JP2008146503A5 - - Google Patents
Download PDFInfo
- Publication number
- JP2008146503A5 JP2008146503A5 JP2006335130A JP2006335130A JP2008146503A5 JP 2008146503 A5 JP2008146503 A5 JP 2008146503A5 JP 2006335130 A JP2006335130 A JP 2006335130A JP 2006335130 A JP2006335130 A JP 2006335130A JP 2008146503 A5 JP2008146503 A5 JP 2008146503A5
- Authority
- JP
- Japan
- Prior art keywords
- task
- tasks
- processor
- executed
- executing
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 claims 6
- 238000003672 processing method Methods 0.000 claims 6
- 230000006870 function Effects 0.000 claims 4
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2006335130A JP4756553B2 (ja) | 2006-12-12 | 2006-12-12 | 分散処理方法、オペレーティングシステムおよびマルチプロセッサシステム |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2006335130A JP4756553B2 (ja) | 2006-12-12 | 2006-12-12 | 分散処理方法、オペレーティングシステムおよびマルチプロセッサシステム |
Publications (3)
| Publication Number | Publication Date |
|---|---|
| JP2008146503A JP2008146503A (ja) | 2008-06-26 |
| JP2008146503A5 true JP2008146503A5 (enExample) | 2010-01-21 |
| JP4756553B2 JP4756553B2 (ja) | 2011-08-24 |
Family
ID=39606588
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP2006335130A Active JP4756553B2 (ja) | 2006-12-12 | 2006-12-12 | 分散処理方法、オペレーティングシステムおよびマルチプロセッサシステム |
Country Status (1)
| Country | Link |
|---|---|
| JP (1) | JP4756553B2 (enExample) |
Families Citing this family (11)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| KR101275698B1 (ko) * | 2008-11-28 | 2013-06-17 | 상하이 신하오 (브레이브칩스) 마이크로 일렉트로닉스 코. 엘티디. | 데이터 처리 방법 및 장치 |
| WO2010110183A1 (ja) * | 2009-03-23 | 2010-09-30 | 日本電気株式会社 | 分散処理システム、インタフェース、記憶装置、分散処理方法、分散処理プログラム |
| JP5718558B2 (ja) * | 2009-09-16 | 2015-05-13 | 富士ゼロックス株式会社 | 画像データ処理装置 |
| KR101710910B1 (ko) * | 2010-09-27 | 2017-03-13 | 삼성전자 주식회사 | 프로세싱 유닛의 동적 자원 할당을 위한 방법 및 장치 |
| JP5630396B2 (ja) * | 2011-07-27 | 2014-11-26 | 高田 周一 | Dma制御装置 |
| WO2013128531A1 (ja) * | 2012-02-28 | 2013-09-06 | 日本電気株式会社 | 計算機システム、その処理方法、及びコンピュータ可読媒体 |
| JP5887418B2 (ja) * | 2012-09-14 | 2016-03-16 | 株式会社日立製作所 | ストリームデータ多重処理方法 |
| JP2015088112A (ja) | 2013-11-01 | 2015-05-07 | ソニー株式会社 | 制御装置、処理装置及び情報処理方法 |
| JP6740210B2 (ja) * | 2014-07-24 | 2020-08-12 | アリフォンソ イニゲス, | 動的に構成可能な先回りコプロセッシングセルを用いる並列処理のためのシステムおよび方法 |
| CN112261314B (zh) * | 2020-09-24 | 2023-09-15 | 北京美摄网络科技有限公司 | 一种视频描述数据生成系统、方法、存储介质及设备 |
| US20250005702A1 (en) * | 2023-06-30 | 2025-01-02 | Omron Corporation | State Managed Asynchronous Runtime |
Family Cites Families (8)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPH0612392A (ja) * | 1992-03-19 | 1994-01-21 | Fujitsu Ltd | 計算機資源分散方法及びシステム |
| JPH0784967A (ja) * | 1993-09-14 | 1995-03-31 | Hitachi Ltd | プロセスパイプライン処理方式 |
| JP3680446B2 (ja) * | 1996-10-11 | 2005-08-10 | 富士ゼロックス株式会社 | パイプライン制御装置およびデータ処理方法 |
| JP2000353099A (ja) * | 1999-06-01 | 2000-12-19 | Tektronix Inc | アクティブ・パイプラインにおける流れ制御方法 |
| NL1015579C1 (nl) * | 2000-06-30 | 2002-01-02 | Thales Nederland Bv | Werkwijze voor het automatisch verdelen van programmataken over een verzameling processors. |
| US7360219B2 (en) * | 2002-12-13 | 2008-04-15 | Hewlett-Packard Development Company, L.P. | Systems and methods for facilitating fair and efficient scheduling of processes among multiple resources in a computer system |
| JP2006099579A (ja) * | 2004-09-30 | 2006-04-13 | Toshiba Corp | 情報処理装置及び情報処理方法 |
| JP3964896B2 (ja) * | 2004-09-30 | 2007-08-22 | 株式会社東芝 | 資源割当装置及び資源割当方法 |
-
2006
- 2006-12-12 JP JP2006335130A patent/JP4756553B2/ja active Active
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| Wu et al. | Flep: Enabling flexible and efficient preemption on gpus | |
| CN105487838B (zh) | 一种动态可重构处理器的任务级并行调度方法与系统 | |
| US11163677B2 (en) | Dynamically allocated thread-local storage | |
| CN110308982B (zh) | 一种共享内存复用方法及装置 | |
| EP2989540A2 (en) | Controlling tasks performed by a computing system | |
| US12474930B2 (en) | Method of interleaved processing on a general-purpose computing core | |
| JP2008146503A5 (enExample) | ||
| US10318261B2 (en) | Execution of complex recursive algorithms | |
| Gou et al. | Addressing GPU on-chip shared memory bank conflicts using elastic pipeline | |
| Madhu et al. | Compiling HPC kernels for the REDEFINE CGRA | |
| US8601236B2 (en) | Configurable vector length computer processor | |
| KR100694212B1 (ko) | 다중-프로세서 구조에서 데이터 처리 수행성능을증가시키기 위한 분산 운영 시스템 및 그 방법 | |
| US9870599B2 (en) | Analysis system and method for reducing the control flow divergence in the Graphics Processing Units (GPUs) | |
| WO2019153683A1 (zh) | 一种可配置且具弹性的指令调度器 | |
| Schmaus et al. | System Software for Resource Arbitration on Future Many-Architectures | |
| Benoit et al. | Multi-criteria scheduling of pipeline workflows | |
| Vert et al. | Maintenance of sustainable operation of pipeline-parallel computing systems in the cloud environment | |
| CN111512296B (zh) | 处理器架构 | |
| Belviranli et al. | A paradigm shift in GP-GPU computing: task based execution of applications with dynamic data dependencies | |
| Shipman et al. | Analysis of Application Sensitivity to System Performance Variability in a Dynamic Task Based Runtime. | |
| Nguyen et al. | Lu factorization: Towards hiding communication overheads with a lookahead-free algorithm | |
| Schor et al. | Reliable and Efficient Execution of Multiple Streaming Applications on Intel’s SCC Processor | |
| Tillenius et al. | An efficient task-based approach for solving the n-body problem on multicore architectures | |
| Chantamas et al. | A multiple associative model to support branches in data parallel applications using the manager-worker paradigm | |
| Zhou et al. | FGSMS: Fine-Grained SM Scheduling for Efficient Deep Learning Computing |