JP5984655B2 - Construction method of seismic isolation building - Google Patents

Construction method of seismic isolation building Download PDF

Info

Publication number
JP5984655B2
JP5984655B2 JP2012275183A JP2012275183A JP5984655B2 JP 5984655 B2 JP5984655 B2 JP 5984655B2 JP 2012275183 A JP2012275183 A JP 2012275183A JP 2012275183 A JP2012275183 A JP 2012275183A JP 5984655 B2 JP5984655 B2 JP 5984655B2
Authority
JP
Japan
Prior art keywords
seismic isolation
isolation layer
base
floor
building
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2012275183A
Other languages
Japanese (ja)
Other versions
JP2014118756A (en
Inventor
努 小室
努 小室
良浩 堀井
良浩 堀井
中村 俊之
俊之 中村
太三 清田
太三 清田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taisei Corp
Original Assignee
Taisei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taisei Corp filed Critical Taisei Corp
Priority to JP2012275183A priority Critical patent/JP5984655B2/en
Publication of JP2014118756A publication Critical patent/JP2014118756A/en
Application granted granted Critical
Publication of JP5984655B2 publication Critical patent/JP5984655B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Underground Structures, Protecting, Testing And Restoring Foundations (AREA)
  • Buildings Adapted To Withstand Abnormal External Influences (AREA)

Description

本発明は、免震建物およびその施工方法に関する。   The present invention relates to a base-isolated building and a construction method thereof.

従来より、建物の所定階に免震装置を設けることで、建物を免震化する免震建物が知られている。
一方、工期を短縮するため、逆打ち工法により建物を構築する場合がある。逆打ち工法では、地中に杭穴を掘削して、この杭穴に杭を打設するとともにこの杭に構真柱を建て込んで、構真柱の下段部を杭に一体化させる。その後、地面を掘削しながら、地下階を下方に向かって順に構築すると同時に、構真柱の上端部に地上階の鉄骨を接続して、地上階を上方に向かって順に構築する。
2. Description of the Related Art Conventionally, seismic isolation buildings that make a building seismic isolation by providing a seismic isolation device on a predetermined floor of the building are known.
On the other hand, in order to shorten the construction period, there is a case where a building is constructed by a reverse driving method. In the reverse driving method, a pile hole is excavated in the ground, a pile is placed in the pile hole, and a structural pillar is built in the pile, and the lower step portion of the structural pillar is integrated with the pile. Then, while excavating the ground, the basement floor is constructed in order downward, and at the same time, the ground floor steel frame is connected to the upper end portion of the structural pillar, and the ground floor is constructed in order upward.

以上の免震建物を逆打ち工法により構築する場合、例えば以下のような施工方法が提案されている。   When constructing the above base-isolated building by the reverse driving method, for example, the following construction methods have been proposed.

第1の免震建物の施工方法に係る免震建物は、免震装置を基礎部分に設ける構造である(特許文献1参照)。すなわち、基礎梁の上方に柱脚基礎を設け、基礎梁と柱脚基礎との間に免震装置を設ける。
この免震建物は、以下の手順で構築される。まず、構真柱を建て込んで、その後、下向き方向に各層を順次構築し、柱脚基礎および基礎梁を構築する。次に、基礎梁と柱脚基礎との間に支保工を設置して、この支保工により建物の荷重を支持する。次に、構真柱のうち柱脚基礎と基礎梁との間の部分を切除し、この切除した部分に免震装置を取り付ける。そして、支保工を撤去することで、建物の荷重を免震装置で支持する。
The base-isolated building according to the construction method of the first base-isolated building has a structure in which a base-isolating device is provided at the base (see Patent Document 1). That is, a column base is provided above the foundation beam, and a seismic isolation device is provided between the foundation beam and the column base.
This seismic isolated building is constructed by the following procedure. First of all, the structural column is built, and then each layer is built sequentially in the downward direction, and the column base and foundation beam are built. Next, a support work is installed between the foundation beam and the column base, and the load of the building is supported by this support work. Next, a portion between the column base and the foundation beam is excised from the structural column, and a seismic isolation device is attached to the excised portion. And the load of the building is supported by the seismic isolation device by removing the support work.

第2の免震建物の施工方法に係る免震建物は、地下階と地上階との間に免震装置を設ける構造である(特許文献2参照)。具体的には、この免震建物は、以下の手順で構築される。まず、構真柱を建て込んで、この構真柱の頭部に免震装置を設ける。次に、免震装置の上にこの免震装置で支持される地上躯体を構築するとともに、免震装置の下に地下躯体を構築する。   The seismic isolation building according to the construction method of the second seismic isolation building has a structure in which a seismic isolation device is provided between the basement floor and the ground floor (see Patent Document 2). Specifically, this base-isolated building is constructed by the following procedure. First, a structural pillar is installed, and a seismic isolation device is installed on the head of the structural pillar. Next, a ground frame supported by the seismic isolation device is constructed on the seismic isolation device, and an underground frame is constructed below the seismic isolation device.

特許第3648651号公報Japanese Patent No. 3648651 特許第2950325号公報Japanese Patent No. 2950325

しかしながら、第1の免震建物の施工方法では、地下の最下層である基礎梁と柱脚基礎との間において、支保工を設置し、構真柱の一部を切除して、免震装置を取り付ける、といった免震化のための多くの工事を行うため、施工性が低下するうえに、施工精度を確保するのも難しかった。
また、第2の免震建物の施工方法では、免震装置を設けた後に、地上躯体および地下躯体を構築する。そのため、施工中に構真柱が不同沈下すると、免震装置の高さ方向の位置がずれてしまい、免震装置よりも上の梁が傾斜したり、免震装置の支持荷重が変化したりするなど、性能が低下するおそれがあった。
However, in the construction method of the first seismic isolation building, a support is installed between the foundation beam and the column base, which is the lowest layer in the basement, and a part of the structural pillar is excised, and the seismic isolation device As a lot of work for seismic isolation, such as mounting, was performed, workability deteriorated and it was difficult to ensure construction accuracy.
Moreover, in the construction method of a 2nd seismic isolation building, after providing a seismic isolation apparatus, a ground frame and an underground frame are constructed. For this reason, if the frame column sinks during construction, the height of the seismic isolation device will shift, the beam above the seismic isolation device will tilt, or the support load of the seismic isolation device may change. There was a risk of performance degradation.

本発明は、施工性が低下するのを防止しつつ、免震性能を確保できる免震建物の施工方法を提供することを目的とする。 The present invention, while preventing the workability is decreased, and an object thereof is to provide a method of constructing MenShinKen product seismic isolation performance can be secured.

請求項1に記載の免震建物の施工方法は、下部躯体(例えば、後述の地下躯体10)と、当該下部躯体の上でかつ地表面付近の高さに設けられた免震層(例えば、後述の免震層20)と、当該免震層の上に設けられた上部躯体(例えば、後述の地上躯体30)と、を備え、前記免震層には、前記上部躯体を前記下部躯体に対して水平方向に相対移動可能な状態で支持する免震装置(例えば、後述の免震装置21)が設けられた免震建物(例えば、後述の免震建物1)を構築する際に、杭(例えば、後述の杭11)を構築して、当該杭に構真柱(例えば、後述の構真柱41)を建て込む第1工程(例えば、後述のステップS1)と、当該構真柱の柱頭に前記下部躯体の一部である免震層下部床(例えば、後述の免震層下部床15)を構築し、当該免震層下部床の上に前記免震装置を設置する第2工程(例えば、後述のステップS2、S3)と、前記免震層下部床の上に支保工(例えば、後述の支保工42)を設置し、当該支保工の上に前記上部躯体の一部である免震層上部床(例えば、後述の免震層上部床31)を構築する第3工程(例えば、後述のステップS4)と、前記下部躯体および前記上部躯体を構築する第4工程(例えば、後述のステップS5〜S8)と、前記免震層上部床の支持を前記支保工から前記免震装置に切り替える第5工程(例えば、後述のステップS9)と、を備えることを特徴とする。   The construction method of the base-isolated building according to claim 1 includes a lower housing (for example, an underground housing 10 described later), and a seismic isolation layer (for example, an upper surface near the ground surface). A seismic isolation layer 20) described below and an upper housing (for example, a ground housing 30 described later) provided on the seismic isolation layer, and the upper housing is used as the lower housing in the seismic isolation layer. When constructing a base-isolated building (for example, a seismic isolation building 1 to be described later) provided with a base isolation device (for example, a seismic isolation device 21 to be described later) that is supported in a state of being relatively movable in the horizontal direction. (For example, a later-described pile 11), and a first step (for example, later-described step S1) for constructing a structural pillar (for example, a later-described structural pillar 41) on the pile, A base-isolated lower floor (for example, the base-isolated lower floor 15 described later), which is a part of the lower housing, is constructed at the capital, A second step of installing the seismic isolation device on the lower floor of the seismic isolation layer (for example, steps S2 and S3 described later), and a support work (for example, a support work 42 described later) on the lower floor of the base isolation layer. And a third step (for example, step S4 to be described later) for constructing a base isolation layer upper floor (for example, a seismic isolation layer upper floor 31 to be described later) that is a part of the upper frame on the support structure, and , A fourth step of constructing the lower housing and the upper housing (for example, steps S5 to S8 described later), and a fifth step of switching the support of the seismic isolation layer upper floor from the support to the seismic isolation device (for example, Step S9) to be described later.

請求項に記載の免震建物の施工方法は、前記第5工程の前に、前記免震層下部床にジャッキ(例えば、後述のジャッキ43)を設置し、当該ジャッキをジャッキアップして、前記免震層上部床を前記ジャッキで支持して、前記支保工を切断しておき、前記第5工程では、前記ジャッキをジャッキダウンして、前記免震層上部床を前記免震装置に支持させることを特徴とする。 The construction method of the seismic isolation building according to claim 1 is characterized in that, before the fifth step, a jack (for example, a jack 43 described later) is installed on the lower floor of the seismic isolation layer, and the jack is jacked up. The seismic isolation layer upper floor is supported by the jack and the support is cut, and in the fifth step, the jack is jacked down and the seismic isolation layer upper floor is supported by the seismic isolation device. It is characterized by making it.

本発明の免震建物は、下部躯体と、当該下部躯体の上でかつ地表面の高さに設けられた免震層と、当該免震層の上に設けられた上部躯体と、を備え、前記免震層には、前記上部躯体を前記下部躯体に対して水平方向に相対移動可能な状態で支持する免震装置が設けられた免震建物であって、前記免震層は、杭に建て込まれた構真柱の柱頭に構築されて前記下部躯体の一部を成す免震層下部床と、前記上部躯体の一部を成す免震層上部床と、を備え、前記上部躯体の鉛直荷重は、前記免震装置のみを介して前記免震層上部床から前記免震層下部床に伝達されることが好ましい The base-isolated building of the present invention comprises a lower housing, a base-isolating layer provided on the lower housing and at the height of the ground surface, and an upper housing provided on the base-isolating layer, The base isolation layer is a base isolation building provided with a base isolation device that supports the upper casing in a state of being movable relative to the lower casing in a horizontal direction. A seismic isolation layer lower floor which is constructed at the top of a built-in structural pillar and forms a part of the lower housing; and an seismic isolation layer upper floor which forms a part of the upper housing; and vertical load, are preferably transmitted from the base isolation layer upper bed only through the seismic isolation device to the seismic isolation layer lower floor.

本発明によれば、逆打ち工法により免震建物を構築したので、工期を短縮できる。
また、構真柱の柱頭が免震層下部床に拘束され、かつ、この免震層下部床の上に免震装置が設置されるので、免震装置の位置や水平性が安定する。
また、免震装置を設置した後に免震層上部床を構築するため、免震装置を設置する際には、上部に障害物がないので、免震装置を精度よく設置できる。
また、地表面付近の高さつまり地下の最上層に免震層を設けて、この免震層で免震化のための多くの工事を行うため、材料の搬出入や作業員の出入りが容易となるから、施工性が低下することなく、施工精度を確保できる。
また、下部躯体および上部躯体がほぼ完成して、荷重の大部分が基礎構造に伝達されて不同沈下が発生した後に、免震層上部床の支持を支保工から免震装置に切り替えるので、免震装置の上の梁の高さ方向の位置ずれが生じることはなく、免震性能を確保できる。
According to the present invention, since the seismic isolation building is constructed by the reverse driving method, the construction period can be shortened.
In addition, since the head of the structural pillar is restrained by the lower floor of the base isolation layer, and the base isolation device is installed on the lower floor of the base isolation layer, the position and horizontality of the base isolation device are stabilized.
Moreover, since the seismic isolation layer upper floor is constructed after installing the seismic isolation device, when the seismic isolation device is installed, there is no obstacle at the top, so the seismic isolation device can be accurately installed.
In addition, a base isolation layer is provided at the height near the ground surface, that is, the uppermost layer in the basement, and many constructions are carried out for isolation in this base isolation layer. Therefore, the construction accuracy can be secured without lowering the workability.
In addition, after the lower and upper frames are almost completed and most of the load is transferred to the foundation structure, causing uneven settlement, the support of the upper floor of the seismic isolation layer is switched from the support to the seismic isolation device. There is no displacement in the height direction of the beam above the seismic device, and seismic isolation performance can be secured.

本発明の一実施形態に係る免震建物の施工方法が適用された免震建物の断面図である。It is sectional drawing of the base isolation building to which the construction method of the base isolation building which concerns on one Embodiment of this invention was applied. 前記実施形態に係る免震建物の施工手順のフローチャートである。It is a flowchart of the construction procedure of the seismic isolation building which concerns on the said embodiment. 前記実施形態に係る免震建物の施工手順を説明するための図(その1)である。It is FIG. (1) for demonstrating the construction procedure of the seismic isolation building which concerns on the said embodiment. 前記実施形態に係る免震建物の施工手順を説明するための図(その2)である。It is FIG. (2) for demonstrating the construction procedure of the seismic isolation building which concerns on the said embodiment. 前記実施形態に係る免震建物の施工手順を説明するための図(その3)である。It is FIG. (3) for demonstrating the construction procedure of the seismic isolation building which concerns on the said embodiment. 前記実施形態に係る免震建物の施工手順を説明するための図(その4)である。It is FIG. (4) for demonstrating the construction procedure of the seismic isolation building which concerns on the said embodiment. 前記実施形態に係る免震建物の施工手順を説明するための図(その5)である。It is FIG. (5) for demonstrating the construction procedure of the seismic isolation building which concerns on the said embodiment. 前記実施形態に係る免震建物の施工手順を説明するための図(その6)である。It is FIG. (6) for demonstrating the construction procedure of the seismic isolation building which concerns on the said embodiment. 前記実施形態に係る免震建物の施工手順を説明するための図(その7)である。It is FIG. (7) for demonstrating the construction procedure of the seismic isolation building which concerns on the said embodiment. 前記実施形態に係る免震建物の施工手順を説明するための図(その8)である。It is FIG. (8) for demonstrating the construction procedure of the seismic isolation building which concerns on the said embodiment. 前記実施形態に係る免震建物の施工手順を説明するための図(その9)である。It is FIG. (9) for demonstrating the construction procedure of the seismic isolation building which concerns on the said embodiment. 前記実施形態に係る免震建物の施工手順を説明するための図(その10)である。It is FIG. (10) for demonstrating the construction procedure of the seismic isolation building which concerns on the said embodiment. 前記実施形態に係る免震建物の施工手順を説明するための図(その11)である。It is FIG. (The 11) for demonstrating the construction procedure of the seismic isolation building which concerns on the said embodiment.

以下、本発明の一実施形態について、図面を参照しながら説明する。
図1は、本発明の一実施形態に係る免震建物の施工方法が適用された免震建物1の断面図である。
免震建物1は、下部躯体としての地下躯体10と、この地下躯体10の上でかつ地表面付近の高さに設けられた免震層20と、上部躯体としての地上躯体30と、を備える。
Hereinafter, an embodiment of the present invention will be described with reference to the drawings.
FIG. 1 is a cross-sectional view of a base-isolated building 1 to which a construction method for a base-isolated building according to an embodiment of the present invention is applied.
The base-isolated building 1 includes an underground housing 10 as a lower housing, a seismic isolation layer 20 provided on the underground housing 10 at a height near the ground surface, and a ground housing 30 as an upper housing. .

地下躯体10の周囲の地盤2には、山留壁40が設けられている。
この地下躯体10は、複数の杭11と、これら杭11に支持される耐圧版や基礎梁などの基礎12と、この基礎12の上に設けられた地下2階躯体13と、この地下2階躯体13の上に設けられた地下1階躯体14と、を備えている。
A mountain retaining wall 40 is provided on the ground 2 around the underground frame 10.
The underground structure 10 includes a plurality of piles 11, a foundation 12 such as a pressure plate or a foundation beam supported by the piles 11, an underground second-floor structure 13 provided on the foundation 12, and the second underground floor And an underground first-floor housing 14 provided on the housing 13.

免震層20は、地下躯体10を構成する免震層下部床15と、この免震層下部床15の上に設けられて地上躯体30を構成する免震層上部床31と、の間に設けられる。
この免震層20の免震層下部床15の上には、複数の免震装置21が設置される。免震装置21は、例えば薄いゴムと鋼鈑とを交互に重ねた積層ゴムである。
また、免震層上部床31の下面と免震装置21との間には、受けスラブ32が設けられており、免震装置21は、この受けスラブ32を介して地上躯体30を支持している。
The seismic isolation layer 20 is provided between the base isolation layer lower floor 15 constituting the underground frame 10 and the base isolation layer upper floor 31 provided on the base isolation layer lower floor 15 and constituting the ground frame 30. Provided.
A plurality of seismic isolation devices 21 are installed on the seismic isolation layer lower floor 15 of the seismic isolation layer 20. The seismic isolation device 21 is, for example, a laminated rubber in which thin rubbers and steel plates are alternately stacked.
A receiving slab 32 is provided between the lower surface of the seismic isolation layer upper floor 31 and the seismic isolation device 21, and the seismic isolation device 21 supports the ground frame 30 via the receiving slab 32. Yes.

地上躯体30は、地下躯体10の周囲の山留壁40から所定距離離れて構築されている。
これにより、免震装置21は、地上躯体30を支持しつつ、この地上躯体30を地下躯体10に対して水平方向に相対移動可能な状態に保持している。つまり、地上躯体30の鉛直荷重は、免震装置21のみを介して、免震層上部床31から免震層下部床15に伝達される。
The ground frame 30 is constructed at a predetermined distance from the mountain retaining wall 40 around the underground frame 10.
Accordingly, the seismic isolation device 21 supports the ground frame 30 and holds the ground frame 30 in a state in which the ground frame 30 can move relative to the underground frame 10 in the horizontal direction. That is, the vertical load of the ground frame 30 is transmitted from the base isolation layer upper floor 31 to the base isolation layer lower floor 15 only through the base isolation device 21.

以下、免震建物1の施工方法について、図2のフローチャートを参照しながら説明する。
ステップS1では、図3に示すように、地盤2に山留壁40を構築する。次に、杭11を構築して、これら杭11に構真柱41を建てこむ。
Hereinafter, the construction method of the seismic isolation building 1 is demonstrated, referring the flowchart of FIG.
In step S1, a mountain retaining wall 40 is constructed on the ground 2 as shown in FIG. Next, the piles 11 are constructed, and the structural pillar 41 is built in these piles 11.

ステップS2では、図4に示すように、地盤2を1次掘削して、構真柱41の柱頭を露出させる。   In step S2, as shown in FIG. 4, the ground 2 is primarily excavated to expose the stigma of the structural pillar 41.

ステップS3では、図5に示すように、構真柱41の柱頭に先行床として免震層下部床15を構築する。この免震層下部床15は、構真柱41に支持されており、山留壁40の第1段切梁としての役割を果たす。
さらに、免震層下部床15上に免震装置21を設置する。
In step S3, as shown in FIG. 5, the seismic isolation layer lower floor 15 is constructed as a preceding floor on the top of the structural pillar 41. The seismic isolation layer lower floor 15 is supported by the structural pillar 41 and serves as the first step beam of the mountain retaining wall 40.
Furthermore, the seismic isolation device 21 is installed on the seismic isolation lower floor 15.

ステップS4では、図6に示すように、免震装置21の近傍に鋼製の支保工42を設置し、この支保工42の上に免震層上部床31を構築する。これにより、免震層上部床31は、免震装置21ではなく、支保工42に支持される。また、この免震層上部床31の周囲に仮設スラブを設けて、この免震層上部床31を山留壁40に接続しておく。   In step S <b> 4, as shown in FIG. 6, a steel support 42 is installed near the seismic isolation device 21, and the seismic isolation layer upper floor 31 is constructed on the support 42. Thereby, the seismic isolation layer upper floor 31 is supported not by the seismic isolation device 21 but by the support work 42. Further, a temporary slab is provided around the seismic isolation layer upper floor 31, and the seismic isolation layer upper floor 31 is connected to the mountain retaining wall 40.

ステップS5では、図7に示すように、地上にて地上躯体30の構築を開始する。一方、地下では、地盤2を2次掘削して、地下1階躯体14の床部分を構築する。この地下1階躯体14の床部分は、山留壁40の第2段切梁としての役割を果たす。   In step S5, as shown in FIG. 7, construction of the ground frame 30 is started on the ground. On the other hand, in the underground, the ground 2 is secondarily excavated to construct the floor portion of the underground first-floor frame 14. The floor portion of the first basement frame 14 serves as a second step beam for the mountain retaining wall 40.

ステップS6では、図8に示すように、引き続き、地上躯体30の構築を行うとともに、地下では地盤2を床付面まで3次掘削する。   In step S6, as shown in FIG. 8, the ground frame 30 is continuously constructed, and the ground 2 is excavated tertiary to the floor surface in the basement.

