗テレフタル酸に含まれる上記被毒物質を低減できる。   Other poisoning substances of noble metal catalysts such as palladium include Cr, Ni, Ca, Cu, Zn, Mg, Pb, and these compounds. Since these poisonous substances may clog the pores of the carrier, particularly when a noble metal is supported on a porous carrier such as activated carbon, the concentration in the slurry obtained by mixing CTA and the above industrial pure water It is preferable that Cr, Ni, Ca, Cu, Zn, and Mg are reduced to 5 ppm or less and Pb to 3 ppm or less in terms of element concentration. The concentration of these poisoning substances in industrial pure water can be reduced by strengthening sand filtration treatment (insoluble matter filtration) and cation exchange treatment (metal ion removal) in water treatment. The poisoning substance may be corroded and eluted from the process material in the liquid phase oxidation process of para-xylene, and may be contained not only in industrial pure water but also in crude terephthalic acid. In this case, the above-mentioned poisoning contained in the crude terephthalic acid may be strengthened by solid-liquid separation after the oxidation step or by strengthening rinse when a rinse-washing type separator is used for solid-liquid separation. Substances can be reduced.

(II)水溶液形成工程:
この工程では、上記CTAスラリーを熱交換器で加熱してCTAを溶解し、CTA水溶液を形成する。熱交換器としては、一般にテレフタル酸の製造に用いられるものを用いることができる。また、複数の熱交換器とを用いて段階的に加熱してもよい。
(II) Aqueous solution formation process:
In this step, the CTA slurry is heated with a heat exchanger to dissolve CTA and form a CTA aqueous solution. As a heat exchanger, what is generally used for manufacture of terephthalic acid can be used. Moreover, you may heat in steps using a some heat exchanger.

加熱条件は、CTAが完全に溶解され、水溶液を実質的に液相に保持できれば特に制限されないが、たとえば、加熱温度は通常230℃以上、好ましくは240〜300℃であり、系内の圧力は通常1〜11MPa(ゲージ圧)好ましくは3〜9MPa(ゲージ圧)である。   The heating conditions are not particularly limited as long as the CTA is completely dissolved and the aqueous solution can be maintained in a substantially liquid phase. For example, the heating temperature is usually 230 ° C. or higher, preferably 240 to 300 ° C., and the pressure in the system is Usually, it is 1-11 MPa (gauge pressure), preferably 3-9 MPa (gauge pressure).

(III)水素添加処理工程:
この工程では、上記CTA水溶液を水素添加反応槽に導入して水素添加処理を施し、CTA水溶液に含まれる4−CBAをパラトルイル酸(p−TA)に還元する。
(III) Hydrogenation process:
In this step, the CTA aqueous solution is introduced into a hydrogenation reactor and subjected to hydrogenation treatment, and 4-CBA contained in the CTA aqueous solution is reduced to p-toluic acid (p-TA).

上記水素添加反応槽は、水素添加触媒が充填された触媒層を有し、触媒とCTA水溶液とが接触した状態で水素を供給できるものであれば、その形状、構造等は特に制限されない。好ましい水素添加反応槽としては、固形の触媒が充填された固定触媒層を内部に有し、この触媒層にCTA水溶液を通液できるように水溶液導入路および水溶液導出路を有し、さらに水素を供給できるように水素供給路を有するものが挙げられる。CTA水溶液の通液方向は制限されず、上向流でも下向流でもよいが、下向流で通液することが好ましく、このために水溶液導入路が水素添加反応槽の上部に、水溶液導出路が下部に設けられていることが好ましい。また、水素は上部から供給されることが好ましく、このために水素供給路が水素添加反応槽の上部に設けられていることが好ましい。   If the said hydrogenation reaction tank has a catalyst layer filled with the hydrogenation catalyst and can supply hydrogen in the state which the catalyst and CTA aqueous solution contacted, the shape, structure, etc. will not be restrict | limited in particular. A preferable hydrogenation reaction tank has a fixed catalyst layer filled with a solid catalyst inside, an aqueous solution introduction path and an aqueous solution outlet path so that a CTA aqueous solution can be passed through the catalyst layer, and hydrogen is further supplied. The thing which has a hydrogen supply path so that it can supply is mentioned. The flow direction of the CTA aqueous solution is not limited and may be an upward flow or a downward flow. However, it is preferable that the CTA aqueous solution flow in the downward flow. For this purpose, the aqueous solution introduction path is formed above the hydrogenation reaction tank. It is preferable that the path is provided in the lower part. Moreover, it is preferable that hydrogen is supplied from the upper part, and for this purpose, it is preferable that a hydrogen supply path is provided in the upper part of the hydrogenation reaction tank.

水素添加触媒としては、従来から用いられているものが使用でき、例えばパラジウム、ルテニウム、ロジウム、オスミウム、イリジウム、白金、白金黒、パラジウム黒、鉄、コバルト−ニッケル等が挙げられるが、固定層を形成できるようにこれらを活性炭、チタニア、ジルコニアなどの担体、好ましくは活性炭等の吸着性の担体に担持した固形触媒が好ましい。これらのうち、パラジウムを活性炭に担持した触媒(以下、「Pd/C」と記す。)が、高活性、低コストの点で好ましい。   As the hydrogenation catalyst, those conventionally used can be used, such as palladium, ruthenium, rhodium, osmium, iridium, platinum, platinum black, palladium black, iron, cobalt-nickel, etc. A solid catalyst in which these are supported on an adsorbent carrier such as activated carbon, titania or zirconia, preferably an adsorbent carrier such as activated carbon, is preferable. Among these, a catalyst in which palladium is supported on activated carbon (hereinafter referred to as “Pd / C”) is preferable in terms of high activity and low cost.

具体的な水素添加処理方法としては、たとえば、CTA水溶液を水素添加反応槽に導入し、触媒層を通過させながら、水素ガスをCTA水溶液中の4−CBAの通常1.5倍モル以上、好ましくは2倍モル以上の流量で供給して水素添加を行なうことが望ましい。水素添加時の水素分圧は通常0.05MPa以上、好ましくは0.05〜2MPaである。また、水素ガスには、石油精製由来の硫化水素が同伴されることがあるが、圧力スイング吸着等のガス分離精製を強化することにより水素ガス中の硫化水素濃度を低減することができる。   As a specific hydrogenation treatment method, for example, a CTA aqueous solution is introduced into a hydrogenation reaction tank, and while passing through the catalyst layer, hydrogen gas is usually 1.5 times mol or more of 4-CBA in the CTA aqueous solution, preferably It is desirable to perform hydrogenation by supplying at a flow rate of 2 times mole or more. The hydrogen partial pressure at the time of hydrogenation is usually 0.05 MPa or more, preferably 0.05 to 2 MPa. Hydrogen gas may be accompanied by hydrogen sulfide derived from petroleum refining, but the concentration of hydrogen sulfide in hydrogen gas can be reduced by enhancing gas separation and refining such as pressure swing adsorption.

