JP2008145324A - Method of measuring earth pressure in original position ground - Google Patents

Method of measuring earth pressure in original position ground Download PDF

Info

Publication number
JP2008145324A
JP2008145324A JP2006334336A JP2006334336A JP2008145324A JP 2008145324 A JP2008145324 A JP 2008145324A JP 2006334336 A JP2006334336 A JP 2006334336A JP 2006334336 A JP2006334336 A JP 2006334336A JP 2008145324 A JP2008145324 A JP 2008145324A
Authority
JP
Japan
Prior art keywords
earth pressure
hydraulic jack
underground
wall
slab
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006334336A
Other languages
Japanese (ja)
Other versions
JP4879719B2 (en
Inventor
Takao Kono
貴穂 河野
Masamichi Aoki
雅路 青木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takenaka Komuten Co Ltd
Original Assignee
Takenaka Komuten Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takenaka Komuten Co Ltd filed Critical Takenaka Komuten Co Ltd
Priority to JP2006334336A priority Critical patent/JP4879719B2/en
Publication of JP2008145324A publication Critical patent/JP2008145324A/en
Application granted granted Critical
Publication of JP4879719B2 publication Critical patent/JP4879719B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Underground Structures, Protecting, Testing And Restoring Foundations (AREA)
  • Force Measurement Appropriate To Specific Purposes (AREA)
  • Investigation Of Foundation Soil And Reinforcement Of Foundation Soil By Compacting Or Drainage (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for accurately measuring static earth pressure and active earth pressure in an original position ground used in design of an underground building frame external wall of a newly constructed structure or an earth retaining wall or the like by using an existing underground building frame outer wall when a structure is newly constructed by dismantling the existing structure having an underground building frame. <P>SOLUTION: In the method for measuring the static earth pressure in the original position ground acting on the existing structure having the underground building frame, a hydraulic jack 5a is installed on a slab 2 of the underground building frame 1, and the load of the hydraulic jack 5a is increased to bear axial force acting on the slab by the earth pressure on the hydraulic jack 5a. The slab 3a of a part of an interval installing hydraulic jack frames 6a, 6a in a state where horizontal deformation is not generated in the underground building frame external wall is dismantled, and the static earth pressure is obtained by measuring load acting on the hydraulic jack 5a. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

この発明は、地下躯体を有する既存構造物を解体して新たに構造物を構築する場合に、新設構造物の地下躯体外壁や、土留め壁等の設計に用いる原位置地盤の静止土圧及び主働土圧を、既存の地下躯体外壁を利用して精度よく測定する方法の技術分野に属する。   In the present invention, when an existing structure having an underground structure is dismantled and a new structure is constructed, the static earth pressure of the in-situ ground used for designing the outer wall of the new structure, the retaining wall, etc. It belongs to the technical field of the method of measuring the main earth pressure accurately using the existing outer wall of the underground structure.

一般に、構造物の地下躯体を構築する際には、構築した地下躯体外壁や土留め壁等が原位置地盤における主働土圧によって崩壊しないように、前記主働土圧を測定し、その測定結果を基に地下躯体外壁及び土留め壁の壁厚や、H鋼等の補強材の本数を設計している。因みに、主働土圧とは、地盤が地下躯体外壁や土留め壁等に作用して、該地下躯体及び土留め壁等を水平移動させようとする最大の土圧をいう。
従来の原位置地盤における土圧測定方法として、例えば下記特許文献1〜3には、新設構造物の地下躯体を構築する際に設置した土留め壁間へ、H鋼を介して油圧ジャッキを設置し、該油圧ジャッキで前記土留め壁に作用する主働土圧を測定する技術が開示されている。
In general, when constructing the underground structure of the structure, measure the main earth pressure so that the outer wall or retaining wall of the built underground structure will not collapse due to the main earth pressure in the in-situ ground. Based on the design, the wall thickness of the outer wall of the underground frame and the retaining wall and the number of reinforcing materials such as H steel are designed. Incidentally, the main earth pressure is the maximum earth pressure at which the ground acts on the outer wall of the underground frame, the retaining wall, etc., and horizontally moves the underground frame and the retaining wall.
For example, in Patent Documents 1 to 3 listed below, hydraulic jacks are installed via H steel between the retaining walls installed when constructing the underground structure of a new structure. And the technique of measuring the main earth pressure which acts on the earth retaining wall with this hydraulic jack is indicated.

特開平5−156634号公報JP-A-5-156634 特開2000−212962号公報JP 2000-212962 A 特開平9−178517号公報JP-A-9-178517

上記特許文献1〜3に記載した土圧測定方法は、新設構造物の地下躯体を構築する際に設置した土留め壁に作用する主働土圧を測定する場合に有効な技術である。つまり、既存構造物の地下躯体に作用する原位置地盤の静止土圧および主働土圧を測定する技術ではない。
既存構造物の地下躯体に作用している原位置地盤の土圧を測定する方法として、例えばボーリング孔等を利用して前記土圧を測定する方法も考えられている。しかし、高い測定精度は得られないし、測定方法が煩雑である等の問題から実施は難しい。
一般に、原位置における土圧は、地盤と地下躯体外壁の変形の状態で大きさが異なっており、図9に示すように、受働土圧>静止土圧>主働土圧となることが知られている。そのため、通常、原位置地盤における主働土圧は、地下躯体の構築時に地盤を一度緩めている理由から、静止土圧と主働土圧の間であると考えられている。しかし、新設の構造物を構築する場合における地下躯体外壁や土留め壁等の設計では、土圧測定の事例がないことや、変化する土圧によって地下躯体外壁や土留め壁等が崩壊しないように安全を見込んで大きめの静止土圧(静止土圧係数0.5)が用いられている。
しかし、前記の静止土圧を用いて設計した地下躯体外壁や土留め壁等では、壁厚が厚くなったり、鉄筋量が増えるので、その分コストが掛かり不経済となる。つまり、地下躯体外壁や土留め壁に作用する原位置地盤における正確な静止土圧及び主働土圧を測定できれば、その測定結果を基に新たに地下躯体外壁や土留め壁等を設計し構築できるので、施工費用を大幅に削減できる。
The earth pressure measuring methods described in Patent Documents 1 to 3 are effective techniques for measuring the main earth pressure acting on the earth retaining wall that is installed when constructing the underground frame of the new structure. In other words, it is not a technique to measure the static earth pressure and the main earth pressure of the in situ ground acting on the underground structure of the existing structure.
As a method of measuring the earth pressure of the in-situ ground acting on the underground structure of the existing structure, a method of measuring the earth pressure using, for example, a borehole is also considered. However, high measurement accuracy cannot be obtained, and implementation is difficult due to problems such as complicated measurement methods.
In general, the earth pressure at the original position varies depending on the deformation state of the ground and the outer wall of the underground frame, and it is known that passive earth pressure> static earth pressure> main earth pressure as shown in FIG. ing. Therefore, it is generally considered that the main earth pressure in the in-situ ground is between the static earth pressure and the main earth pressure because the ground is once loosened when the underground structure is constructed. However, when designing a new structure, there are no examples of earth pressure measurement in the design of the outer wall and earth retaining wall of the underground frame, and the underground wall and earth retaining wall etc. of the underground frame will not collapse due to changing earth pressure. A large static earth pressure (static earth pressure coefficient 0.5) is used in anticipation of safety.
However, the outer wall of the underground frame or the retaining wall designed using the static earth pressure described above is expensive and uneconomical because the wall thickness increases and the amount of reinforcing bars increases. In other words, if you can measure the exact static and active earth pressure on the in-situ ground acting on the outer wall and retaining wall of the underground structure, you can design and build a new outer wall and retaining wall based on the measurement results. Therefore, construction costs can be greatly reduced.

本発明の目的は、地下躯体を有する既存構造物を解体して新たに構造物を構築する場合に、新設構造物の地下躯体外壁や、土留め壁等の設計に用いる原位置地盤における静止土圧及び主働土圧を、既存の地下躯体外壁を利用して精度よく測定する方法を提供することにある。   The object of the present invention is to construct a new structure by dismantling an existing structure having an underground structure, and to construct a static structure on the in-situ ground used for the design of the outer structure of the new structure, retaining walls, etc. An object of the present invention is to provide a method for accurately measuring the pressure and the main earth pressure using the existing outer wall of the underground structure.

上記従来技術の課題を解決するための手段として、請求項1に記載した発明に係る原位置地盤における土圧測定方法は、
地下躯体を有する既存構造物に作用する原位置地盤における静止土圧を測定する方法であって、
前記地下躯体1のスラブ2に、油圧ジャッキ5aを設置すること、
油圧ジャッキ5aの荷重を増加させ、土圧によりスラブ2に作用している軸力を油圧ジャッキ5aに負担させること、
スラブ2に作用している軸力を油圧ジャッキ5aに負担させ、地下躯体外壁4に水平変位が生じさせない状態で油圧ジャッキ架台6a、6aを設置した間の部分のスラブ3aを解体し、油圧ジャッキ5aに作用する荷重を測定して静止土圧を求めることを特徴とする。
As a means for solving the problems of the prior art, the earth pressure measurement method in the in-situ ground according to the invention described in claim 1,
A method for measuring static earth pressure on an in-situ ground acting on an existing structure having an underground structure,
Installing a hydraulic jack 5a on the slab 2 of the underground housing 1;
Increasing the load of the hydraulic jack 5a and causing the hydraulic jack 5a to bear the axial force acting on the slab 2 by earth pressure;
The axial force acting on the slab 2 is borne by the hydraulic jack 5a, and the slab 3a is disassembled between the hydraulic jack mounts 6a and 6a in a state where horizontal displacement does not occur on the underground outer wall 4 and the hydraulic jack It is characterized in that a static earth pressure is obtained by measuring a load acting on 5a.

請求項2記載の発明は、請求項1に記載した原位置地盤における土圧測定方法おいて、
地下躯体1のスラブ2に油圧ジャッキ5aを設置する際に、前記地下躯体1の外壁4の変位を測定する測定機7を地下躯体1の室内部Sに設置し、又は地下躯体1の外壁4の変位を計測する傾斜計8をコア抜きした地下躯体内部Sに設置し、前記地下躯体外壁4の水平変位の挙動を前記測定機7又は傾斜計8で計測しつつ、該地下躯体外壁4が水平変位しない限度に油圧ジャッキ5aの荷重を増加させ、土圧によりスラブ2aに作用している軸力を油圧ジャッキ5aに負担させることを特徴とする。
The invention described in claim 2 is the earth pressure measurement method in the in-situ ground described in claim 1,
When installing the hydraulic jack 5 a on the slab 2 of the underground skeleton 1, a measuring device 7 for measuring the displacement of the outer wall 4 of the underground skeleton 1 is installed in the indoor part S of the underground skeleton 1 or the outer wall 4 of the underground skeleton 1. An inclinometer 8 for measuring the displacement of the basement is installed in the cored underground substructure S, and the horizontal displacement of the basement outer wall 4 is measured by the measuring instrument 7 or the inclinometer 8 while the basement outer wall 4 is The load of the hydraulic jack 5a is increased to the limit not horizontally displaced, and the axial force acting on the slab 2a due to earth pressure is borne on the hydraulic jack 5a.

請求項3記載の発明は、請求項1又は2に記載した原位置地盤における土圧測定方法おいて、
スラブ2に設置した油圧ジャッキ5aで静止土圧を求めた後、前記油圧ジャッキ5aの荷重を低下させて地下躯体外壁4を水平変位させ、油圧ジャッキ荷重が一定値に落ち着いたときの同ジャッキ荷重を測定して主働土圧を求めることを特徴とする。
Invention of Claim 3 is the earth pressure measuring method in the in-situ ground described in Claim 1 or 2,
After obtaining the static earth pressure with the hydraulic jack 5a installed on the slab 2, the load of the hydraulic jack 5a is lowered to horizontally displace the underground outer wall 4 and the jack load when the hydraulic jack load settles to a constant value. The main earth pressure is obtained by measuring

本発明の原位置地盤における土圧測定方法は、既存構造物の地下躯体1を利用して原位置地盤における主働土圧及び静止土圧を精度良く測定できるので、測定した現状の静止土圧を用いて設計し構築した新設の地下躯体外壁4は、安全を見込んで構築された従来の地下躯体外壁に比べて壁厚を薄くできるし、鉄筋量を大幅に削減することができ、コストを大幅に削減できる。また、山留め壁等を構築する場合には、前記測定した主働土圧を用いて設計すれば、従来の地下躯体外壁に比べて壁厚を薄くできるし、補強材として用いるH形鋼を減らすこともでき、コストを大幅に削減できる。   The earth pressure measurement method in the in-situ ground of the present invention can accurately measure the main earth pressure and the static earth pressure in the in-situ ground using the underground structure 1 of the existing structure. The newly constructed underground frame outer wall 4 designed and constructed using this can reduce the wall thickness compared to the conventional underground frame outer wall constructed with safety in mind, and can greatly reduce the amount of rebar, greatly increasing costs. Can be reduced. In addition, when building a retaining wall, etc., if designed using the measured main earth pressure, the wall thickness can be reduced compared to the conventional outer wall of the underground frame, and the H-shaped steel used as a reinforcing material can be reduced. This can greatly reduce the cost.

地下躯体1のスラブ2に、油圧ジャッキ5aを設置する。油圧ジャッキ5aの荷重を増加させ、土圧により前記スラブ2に作用している軸力を油圧ジャッキ5aに負担させる。スラブ2に作用している軸力を油圧ジャッキ5aに負担させ、地下外壁に水平変位が生じさせない状態で、油圧ジャッキ架台6a、6aを設置した間の部分のスラブ2aを解体し、油圧ジャッキ5aに作用する荷重を測定して静止土圧を求める。   A hydraulic jack 5 a is installed on the slab 2 of the underground housing 1. The load of the hydraulic jack 5a is increased, and the axial force acting on the slab 2 due to earth pressure is borne on the hydraulic jack 5a. The axial jack force acting on the slab 2 is borne by the hydraulic jack 5a, and the slab 2a between the hydraulic jack mounts 6a, 6a is disassembled in a state where no horizontal displacement is caused on the underground outer wall, and the hydraulic jack 5a is disassembled. Measure the load acting on the soil and obtain the static earth pressure.

以下に、本発明を図1〜図8に示した実施例に基づいて説明する。
本実施例の原位置地盤における土圧測定方法は、地下躯体1を有する既存構造物であって、前記既存構造物を地下躯体1だけを残して解体し、該残った地下躯体1を利用して同地下躯体1の外壁4に作用している原位置地盤の静止土圧及び主働土圧を測定する方法である。
Hereinafter, the present invention will be described based on the embodiments shown in FIGS.
The earth pressure measurement method in the in-situ ground of the present embodiment is an existing structure having an underground structure 1, dismantling the existing structure leaving only the underground structure 1, and using the remaining underground structure 1. This is a method of measuring the static earth pressure and the main earth pressure of the in-situ ground acting on the outer wall 4 of the underground frame 1.

先ず、図1に示すように、前記残った既存構造物の地下躯体1を解体する前に、同地下躯体1の上段スラブ2の上面であって地下躯体外壁4の近傍位置に、両端部に架台6a、6aを備えた油圧ジャッキ5aを設置する。前記油圧ジャッキ5aは、上段スラブ2に作用している軸力の大きさに応じて適宜、必要な個数設置する。そして、前記地下躯体1の外壁4の水平変位を測定する光波測定機7を地下躯体1の室内部Sに設置する。図1中の符号7aは、前記光波測定用のターゲットを示している。なお、図7に示すように、前記光波測定機7に代えて、地下躯体1の外壁4の水平変位を計測する傾斜計8をコア抜きした地下躯体内部Sに設置した構成で実施してもよい(請求項2記載の発明)。   First, as shown in FIG. 1, before dismantling the remaining underground structure 1 of the existing structure, on the upper surface of the upper slab 2 of the underground structure 1 near the underground structure outer wall 4 at both ends. The hydraulic jack 5a provided with the mounts 6a and 6a is installed. A necessary number of the hydraulic jacks 5a are appropriately installed according to the magnitude of the axial force acting on the upper slab 2. And the light wave measuring machine 7 which measures the horizontal displacement of the outer wall 4 of the said underground skeleton 1 is installed in the indoor part S of the underground skeleton 1. Reference numeral 7a in FIG. 1 indicates the light wave target. As shown in FIG. 7, instead of the light wave measuring device 7, an inclinometer 8 for measuring the horizontal displacement of the outer wall 4 of the underground housing 1 may be installed in the cored underground housing S. Good (invention of claim 2).

前記油圧ジャッキ5a及び光波測定機7の設置が完了したら、原位置地盤の静止土圧による地下躯体外壁4の水平変位の挙動を、前記地下躯体1の室内Sに設置した光波測定機7で測定しつつ、油圧ジャッキ5aの荷重を増加させ、土圧により前記上段スラブ2に作用している軸力を油圧ジャッキ5aに負担させる。   When the installation of the hydraulic jack 5a and the light wave measuring device 7 is completed, the behavior of the horizontal displacement of the underground outer wall 4 due to the static earth pressure of the original ground is measured by the light wave measuring device 7 installed in the room S of the underground housing 1. However, the load of the hydraulic jack 5a is increased, and the axial force acting on the upper slab 2 due to earth pressure is borne on the hydraulic jack 5a.

その後、図2に示すように、上段スラブ2に作用している軸力を油圧ジャッキ5aに負担させ、地下躯体外壁4に水平変位が生じさせない状態で、油圧ジャッキ架台6a、6aを設置した間の部分2aの上段スラブ2をコンクリートカッター等を用いて解体する。なお、前記上段スラブ2aの解体に際し、同上段スラブ2の解体で地下躯体外壁4が水平変位しないように、地下躯体外壁4の水平変位の挙動を前記光波測定機7で測定しつつ、該地下躯体外壁4が水平変位しない限度に油圧ジャッキ5aの荷重を増加させる。   Thereafter, as shown in FIG. 2, while the hydraulic jack 5a is installed in a state where the axial force acting on the upper slab 2 is borne by the hydraulic jack 5a and the horizontal displacement of the underground outer wall 4 is not generated. The upper slab 2 of the part 2a is disassembled using a concrete cutter or the like. When the upper slab 2a is dismantled, the horizontal displacement behavior of the underground skeleton outer wall 4 is measured by the light wave measuring machine 7 so that the underground skeleton outer wall 4 is not horizontally displaced by the dismantling of the upper slab 2a. The load of the hydraulic jack 5a is increased to the limit that the outer wall 4 of the casing is not displaced horizontally.

次に、図3に示すように、地下躯体1の下段スラブ3の上面であって地下躯体外壁4の近傍位置に、両端部に架台6b、6bを備えた油圧ジャッキ5bを設置する。なお、前記下側の油圧ジャッキ5bも下段スラブ3に作用している軸力の大きさに応じて適宜、必要な個数設置する。
その後、地下躯体外壁4の水平変位の挙動を前記測定機7で計測しつつ、油圧ジャッキ5bの荷重を増加させ、土圧により前記下段スラブ3に作用している軸力を油圧ジャッキ5bに負担させる。
Next, as shown in FIG. 3, hydraulic jacks 5 b provided with pedestals 6 b and 6 b at both ends are installed on the upper surface of the lower slab 3 of the underground casing 1 and in the vicinity of the outer wall 4 of the underground casing. The necessary number of the lower hydraulic jacks 5b is also installed according to the magnitude of the axial force acting on the lower slab 3.
Thereafter, the horizontal displacement behavior of the underground outer wall 4 is measured by the measuring device 7, the load of the hydraulic jack 5b is increased, and the axial force acting on the lower slab 3 is loaded on the hydraulic jack 5b by earth pressure. Let

次に、図4に示すように、下段スラブ3に作用している軸力を下側の油圧ジャッキ5bに負担させ、地下躯体外壁4に水平変位が生じさせない状態で、下段スラブ3の油圧ジャッキ架台6b、6bを設置した間の部分3aの下段スラブ3をコンクリートカッター等で解体する。なお、前記下段スラブ3を解体するに際し、同下段スラブ3の解体で地下躯体外壁4が水平変位しないように、地下躯体外壁4の水平変位の挙動を前記光波測定機7で測定しつつ、該地下躯体外壁4が水平変位しない限度に上側及び下側の油圧ジャッキ5a、5bの荷重を増加させる。
最後に、前記上段スラブ2及び下段スラブ3に設置した油圧ジャッキ5a、5bに作用する荷重を圧力計や荷重計等を用いてそれぞれ測定し、地盤条件に応じて土圧分布を三角形分布或いは台形分布として仮定して、その静止土圧を求める。
Next, as shown in FIG. 4, the axial force acting on the lower slab 3 is borne by the lower hydraulic jack 5 b, and no horizontal displacement occurs on the underground outer wall 4, so that the hydraulic jack of the lower slab 3 is not generated. The lower slab 3 of the portion 3a between the frames 6b and 6b is disassembled with a concrete cutter or the like. When the lower slab 3 is dismantled, the horizontal displacement behavior of the underground skeleton outer wall 4 is measured by the light wave measuring instrument 7 so that the underground skeleton outer wall 4 is not horizontally displaced by dismantling the lower slab 3. The load on the upper and lower hydraulic jacks 5a and 5b is increased as long as the underground outer wall 4 is not horizontally displaced.
Finally, the load acting on the hydraulic jacks 5a, 5b installed on the upper slab 2 and the lower slab 3 is measured using a pressure gauge, a load meter, etc., and the earth pressure distribution is triangular or trapezoidal depending on the ground conditions. Assuming the distribution, the static earth pressure is obtained.

前記上段スラブ2及び下段のスラブ3に設置した油圧ジャッキ5a、5bで静止土圧を求めた後は、図5に示すように、該上段スラブ2及び下段スラブ3に設置した油圧ジャッキ5a、5bの荷重をそれぞれ低下させて地下躯体外壁4を水平変位させる。そして、上段スラブ2及び下段スラブ3の油圧ジャッキ5a、5bの荷重がそれぞれ一定値に落ち着いたときの同上段スラブ2及び下段スラブ3の油圧ジャッキ5a、5bに作用する荷重を圧力計や荷重計等を用いてそれぞれ測定して主働土圧を求める(請求項3記載の発明)。   After obtaining the static earth pressure with the hydraulic jacks 5a and 5b installed on the upper slab 2 and the lower slab 3, as shown in FIG. 5, the hydraulic jacks 5a and 5b installed on the upper slab 2 and the lower slab 3 are used. The outer wall 4 of the underground skeleton is horizontally displaced by reducing the load of each. The loads acting on the hydraulic jacks 5a and 5b of the upper slab 2 and the lower slab 3 when the loads of the hydraulic jacks 5a and 5b of the upper slab 2 and the lower slab 3 are respectively settled to a constant value are expressed as pressure gauges and load gauges. Etc. to determine the main earth pressure (the invention according to claim 3).

その後、残った地下躯体1はすべて解体し、前記測定した静止土圧を用いて地下外壁を有する新規の構造物を構築する。即ち、本実施例の土圧測定方法で測定した静止土圧を用いて設計し構築した新設の地下躯体外壁4は、安全を見込んで構築された従来の地下躯体外壁に比べて壁厚を薄くできるし、鉄筋量を大幅に削減することができ、コストを大幅に削減できる。   Thereafter, all the remaining underground structures 1 are dismantled, and a new structure having an underground outer wall is constructed using the measured static earth pressure. That is, the new underground outer wall 4 designed and constructed using the static earth pressure measured by the earth pressure measurement method of the present embodiment is thinner than the conventional underground outer wall constructed in anticipation of safety. And the amount of reinforcing bars can be greatly reduced, and the cost can be greatly reduced.

また、山留め壁等を構築する場合には、前記測定した主働土圧を用いて設計すれば、従来の地下躯体外壁に比べて壁厚を薄くできるし、補強材として用いるH形鋼を減らすこともでき、コストを大幅に削減できる。なお、前記既設の地下躯体外壁4は、新たに地下躯体を構築する場合の土留め壁として使用することもできる。   In addition, when building a retaining wall, etc., if designed using the measured main earth pressure, the wall thickness can be reduced compared to the conventional outer wall of the underground frame, and the H-shaped steel used as a reinforcing material can be reduced. This can greatly reduce the cost. In addition, the existing underground skeleton outer wall 4 can also be used as a retaining wall when a new underground skeleton is constructed.

なお、本実施例の土圧測定方法は、図6に示すように、階層の多い地下躯体の場合であっても、上記手順を繰り返すことで、静止土圧及び主働土圧を精度良く測定することができる。   In addition, as shown in FIG. 6, the earth pressure measuring method of a present Example measures a stationary earth pressure and a main earth pressure accurately by repeating the said procedure, even in the case of an underground frame with many stories. be able to.

図8は、地上から地下躯体外壁4の半分の深さの土圧を測定する方法を示している。具体的な構成は、上述した実施例1の土圧測定方法とほぼ同じ構成であるが、地下躯体1の上段スラブ2の上面にのみ、油圧ジャッキ5aを設置する点において相違する。   FIG. 8 shows a method for measuring the earth pressure at a depth half the depth of the underground outer wall 4 from the ground. The specific configuration is substantially the same as the earth pressure measurement method of the first embodiment described above, but is different in that the hydraulic jack 5a is installed only on the upper surface of the upper slab 2 of the underground frame 1.

以上、本発明を実施例に基づいて説明したが、勿論、図示した実施例の限りではない。本発明の要旨及び技術的思想を逸脱しないかぎり、当業者の変形、応用にしたがい様々な実施例が成立することを、敢えてここに、言及する次第です。   The present invention has been described based on the embodiments. However, the present invention is not limited to the illustrated embodiments. As long as it does not deviate from the gist and technical idea of the present invention, it will be mentioned here that various embodiments can be realized according to modifications and applications of those skilled in the art.

上段スラブに油圧ジャッキ、架台及び測定機を設置した状態を示す断面図である。It is sectional drawing which shows the state which installed the hydraulic jack, the mount, and the measuring machine in the upper stage slab. 上段スラブを解体した状態を示す断面図である。It is sectional drawing which shows the state which disassembled the upper stage slab. 下段スラブに油圧ジャッキ及び架台を設置した状態を示す断面図である。It is sectional drawing which shows the state which installed the hydraulic jack and the mount frame in the lower slab. 下段スラブを解体した状態を示す断面図である。It is sectional drawing which shows the state which disassembled the lower slab. 上側及び下側の油圧ジャッキの荷重を低下させた状態を示す断面図である。It is sectional drawing which shows the state which reduced the load of the upper side and the lower hydraulic jack. 地下躯体の階層が多い場合の土圧測定方法を示す断面図である。It is sectional drawing which shows the earth pressure measuring method in case there are many levels of underground structures. 実施例2の土圧測定方法を示す説明図である。It is explanatory drawing which shows the earth pressure measuring method of Example 2. FIG. 実施例3の土圧測定方法を示す断面図である。It is sectional drawing which shows the earth pressure measuring method of Example 3. 地下躯体の外壁に作用する土圧の大きさを示す説明図である。It is explanatory drawing which shows the magnitude | size of the earth pressure which acts on the outer wall of an underground skeleton.

符号の説明Explanation of symbols

1 地下躯体
2、3 スラブ
4 地下躯体外壁
5a、5b 油圧ジャッキ
6a、6b 油圧ジャッキ架台
7 測定機
8 傾斜計
DESCRIPTION OF SYMBOLS 1 Underground frame 2, 3 Slab 4 Underground frame outer wall 5a, 5b Hydraulic jack 6a, 6b Hydraulic jack mount 7 Measuring machine 8 Inclinometer

Claims (3)

地下躯体を有する既存構造物に作用する原位置地盤における静止土圧を測定する方法であって、
前記地下躯体のスラブに、油圧ジャッキを設置すること、
油圧ジャッキの荷重を増加させ、土圧によりスラブに作用している軸力を油圧ジャッキに負担させること、
スラブに作用している軸力を油圧ジャッキに負担させ、地下躯体外壁に水平変位が生じさせない状態で油圧ジャッキ架台を設置した間の部分のスラブを解体し、油圧ジャッキに作用する荷重を測定して静止土圧を求めることを特徴とする、原位置地盤における土圧測定方法。
A method for measuring static earth pressure on an in-situ ground acting on an existing structure having an underground structure,
Installing a hydraulic jack on the slab of the underground structure;
Increasing the load on the hydraulic jack and causing the hydraulic jack to bear the axial force acting on the slab by earth pressure,
The axial force acting on the slab is borne by the hydraulic jack, the portion of the slab between the installation of the hydraulic jack stand is disassembled without causing horizontal displacement on the outer wall of the underground enclosure, and the load acting on the hydraulic jack is measured. A method for measuring earth pressure on an in-situ ground characterized by obtaining static earth pressure.
地下躯体のスラブに油圧ジャッキを設置する際に、前記地下躯体の外壁の変位を測定する測定機を地下躯体の室内部に設置し、又は地下躯体の外壁の変位を計測する傾斜計をコア抜きした地下躯体内部に設置し、前記地下躯体外壁の水平変位の挙動を前記測定機又は傾斜計で計測しつつ、該地下躯体外壁が水平変位しない限度に油圧ジャッキの荷重を増加させ、土圧によりスラブに作用している軸力を油圧ジャッキに負担させることを特徴とする、請求項1に記載した原位置地盤における土圧測定方法。   When installing a hydraulic jack on the underground slab, install a measuring instrument to measure the displacement of the outer wall of the underground enclosure, or install an inclinometer to measure the displacement of the outer wall of the underground enclosure. Installed inside the underground structure, while measuring the horizontal displacement behavior of the outer wall of the underground structure with the measuring device or inclinometer, increasing the load of the hydraulic jack to the extent that the outer wall of the underground structure is not horizontally displaced, 2. The method for measuring earth pressure on an in-situ ground according to claim 1, wherein an axial force acting on the slab is applied to the hydraulic jack. スラブに設置した油圧ジャッキで静止土圧を求めた後、前記油圧ジャッキの荷重を低下させて地下躯体外壁を水平変位させ、油圧ジャッキ荷重が一定値に落ち着いたときの同ジャッキ荷重を測定して主働土圧を求めることを特徴とする、請求項1又は2に記載した原位置地盤における土圧測定方法。   After obtaining the static earth pressure with a hydraulic jack installed on the slab, reduce the load of the hydraulic jack to horizontally displace the outer wall of the underground building, and measure the jack load when the hydraulic jack load settles to a constant value. 3. A method for measuring earth pressure on an in-situ ground according to claim 1 or 2, wherein main earth pressure is obtained.
JP2006334336A 2006-12-12 2006-12-12 Method for measuring earth pressure on in situ ground Expired - Fee Related JP4879719B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006334336A JP4879719B2 (en) 2006-12-12 2006-12-12 Method for measuring earth pressure on in situ ground

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006334336A JP4879719B2 (en) 2006-12-12 2006-12-12 Method for measuring earth pressure on in situ ground

Publications (2)

Publication Number Publication Date
JP2008145324A true JP2008145324A (en) 2008-06-26
JP4879719B2 JP4879719B2 (en) 2012-02-22

Family

ID=39605658

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006334336A Expired - Fee Related JP4879719B2 (en) 2006-12-12 2006-12-12 Method for measuring earth pressure on in situ ground

Country Status (1)

Country Link
JP (1) JP4879719B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010106653A (en) * 2008-10-02 2010-05-13 Yotaro Kobayakawa Underground structure and composite structure
JP2011017188A (en) * 2009-07-09 2011-01-27 Toda Constr Co Ltd Demolition method of existing building
CN104297066A (en) * 2014-09-15 2015-01-21 中国矿业大学 Static soil pressure testing device and method for gradient microstructure soil
CN110186766A (en) * 2019-07-08 2019-08-30 青海民族大学 A kind of soil pressure testing device
CN113720382A (en) * 2021-08-20 2021-11-30 中铁十四局集团大盾构工程有限公司 Dynamic inverse analysis calculation and fusion algorithm based intelligent monitoring system

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108760119B (en) * 2017-11-22 2019-04-02 清华大学 A kind of talus active earth pressure position modification method considering particle size effect
CN109763524B (en) * 2018-12-29 2021-06-11 上海建工集团股份有限公司 Testing device, testing system and testing method for steel support axial force compensation device

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010106653A (en) * 2008-10-02 2010-05-13 Yotaro Kobayakawa Underground structure and composite structure
JP2011017188A (en) * 2009-07-09 2011-01-27 Toda Constr Co Ltd Demolition method of existing building
CN104297066A (en) * 2014-09-15 2015-01-21 中国矿业大学 Static soil pressure testing device and method for gradient microstructure soil
CN104297066B (en) * 2014-09-15 2017-01-18 中国矿业大学 Static soil pressure testing device and method for gradient microstructure soil
CN110186766A (en) * 2019-07-08 2019-08-30 青海民族大学 A kind of soil pressure testing device
CN113720382A (en) * 2021-08-20 2021-11-30 中铁十四局集团大盾构工程有限公司 Dynamic inverse analysis calculation and fusion algorithm based intelligent monitoring system
CN113720382B (en) * 2021-08-20 2024-05-03 中铁十四局集团大盾构工程有限公司 Calculation and fusion algorithm based on dynamic inverse analysis and intelligent monitoring system

Also Published As

Publication number Publication date
JP4879719B2 (en) 2012-02-22

Similar Documents

Publication Publication Date Title
JP4879719B2 (en) Method for measuring earth pressure on in situ ground
KR20090002344A (en) Land-side protection wall that use ground structure
KR100915099B1 (en) Structure for supporting retaining wall of earth with arch material and method constructing the arch structure
JP5285254B2 (en) Rebuilding method
KR101575858B1 (en) A recovering device and procedure for a differential settlement building
US7530176B2 (en) Method and apparatus for monitoring element alignment
JP4705497B2 (en) Reinforcement method of pile foundation of existing building
JP2010001701A (en) Method of constructing underground structure
KR101401057B1 (en) Method to build underground structures using the pillars and the stigma and steel beam and slab structures are formed
Hong-wei et al. Characteristics of a large and deep soft clay excavation in Hangzhou
JP5984655B2 (en) Construction method of seismic isolation building
JP5485085B2 (en) Axial force replacement method for existing piles
KR102315382B1 (en) Numerical Analysis Method for Determining the Decompression Size of Preload for Stability of Securing Wall
JP4228308B2 (en) Reinforcement method for existing floors and seismic isolation method for existing buildings
KR101742110B1 (en) A method of Safety Maintenance only with Soil sheating work
JP6655936B2 (en) Construction method of structure
JP2005002675A (en) Method of evaluating timbering performance of composite earth retaining wall
JP4789549B2 (en) Reconstruction method for existing buildings
KR20210098162A (en) Under ground structure using column steel pipe wall and construction method thereof
Siemińska-Lewandowska et al. The study of displacements of diaphragm walls built in Warsaw Quaternary soils
JP4947969B2 (en) Building construction method and construction structure using underground outer peripheral wall of existing building
JP4890098B2 (en) Construction method of seismic isolation building
KR20200012602A (en) Improved retaining wall pre-stress method
JP7364105B2 (en) Position adjustment device and method for adjusting the position of the structure pillar
KR20230112211A (en) Retaining wall with hollow reinforcement

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090928

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091224

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111028

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111108

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111130

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4879719

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141209

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees