JP2008149343A - Tube hydroforming method - Google Patents

Tube hydroforming method Download PDF

Info

Publication number
JP2008149343A
JP2008149343A JP2006339103A JP2006339103A JP2008149343A JP 2008149343 A JP2008149343 A JP 2008149343A JP 2006339103 A JP2006339103 A JP 2006339103A JP 2006339103 A JP2006339103 A JP 2006339103A JP 2008149343 A JP2008149343 A JP 2008149343A
Authority
JP
Japan
Prior art keywords
workpiece
cavity
corner
worked
shape
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2006339103A
Other languages
Japanese (ja)
Inventor
Yoshiaki Kadoma
義明 門間
Yoshiharu Isojima
吉晴 磯島
Yoshihisa Kato
嘉久 加藤
Naoki Hori
直樹 堀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2006339103A priority Critical patent/JP2008149343A/en
Publication of JP2008149343A publication Critical patent/JP2008149343A/en
Withdrawn legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To propose such technique in which the strength is improved while balanced as a whole in terms of an expanded member to be worked. <P>SOLUTION: This invention relates to a tube hydroforming method where, in the cavity 2 of a die which is hermetically sealed, the member 3 to be worked is formed into a shape matching to the inner surface 2a of the cavity by expanding a tubular member 3 to be worked by imparting forming hydraulic pressure p to the inside of the member and closely contacting the member 3 to be worked with the inner surface 2a of the cavity. The member 3 to be worked which is preliminarily formed so that prescribed spaces 5a, 5b ... are formed in the prescribed positions between the outer surface 3a of the member 3 to be worked and the inner surface 2a of the cavity and the circumference of the cross section of the member 3 to be worked is longer than the circumference of the cross section of the cavity 2 is set in the cavity 2 and the forming liquid pressure is imparted to the inside of the member 3 to be worked. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、管状の被加工部材を成形液圧にて拡管し、キャビティ形状に沿って成形させるチューブハイドロフォーミングの技術に関するものである。   The present invention relates to a tube hydroforming technique in which a tubular workpiece is expanded at a molding fluid pressure and molded along a cavity shape.

従来、管状の被加工部材を成形液圧にて拡管し、キャビティ形状に沿って成形させるチューブハイドロフォーミングの技術は公知となっており、この技術について開示する文献も存在する(例えば、特許文献1参照。)。   2. Description of the Related Art Conventionally, a tube hydroforming technique in which a tubular workpiece is expanded with a molding fluid pressure and molded along a cavity shape has been publicly known, and there is a document disclosing this technique (for example, Patent Document 1). reference.).

このチューブハイドロフォーミングでは、例えば、図3に示すごとく、小さな隅R形状のコーナー部の成形が望まれる場合では、非常に大きな成形液圧が必要とされることから、この小さな隅R形状のコーナー部の成形については、チューブハイドロフォーミングは実用的といえないものであった。   In this tube hydroforming, for example, as shown in FIG. 3, when molding of a corner portion having a small corner R shape is desired, a very large molding fluid pressure is required. Regarding the forming of the part, tube hydroforming was not practical.

即ち、この図3の例において、金型40内に形成されるキャビティ41のコーナー部42の内壁43に、被加工部材50のコーナー部51を密着させて、前記コーナ部51を小さな隅R形状に整形するためには、コーナー部51の内アールR、被加工部材50の板厚t、被加工部材の変形に要する応力σ、成形液圧p、とすると、R=t・σ/pの関係を成立させる必要がある。ここで、R=3mm、t=2.9mm、σ=980Mpaとすると、前記成形液圧pは、950Mpaという大きな数字となり、周知のチューブハイドロフォーミングの工法では、コーナー部42・51が密着し合うレベルまで拡管できないものとなる。   That is, in the example of FIG. 3, the corner portion 51 of the workpiece 50 is brought into close contact with the inner wall 43 of the corner portion 42 of the cavity 41 formed in the mold 40, so that the corner portion 51 has a small corner R shape. In order to reshape, the inner radius R of the corner 51, the plate thickness t of the workpiece 50, the stress σ required for deformation of the workpiece, and the molding fluid pressure p, R = t · σ / p It is necessary to establish a relationship. Here, when R = 3 mm, t = 2.9 mm, and σ = 980 Mpa, the molding fluid pressure p becomes a large number of 950 Mpa, and the corner portions 42 and 51 are in close contact with each other in the well-known tube hydroforming method. The tube cannot be expanded to the level.

他方、特許文献1においては、きわめて鋭い断面コーナー部の成形を可能とする技術が開示されているが、ダイによって挟み込んで圧縮成形を施すため、その圧縮成形の際に被加工部材が均一に圧縮されず、その後にチューブハイドロフォーミングを行ったとしても、圧縮による変形が影響し、形状制度が悪くなってしまうということが考えられる。   On the other hand, Patent Document 1 discloses a technique capable of forming a corner portion having a very sharp cross section. However, since compression molding is performed by sandwiching the die with a die, the workpiece is uniformly compressed during the compression molding. However, even if the tube hydroforming is performed after that, it is conceivable that deformation due to compression affects and the shape system becomes worse.

また、特許文献1のように、圧縮成形をしてしまうと、圧縮された被加工部材において、圧縮された部位には、圧縮による残留応力が発生することになるが、圧縮されない部位には、この残留応力が発生しないことになる。このことにより、残留応力の不均一性が発生し、圧縮されない部位の強度が弱くなるといった、強度の不均一性も発生することになる。   Further, as in Patent Document 1, if compression molding is performed, in the compressed workpiece, residual stress due to compression is generated in the compressed portion, but in the portion that is not compressed, This residual stress will not occur. As a result, non-uniformity of the residual stress occurs, and non-uniformity of the strength occurs such that the strength of the uncompressed portion is weakened.

また、特許文献1においては、前記隅R形状の成形について、キャビティと被加工部材の形状の相対的な関係を考慮しておらず、より小さな隅R形状を実現するためには、前記相対的な関係を踏まえ、被加工部材を拡管させる際の、該被加工部材の流れを考慮する必要があると考える。
特表2003−516862号公報
Further, in Patent Document 1, regarding the formation of the corner R shape, the relative relationship between the shape of the cavity and the workpiece is not considered, and in order to realize a smaller corner R shape, the relative Based on this relationship, it is considered necessary to consider the flow of the workpiece when expanding the workpiece.
Special table 2003-516862 gazette

そこで、本発明は、より小さな隅R形状の成形を可能とし、また、拡管された被加工部材について、全体的にバランスのとれた強度の向上を図ることができる新規なチューブハイドロフォーミング方法を提案するものである。   Therefore, the present invention proposes a novel tube hydroforming method that enables molding of a smaller corner R shape and can improve the overall balanced strength of the expanded workpiece. To do.

本発明の解決しようとする課題は以上の如くであり、次にこの課題を解決するための手段を説明する。   The problem to be solved by the present invention is as described above. Next, means for solving the problem will be described.

即ち、請求項1に記載のごとく、
密閉される金型のキャビティ内において、管状の被加工部材の内部に成形液圧を付与して拡管し、前記被加工部材を前記キャビティ内表面に密着させることで、前記被加工部材を前記キャビティ内表面に沿った形状に成形するチューブハイドロフォーミング方法であって、
前記被加工部材の外表面と前記キャビティ内表面の間の所定の位置に、所定の空間が形成されるように、かつ、前記被加工部材の断面周長が、前記キャビティの断面周長よりも長くなるように、予備成形された前記被加工部材をキャビティ内にセットし、
前記被加工部材の内部に成形液圧を付与して、前記所定の空間が形成された範囲の被加工部材を前記キャビティ内表面に密着させ、前記所定の空間を埋めることとする、チューブハイドロフォーミング方法とするものである。
That is, as described in claim 1,
Inside the cavity of the mold to be sealed, a molding fluid pressure is applied to the inside of the tubular workpiece to expand the tube, and the workpiece is brought into close contact with the inner surface of the cavity, so that the workpiece is attached to the cavity. A tube hydroforming method for forming into a shape along the inner surface,
A predetermined circumferential space is formed at a predetermined position between the outer surface of the workpiece and the inner surface of the cavity, and the sectional circumference of the workpiece is larger than the sectional circumference of the cavity. Set the preformed workpiece in the cavity to be long,
Tube hydroforming, in which a forming fluid pressure is applied to the inside of the workpiece, the workpiece in a range where the predetermined space is formed is brought into close contact with the inner surface of the cavity, and the predetermined space is filled It is a method.

また、請求項2に記載のごとく、
前記チューブハイドロフォーミング方法により最終的に得られる製品の断面形状が、隅R形状のコーナー部を有するものであり、前記コーナー部を形成するために、前記コーナー部を挟んで両側となる位置に、前記所定の空間を配置するものである。
Moreover, as described in claim 2,
The cross-sectional shape of the product finally obtained by the tube hydroforming method has a corner portion of a corner R shape, and in order to form the corner portion, at positions on both sides of the corner portion, The predetermined space is arranged.

本発明の効果として、以下に示すような効果を奏する。   As effects of the present invention, the following effects can be obtained.

請求項1においては、拡管された被加工部材について、全体的にバランスのとれた強度の向上を図ることができる。   According to the first aspect of the present invention, it is possible to improve the overall strength of the expanded workpiece.

請求項2においては、従来のチューブハイドロフォーミングでは不可能とされていた小さい隅R形状のコーナー部の成形も可能となる。   According to the second aspect of the present invention, it is possible to form a corner portion having a small corner R shape, which has been impossible with conventional tube hydroforming.

次に、発明の実施の形態を説明する。   Next, embodiments of the invention will be described.

図1(a)(b)に示すごとく、本実施例では、
密閉される金型1のキャビティ2内において、管状の被加工部材3の内部に成形液圧pを付与して拡管し、前記被加工部材3を前記キャビティ内表面2aに密着させることで、前記被加工部材3を前記キャビティ内表面2aに沿った形状に成形するチューブハイドロフォーミング方法であって、
前記被加工部材3の外表面3aと前記キャビティ内表面2aの間の所定の位置に、所定の空間5a・5b・・・が形成されるように、かつ、前記被加工部材3の断面周長が、前記キャビティ2の断面周長よりも長くなるように、予備成形された前記被加工部材3をキャビティ2内にセットし、
前記被加工部材3の内部に成形液圧を付与して、前記所定の空間5a・5b・・・が形成された範囲の被加工部材3を前記キャビティ内表面2aに密着させ、前記所定の空間5a・5b・・・を埋めることとし、これにより、前記被加工部材3を構成している素材の周方向の移動を発生させることとするものである。
As shown in FIGS. 1A and 1B, in this embodiment,
In the cavity 2 of the mold 1 to be sealed, the molding fluid pressure p is applied to the inside of the tubular workpiece 3 to expand the tube, and the workpiece 3 is brought into close contact with the cavity inner surface 2a. A tube hydroforming method for forming a workpiece 3 into a shape along the cavity inner surface 2a,
.. So that predetermined spaces 5a, 5b... Are formed at predetermined positions between the outer surface 3a of the processed member 3 and the inner surface 2a of the cavity. However, the preformed workpiece 3 is set in the cavity 2 so as to be longer than the circumferential length of the cavity 2;
A molding fluid pressure is applied to the inside of the workpiece 3 to bring the workpiece 3 in a range where the predetermined spaces 5a, 5b... Are formed into close contact with the inner surface 2a of the cavity. 5a, 5b,... Are filled, thereby causing a movement of the material constituting the workpiece 3 in the circumferential direction.

図1(a)は、チューブハイドロフォーミングを実施する前の状態を示し、図1(b)は、チューブハイドロフォーミングが実施され、金属製等の被加工部材3がキャビティ内表面2aに沿うように成形された状態を示している。   FIG. 1 (a) shows a state before the tube hydroforming is performed, and FIG. 1 (b) shows that the tube hydroforming is performed so that the workpiece 3 made of metal or the like is along the cavity inner surface 2a. The molded state is shown.

図1(a)に示すごとく、前記被加工部材3は、金型1のキャビティ2内にセットされる前に、最終的に目標とされる製品形状とは異なる断面形状に予備成形される。
この予備成形は、断面形状が、前記被加工部材3の外表面3aと前記キャビティ内表面2aの間の所定の位置に、所定の空間5a・5b・・・が形成されるように、かつ、前記被加工部材3の断面周長が、前記キャビティ2の断面周長よりも長くなるようにするものである。そして、このように予備成形された被加工部材3を、上型1A・下型1Bの間に配置し、両型1A・1Bを閉じることで、キャビティ2内に被加工部材3を配置することとしている。
As shown in FIG. 1A, the workpiece 3 is preformed into a cross-sectional shape different from the final product shape before being set in the cavity 2 of the mold 1.
This preforming has a cross-sectional shape so that predetermined spaces 5a, 5b... Are formed at predetermined positions between the outer surface 3a of the workpiece 3 and the inner surface 2a of the cavity, and The cross-sectional peripheral length of the workpiece 3 is made longer than the cross-sectional peripheral length of the cavity 2. The workpiece 3 thus preformed is disposed between the upper mold 1A and the lower mold 1B, and the workpiece 3 is disposed in the cavity 2 by closing both the molds 1A and 1B. It is said.

本実施例では、チューブハイドロフォーミングにより最終的に得られる製品の断面形状が、図1(b)に示すキャビティ内表面2aの形状のごとく、長方形であり、予備成形では、前記被加工部材3の四辺の中途部を内側に凹ませる、即ち、拡管方向とは反対方向に押圧するようにして、前記所定の空間5a・5b・・・が形成されるようにするとともに、その断面周長を前記キャビティ2の断面周長よりも長くなるように拡張させている。   In this embodiment, the cross-sectional shape of the product finally obtained by tube hydroforming is a rectangle like the shape of the cavity inner surface 2a shown in FIG. 1 (b). The middle portions of the four sides are recessed inward, that is, pressed in the direction opposite to the tube expansion direction so that the predetermined spaces 5a, 5b,. The cavity 2 is expanded so as to be longer than the circumferential length of the cross section.

また、この所定の空間5a・5b・・・の容積は、拡管の際における変形量を加味して適宜決定されるものであり、拡管によって埋められることが想定されている。   Further, the volumes of the predetermined spaces 5a, 5b,... Are appropriately determined in consideration of the amount of deformation at the time of pipe expansion, and are assumed to be filled by pipe expansion.

また、この予備成形の具体的な実施方法については、特に限定するものではないが、例えば、プレス成形によることによれば、単純・簡易な作業により、予備成形を実施することができる。   In addition, the specific method of performing the preforming is not particularly limited. For example, according to press molding, the preforming can be performed by a simple and simple operation.

さらに、本実施例では、図1(b)に示すごとく、最終的な成形の目標とされる製品の断面形状が、小さい隅R形状のコーナー部6a・6b・・・を有するものであり、このコーナー部6a・6b・・・を形成するために、前述のように、前記コーナー部6a・6b・・・を挟み込む位置、換言すれば、コーナー部6a・6b・・・を挟んで両側となる位置に、前記所定の空間5a・5b・・・を配置している。   Furthermore, in the present embodiment, as shown in FIG. 1B, the cross-sectional shape of the product that is the final molding target has corner portions 6a, 6b,. In order to form the corner portions 6a, 6b, etc., as described above, the positions where the corner portions 6a, 6b, etc. are sandwiched, in other words, the corner portions 6a, 6b,. The predetermined spaces 5a, 5b,...

そして、図1(a)に示すごとく、前記所定の空間5a・5b・・・についての配置を、コーナー部6a・6b・・・を基準として決定することにより、前記被加工部材3の内部に成形液圧を付与して、該被加工部材3を、前記所定の空間5a・5b・・・を埋めるように拡管させてキャビティ内表面に密着させる際に、該被加工部材3を構成している素材が、コーナー部6a・6b・・・に向かって周方向に移動することとなる(隅R部への素材供給)。
これにより、被加工部材3のコーナー部6a・6b・・・と、キャビティ2のコーナー部7a・7b・・・との間に形成される隅部空間8a・8b・・・を埋めるように、被加工部材3が拡管されることとなる。
And as shown to Fig.1 (a), by determining the arrangement | positioning about the said predetermined space 5a * 5b ... on the basis of corner part 6a * 6b ..., inside the said to-be-processed member 3 is shown. When the molding fluid pressure is applied and the workpiece 3 is expanded so as to fill the predetermined spaces 5a, 5b. The moving material moves in the circumferential direction toward the corner portions 6a, 6b, ... (material supply to the corner R portion).
Thereby, the corner spaces 8a, 8b,... Formed between the corner portions 6a, 6b,... Of the workpiece 3 and the corner portions 7a, 7b,. The workpiece 3 is expanded.

また、図1(a)に示すごとく、本実施例では、被加工部材3の四辺の中途部を内側に凹ませて空間5a・5bを形成しているので、例えば、コーナー部6aについては、このコーナー部6aを挟んで両側に位置する広い範囲9a・9bに、成形液圧pを作用させることができる。これにより、被加工部材3の周方向への大きな移動量を確保することができて、隅部空間8a・8b・・・を容易に埋めることが可能となっている。   Further, as shown in FIG. 1 (a), in the present embodiment, the spaces 5a and 5b are formed by indenting midway portions of the four sides of the workpiece 3 to the inner side. The molding fluid pressure p can be applied to the wide ranges 9a and 9b located on both sides of the corner portion 6a. As a result, a large amount of movement of the workpiece 3 in the circumferential direction can be ensured, and the corner spaces 8a, 8b,... Can be easily filled.

仮に、予備成形において、空間5a・5bを形成せずに、四辺の中途部をキャビティ内表面2aに当着させていたとすると、この中途部に作用する圧力(成形液圧p)を、被加工部材3を構成する素材の移動に作用させることができないことになり、コーナー部7a・7b・・・の隅部空間8a・8b・・・を埋めることが困難になる。また、被加工部材3のコーナー部6a・6b・・・の近傍に作用する圧力(成形液圧p)の合計は小さいことになることから、前記隅部空間8a・8b・・・を埋めることが困難になることとなる。   If it is assumed that the space 5a and 5b are not formed and the middle part of the four sides is contacted with the cavity inner surface 2a in the preliminary molding, the pressure acting on the middle part (molding fluid pressure p) is processed. It becomes impossible to act on the movement of the material which comprises the member 3, and it becomes difficult to fill corner space 8a * 8b ... of corner part 7a * 7b .... Further, since the total pressure (molding fluid pressure p) acting in the vicinity of the corner portions 6a, 6b,... Of the workpiece 3 is small, the corner spaces 8a, 8b,. Will become difficult.

また、図1(a)に示すごとく、本実施例では、前記被加工部材3の断面周長が、前記キャビティ2の断面周長よりも長くなるようにしているため、成形液圧pによるハイドロフォーミングが実施される前段階において、被加工部材3の周長が余ることになる。この余った分の周長が成形液圧pによってキャビティ内表面2aに沿うように拡げられる。そして、余った分の周長が大きい分だけ、被加工部材3を構成する素材の周方向への大きな移動量を得ることができ、より小さな隅R形状のコーナー部の成形が可能となる。   Further, as shown in FIG. 1A, in this embodiment, the cross-sectional peripheral length of the workpiece 3 is longer than the cross-sectional peripheral length of the cavity 2, so Before the forming is performed, the peripheral length of the workpiece 3 remains. The extra perimeter is expanded by the molding fluid pressure p so as to follow the cavity inner surface 2a. And since the extra perimeter is large, a large amount of movement of the material constituting the workpiece 3 in the circumferential direction can be obtained, and a corner portion having a smaller corner R shape can be formed.

さらに、このように、被加工部材3を構成する素材の大きな移動量を確保し、また、広い範囲9a・9bにおいて成形液圧pによる被加工部材3を構成する素材の移動を確保することにより、広範囲において、周方向に圧縮力が付与されることになり、脱型後における形状凍結性を向上させることができる。つまり、周方向の塑性歪は、全体に圧縮状態となり、形状凍結性に優れたものとなる。また、強度を向上させることができ、また、その強度の均一性を向上させることができる。   Further, in this way, by securing a large amount of movement of the material constituting the workpiece 3 and securing movement of the material constituting the workpiece 3 by the molding fluid pressure p in a wide range 9a, 9b. In a wide range, a compressive force is applied in the circumferential direction, and the shape freezing property after demolding can be improved. That is, the plastic strain in the circumferential direction is in a compressed state as a whole and has excellent shape freezing property. Further, the strength can be improved and the uniformity of the strength can be improved.

また、以上の一連の拡管において、被加工部材3を構成する素材の大きな移動量を確保できることとなるから、成形液圧pについては、従来のものよりも低い圧力に設定することが可能になる。即ち、相対的に小さな成形液圧pで所望の小さな隅R形状を得ることが可能となる。これにより、高圧状態を形成するための装置構成の簡易化、小型化といったことも可能となり、ひいては、コスト削減を図ることが可能となる。   Further, in the series of pipe expansions described above, a large amount of movement of the material constituting the workpiece 3 can be secured, so the molding fluid pressure p can be set to a pressure lower than the conventional one. . That is, a desired small corner R shape can be obtained with a relatively small molding fluid pressure p. As a result, it is possible to simplify and reduce the size of the apparatus for forming the high-pressure state, and it is possible to reduce the cost.

以上のようにして、本実施例によれば、従来のチューブハイドロフォーミングでは不可能とされていた小さい隅R形状のコーナー部の成形も可能となる。   As described above, according to the present embodiment, it is possible to form a corner portion having a small corner R shape, which has been impossible with conventional tube hydroforming.

本実施例2は、図2(a)(b)に示すごとく、断面視略U字状の被加工部材13についてチューブハイドロフォーミングを行う場合についてのものであり、前述の実施例1と同様に、予備成形を行った上でのハイドロフォーミングにより、所定の形状を得るものである。
そして、予備成形においては、断面形状が、前記被加工部材13の外表面13aとキャビティ内表面12aの間の所定の位置に、所定の空間15aが形成されるように、かつ、前記被加工部材13の断面周長が、前記キャビティ12の断面周長よりも長くなるようにするものである。
As shown in FIGS. 2 (a) and 2 (b), the second embodiment is a case where tube hydroforming is performed on a workpiece 13 having a substantially U-shaped cross-sectional view, and similar to the first embodiment described above. A predetermined shape is obtained by hydroforming after preforming.
In the preforming, the cross-sectional shape is such that a predetermined space 15a is formed at a predetermined position between the outer surface 13a of the workpiece 13 and the cavity inner surface 12a, and the workpiece The cross-sectional circumference of 13 is longer than the cross-sectional circumference of the cavity 12.

そして、本実施例2のように、略U字状の被加工部材13においても、成形液圧pを広い範囲に作用させる、即ち、空間15aを広い範囲に構成することにより、拡管の際に被加工部材13を構成する素材の移動が生じる範囲を広く確保することが可能となり、広範囲において、周方向に圧縮力が付与されることになり、脱型後における形状凍結性を向上させることができる。つまり、周方向の塑性歪は、全体に圧縮状態となり、形状凍結製に優れたものとなる。また、強度を向上させることができ、また、その強度の均一性を向上させることができる。   As in the second embodiment, even in the substantially U-shaped workpiece 13, the molding fluid pressure p is applied to a wide range, that is, the space 15 a is configured to have a wide range, thereby expanding the pipe. It is possible to secure a wide range in which movement of the material constituting the workpiece 13 occurs, and a compressive force is applied in the circumferential direction over a wide range, which can improve the shape freezing property after demolding. it can. That is, the plastic strain in the circumferential direction becomes a compressed state as a whole, and is excellent in shape freezing. Further, the strength can be improved and the uniformity of the strength can be improved.

また、本実施例2のように、断面視において左右対称の構成される被加工部材13について、その左右中央部において、前記空間15aを確保することとし、その両側に向かって拡がる方向に被加工部材3を構成する素材の流れ16・16を形成させることにより、左右対称な被加工部材3の移動を確保することができ、成形後における残留応力のバランスを確保することができる。また、被加工部材13における屈曲度合いの大きいコーナー部13b・13bに、大きな圧縮力を与えることが可能となり、特に強度的に弱い部位においても、十分な強度を確保することが可能となる。   Further, as in the second embodiment, with respect to the workpiece 13 configured to be bilaterally symmetric in the cross-sectional view, the space 15a is secured in the left and right central portions, and the workpiece is processed in a direction that expands toward both sides. By forming the material flows 16, 16 constituting the member 3, it is possible to ensure a symmetrical movement of the workpiece 3 and to secure a balance of residual stress after molding. In addition, it is possible to apply a large compressive force to the corner portions 13b and 13b having a large degree of bending in the workpiece 13, and it is possible to ensure a sufficient strength even in particularly weak portions.

(a)は、実施例1において、チューブハイドロフォーミングを実施する前の状態を示す図、(b)は、実施例1において、チューブハイドロフォーミングが実施された状態を示す図。(A) is a figure which shows the state before implementing tube hydroforming in Example 1, (b) is a figure which shows the state in which tube hydroforming was implemented in Example 1. FIG. (a)は、実施例2において、チューブハイドロフォーミングを実施する前の状態を示す図、(b)は、実施例2において、チューブハイドロフォーミングが実施された状態を示す図。(A) is a figure which shows the state before implementing tube hydroforming in Example 2, (b) is a figure which shows the state in which tube hydroforming was implemented in Example 2. FIG. 従来のチューブハイドロフォーミングによる隅R形状の成形について説明する図。The figure explaining the shaping | molding of the corner R shape by the conventional tube hydroforming.

符号の説明Explanation of symbols

1 金型
2 キャビティ
2a キャビティ内表面
3 被加工部材
3a 外表面
5a・5b 空間
6a・6b コーナー部
7a・7b コーナー部
8a・8b 隅部空間
p 成形液圧
DESCRIPTION OF SYMBOLS 1 Metal mold | die 2 Cavity 2a Cavity inner surface 3 Work piece 3a Outer surface 5a * 5b Space 6a * 6b Corner part 7a * 7b Corner part 8a * 8b Corner part space p Molding fluid pressure

Claims (2)

密閉される金型のキャビティ内において、管状の被加工部材の内部に成形液圧を付与して拡管し、前記被加工部材を前記キャビティ内表面に密着させることで、前記被加工部材を前記キャビティ内表面に沿った形状に成形するチューブハイドロフォーミング方法であって、
前記被加工部材の外表面と前記キャビティ内表面の間の所定の位置に、所定の空間が形成されるように、かつ、前記被加工部材の断面周長が、前記キャビティの断面周長よりも長くなるように、予備成形された前記被加工部材をキャビティ内にセットし、
前記被加工部材の内部に成形液圧を付与して、前記所定の空間が形成された範囲の被加工部材を前記キャビティ内表面に密着させ、前記所定の空間を埋めることとする、チューブハイドロフォーミング方法。
Inside the cavity of the mold to be sealed, a molding fluid pressure is applied to the inside of the tubular workpiece to expand the tube, and the workpiece is brought into close contact with the inner surface of the cavity, so that the workpiece is attached to the cavity. A tube hydroforming method for forming into a shape along the inner surface,
A predetermined circumferential space is formed at a predetermined position between the outer surface of the workpiece and the inner surface of the cavity, and the sectional circumference of the workpiece is larger than the sectional circumference of the cavity. Set the preformed workpiece in the cavity to be long,
Tube hydroforming, in which a forming fluid pressure is applied to the inside of the workpiece, the workpiece in a range where the predetermined space is formed is brought into close contact with the inner surface of the cavity, and the predetermined space is filled Method.
前記チューブハイドロフォーミング方法により最終的に得られる製品の断面形状が、隅R形状のコーナー部を有するものであり、前記コーナー部を形成するために、前記コーナー部を挟んで両側となる位置に、前記所定の空間を配置する、ことを特徴とする、請求項1に記載のチューブハイドロフォーミング方法。

The cross-sectional shape of the product finally obtained by the tube hydroforming method has a corner portion of a corner R shape, and in order to form the corner portion, at positions on both sides of the corner portion, The tube hydroforming method according to claim 1, wherein the predetermined space is arranged.

JP2006339103A 2006-12-15 2006-12-15 Tube hydroforming method Withdrawn JP2008149343A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006339103A JP2008149343A (en) 2006-12-15 2006-12-15 Tube hydroforming method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006339103A JP2008149343A (en) 2006-12-15 2006-12-15 Tube hydroforming method

Publications (1)

Publication Number Publication Date
JP2008149343A true JP2008149343A (en) 2008-07-03

Family

ID=39652107

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006339103A Withdrawn JP2008149343A (en) 2006-12-15 2006-12-15 Tube hydroforming method

Country Status (1)

Country Link
JP (1) JP2008149343A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010099738A (en) * 2008-09-25 2010-05-06 Jfe Steel Corp Method for forming deformed cross section and formed article of quadrilateral cross-section excellent in spot weldability
JP2012011422A (en) * 2010-06-30 2012-01-19 Nissan Motor Co Ltd Structure of tube member and method for manufacturing tube member
JP2013107091A (en) * 2011-11-17 2013-06-06 Kobe Steel Ltd Electromagnetic forming method of polygonal cross-sectional member
WO2013134823A1 (en) * 2012-03-14 2013-09-19 Endless Solar Corporation Ltd A method of fabricating a component of a solar energy system
US9327664B2 (en) 2012-02-01 2016-05-03 Kobe Steel, Ltd. Energy absorbing member, method for producing same, and electromagnetic tube expansion method for rectangular cross-section member and polygon cross-section member
KR20160078828A (en) * 2014-12-24 2016-07-05 주식회사 포스코 Manufacturing method for torsion beam having ultra high strength
WO2017155056A1 (en) * 2016-03-10 2017-09-14 新日鐵住金株式会社 Method for manufacturing automobile component, and automobile component

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010099738A (en) * 2008-09-25 2010-05-06 Jfe Steel Corp Method for forming deformed cross section and formed article of quadrilateral cross-section excellent in spot weldability
JP2012011422A (en) * 2010-06-30 2012-01-19 Nissan Motor Co Ltd Structure of tube member and method for manufacturing tube member
JP2013107091A (en) * 2011-11-17 2013-06-06 Kobe Steel Ltd Electromagnetic forming method of polygonal cross-sectional member
US9327664B2 (en) 2012-02-01 2016-05-03 Kobe Steel, Ltd. Energy absorbing member, method for producing same, and electromagnetic tube expansion method for rectangular cross-section member and polygon cross-section member
WO2013134823A1 (en) * 2012-03-14 2013-09-19 Endless Solar Corporation Ltd A method of fabricating a component of a solar energy system
KR20160078828A (en) * 2014-12-24 2016-07-05 주식회사 포스코 Manufacturing method for torsion beam having ultra high strength
KR101657834B1 (en) 2014-12-24 2016-09-20 주식회사 포스코 Manufacturing method for torsion beam having ultra high strength
WO2017155056A1 (en) * 2016-03-10 2017-09-14 新日鐵住金株式会社 Method for manufacturing automobile component, and automobile component
JPWO2017155056A1 (en) * 2016-03-10 2018-03-15 新日鐵住金株式会社 Manufacturing method of automotive parts and automotive parts
CN109070175A (en) * 2016-03-10 2018-12-21 新日铁住金株式会社 The manufacturing method and automobile part of automobile part
US11007839B2 (en) 2016-03-10 2021-05-18 Nippon Steel Corporation Automotive component manufacturing method and automotive component

Similar Documents

Publication Publication Date Title
JP2008149343A (en) Tube hydroforming method
CN105358269B (en) Press-processing method and press molding equipment
JP2006263752A (en) Hydroforming method and apparatus
CN107249773B (en) Press-processing method and press forming die
JP2011045905A (en) Press forming method
JP2012040604A (en) Method for manufacturing square pipe-like molded product
KR100584489B1 (en) A hydro-forming system
JP4459834B2 (en) Hydroforming apparatus and method
JP4628217B2 (en) Bulge forming method and its mold
JP5182426B2 (en) Hydroform molding method and hydroform molding apparatus
JPWO2005070582A1 (en) Deformed element pipe for hydraulic bulge processing, hydraulic bulge processing apparatus using the same, hydraulic bulge processing method, and hydraulic bulge processed product
JP2005095983A (en) Bellows pipe, manufacturing method therefor, and die
KR100626108B1 (en) A hydro-forming system
KR100604635B1 (en) A press system for hydro-forming
RU2559623C1 (en) Forming of thin-wall tee-bands
KR100492747B1 (en) Manufacturing method of pipe joint
JP2010149179A (en) Method and apparatus of manufacturing press-formed article, and press-formed article
JP2001239329A (en) Fluid pressure forming method and fluid pressure forming die
JP2007075844A (en) Hydrostatic bulged product, and its hydrostatic bulging method
JP5299936B2 (en) Method and apparatus for molding hollow molded body and hollow molded body
JP2005186113A (en) Method for press molding metal plate
KR101972664B1 (en) Sealing unit and hydroforming apparatus comprising the same
JP4253457B2 (en) Bulge processing mold
US11583913B2 (en) Tool for internal high-pressure shaping and method for shaping a workpiece by internal high-pressure shaping
KR102272735B1 (en) processing method using elastic body

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090416

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20091216