水素添加反応温度は通常230℃以上、好ましくは235〜300℃であり、系内の圧力は通常1〜11MPa(ゲージ圧)好ましくは3〜9MPa(ゲージ圧)である。
この水素添加処理により、CTA中の4−CBAは水溶性のp−TAに還元される。一方、TAは水に難溶性であるため、通常300℃以下、好ましくは100〜280℃の温度で晶析および固液分離を行うことにより、CTA水溶液から4−CBAを分離して高純度テレフタル酸を得ることができる。
The hydrogenation reaction temperature is usually 230 ° C. or higher, preferably 235 to 300 ° C., and the pressure in the system is usually 1 to 11 MPa (gauge pressure), preferably 3 to 9 MPa (gauge pressure).
By this hydrogenation treatment, 4-CBA in CTA is reduced to water-soluble p-TA. On the other hand, since TA is poorly soluble in water, high purity terephthalate is obtained by separating 4-CBA from CTA aqueous solution by crystallization and solid-liquid separation at a temperature of usually 300 ° C. or lower, preferably 100 to 280 ° C. An acid can be obtained.

(IV)晶析工程:
この工程では、上記水素添加後のCTA水溶液(以下、「CTA水添処理液」という)を晶析槽で降圧冷却してTAを晶析させる。晶析槽としては、一般にテレフタル酸の製造に用いられるものを用いることができる。また、複数の晶析槽を用いて段階的に降圧冷却
してTAを晶析させてもよい。
(IV) Crystallization process:
In this step, TA is crystallized by cooling the CTA aqueous solution after hydrogenation (hereinafter referred to as “CTA hydrogenation treatment liquid”) in a crystallization tank with a reduced pressure. As the crystallization tank, those generally used for the production of terephthalic acid can be used. Alternatively, TA may be crystallized by stepwise cooling using a plurality of crystallization tanks.

具体的には、上記CTA水添処理液の圧力より低い圧力条件に設定した晶析槽に上記CTA水添処理液を導入し、CTA水添処理液の圧力を減圧させ、これに伴いCTA水添処理液を冷却させる(降圧冷却)。これにより、テレフタル酸が晶析され、TAスラリーが形成される。   Specifically, the CTA hydrogenation treatment liquid is introduced into a crystallization tank set to a pressure condition lower than the pressure of the CTA hydrogenation treatment liquid, and the pressure of the CTA hydrogenation treatment liquid is reduced. The additive treatment liquid is cooled (step-down cooling). Thereby, terephthalic acid is crystallized and TA slurry is formed.

(V)固液分離工程:
この工程では、上記TAスラリーを固液分離して母液からPTAを分離回収する。固液分離は、ろ過機や遠心分離機など、一般にテレフタル酸の製造に用いられる固液分離装置を用いて実施することができる。
(V) Solid-liquid separation process:
In this step, the TA slurry is solid-liquid separated to separate and recover PTA from the mother liquor. Solid-liquid separation can be carried out using a solid-liquid separation apparatus such as a filter or a centrifuge, which is generally used for producing terephthalic acid.

さらに、上記PTAを再び水に懸濁し、PTA結晶に付着している異物を水相に移行し、その後、固液分離および乾燥を行ってもよい。
図1は、本発明に係る高純度テレフタル酸の製造方法のフロー図の一例である。本発明の高純度テレフタル酸の製造方法では、まず、CTAスラリー化槽1に、供給直前にマイクロフィルター2で精密ろ過した水(工業用純水)とCTAとを供給して攪拌し、CTAスラリーを形成する。このとき、TA再スラリー化後の固液分離装置8で回収された水もCTAスラリー化槽1に供給してもよい。この回収水は必要に応じてマイクロフィルターで精密ろ過した後、CTAスラリー化槽1に供給してもよい。
Furthermore, the PTA may be suspended again in water, and the foreign matter adhering to the PTA crystal may be transferred to the aqueous phase, followed by solid-liquid separation and drying.
FIG. 1 is an example of a flow diagram of a method for producing high-purity terephthalic acid according to the present invention. In the method for producing high-purity terephthalic acid according to the present invention, first, CTA slurry is supplied to a CTA slurrying tank 1 by supplying water (industrial pure water) and CTA that have been microfiltered with a microfilter 2 just before supply and stirring. Form. At this time, the water recovered by the solid-liquid separation device 8 after TA reslurry may also be supplied to the CTA slurry tank 1. The recovered water may be supplied to the CTA slurrying tank 1 after being microfiltered with a microfilter as required.

このCTAスラリーを熱交換器3で加熱、加圧してCTAを溶解し、CTA水溶液を調製する。次いで、このCTA水溶液と水素ガスとを水素添加反応器4に供給して水素添加処理する。得られたCTA水添処理液を晶析槽5に導入し、減圧および冷却して晶析を行い、TAスラリーを形成する。   This CTA slurry is heated and pressurized by the heat exchanger 3 to dissolve the CTA and prepare a CTA aqueous solution. Next, this CTA aqueous solution and hydrogen gas are supplied to the hydrogenation reactor 4 to perform a hydrogenation treatment. The obtained CTA hydrogenation treatment liquid is introduced into the crystallization tank 5 and subjected to crystallization by reducing the pressure and cooling to form a TA slurry.

得られたTAスラリーを固液分離装置6に導入して固液分離を行い、水相を分離除去する。これによりパラトルイル酸等の水溶化成分の大部分が除去される。一方、得られたTA結晶に水を加えてTA再スラリー化槽7に導入し、スラリー化する。このTAスラリーを弁V1を通して固液分離装置8に導入し、固液分離する。得られたTA結晶をTA乾燥器9で乾燥し、PTAを得る。一方、水相は回収水としてCTAスラリー化槽1に供給してもよい。   The obtained TA slurry is introduced into the solid-liquid separator 6 for solid-liquid separation, and the aqueous phase is separated and removed. As a result, most of the water-soluble component such as p-toluic acid is removed. On the other hand, water is added to the obtained TA crystal and introduced into the TA reslurry tank 7 to make a slurry. This TA slurry is introduced into the solid-liquid separator 8 through the valve V1, and is separated into solid and liquid. The obtained TA crystal is dried with a TA drier 9 to obtain PTA. On the other hand, the aqueous phase may be supplied to the CTA slurrying tank 1 as recovered water.

[実施例]
以下、本発明を実施例により説明するが、本発明は、この実施例により何ら限定されるものではない。
[Example]
EXAMPLES Hereinafter, although an Example demonstrates this invention, this invention is not limited at all by this Example.

[比較例1]
貯水ピットに貯蔵した河川水に次亜塩素酸ナトリウムを添加し、水中の微生物を減菌し、1次処理水を調製した。この1次処理水を凝集、砂ろ過、加圧浮上分離、沈殿分離した後、カチオン、アニオン交換処理し、孔径3μmのポリプロピレン製マイクロフィルターでろ過した。マイクロフィルターに捕捉された微小粒状物は顕微鏡観察により細菌類もしくは藻類によって構成される、直径が10μm以下の微生物群であることを確認した。ここで回収された微生物群を、工業用純水を活性炭処理し、続いて逆浸透膜処理して得られた超純水に混合し、RION計測値(1〜10μm)が50000個/gの微小粒状物を含む水溶液を調製した。
[Comparative Example 1]
Sodium hypochlorite was added to the river water stored in the water storage pit to sterilize microorganisms in the water to prepare primary treated water. The primary treated water was agglomerated, sand filtered, pressurized flotation separated and precipitated separated, then subjected to cation and anion exchange treatment, and filtered through a polypropylene microfilter having a pore size of 3 μm. The microparticulate matter captured by the microfilter was confirmed to be a group of microorganisms having a diameter of 10 μm or less composed of bacteria or algae by microscopic observation. The microorganism group recovered here is mixed with ultrapure water obtained by subjecting industrial pure water to activated carbon treatment and then reverse osmosis membrane treatment, and the RION measurement value (1 to 10 μm) is 50,000 / g. An aqueous solution containing fine particles was prepared.

0.5%Pd/C触媒1gをチタン製触媒かごに入れ、内容積500ml、耐圧300kg/cm2のチタンライニングオートクレーブ反応器に装着した。この反応器に、0.
19重量%の4−CBAを含むCTA50gと、上記微生物類を含む水溶液200gとを
仕込み、40000個/gの微生物類を含むCTAスラリーを調製した。
1 g of 0.5% Pd / C catalyst was placed in a titanium catalyst cage and mounted in a titanium-lined autoclave reactor having an internal volume of 500 ml and a pressure resistance of 300 kg / cm 2 . In this reactor, 0.
CTA slurry containing 19% by weight of 4-CBA and 200 g of the above aqueous solution containing microorganisms were charged to prepare a CTA slurry containing 40000 microorganisms / g.

反応器内に水素ガスを導入して内圧を0.7MPa(ゲージ圧)まで加圧し、300rpmで攪拌しながら液温が278℃になるまで加熱した。次いで、Pd/C触媒を入れた触媒かごを液中に落下させて水素添加反応を開始した。反応開始から2時間後、触媒かごを引き上げ、直ちに空冷した。液温を90℃まで低下させた後、脱圧して反応生成物をグラスフィルター上に集めて吸引ろ過してPTAを採取した。このPTAを80℃で一晩乾燥して冷却した。   Hydrogen gas was introduced into the reactor, the internal pressure was increased to 0.7 MPa (gauge pressure), and the mixture was heated until the liquid temperature reached 278 ° C. while stirring at 300 rpm. Next, the catalyst cage containing the Pd / C catalyst was dropped into the liquid to start the hydrogenation reaction. Two hours after the start of the reaction, the catalyst basket was pulled up and immediately cooled with air. After the liquid temperature was lowered to 90 ° C., the pressure was released and the reaction product was collected on a glass filter and suction filtered to collect PTA. The PTA was dried at 80 ° C. overnight and cooled.

得られたPTAに含まれる4−CBAをポーラログラフィ法で分析したところ、55ppmであった。
[比較例2]
RION計測値(1〜10μm)が13000個/gの微生物類を含む水溶液を調製し、この水溶液200gと0.19重量%の4−CBAを含むCTA50gとから10400個/gの微生物類を含むCTAスラリーを調製した以外は、比較例1と同様にしてPT
Aを製造した。
When 4-CBA contained in the obtained PTA was analyzed by a polarographic method, it was 55 ppm.
[Comparative Example 2]
An aqueous solution containing microorganisms having a RION measurement value (1 to 10 μm) of 13000 / g is prepared, and 10400 microorganisms / g are contained from 200 g of this aqueous solution and 50 g of CTA containing 0.19% by weight of 4-CBA. PT in the same manner as in Comparative Example 1 except that a CTA slurry was prepared
A was produced.

得られたPTAに含まれる4−CBAは5ppmであった。
[実施例1]
RION計測値(1〜10μm)が4000個/gの微生物類を含む水溶液を調製し、この水溶液200gと0.19重量%の4−CBAを含むCTA50gとから3200個/gの微生物類を含むCTAスラリーを調製した以外は、比較例1および比較例2と同様
にしてPTAを製造した。
4-CBA contained in obtained PTA was 5 ppm.
[Example 1]
An aqueous solution containing microorganisms having a RION measurement value (1 to 10 μm) of 4000 cells / g was prepared, and 3200 cells / g of microorganisms were prepared from 200 g of this aqueous solution and 50 g of CTA containing 0.19% by weight of 4-CBA. PTA was produced in the same manner as in Comparative Example 1 and Comparative Example 2 except that a CTA slurry was prepared.

得られたPTAに含まれる4−CBAは5ppm(検出限界)未満であった。
[比較例3]
RION計測値(1〜10μm)が4000個/gの微生物類および硫酸(硫黄濃度として3ppm)を含む水溶液を調製し、この水溶液200gと0.19重量%の4−CBAを含むCTA50gとから3200個/gの微生物類と硫酸(硫黄濃度として2ppm
)とを含むCTAスラリーを調製した以外は、比較例1と同様にしてPTAを製造した。
4-CBA contained in the obtained PTA was less than 5 ppm (detection limit).
[Comparative Example 3]
An aqueous solution containing microorganisms having a RION measurement value (1 to 10 μm) of 4000 cells / g and sulfuric acid (3 ppm as a sulfur concentration) was prepared, and 3200 from 200 g of this aqueous solution and 50 g of CTA containing 0.19% by weight of 4-CBA. Pcs / g microorganisms and sulfuric acid (2 ppm as sulfur concentration)
PTA was produced in the same manner as in Comparative Example 1 except that a CTA slurry was prepared.

得られたPTAに含まれる4−CBAは12ppmであった。
[実施例2]
RION計測値(1〜10μm)が4000個/gの微生物類および硫酸(硫黄濃度として1ppm)を含む水溶液を調製し、この水溶液200gと0.19重量%の4−CBAを含むCTA50gとから3200個/gの微生物類と硫酸(硫黄濃度として1ppm
)を含むCTAスラリーを調製した以外は、比較例3と同様にしてPTAを製造した。
4-CBA contained in obtained PTA was 12 ppm.
[Example 2]
An aqueous solution containing microorganisms having a RION measurement value (1 to 10 μm) of 4000 cells / g and sulfuric acid (1 ppm as a sulfur concentration) was prepared, and 3200 from 200 g of this aqueous solution and 50 g of CTA containing 0.19% by weight of 4-CBA. Pcs / g microorganisms and sulfuric acid ( 1 ppm as sulfur concentration)
PTA was produced in the same manner as in Comparative Example 3 except that a CTA slurry containing

得られたPTAに含まれる4−CBAは5ppm(検出下限)未満であった。
[比較例4]
RION計測値(1〜10μm)が4000個/gの微生物類および硫化水素(硫黄濃度として8ppm)を含む水溶液を調製し、この水溶液200gと0.19重量%の4−CBAを含むCTA50gとから3200個/gの微生物類と硫化水素(硫黄濃度として
6ppm)を含むCTAスラリーを調製した以外は、比較例1と同様にしてPTAを製造した。
4-CBA contained in the obtained PTA was less than 5 ppm (lower detection limit).
[Comparative Example 4]
An aqueous solution containing microorganisms having a RION measurement value (1 to 10 μm) of 4000 cells / g and hydrogen sulfide (8 ppm as a sulfur concentration) was prepared, and from 200 g of this aqueous solution and 50 g of CTA containing 0.19 wt% 4-CBA. PTA was produced in the same manner as in Comparative Example 1, except that a CTA slurry containing 3200 microorganisms / g of microorganisms and hydrogen sulfide (6 ppm as the sulfur concentration) was prepared.

得られたPTAに含まれる4−CBAは33ppmであった。
[比較例5]
RION計測値(1〜10μm)が4000個/gの微生物類および硫化水素(硫黄濃度として4ppm)を含む水溶液を調製し、この水溶液200gと0.19重量%の4−
CBAを含むCTA50gとから3200個/gの微生物類と硫化水素(硫黄濃度として
3ppm)を含むCTAスラリーを調製した以外は、比較例4と同様にしてPTAを製造した。
4-CBA contained in obtained PTA was 33 ppm.
[Comparative Example 5]
An aqueous solution containing microorganisms having a RION measurement value (1 to 10 μm) of 4000 cells / g and hydrogen sulfide (4 ppm as the sulfur concentration) was prepared, and 200 g of this aqueous solution and 0.19% by weight of 4-
A PTA was produced in the same manner as in Comparative Example 4 except that a CTA slurry containing 3200 cells / g of microorganisms and hydrogen sulfide (sulfur concentration: 3 ppm) was prepared from 50 g of CTA containing CBA.

得られたPTAに含まれる4−CBAは6ppmであった。
[実施例3]
RION計測値(1〜10μm)が4000個/gの微生物類および硫化水素(硫黄濃度として0.4ppm)を含む水溶液を調製し、この水溶液200gと0.19重量%の4−CBAを含むCTA50gとから3200個/gの微生物類と硫化水素(硫黄濃度とし
て0.3ppm)を含むCTAスラリーを調製した以外は、比較例4および比較例5と同様にしてPTAを製造した。
4-CBA contained in obtained PTA was 6 ppm.
[Example 3]
An aqueous solution containing microorganisms having a RION measurement value (1 to 10 μm) of 4000 cells / g and hydrogen sulfide (sulfur concentration: 0.4 ppm) was prepared, and 50 g of CTA containing 200 g of this aqueous solution and 0.19% by weight of 4-CBA. PTA was produced in the same manner as Comparative Example 4 and Comparative Example 5 except that a CTA slurry containing 3200 microorganisms / g and hydrogen sulfide (sulfur concentration: 0.3 ppm) was prepared.

得られたPTAに含まれる4−CBAは5ppm(検出下限)未満であった。
[比較例6]
RION計測値(1〜10μm)が4000個/gの微生物類およびクロム(III)ア
セチルアセトナート(クロム濃度として13ppm)を含む水溶液を調製し、この水溶液200gと0.19重量%の4−CBAを含むCTA50gとから3200個/gの微生
物類とクロム(III)アセチルアセトナート(クロム濃度として10ppm)を含むCT
Aスラリーを調製した以外は、比較例1と同様にしてPTAを製造した。
4-CBA contained in the obtained PTA was less than 5 ppm (lower detection limit).
[Comparative Example 6]
An aqueous solution containing microorganisms having a RION measurement value (1 to 10 μm) of 4000 cells / g and chromium (III) acetylacetonate (chromium concentration of 13 ppm) was prepared, and 200 g of this aqueous solution and 0.19% by weight of 4-CBA were prepared. CT containing 50 g of CTA and 3200 / g microorganisms and chromium (III) acetylacetonate (10 ppm as chromium concentration)
PTA was produced in the same manner as in Comparative Example 1 except that A slurry was prepared.

得られたPTAに含まれる4−CBAは17ppmであった。
[実施例4]
RION計測値(1〜10μm)が4000個/gの微生物類およびクロム(III)ア
セチルアセトナート(クロム濃度として6ppm)を含む水溶液を調製し、この水溶液200gと0.19重量%の4−CBAを含むCTA50gとから3200個/gの微生物
類とクロム(III)アセチルアセトナート(クロム濃度として5ppm)を含むCTAス
ラリーを調製した以外は、比較例6と同様にしてPTAを製造した。
4-CBA contained in obtained PTA was 17 ppm.
[Example 4]
An aqueous solution containing microorganisms having a RION measurement value (1 to 10 μm) of 4000 cells / g and chromium (III) acetylacetonate (chromium concentration of 6 ppm) was prepared, and 200 g of this aqueous solution and 0.19% by weight of 4-CBA were prepared. A PTA was produced in the same manner as in Comparative Example 6 except that a CTA slurry containing 3200 microorganisms / g of microorganisms and chromium (III) acetylacetonate (chromium concentration: 5 ppm) was prepared from 50 g of CTA.

得られたPTAに含まれる4−CBAは5ppm(検出下限)未満であった。
[比較例7]
RION計測値(1〜10μm)が4000個/gの微生物類およびニッケル(II)アセチルアセトナート二水和物(ニッケル濃度として13ppm)を含む水溶液を調製し、この水溶液200gと0.19重量%の4−CBAを含むCTA50gとから3200個/gの微生物類とニッケル(II)アセチルアセトナート二水和物(ニッケル濃度として1
0ppm)を含むCTAスラリーを調製した以外は、比較例1と同様にしてPTAを製造した。
4-CBA contained in the obtained PTA was less than 5 ppm (lower detection limit).
[Comparative Example 7]
An aqueous solution containing microorganisms having a RION measurement value (1 to 10 μm) of 4000 cells / g and nickel (II) acetylacetonate dihydrate (nickel concentration: 13 ppm) was prepared. 3200 / g microorganisms and nickel (II) acetylacetonate dihydrate (nickel concentration is 1)
PTA was produced in the same manner as in Comparative Example 1 except that a CTA slurry containing 0 ppm was prepared.

得られたPTAに含まれる4−CBAは8ppmであった。
[実施例5]
RION計測値(1〜10μm)が4000個/gの微生物類およびニッケル(II)アセチルアセトナート二水和物(ニッケル濃度として6ppm)を含む水溶液を調製し、この水溶液200gと0.19重量%の4−CBAを含むCTA50gとから3200個/gの微生物類とニッケル(II)アセチルアセトナート二水和物(ニッケル濃度として5p
pm)を含むCTAスラリーを調製した以外は、比較例7と同様にしてPTAを製造した。
4-CBA contained in obtained PTA was 8 ppm.
[Example 5]
An aqueous solution containing microorganisms having a RION measurement value (1 to 10 μm) of 4000 cells / g and nickel (II) acetylacetonate dihydrate (nickel concentration: 6 ppm) was prepared. Of CTA containing 4-CBA of 3200 / g of microorganisms and nickel (II) acetylacetonate dihydrate (5p as nickel concentration)
PTA was produced in the same manner as in Comparative Example 7 except that a CTA slurry containing pm) was prepared.

得られたPTAに含まれる4−CBAは5ppm(検出下限)未満であった。
[比較例8]
RION計測値(1〜10μm)が4000個/gの微生物類およびカルシウムアセチルアセトナート(カルシウム濃度として13ppm)を含む水溶液を調製し、この水溶液
200gと0.19重量%の4−CBAを含むCTA50gとから3200個/gの微生
物類とカルシウムアセチルアセトナート(カルシウム濃度として10ppm)を含むCTAスラリーを調製した以外は、比較例1と同様にしてPTAを製造した。
4-CBA contained in the obtained PTA was less than 5 ppm (lower detection limit).
[Comparative Example 8]
An aqueous solution containing microorganisms having a RION measurement value (1 to 10 μm) of 4000 cells / g and calcium acetylacetonate (calcium concentration of 13 ppm) was prepared, and 50 g of CTA containing 200 g of this aqueous solution and 0.19% by weight of 4-CBA. PTA was produced in the same manner as in Comparative Example 1 except that a CTA slurry containing 3200 microorganisms / g and calcium acetylacetonate (calcium concentration of 10 ppm) was prepared.

得られたPTAに含まれる4−CBAは8ppmであった。
[実施例6]
RION計測値(1〜10μm)が4000個/gの微生物類およびカルシウムアセチルアセトナート(カルシウム濃度として6ppm)を含む水溶液を調製し、この水溶液200gと0.19重量%の4−CBAを含むCTA50gとから3200個/gの微生物
類とカルシウムアセチルアセトナート(カルシウム濃度として5ppm)を含むCTAスラリーを調製した以外は、比較例8と同様にしてPTAを製造した。
4-CBA contained in obtained PTA was 8 ppm.
[Example 6]
An aqueous solution containing microorganisms having RION measurement values (1 to 10 μm) of 4000 cells / g and calcium acetylacetonate (calcium concentration of 6 ppm) was prepared, and CTA 50 g containing 200 g of this aqueous solution and 0.19% by weight of 4-CBA. A PTA was produced in the same manner as in Comparative Example 8 except that a CTA slurry containing 3200 microorganisms / g and calcium acetylacetonate (calcium concentration of 5 ppm) was prepared.

得られたPTAに含まれる4−CBAは5ppm(検出下限)未満であった。
[比較例9]
RION計測値(1〜10μm)が4000個/gの微生物類および銅(II)アセチルアセトナート(銅濃度として13ppm)を含む水溶液を調製し、この水溶液200gと0.19重量%の4−CBAを含むCTA50gとから3200個/gの微生物類と銅(II)アセチルアセトナート(銅濃度として10ppm)を含むCTAスラリーを調製した
以外は、比較例1と同様にしてPTAを製造した。
4-CBA contained in the obtained PTA was less than 5 ppm (lower detection limit).
[Comparative Example 9]
An aqueous solution containing microorganisms having a RION measurement value (1 to 10 μm) of 4000 cells / g and copper (II) acetylacetonate (a copper concentration of 13 ppm) was prepared, and 200 g of this aqueous solution and 0.19% by weight of 4-CBA were prepared. PTA was produced in the same manner as in Comparative Example 1 except that a CTA slurry containing 3200 microorganisms / g of microorganisms and copper (II) acetylacetonate (10 ppm in terms of copper concentration) was prepared from 50 g of CTA.

得られたPTAに含まれる4−CBAは6ppmであった。
[実施例7]
RION計測値(1〜10μm)が4000個/gの微生物類および銅(II)アセチルアセトナート(銅濃度として6ppm)を含む水溶液を調製し、この水溶液200gと0.19重量%の4−CBAを含むCTA50gとから3200個/gの微生物類と銅(II
)アセチルアセトナート(銅濃度として5ppm)を含むCTAスラリーを調製した以外は、比較例9と同様にしてPTAを製造した。
4-CBA contained in obtained PTA was 6 ppm.
[Example 7]
An aqueous solution containing microorganisms having a RION measurement value (1 to 10 μm) of 4000 cells / g and copper (II) acetylacetonate (6 ppm as copper concentration) was prepared, and 200 g of this aqueous solution and 0.19% by weight of 4-CBA were prepared. 3200 cells / g microorganisms and copper (II)
) PTA was produced in the same manner as in Comparative Example 9 except that a CTA slurry containing acetylacetonate (5 ppm as copper concentration) was prepared.

得られたPTAに含まれる4−CBAは5ppm(検出下限)未満であった。
[比較例10]
RION計測値(1〜10μm)が4000個/gの微生物類および亜鉛アセチルアセトナート(亜鉛濃度として13ppm)を含む水溶液を調製し、この水溶液200gと0.19重量%の4−CBAを含むCTA50gとから3200個/gの微生物類と亜鉛ア
セチルアセトナート(亜鉛濃度として10ppm)を含むCTAスラリーを調製した以外は、比較例1と同様にしてPTAを製造した。
4-CBA contained in the obtained PTA was less than 5 ppm (lower detection limit).
[Comparative Example 10]
An aqueous solution containing microorganisms having RION measurement values (1 to 10 μm) of 4000 cells / g and zinc acetylacetonate (zinc concentration of 13 ppm) was prepared, and CTA containing 200 g of this aqueous solution and 0.19% by weight of 4-CBA was 50 g. A PTA was produced in the same manner as in Comparative Example 1 except that a CTA slurry containing 3200 microorganisms / g and zinc acetylacetonate (zinc concentration of 10 ppm) was prepared.

得られたPTAに含まれる4−CBAは5ppmであった。
[実施例8]
RION計測値(1〜10μm)が4000個/gの微生物類および亜鉛アセチルアセトナート(亜鉛濃度として6ppm)を含む水溶液を調製し、この水溶液200gと0.19重量%の4−CBAを含むCTA50gとから3200個/gの微生物類と亜鉛アセ
チルアセトナート(亜鉛濃度として5ppm)を含むCTAスラリーを調製した以外は、比較例10と同様にしてPTAを製造した。
4-CBA contained in obtained PTA was 5 ppm.
[Example 8]
An aqueous solution containing microorganisms having a RION measurement value (1 to 10 μm) of 4000 cells / g and zinc acetylacetonate (zinc concentration of 6 ppm) was prepared, and CTA 50 g containing 200 g of this aqueous solution and 0.19 wt% 4-CBA. A PTA was produced in the same manner as in Comparative Example 10 except that a CTA slurry containing 3200 microorganisms / g and zinc acetylacetonate (zinc concentration of 5 ppm) was prepared.

得られたPTAに含まれる4−CBAは5ppm(検出下限)未満であった。
[比較例11]
RION計測値(1〜10μm)が4000個/gの微生物類およびマグネシウムエトキシド(マグネシウム濃度として13ppm)を含む水溶液を調製し、この水溶液200gと0.19重量%の4−CBAを含むCTA50gとから3200個/gの微生物類と
マグネシウムエトキシド(マグネシウム濃度として10ppm)を含むCTAスラリーを
調製した以外は、比較例1と同様にしてPTAを製造した。
4-CBA contained in the obtained PTA was less than 5 ppm (lower detection limit).
[Comparative Example 11]
An aqueous solution containing microorganisms having a RION measurement value (1 to 10 μm) of 4000 cells / g and magnesium ethoxide (magnesium concentration of 13 ppm) was prepared, and 200 g of this aqueous solution and 50 g of CTA containing 0.19% by weight of 4-CBA, PTA was produced in the same manner as Comparative Example 1 except that a CTA slurry containing 3200 microorganisms / g of microorganisms and magnesium ethoxide (magnesium concentration of 10 ppm) was prepared.

得られたPTAに含まれる4−CBAは5ppmであった。
[実施例9]
RION計測値(1〜10μm)が4000個/gの微生物類およびマグネシウムエトキシド(マグネシウム濃度として6ppm)を含む水溶液を調製し、この水溶液200gと0.19重量%の4−CBAを含むCTA50gとから3200個/gの微生物類とマ
グネシウムエトキシド(マグネシウム濃度として5ppm)を含むCTAスラリーを調製した以外は、比較例11と同様にしてPTAを製造した。
4-CBA contained in obtained PTA was 5 ppm.
[Example 9]
An aqueous solution containing microorganisms having RION measurement values (1 to 10 μm) of 4000 cells / g and magnesium ethoxide (magnesium concentration of 6 ppm) was prepared, and 200 g of this aqueous solution and 50 g of CTA containing 0.19% by weight of 4-CBA, PTA was produced in the same manner as in Comparative Example 11 except that a CTA slurry containing 3200 microorganisms / g of microorganisms and magnesium ethoxide (magnesium concentration of 5 ppm) was prepared.

得られたPTAに含まれる4−CBAは5ppm(検出下限)未満であった。
[比較例12]
RION計測値(1〜10μm)が4000個/gの微生物類および酢酸鉛(鉛濃度として13ppm)を含む水溶液を調製し、この水溶液200gと0.19重量%の4−CBAを含むCTA50gとから3200個/gの微生物類と酢酸鉛(鉛濃度として10p
pm)を含むCTAスラリーを調製した以外は、比較例1と同様にしてPTAを製造した。
4-CBA contained in the obtained PTA was less than 5 ppm (lower detection limit).
[Comparative Example 12]
An aqueous solution containing microorganisms having RION measurement values (1 to 10 μm) of 4000 cells / g and lead acetate (lead concentration of 13 ppm) was prepared from 200 g of this aqueous solution and 50 g of CTA containing 0.19% by weight of 4-CBA. 3200 microorganisms / g and lead acetate (10p as lead concentration)
PTA was produced in the same manner as in Comparative Example 1 except that a CTA slurry containing pm) was prepared.

得られたPTAに含まれる4−CBAは17ppmであった。
[比較例13]
RION計測値(1〜10μm)が4000個/gの微生物類および酢酸鉛(鉛濃度として6ppm)を含む水溶液を調製し、この水溶液200gと0.19重量%の4−CBAを含むCTA50gとから3200個/gの微生物類と酢酸鉛(鉛濃度として5ppm
)を含むCTAスラリーを調製した以外は、比較例1と同様にしてPTAを製造した。
4-CBA contained in obtained PTA was 17 ppm.
[Comparative Example 13]
An aqueous solution containing microorganisms having a RION measurement value (1 to 10 μm) of 4000 cells / g and lead acetate (6 ppm as the lead concentration) was prepared. From 200 g of this aqueous solution and 50 g of CTA containing 0.19% by weight of 4-CBA 3200 microorganisms / g and lead acetate (lead concentration 5ppm
PTA was produced in the same manner as in Comparative Example 1 except that a CTA slurry containing

得られたPTAに含まれる4−CBAは10ppmであった。
[実施例10]
RION計測値(1〜10μm)が4000個/gの微生物類および酢酸鉛(鉛濃度として4ppm)を含む水溶液を調製し、この水溶液200gと0.19重量%の4−CBAを含むCTA50gとから3200個/gの微生物類と酢酸鉛(鉛濃度として3ppm
)を含むCTAスラリーを調製した以外は、比較例12および比較例13と同様にしてPTAを製造した。
4-CBA contained in obtained PTA was 10 ppm.
[Example 10]
An aqueous solution containing microorganisms having a RION measurement value (1 to 10 μm) of 4000 cells / g and lead acetate (lead concentration of 4 ppm) was prepared from 200 g of this aqueous solution and 50 g of CTA containing 0.19% by weight of 4-CBA. 3200 microorganisms / g and lead acetate (lead concentration 3ppm
PTA was produced in the same manner as Comparative Example 12 and Comparative Example 13 except that a CTA slurry containing

得られたPTAに含まれる4−CBAは5ppm(検出下限)未満であった。
[比較例14]
貯水ピットに貯蔵した河川水に次亜塩素酸ナトリウムを添加し、水中の微生物を減菌し1次処理水を調製した。この1次処理水を凝集、砂ろ過、加圧浮上分離、沈殿分離した後、カチオン、アニオン交換処理して2次処理水を調製した。この2次処理水の微小粒状物濃度を直ちに測定したところ、RION計測値(1〜10μm)で1583個/gであった。微小粒状物の形態を顕微鏡観察したところ、藻類や細菌類であることが確認された。
4-CBA contained in the obtained PTA was less than 5 ppm (lower detection limit).
[Comparative Example 14]
Sodium hypochlorite was added to the river water stored in the water storage pit to sterilize microorganisms in the water to prepare primary treated water. The primary treated water was agglomerated, sand-filtered, pressurized flotation separated and precipitated, and then subjected to cation and anion exchange treatment to prepare secondary treated water. When the concentration of the fine particulate matter in the secondary treated water was immediately measured, the RION measurement value (1 to 10 μm) was 1583 / g. Microscopic observation of the morphology of the microparticulates confirmed that they were algae and bacteria.

次いで、上記2次処理水を、約40℃で、遮光下、滞留時間20分、ドラムおよび配管に滞留させ、3次処理水として回収した後、微小粒状物濃度を測定したところ、RION計測値(1〜10μm)で4406個/gであった。上記と同様に、微小粒状物の形態を顕微鏡観察したところ、藻類や細菌類であることが確認された。   Next, the secondary treated water was retained at about 40 ° C. under light shielding in a residence time of 20 minutes on a drum and a pipe, collected as the tertiary treated water, and then measured for the concentration of fine particulate matter. It was 4406 pieces / g in (1-10 micrometers). In the same manner as described above, microscopic observation of the morphology of the fine particulate matter confirmed that it was algae and bacteria.

この3次処理水200gと0.19重量%の4−CBAを含むCTA50gとから3525個/gの微生物類を含むCTAスラリーを調製した以外は、比較例1と同様にしてP
TAを製造した。
P was prepared in the same manner as in Comparative Example 1 except that a CTA slurry containing 3525 microorganisms / g was prepared from 200 g of this tertiary treated water and 50 g of CTA containing 0.19% by weight of 4-CBA.
TA was produced.

得られたPTAに含まれる4−CBAは7ppmであった。
[実施例11]
比較例14と同じ方法で調製した3次処理水を、孔径3μmのポリプロピレン製マイクロフィルターでろ過し、直ちに微小粒状物濃度を測定したところ、RION計測値(1〜10μm)で1141個/gであった。
4-CBA contained in obtained PTA was 7 ppm.
[Example 11]
The tertiary treated water prepared by the same method as in Comparative Example 14 was filtered through a polypropylene microfilter having a pore diameter of 3 μm, and the concentration of fine particles was measured immediately. The measured RION value (1 to 10 μm) was 1141 / g. there were.

このろ過後の水溶液200gと0.19重量%の4−CBAを含むCTA50gとから913個/gの微生物類を含むCTAスラリーを調製した以外は、比較例14と同様にし
てPTAを製造した。
A PTA was produced in the same manner as in Comparative Example 14 except that a CTA slurry containing 913 microorganisms / g was prepared from 200 g of this filtered aqueous solution and 50 g of CTA containing 0.19% by weight of 4-CBA.

得られたPTAに含まれる4−CBAは5ppm(検出下限)未満であった。   4-CBA contained in the obtained PTA was less than 5 ppm (lower detection limit).

図1は、本発明に係る高純度テレフタル酸の製造方法のフロー図の一例である。FIG. 1 is an example of a flow diagram of a method for producing high-purity terephthalic acid according to the present invention.

符号の説明Explanation of symbols

1 CTAスラリー化槽
2 マイクロフィルター
3 熱交換器
4 水素添加反応器
5 晶析槽
6 固液分離装置
7 TA再スラリー化槽
8 固液分離装置
9 TA乾燥器
DESCRIPTION OF SYMBOLS 1 CTA slurrying tank 2 Microfilter 3 Heat exchanger 4 Hydrogenation reactor 5 Crystallization tank 6 Solid-liquid separator 7 TA reslurry tank 8 Solid-liquid separator 9 TA dryer

Claims (3)

(I)パラキシレンの液相酸化によって得られる粗テレフタル酸と水とを混合して粗テレフタル酸スラリーを形成する工程、(II)該粗テレフタル酸スラリーを加熱溶解して粗テレフタル酸水溶液を形成する工程、(III)該粗テレフタル酸水溶液を水素添加処理す
る工程、(IV)水素添加後のテレフタル酸水溶液からテレフタル酸を晶析させる工程、(V)得られたテレフタル酸スラリーを固液分離する工程を含む高純度テレフタル酸の製造方法において、
前記工程(I)で粗テレフタル酸と混合する水に含まれる微生物類の含有量を、RION計測値(1〜10μm)基準で4000個/g以下に調整することを特徴とする高純度テレフタル酸の製造方法。
(I) A step of forming a crude terephthalic acid slurry by mixing crude terephthalic acid obtained by liquid phase oxidation of para-xylene and water, and (II) forming a crude terephthalic acid aqueous solution by heating and dissolving the crude terephthalic acid slurry. (III) Step of hydrogenating the crude terephthalic acid aqueous solution, (IV) Step of crystallizing terephthalic acid from the terephthalic acid aqueous solution after hydrogenation, (V) Solid-liquid separation of the obtained terephthalic acid slurry In the method for producing high-purity terephthalic acid including the step of:
The high-purity terephthalic acid characterized in that the content of microorganisms contained in the water mixed with the crude terephthalic acid in the step (I) is adjusted to 4000 / g or less on the basis of the RION measurement value (1 to 10 μm). Manufacturing method.
前記工程(I)で粗テレフタル酸と水を混合したスラリーに含まれる、S、Cr、Ni、Ca、Cu、Zn、MgおよびPbからなる群から選択される少なくとも1種の元素の含有量を、下記(a)〜(h)の条件に調整することを特徴とする請求項1に記載の高純度テレフタル酸の製造方法。
(a)S :1ppm以下
(b)Cr:5ppm以下
(c)Ni:5ppm以下
(d)Ca:5ppm以下
(e)Cu:5ppm以下
(f)Zn:5ppm以下
(g)Mg:5ppm以下
(h)Pb:3ppm以下
The content of at least one element selected from the group consisting of S, Cr, Ni, Ca, Cu, Zn, Mg and Pb contained in the slurry obtained by mixing the crude terephthalic acid and water in the step (I). The method for producing high-purity terephthalic acid according to claim 1, wherein the conditions are adjusted to the following conditions (a) to (h).
(A) S: 1 ppm or less (b) Cr: 5 ppm or less (c) Ni: 5 ppm or less (d) Ca: 5 ppm or less (e) Cu: 5 ppm or less (f) Zn: 5 ppm or less (g) Mg: 5 ppm or less ( h) Pb: 3 ppm or less
粗テレフタル酸と混合する水を混合直前にマイクロフィルターで精密ろ過して前記微生物類の含有量を調整することを特徴とする請求項1または2に記載の高純度テレフタル酸の製造方法。   The method for producing high-purity terephthalic acid according to claim 1 or 2, wherein the content of the microorganisms is adjusted by microfiltration of water mixed with crude terephthalic acid with a microfilter immediately before mixing.
JP2006338842A 2006-12-15 2006-12-15 Method for producing high purity terephthalic acid Active JP5031354B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2006338842A JP5031354B2 (en) 2006-12-15 2006-12-15 Method for producing high purity terephthalic acid
CN2007101998405A CN101205182B (en) 2006-12-15 2007-12-13 Method for manufacturing high-purity terephthalic acid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006338842A JP5031354B2 (en) 2006-12-15 2006-12-15 Method for producing high purity terephthalic acid

Publications (2)

Publication Number Publication Date
JP2008150313A true JP2008150313A (en) 2008-07-03
JP5031354B2 JP5031354B2 (en) 2012-09-19

Family

ID=39565690

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006338842A Active JP5031354B2 (en) 2006-12-15 2006-12-15 Method for producing high purity terephthalic acid

Country Status (2)

Country Link
JP (1) JP5031354B2 (en)
CN (1) CN101205182B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014005226A (en) * 2012-06-22 2014-01-16 Mitsubishi Chemicals Corp Process for producing terephthalic acid

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6349295A (en) * 1986-08-18 1988-03-02 Daido Steel Co Ltd Treatment of hydrazine-containing waste water
JPH09263566A (en) * 1996-03-29 1997-10-07 Cosmo Sogo Kenkyusho:Kk Purification of crude benzenedicarboxylic acid, catalyst used for purification and its production
JP2006045201A (en) * 2004-06-28 2006-02-16 Mitsubishi Chemicals Corp Method for producing high-purity terephthalic acid
WO2006126626A1 (en) * 2005-05-27 2006-11-30 Asahi Kasei Chemicals Corporation Method for producing glycolic acid

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH078823B2 (en) * 1986-10-20 1995-02-01 三井石油化学工業株式会社 Method for producing high-purity terephthalic acid
JP3979505B2 (en) * 1995-05-17 2007-09-19 三菱瓦斯化学株式会社 Method for producing high purity terephthalic acid
JP2004231640A (en) * 2003-01-07 2004-08-19 Mitsubishi Chemicals Corp Process for producing high purity terephthalic acid

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6349295A (en) * 1986-08-18 1988-03-02 Daido Steel Co Ltd Treatment of hydrazine-containing waste water
JPH09263566A (en) * 1996-03-29 1997-10-07 Cosmo Sogo Kenkyusho:Kk Purification of crude benzenedicarboxylic acid, catalyst used for purification and its production
JP2006045201A (en) * 2004-06-28 2006-02-16 Mitsubishi Chemicals Corp Method for producing high-purity terephthalic acid
WO2006126626A1 (en) * 2005-05-27 2006-11-30 Asahi Kasei Chemicals Corporation Method for producing glycolic acid

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014005226A (en) * 2012-06-22 2014-01-16 Mitsubishi Chemicals Corp Process for producing terephthalic acid

Also Published As

Publication number Publication date
CN101205182A (en) 2008-06-25
JP5031354B2 (en) 2012-09-19
CN101205182B (en) 2011-07-27

Similar Documents

Publication Publication Date Title
CN1305830C (en) Method of removing iron contaminants from liquid streams during the manufacture and/or purification of aromatic acids
EP2301893B1 (en) Method for treating wastewater
RU2527035C2 (en) Methods, processes and systems for processing and purification of raw terephthalic acid and process associated flows
WO2009115888A1 (en) Process for the recovery of water and valuable organics from wastewater in the production of aromatic carboxylic acids
JP4055913B2 (en) Method for producing high purity terephthalic acid
JP3939367B2 (en) Method for producing high purity terephthalic acid
EP2634169B1 (en) Crossflow type filtering operation method using ceramic filter
EP3514136A1 (en) Method for producing high-purity terephthalic acid
JP5031354B2 (en) Method for producing high purity terephthalic acid
US9150487B2 (en) Crossflow type filtering operation method using ceramic filter
JP3269508B2 (en) Method for producing high-purity isophthalic acid
JP4048569B2 (en) Method for purifying terephthalic acid
US10273197B2 (en) Method for producing high-purity terephthalic acid
JP3804150B2 (en) Method for producing high purity terephthalic acid
JP3629733B2 (en) Preparation method of terephthalic acid water slurry
JPH10287614A (en) Production of highly pure terephthalic acid
TW201544460A (en) Pure plant waste water purification and recycle
JPH08157415A (en) Production of high-purity terephthalic acid
JPH072731A (en) Production of isophthalic acid of high purity
JPH0717900A (en) Production of high-purity isophthalic acid
KR100883288B1 (en) Process for producing high-purity terephthalic acid
JP2007015964A (en) Method for refining terephthalic acid
JPH0648982A (en) Production of high-purity terephthalic acid
JP2004300097A (en) Method for producing aromatic carboxylic acid
KR20100103640A (en) Crystallization and solid-liquid separation process in preparation of terephthalic acid

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091202

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20091202

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120314

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120321

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120619

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120627

R150 Certificate of patent or registration of utility model

Ref document number: 5031354

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150706

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250