JP2008145219A - Current sensor - Google Patents

Current sensor Download PDF

Info

Publication number
JP2008145219A
JP2008145219A JP2006331592A JP2006331592A JP2008145219A JP 2008145219 A JP2008145219 A JP 2008145219A JP 2006331592 A JP2006331592 A JP 2006331592A JP 2006331592 A JP2006331592 A JP 2006331592A JP 2008145219 A JP2008145219 A JP 2008145219A
Authority
JP
Japan
Prior art keywords
sensor
current
bodies
magnetic
measurement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2006331592A
Other languages
Japanese (ja)
Inventor
Junichi Inoue
淳一 井上
Doara
ドアラ
Yoshio Matsuo
良夫 松尾
Tomohiro Fujisawa
友弘 藤沢
Akira Shiraishi
晃 白石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FDK Corp
Original Assignee
FDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by FDK Corp filed Critical FDK Corp
Priority to JP2006331592A priority Critical patent/JP2008145219A/en
Publication of JP2008145219A publication Critical patent/JP2008145219A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Measuring Instrument Details And Bridges, And Automatic Balancing Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a current sensor capable of preferably being applied for on-board use etc. , which is adopted with the constitution that the DC magnetic field that corresponds to the current to be measured is detected by the modulation of the magnetic flux caused by the Villari effect, and the coil formation for winding on the sensor body with wiring material which is operated comparatively easily and in the later process is capable of easily assembling to the wiring already wired and capable of changing the wiring of the measurement object accompanied by the design change. <P>SOLUTION: The sensor body 4, which is formed to the surface and the rear face of the semicircular piezoelectric plate 1, is sandwiched by the same shaped first magnetic plate 2 and the second magnetic plate 3 bonded integrally. A pair of sensor bodies 4 are prepared, and a pair of pick up soils 5 are provided respectively, and for measurement the edges of two sensor bodies 4 are abutted against each other so as to be connected magnetically. On the surface and the rear face of the piezoelectric plate 1, the electrode films are provided and polarized in the thickness direction, and the pick up coils 5 are formed by winding around and along the external profile. With respect to the wire 7 the sensor bodies are inter linked around the same, and measurement can be performed. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、被測定電流によって発生する磁界の強さをピックアップコイルにより検出する電流センサに関するもので、より具体的には、ピックアップコイルを連係した磁性体材料には所定に振動力を加えることで逆磁歪効果(ビラリ効果)を起こさせて変調し、被測定電流に対応した磁界の変化を検出するような構成において、磁性体材料へ圧電体振動子を一体に接合させるセンサ本体の構造の改良に関する。   The present invention relates to a current sensor that detects the strength of a magnetic field generated by a current to be measured by a pickup coil, and more specifically, by applying a predetermined vibration force to a magnetic material associated with the pickup coil. Improvement of the sensor body structure in which a piezoelectric vibrator is integrally bonded to a magnetic material in a configuration that detects and detects a change in the magnetic field corresponding to the current to be measured by modulating it by causing an inverse magnetostriction effect (biliary effect). About.

直流電流を非接触に検出する電流センサに関して、大電流の測定が行えること、そして比較的に高温となるような厳しい環境でも測定が行えることが強く求められる用途がある。例えば車両に搭載する車載用途などでは、小型で堅牢であること、および動作温度が広いことなど、一般産業用途を超える仕様となり、具体的には50アンペア程度の電流が測定でき、車両のエンジン室では少なくとも130℃程度で動作できることが必要になる。また近年は、燃料電池車やハイブリット車などに注目があり、電流センサは重要な部品になっている。   With respect to a current sensor that detects a direct current in a non-contact manner, there is an application that is required to be able to measure a large current and to perform measurement even in a severe environment where the temperature is relatively high. For example, in-vehicle applications mounted on vehicles, the specifications exceed those of general industrial applications, such as being small and robust, and having a wide operating temperature. Specifically, a current of about 50 amperes can be measured, and the engine room of the vehicle Therefore, it is necessary to be able to operate at least at about 130 ° C. In recent years, attention has been paid to fuel cell vehicles and hybrid vehicles, and current sensors have become important components.

大電流の検出が行える電流センサとしては、例えばホール素子を用いたものがよく知られている。これは環状の磁性体コアに設けたギャップ部位にホール素子を配置し、被測定電流が流れる電線は環状部位の内側に位置させ、被測定電流によって発生する磁界の強さをホール素子により検出(ホール電圧)する構成を採る。しかし、ホール素子による電流センサは、磁性体コアのギャップ部位にホール素子を挟む構成のため小型化が難しく、高温環境で使用することに困難があり欠点が多い。   As a current sensor capable of detecting a large current, for example, a sensor using a Hall element is well known. This is because the Hall element is arranged in the gap part provided in the annular magnetic core, the electric wire through which the current to be measured flows is positioned inside the annular part, and the strength of the magnetic field generated by the current to be measured is detected by the Hall element ( (Hall voltage). However, a current sensor using a Hall element has many drawbacks because it is difficult to reduce the size because of the configuration in which the Hall element is sandwiched between gap portions of the magnetic core, and difficult to use in a high-temperature environment.

また、特許文献1に見られるように、逆磁歪効果(ビラリ効果)を利用することで電流センサを構成するようにした技術の提案がある。このものは、環状の磁性体部材に対して圧電体部材を接合させて一体化し、当該環状部位の内外に線材を巻き回してピックアップコイルとしており、直流電流によって発生する直流磁界の強さをピックアップコイルにより検出する構成を採る。ピックアップコイルと交錯する磁束、つまり直流磁界の強さを検出するにはこれを変調する必要があり、このため圧電体部材は所定の交流電圧を加えて直径方向に振動させ、磁性体部材へ機械的な振動力を加えることで逆磁歪効果(ビラリ効果)を起こさせて磁束の変調を行う。これにより、被測定電流に対応した磁界の変化を検出することができ、電流の検出が行える。
特開2006−98332号公報
Further, as seen in Patent Document 1, there is a proposal of a technique in which a current sensor is configured by utilizing an inverse magnetostriction effect (billy effect). This is made by joining a piezoelectric member to an annular magnetic member and integrating them, winding a wire around the annular portion to form a pickup coil, and picking up the strength of the DC magnetic field generated by the DC current The structure which detects with a coil is taken. In order to detect the strength of the magnetic flux crossing the pickup coil, that is, the DC magnetic field, it is necessary to modulate this. For this reason, the piezoelectric member is vibrated in the diametrical direction by applying a predetermined AC voltage to the magnetic member. The magnetic force is modulated by causing an inverse magnetostriction effect (biliary effect) by applying a typical vibration force. Thereby, the change of the magnetic field corresponding to the current to be measured can be detected, and the current can be detected.
JP 2006-98332 A

しかし、特許文献1に見られるような逆磁歪効果(ビラリ効果)を利用した電流センサにあっては、以下に示すような問題がある。   However, the current sensor using the inverse magnetostriction effect (bilari effect) as found in Patent Document 1 has the following problems.

測定対象の電線へ装着する際に、当該電線の配線に対して後工程で組み付けることが難しく、設計変更等に伴う測定対象の電線の変更が容易でないという問題がある。つまり、測定の原理から明らかであるが、被測定電流が流れる電線は環状部位の内側に位置させて貫通状態にする必要があり、これは電線側の配線が完了した後では作業できない。また、装着が完了した後は電線側の配線をいったん切断しなければ外すことができなく、変更先の電線側でも配線の切断と再接続が必要になり煩雑で手間がかかる。   When mounting on the measurement target electric wire, there is a problem that it is difficult to assemble the wiring of the electric wire in a subsequent process, and it is not easy to change the measurement target electric wire due to a design change or the like. That is, as is apparent from the principle of measurement, the electric wire through which the current to be measured flows needs to be placed inside the annular portion to be in a penetrating state, which cannot be performed after the wiring on the electric wire side is completed. In addition, after the installation is completed, the wiring on the electric wire side cannot be removed unless it is cut once, and the cutting and reconnection of the wiring is necessary even on the changed electric wire side, which is complicated and troublesome.

ピックアップコイルは、環状のセンサ体へ線材を巻き回すことで形成しているが、製造作業の面からは、環状部位の内外へ線材を巻き回す作業は容易ではなく、手間がかかる問題がある。   The pickup coil is formed by winding a wire around an annular sensor body. However, from the viewpoint of manufacturing work, the work of winding the wire into and out of the annular portion is not easy and takes time.

この発明は上記した課題を解決するもので、その目的は、被測定電流に対応した直流磁界をビラリ効果による磁束の変調により検出する構成を採り、センサ体へ線材を巻き回すコイル形成を比較的に容易に作業でき、配線済みの電線に対して後工程で簡単に組み付けでき、設計変更等に伴う測定対象の電線の変更が容易に行え、車載用途等に好ましく適用できる電流センサを提供することにある。   The present invention solves the above-mentioned problems, and its purpose is to detect a DC magnetic field corresponding to the current to be measured by modulating the magnetic flux by the billiary effect, and to relatively form a coil that winds a wire around the sensor body. Providing a current sensor that can be easily applied to a pre-wired wire in a later process, easily change the wire to be measured with a design change, etc., and can be preferably applied to in-vehicle applications It is in.

上記した目的を達成するために、本発明に係る電流センサは、被測定電流によって発生する磁界の強さをピックアップコイルにより検出する電流センサであって、略半円形状あるいは略コ字形状の圧電体板材の表裏に対して、同一形状の第1磁性体板材および第2磁性体板材とを挟み合わせに接合させて一体化してセンサ体とするが、センサ体は2つ組備えて各センサ体において圧電体板材の表裏には電極膜を設けて厚み方向へ分極させ、外形に沿って線材を巻き回してピックアップコイルとし、測定にはセンサ体は2つ組を互いの端縁を突き合わせて磁気的に連結させる構成にする(請求項1)。   In order to achieve the above-described object, a current sensor according to the present invention is a current sensor that detects the strength of a magnetic field generated by a current to be measured by a pickup coil, and is a substantially semicircular or substantially U-shaped piezoelectric sensor. The first magnetic plate member and the second magnetic plate member having the same shape are sandwiched and joined to the front and back of the body plate member to form a sensor body. However, two sensor bodies are provided and each sensor body is provided. In this example, electrode films are provided on the front and back of the piezoelectric plate material, polarized in the thickness direction, and a wire is wound along the outer shape to form a pickup coil. For measurement, the sensor body is magnetically matched by matching the edges of each other. (Claim 1).

また、センサ体の互いの端縁が突き合う狭間には所定のギャップを設定し、当該ギャップを要求特性に応じて調整する(請求項2)。   Further, a predetermined gap is set between the gaps where the end edges of the sensor bodies abut each other, and the gap is adjusted according to the required characteristics.

また、センサ体は樹脂材料からなる成形体へ収容させ、それら2つ組の成形体は一方の端縁側で互いを開閉可能に連結する構成にする(請求項3)。   The sensor body is accommodated in a molded body made of a resin material, and the two sets of molded bodies are configured to be connected to each other so as to be openable and closable at one end side.

したがって本発明では、略半円形状あるいは略コ字形状のセンサ体は2つ組を備えて、測定にはそれら2つ組のセンサ体は互いの端縁を突き合わせて磁気的に連結させることから、電線に対して挟み合わせに装着でき、測定が行える。   Therefore, in the present invention, the sensor bodies having a substantially semicircular shape or a substantially U-shape are provided with two sets, and for the measurement, these two sets of sensor bodies are magnetically coupled by abutting the edges of each other. , Can be attached to the electric wire and can be measured.

また、センサ体それぞれは略半円形状あるいは略コ字形状なので、環状に閉じていなく端縁を有し、環状に閉じた部材と違って線材を巻き付けるのは作業が容易である。   Since each sensor body is substantially semicircular or substantially U-shaped, it has an edge instead of being annularly closed, and it is easy to wrap the wire unlike the annularly closed member.

本発明に係る電流センサでは、略半円形状あるいは略コ字形状のセンサ体は2つ組の互いの端縁を突き合わせて磁気的に連結させることから、電線に対して挟み合わせに装着でき、すなわち、配線済みの電線に対して後工程で簡単に組み付けでき、設計変更等に伴う測定対象の電線の変更が容易に行える。   In the current sensor according to the present invention, the substantially semicircular or substantially U-shaped sensor body is magnetically coupled by abutting the two edges of each other. That is, it can be easily assembled in a subsequent process with respect to a wired electric wire, and the electric wire to be measured can be easily changed due to a design change or the like.

センサ体それぞれは略半円形状あるいは略コ字形状なので、環状に閉じていなく端縁を有し、線材を巻き付けるのは作業が容易である。したがって、センサ体へ線材を巻き回すコイル形成を比較的に容易に作業でき、製造作業が容易になるメリットがある。   Since each of the sensor bodies is substantially semicircular or substantially U-shaped, it has an edge instead of being closed in an annular shape, and it is easy to wrap the wire. Therefore, there is an advantage that the coil formation for winding the wire around the sensor body can be relatively easily performed, and the manufacturing operation is facilitated.

2つ組のセンサ体はギャップを有した形態で環状になることから、圧電体材料の部分が2つに分断した状態となっているが、これは何ら不都合がなく、それぞれは磁性体材料に対して圧電体振動子として適正に機能することができ、センサ出力は良好に得ることができる。   Since the two sensor bodies are annular with a gap, the piezoelectric material is divided into two parts, but this is not inconvenient. On the other hand, it can function appropriately as a piezoelectric vibrator, and the sensor output can be obtained satisfactorily.

また、電流センサとしてはギャップを設けたものになるが、ギャップを変更することで出力特性を適宜に調整でき、これにより要求特性を適正に得ることができる。その結果、本発明に係る電流センサは車載用途等に好ましく適用できる。   In addition, a current sensor is provided with a gap, but by changing the gap, the output characteristics can be adjusted as appropriate, thereby obtaining the required characteristics appropriately. As a result, the current sensor according to the present invention can be preferably applied to in-vehicle applications.

図1は本発明の好適な一実施の形態を示している。本実施形態の電流センサは、略半円形状の圧電体板材1の表裏に対して、同一形状の第1磁性体板材2および第2磁性体板材3とを挟み合わせに接合させて一体化してセンサ体4とするが、このセンサ体4は2つ組備えてそれぞれにピックアップコイル5を設け、測定にはセンサ体4,4は2つ組を互いの端縁を突き合わせて磁気的に連結させる構成にしている。   FIG. 1 shows a preferred embodiment of the present invention. The current sensor of the present embodiment is formed by integrally bonding the first magnetic plate 2 and the second magnetic plate 3 having the same shape to the front and back of the substantially semicircular piezoelectric plate 1 in a sandwiched manner. Although the sensor body 4 is provided in two sets, each of which is provided with a pickup coil 5, and for the measurement, the sensor bodies 4 and 4 are magnetically coupled by abutting the edges of each other. It has a configuration.

各センサ体4において、圧電体板材1の表裏には電極膜を設けて厚み方向へ分極させ、ピックアップコイル5は外形に沿って線材を巻き回すことで形成している。そして、各センサ体4は、図2に示す成形体6へ収容させている。それら2つ組の成形体6,6は樹脂材料から形成してあり、一方の端縁側で互いを開閉可能に連結している。   In each sensor body 4, electrode films are provided on the front and back surfaces of the piezoelectric plate material 1 to be polarized in the thickness direction, and the pickup coil 5 is formed by winding a wire material along the outer shape. And each sensor body 4 is accommodated in the molded object 6 shown in FIG. The two sets of molded bodies 6 and 6 are formed of a resin material, and are connected to each other so as to be openable and closable at one end side.

測定には、開状態の成形体6,6の内側へ配線済みの電線7を位置させ、図3に示すように、挟み合わせに閉状態とする。ここで、2つ組のセンサ体4,4は、突き合わせることで磁気的には環状に連結するが、突き合う狭間に所定のギャップを有し、成形体6の当該部位がギャップ部材になっている。したがって、成形体6の当該部位の厚みを適宜に変更することにより、ギャップを調整することができる。   For the measurement, the wired electric wire 7 is positioned inside the molded bodies 6 and 6 in the open state, and as shown in FIG. Here, the two sensor bodies 4 and 4 are magnetically connected to each other by abutting, but have a predetermined gap between the abutting spaces, and the portion of the molded body 6 becomes a gap member. ing. Therefore, the gap can be adjusted by appropriately changing the thickness of the portion of the molded body 6.

圧電体板材1は厚み方向へ分極させてあるので、表裏の電極膜の間に所定の交流電圧を加えることで直径方向に振動する。そして、被測定電流Iが流れる電線7は環状部位の内側に位置させ、被測定電流Iによって発生する磁界の強さをピックアップコイル5により検出する。圧電体板材1の形状は略半円形状に限らなく、例えば略コ字形状に形成することもよい。また、成形体6も適宜な形状に形成することができる。   Since the piezoelectric plate 1 is polarized in the thickness direction, it vibrates in the diameter direction by applying a predetermined AC voltage between the front and back electrode films. Then, the electric wire 7 through which the current I to be measured flows is positioned inside the annular portion, and the strength of the magnetic field generated by the current I to be measured is detected by the pickup coil 5. The shape of the piezoelectric plate 1 is not limited to a substantially semicircular shape, and may be formed in a substantially U shape, for example. Moreover, the molded object 6 can also be formed in a suitable shape.

この場合、電線7を環状部位内に位置させるので、被測定電流Iによる磁束は磁性体板材2,3について周回方向に発生する。圧電体板材1に交流電圧を加えることでは、磁界が一定であるとき、つまり直流磁界の状態でも磁束密度は対応量の増減を起こし、磁束の変化が生じる。すなわち、磁性体板材2,3へ機械的な振動力を加えることで逆磁歪効果(ビラリ効果)を起こさせて磁束の変調を行う。この磁束の変化のためピックアップコイル5では起電力を生じ、 ピックアップコイル4の出力は、直流磁界の大きさ、つまり被測定電流Iの大きさに比例して増減する。したがって、被測定電流Iに対応した磁界の変化を検出することができ、電流の検出が行える。   In this case, since the electric wire 7 is positioned in the annular portion, the magnetic flux due to the current I to be measured is generated in the circulation direction with respect to the magnetic plates 2 and 3. By applying an AC voltage to the piezoelectric plate member 1, when the magnetic field is constant, that is, in the state of the DC magnetic field, the magnetic flux density causes an increase or decrease in the corresponding amount, resulting in a change in the magnetic flux. That is, by applying a mechanical vibration force to the magnetic material plates 2 and 3, an inverse magnetostriction effect (biliary effect) is caused to modulate the magnetic flux. Due to this change in magnetic flux, an electromotive force is generated in the pickup coil 5, and the output of the pickup coil 4 increases or decreases in proportion to the magnitude of the DC magnetic field, that is, the current I to be measured. Therefore, the change in the magnetic field corresponding to the current I to be measured can be detected, and the current can be detected.

この電流センサは、圧電体材料と磁性体材料からなる構成なので、高温環境で使用することに何ら問題がなく、動作温度の範囲が広い。そして、電流の検出動作にはビラリ効果による磁束の変調を利用しているので、ホール素子による構成と違って小型化することができ、外乱磁界の影響を受けない検出が行える。また、ホール素子は半導体のため放射線耐性が弱く低い欠点があるが、この電流センサは放射線耐性が強く高いと言える。さらに、ホール素子は磁性体コアのギャップに配置する構成のため感度が低く、これに対してビラリ効果による電流検出の構成では高感度になり、大電流の検出が行える。   Since this current sensor is composed of a piezoelectric material and a magnetic material, there is no problem when used in a high temperature environment, and the operating temperature range is wide. The current detection operation utilizes magnetic flux modulation due to the barrier effect, so that the size can be reduced unlike the configuration using the Hall element, and detection without being affected by the disturbance magnetic field can be performed. In addition, since the Hall element is a semiconductor, its radiation resistance is weak and low, but this current sensor has high radiation resistance. Furthermore, since the Hall element is arranged in the gap of the magnetic core, the sensitivity is low. On the other hand, the current detection configuration based on the barrier effect is highly sensitive and can detect a large current.

本発明にあっては、略半円形状あるいは略コ字形状のセンサ体4は2つ組を備えて、測定にはそれら2つ組のセンサ体4,4は互いの端縁を突き合わせて磁気的に連結させることから、電線7に対して挟み合わせに装着でき、測定が行える。すなわち、配線済みの電線7に対して後工程で簡単に組み付けでき、設計変更等に伴う測定対象の電線7の変更が容易に行える。   In the present invention, the substantially semicircular or substantially U-shaped sensor body 4 includes two sets, and for the measurement, the two sets of sensor bodies 4 and 4 abut each other on the edges to magnetically. Therefore, it can be attached to the electric wire 7 so as to be measured. That is, it is possible to easily assemble the wired electric wire 7 in a later process, and the electric wire 7 to be measured can be easily changed due to a design change or the like.

センサ体4それぞれは略半円形状あるいは略コ字形状なので、環状に閉じていなく端縁を有し、環状に閉じた部材と違って線材を巻き付けるのは作業が容易である。したがって、センサ体4へ線材を巻き回すコイル形成を比較的に容易に作業でき、製造作業が容易になるメリットがある。   Since each of the sensor bodies 4 has a substantially semicircular shape or a substantially U shape, the sensor body 4 has an end edge instead of being annularly closed, and unlike the annularly closed member, it is easy to wrap the wire. Therefore, there is an advantage that the coil formation for winding the wire around the sensor body 4 can be relatively easily performed, and the manufacturing operation is facilitated.

2つ組のセンサ体4,4はギャップを有した形態で環状になることから、圧電体材料の部分が2つに分断した状態となっているが、これは何ら不都合がなく、それぞれは磁性体材料に対して圧電体振動子として適正に機能することができる。図4は電流センサの出力特性を示すグラフ図であり、ギャップを有した本発明に係る構成(a)と、ギャップを有しない従来の構成(b)とをシミュレーションした結果である。同図から明らかなように、ギャップを有しない従来の構成(b)はヒステリシスが大きい出力特性になっており、それに比べて、ギャップを有した本発明に係る構成(a)ではヒステリシスが小さい出力特性であるが、センサ出力は良好に得ることができることを確認した。   Since the two sensor bodies 4 and 4 are in a ring shape with a gap, the piezoelectric material part is divided into two parts, but this is not inconvenient and each is magnetic. It can function properly as a piezoelectric vibrator with respect to the body material. FIG. 4 is a graph showing the output characteristics of the current sensor, and is a result of simulating the configuration (a) according to the present invention having a gap and the conventional configuration (b) having no gap. As is apparent from the figure, the conventional configuration (b) having no gap has an output characteristic having a large hysteresis, and the configuration (a) according to the present invention having a gap has an output having a small hysteresis. Although it was characteristic, it was confirmed that the sensor output could be obtained satisfactorily.

また、電流センサとしてはギャップを設けたものになるが、ギャップを変更することで出力特性を適宜に調整でき、これにより要求特性を適正に得ることができる。その結果、本発明に係る電流センサは車載用途等に好ましく適用できる。   In addition, a current sensor is provided with a gap, but by changing the gap, the output characteristics can be adjusted as appropriate, thereby obtaining the required characteristics appropriately. As a result, the current sensor according to the present invention can be preferably applied to in-vehicle applications.

本発明では直流大電流の検出を非接触に行えて動作温度が広範囲となることから、ハイブリッド車や電気自動車などの車載用途、そして太陽光発電,風力発電,燃料電池などの大電流センサの用途に有効である。   In the present invention, a large DC current can be detected in a non-contact manner and the operating temperature becomes wide. Therefore, in-vehicle applications such as hybrid vehicles and electric vehicles, and applications of large current sensors such as solar power generation, wind power generation, and fuel cells. It is effective for.

本発明に係る電流センサの好適な一実施の形態を示す斜視図である。1 is a perspective view showing a preferred embodiment of a current sensor according to the present invention. センサ体を収容させる成形体を示す斜視図である。It is a perspective view which shows the molded object which accommodates a sensor body. 測定を行う際の電流センサの状態を示す斜視図である。It is a perspective view which shows the state of the current sensor at the time of measuring. 電流センサの出力特性を示すグラフ図である。It is a graph which shows the output characteristic of a current sensor.

符号の説明Explanation of symbols

1 圧電体板材
2 第1磁性体板材
3 第2磁性体板材
4 センサ体
5 ピックアップコイル
6 成形体
7 電線
DESCRIPTION OF SYMBOLS 1 Piezoelectric board | plate material 2 1st magnetic body board | plate material 3 2nd magnetic body board | plate material 4 Sensor body 5 Pickup coil 6 Molded body 7 Electric wire

Claims (3)

被測定電流によって発生する磁界の強さをピックアップコイルにより検出する電流センサであって、
略半円形状あるいは略コ字形状の圧電体板材の表裏に対して、同一形状の第1磁性体板材および第2磁性体板材とを挟み合わせに接合させて一体化してセンサ体とし、
前記センサ体は2つ組備えて各センサ体において前記圧電体板材の表裏には電極膜を設けて厚み方向へ分極させ、外形に沿って線材を巻き回して前記ピックアップコイルとし、測定には前記センサ体は2つ組を互いの端縁を突き合わせて磁気的に連結させることを特徴とする電流センサ。
A current sensor for detecting the strength of a magnetic field generated by a current to be measured by a pickup coil,
The first and second magnetic plate members having the same shape are sandwiched and joined to the front and back of the substantially semicircular or substantially U-shaped piezoelectric plate member to form a sensor body,
The sensor bodies are provided in pairs, and in each sensor body, an electrode film is provided on the front and back of the piezoelectric plate material, polarized in the thickness direction, and a wire is wound along the outer shape to form the pickup coil. A current sensor characterized in that two sensor bodies are magnetically coupled by abutting the edges of each other.
前記センサ体の互いの端縁が突き合う狭間には所定のギャップを設定し、当該ギャップを要求特性に応じて調整することを特徴とする請求項1に記載の電流センサ。   The current sensor according to claim 1, wherein a predetermined gap is set between a space where the end edges of the sensor bodies abut each other, and the gap is adjusted according to required characteristics. 前記センサ体は樹脂材料からなる成形体へ収容させ、それら2つ組の成形体は一方の端縁側で互いを開閉可能に連結してあることを特徴とする請求項1または2に記載の電流センサ。
3. The current according to claim 1, wherein the sensor body is accommodated in a molded body made of a resin material, and the two molded bodies are connected so as to be openable and closable on one edge side. Sensor.
JP2006331592A 2006-12-08 2006-12-08 Current sensor Withdrawn JP2008145219A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006331592A JP2008145219A (en) 2006-12-08 2006-12-08 Current sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006331592A JP2008145219A (en) 2006-12-08 2006-12-08 Current sensor

Publications (1)

Publication Number Publication Date
JP2008145219A true JP2008145219A (en) 2008-06-26

Family

ID=39605569

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006331592A Withdrawn JP2008145219A (en) 2006-12-08 2006-12-08 Current sensor

Country Status (1)

Country Link
JP (1) JP2008145219A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013160549A (en) * 2012-02-02 2013-08-19 Takashi Tadatsu Orthogonal excitation type current sensor
JP2013535001A (en) * 2010-04-20 2013-09-09 アンヤン・アンケ・エレクトリック・カンパニー・リミテッド Pulse current sensor and surge wave recording type lightning protection cabinet having the sensor
CN105259396A (en) * 2015-11-03 2016-01-20 三峡大学 Electronic current transformer which is installable and dismountable in electrified manner

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013535001A (en) * 2010-04-20 2013-09-09 アンヤン・アンケ・エレクトリック・カンパニー・リミテッド Pulse current sensor and surge wave recording type lightning protection cabinet having the sensor
JP2013160549A (en) * 2012-02-02 2013-08-19 Takashi Tadatsu Orthogonal excitation type current sensor
CN105259396A (en) * 2015-11-03 2016-01-20 三峡大学 Electronic current transformer which is installable and dismountable in electrified manner
CN105259396B (en) * 2015-11-03 2019-04-02 三峡大学 A kind of electronic current mutual inductor charging installation and removal

Similar Documents

Publication Publication Date Title
Patil et al. Anisotropic self-biased dual-phase low frequency magneto-mechano-electric energy harvesters with giant power densities
JP5684442B2 (en) Magnetic sensor device
CN109425775B (en) Handheld current sensor adopting magnetoelectric composite material
CN109425774B (en) Easy-to-install current sensor adopting magnetoelectric composite material
JP6024814B1 (en) Inductance element for magnetic sensor and current sensor including the same
JP2008145219A (en) Current sensor
CN103439034B (en) Multifunctional force cell sensor
JP5516947B2 (en) Current sensor
JP2009002736A (en) Current sensor
JP2008026053A (en) Current sensor
Wu et al. Magnetoelectric effect for rotational parameters detection
JP6920114B2 (en) Current sensor
Ueno et al. High sensitive and heat-resistant magnetic sensor using magnetostrictive/piezoelectric laminate composite
JP2019148503A (en) Piezoelectric and magnetostrictive combined type magnetic field sensor and magnetic electric power generation device
JP2005265587A (en) Torque detection apparatus
CN108613688A (en) Multi-functional set sensing device based on magnetic electric compound material and electret
WO2007110943A1 (en) Magnetostrictive modulation current sensor and method for measuring current using that sensor
JP4450417B2 (en) Magnetostrictive modulation type current sensor and current measurement method using this sensor
JP2008145220A (en) Current sensor
JP2008145267A (en) Current sensor
JP2008281364A (en) Current sensor
US4039935A (en) Variable frequency stress transducer
JP2000114615A (en) Magnetostriction detection type force sensor
JP2005257477A (en) Magnetometric sensor
JP6009393B2 (en) Sensor device for vibration measurement

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20100302