ステップS7では、図9に示すように、引き続き、地上躯体30の構築を行うとともに、地下では基礎12および地下2階躯体13を構築して、地下躯体10を完成させる。   In step S7, as shown in FIG. 9, the ground frame 30 is continuously constructed, and the foundation 12 and the second-floor frame 13 are constructed underground to complete the underground frame 10.

ステップS8では、引き続き地上躯体30の構築を行って、地上躯体を完成させる。また、免震層20では、図10に示すように、支保工42の内部にジャッキ43を設置する。この時点においては、図1に示す免震装置21の直上に位置する受けスラブ32は、まだ構築されていない。
また、支保工42の高さ方向の中央部(図10中破線で示す)には、鉛直軸力を伝達するが、引張力を伝達しないメタルタッチのジョイントを使用する。
In step S8, the ground chassis 30 is continuously constructed to complete the ground chassis. Further, in the seismic isolation layer 20, as shown in FIG. 10, a jack 43 is installed inside the support work 42. At this time, the receiving slab 32 positioned immediately above the seismic isolation device 21 shown in FIG. 1 has not been constructed yet.
In addition, a metal touch joint that transmits a vertical axial force but does not transmit a tensile force is used at a central portion (indicated by a broken line in FIG. 10) in the height direction of the support work 42.

次に、図11に示すように、ジャッキ43を図11中白抜き矢印方向にジャッキアップして、ジャッキ43で免震層上部床31を支持させて、免震層上部床31の支持を支保工42からジャッキ43に切り替える。
次に、図12に示すように、支保工42を高さ方向中央部で切断する。
Next, as shown in FIG. 11, the jack 43 is jacked up in the direction of the white arrow in FIG. 11, and the seismic isolation upper floor 31 is supported by the jack 43 to support the seismic isolation upper floor 31. Switch from work 42 to jack 43.
Next, as shown in FIG. 12, the support work 42 is cut at the center in the height direction.

このとき、支保工42の高さ方向の中央部にメタルタッチのジョイントを使用したので、ジャッキアップにより支保工42の鉛直軸力が解除されると、ジョイント部分に間隙が生じて、支保工42の中央部を容易に切断あるいは撤去可能となる。
なお、支保工42の中央部では、メタルタッチのジョイントに限らず、鉛直軸力は伝達するが、引張力は伝達しない構造であれば、いずれでもよい。
At this time, since a metal touch joint is used at the center in the height direction of the support work 42, when the vertical axial force of the support work 42 is released by jacking up, a gap is generated in the joint portion, and the support work 42 The central portion of the can be easily cut or removed.
In addition, in the center part of the support work 42, not only a metal touch joint but any structure may be used as long as it transmits a vertical axial force but does not transmit a tensile force.

ステップS9では、ジャッキ43を調整して、免震装置21の直上の梁が所定高さとなるように調整し、その後、図13に示すように、免震層上部床31の下面に受けスラブ32を構築し、その後、ジャッキ43を図13中白抜き矢印方向にジャッキダウンして、ジャッキ43により受けスラブ32を介して免震層上部床31を支持させて、免震層上部床31の支持をジャッキ43から免震装置21に切り替える。
その後、ジャッキ43、支保工42、および、免震層上部床31の周囲の仮設スラブを撤去する。
In step S9, the jack 43 is adjusted so that the beam directly above the seismic isolation device 21 has a predetermined height, and thereafter, the receiving slab 32 is received on the lower surface of the seismic isolation layer upper floor 31 as shown in FIG. After that, the jack 43 is jacked down in the direction of the white arrow in FIG. 13, and the seismic isolation layer upper floor 31 is supported by the jack 43 via the receiving slab 32 to support the seismic isolation layer upper floor 31. Is switched from the jack 43 to the seismic isolation device 21.
Thereafter, the temporary slab around the jack 43, the support work 42, and the seismic isolation layer upper floor 31 is removed.

本実施形態によれば、以下のような効果がある。
(1)逆打ち工法により免震建物1を構築したので、工期を短縮できる。
また、構真柱41の柱頭が免震層下部床15に拘束され、かつ、この免震層下部床15の上に免震装置21が設置されるので、免震装置21の位置および水平性が安定する。
また、免震装置21を設置した後に免震層上部床31を構築するため、免震装置21を設置する際には、上部に障害物がないので、免震装置21を精度よく設置できる。
また、地表面付近の高さつまり地下の最上層に免震層20を設けて、この免震層20で免震化のための多くの工事を行うため、材料の搬出入や作業員の出入りが容易となるから、施工性が低下することなく、施工精度を確保できる。
また、地下躯体10および地上躯体30がほぼ完成して、荷重の大部分が基礎構造に伝達されて不同沈下が発生した後に、免震層上部床31の支持を支保工42から免震装置21に切り替えるので、免震装置21の上の梁の高さ方向の位置ずれが生じることはなく、免震性能を確保できる。
According to this embodiment, there are the following effects.
(1) Since the seismic isolation building 1 was constructed by the reverse driving method, the construction period can be shortened.
In addition, since the head of the structural pillar 41 is restrained by the lower floor 15 of the base isolation layer and the base isolation device 21 is installed on the lower floor 15 of the base isolation layer, the position and horizontality of the base isolation device 21 Is stable.
In addition, since the seismic isolation layer upper floor 31 is constructed after the seismic isolation device 21 is installed, when the seismic isolation device 21 is installed, there is no obstacle in the upper portion, so the seismic isolation device 21 can be installed with high accuracy.
In addition, since the seismic isolation layer 20 is provided at the height near the ground surface, that is, the uppermost layer in the basement, and many constructions for seismic isolation are performed in the seismic isolation layer 20, materials are carried in and out and workers are entered and exited. Therefore, construction accuracy can be ensured without lowering the workability.
In addition, after the underground skeleton 10 and the ground skeleton 30 are almost completed and most of the load is transmitted to the foundation structure and the uneven subsidence occurs, the seismic isolation device 21 supports the seismic isolation layer upper floor 31 from the support 42. Therefore, there is no position shift in the height direction of the beam on the seismic isolation device 21, and seismic isolation performance can be ensured.

なお、本発明は前記実施形態に限定されるものではなく、本発明の目的を達成できる範囲での変形、改良等は本発明に含まれるものである。   It should be noted that the present invention is not limited to the above-described embodiment, and modifications, improvements, etc. within a scope that can achieve the object of the present invention are included in the present invention.

1…免震建物
10…地下躯体(下部躯体)
11…杭
12…基礎
13…地下2階躯体
14…地下1階躯体
15…免震層下部床
20…免震層
21…免震装置
30…地上躯体(上部躯体)
31…免震層上部床
32…受けスラブ
40…山留壁
41…構真柱
42…支保工
43…ジャッキ
1 ... Seismic isolation building 10 ... Underground frame (lower frame)
DESCRIPTION OF SYMBOLS 11 ... Pile 12 ... Foundation 13 ... Basement 2nd floor frame 14 ... Basement 1st floor frame 15 ... Base isolation layer lower floor 20 ... Base isolation layer 21 ... Base isolation device 30 ... Ground frame (upper frame)
31 ... Seismic isolation upper floor 32 ... Receiving slab 40 ... Yamadome wall 41 ... Structure pillar 42 ... Support work 43 ... Jack

Claims (1)

下部躯体と、当該下部躯体の上でかつ地表面付近の高さに設けられた免震層と、当該免震層の上に設けられた上部躯体と、を備え、前記免震層には、前記上部躯体を前記下部躯体に対して水平方向に相対移動可能な状態で支持する免震装置が設けられた免震建物を構築する際に、
杭を構築して、当該杭に構真柱を建て込む第1工程と、
当該構真柱の柱頭に前記下部躯体の一部である免震層下部床を構築し、当該免震層下部床の上に前記免震装置を設置する第2工程と、
前記免震層下部床の上に支保工を設置し、当該支保工の上に前記上部躯体の一部である免震層上部床を構築する第3工程と、
前記下部躯体および前記上部躯体を構築するとともに、前記支保工の内部にジャッキを設置し、当該ジャッキをジャッキアップして前記免震層上部床を前記ジャッキで支持して、前記支保工を切断する第4工程と、
前記ジャッキにより前記免震装置の直上の梁が所定高さとなるように調整し、前記免震装置と前記免震層上部床との間に受けスラブを構築し、その後、前記ジャッキをジャッキダウンして前記免震層上部床を前記免震装置に支持させることで、前記免震層上部床の支持を前記支保工から前記免震装置に切り替える第5工程と、を備えることを特徴とする免震建物の施工方法。
A lower housing, a base isolation layer provided on the lower housing and at a height near the ground surface, and an upper housing provided on the base isolation layer, the base isolation layer, When constructing a seismic isolation building provided with a seismic isolation device that supports the upper casing in a state of being movable relative to the lower casing in a horizontal direction,
A first step of constructing a pile and building a structural pillar on the pile;
A second step of constructing a seismic isolation layer lower floor which is a part of the lower housing at the top of the structural pillar, and installing the seismic isolation device on the seismic isolation layer lower floor;
A third step of installing a supporting work on the lower floor of the base isolation layer and constructing an upper floor of the base isolation layer that is a part of the upper frame on the support base;
While constructing the lower housing and the upper housing , a jack is installed inside the support work, the jack is jacked up, the upper floor of the seismic isolation layer is supported by the jack, and the support work is cut. A fourth step;
The jack is adjusted so that the beam directly above the seismic isolation device has a predetermined height, a receiving slab is constructed between the seismic isolation device and the upper floor of the seismic isolation layer, and then the jack is jacked down. A fifth step of switching the support of the base isolation layer upper floor from the support to the base isolation device by supporting the base isolation layer upper floor with the base isolation device. How to build a seismic building.
JP2012275183A 2012-12-17 2012-12-17 Construction method of seismic isolation building Expired - Fee Related JP5984655B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012275183A JP5984655B2 (en) 2012-12-17 2012-12-17 Construction method of seismic isolation building

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012275183A JP5984655B2 (en) 2012-12-17 2012-12-17 Construction method of seismic isolation building

Publications (2)

Publication Number Publication Date
JP2014118756A JP2014118756A (en) 2014-06-30
JP5984655B2 true JP5984655B2 (en) 2016-09-06

Family

ID=51173832

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012275183A Expired - Fee Related JP5984655B2 (en) 2012-12-17 2012-12-17 Construction method of seismic isolation building

Country Status (1)

Country Link
JP (1) JP5984655B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6379975B2 (en) * 2014-10-14 2018-08-29 株式会社大林組 Construction method of a building having a base-isolated layer in the basement, and a building constructed by the construction method
JP2017031755A (en) * 2015-08-05 2017-02-09 大成建設株式会社 Base-isolated building construction method
JP7018264B2 (en) * 2017-04-21 2022-02-10 大成建設株式会社 How to control uneven settlement
JP7038014B2 (en) * 2018-06-28 2022-03-17 鹿島建設株式会社 Construction method of seismic isolation structure

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3648651B2 (en) * 1996-07-05 2005-05-18 株式会社竹中工務店 Construction method of base-isolated building by the reverse driving method
JP2001173269A (en) * 1999-12-14 2001-06-26 Shimizu Corp Constructing method for base isolation building
JP2008303587A (en) * 2007-06-06 2008-12-18 Takenaka Komuten Co Ltd Top-down construction method for base-isolated building
JP5190035B2 (en) * 2009-07-14 2013-04-24 大成建設株式会社 Construction method of seismic isolation structure
JP5667476B2 (en) * 2011-03-09 2015-02-12 大成建設株式会社 Base-isolated buildings and methods for building base-isolated buildings

Also Published As

Publication number Publication date
JP2014118756A (en) 2014-06-30

Similar Documents

Publication Publication Date Title
JP6103667B1 (en) Construction method of underground structure
JP5984655B2 (en) Construction method of seismic isolation building
JP2012112121A (en) Excavation method of ground under spread foundation and base-isolating method of existing building
JP6441030B2 (en) How to add underground facilities
JP6368551B2 (en) Seismic isolation method for existing buildings
JP6334970B2 (en) Temporary support method for foundation
JP6655936B2 (en) Construction method of structure
JP6379975B2 (en) Construction method of a building having a base-isolated layer in the basement, and a building constructed by the construction method
JP5223701B2 (en) Construction method of side wall of underground tank structure
JP6529241B2 (en) Building foundation structure and construction method of building foundation structure
JP6052541B2 (en) Seismic isolation method for existing buildings
JP6083788B2 (en) Temporary support method for foundation
JP6326279B2 (en) Seismic isolation repair method for pile foundation structures
JP4890098B2 (en) Construction method of seismic isolation building
JP2010168806A (en) Method of constructing sidewall of underground tank structure
JP2017036559A (en) Seismic isolator replacement method
JP2016079651A (en) Support structure
JP6099337B2 (en) Temporary support method for foundation
JP2008255636A (en) Construction method for rc girder
JP5382828B2 (en) Seismic isolation structure
JP5123967B2 (en) Seismic isolation method
JP6441029B2 (en) How to add underground facilities
JP4378241B2 (en) Vertical loading test method for existing piles
JP2006022557A (en) Base isolating technique for existing building
JP6336835B2 (en) Seismic isolation structure and seismic isolation method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150617

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160324

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160328

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160525

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160801

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160802

R150 Certificate of patent or registration of utility model

Ref document number: 5984655

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees