JP2008143032A - Manufacturing method of flexible copper clad laminate - Google Patents

Manufacturing method of flexible copper clad laminate Download PDF

Info

Publication number
JP2008143032A
JP2008143032A JP2006333174A JP2006333174A JP2008143032A JP 2008143032 A JP2008143032 A JP 2008143032A JP 2006333174 A JP2006333174 A JP 2006333174A JP 2006333174 A JP2006333174 A JP 2006333174A JP 2008143032 A JP2008143032 A JP 2008143032A
Authority
JP
Japan
Prior art keywords
copper foil
copper
clad laminate
heat treatment
polyimide resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006333174A
Other languages
Japanese (ja)
Other versions
JP4823884B2 (en
Inventor
Shigeaki Tauchi
茂顕 田内
Koichi Hattori
公一 服部
Natsuki Fukuda
夏樹 福田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Chemical and Materials Co Ltd
Original Assignee
Nippon Steel Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Chemical Co Ltd filed Critical Nippon Steel Chemical Co Ltd
Priority to JP2006333174A priority Critical patent/JP4823884B2/en
Publication of JP2008143032A publication Critical patent/JP2008143032A/en
Application granted granted Critical
Publication of JP4823884B2 publication Critical patent/JP4823884B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Laminated Bodies (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To obtain a copper clad laminated body which has a high adhesive force between a conducting body and an insulating body, is excellent in electromigration resistance, can perform a micro-machining in a pitch of 30 μm or less, and is excellent in flex resistance. <P>SOLUTION: In the manufacturing method of the flexible copper clad laminate where a polyimide resin layer is formed on one side surface of a copper foil layer, when an analysis measurement is performed by a secondary ion mass analysis (SIMS) as the copper foil, the manufacturing method comprises a step which prepares an electrolytic copper foil where a carbon peak intensity is 4.0 or less with respect to a copper peak intensity of 50.0, the thickness is within a range of 5 μm-35 μm and an average crystal grain diameter of the copper foil before heat treatment is less than 2 μm, a step where a polyimide precursor resin solution is applied on the prepared copper foil and the polyimide resin layer is formed by performing drying and curing through the heat treatment at 300-400°C, and a step for removing the copper foil thickness of 10-90% by chemically polishing the copper foil layer surface not contacting with the polyimide resin layer. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、電子機器に使用されるフレキシブル銅張積層板(以下、銅張積層板と略す ることもある。)の製造方法に関し、詳しくは、微細回路加工が可能で、屈曲特性に優 れたフレキシブル銅張積層板の製造方法に関するものである。     The present invention relates to a method for producing a flexible copper-clad laminate (hereinafter sometimes abbreviated as a copper-clad laminate) used in electronic equipment, and more specifically, fine circuit processing is possible and excellent bending characteristics. The present invention relates to a method for manufacturing a flexible copper clad laminate.

フレキシブル銅張積層板は、ハードディスク内の可動部やヒンジ部等の屈曲性や、柔 軟性、高密度実装が要求される電子機器に広く用いられている。近年、さらなる装置の 小型化、高度化が進み、銅張積層板を狭い箇所に折り曲げて収納することが増えたこと 、またそれ自身の折り曲げ角度も鋭くなってきたことから、より高い屈曲性を持つ銅張 積層板の供給が必要不可欠となってきた。     Flexible copper-clad laminates are widely used in electronic devices that require flexibility, flexibility, and high-density mounting of movable parts and hinges in hard disks. In recent years, further downsizing and sophistication of the device has progressed, and copper-clad laminates have been folded and stored in narrow spaces, and the bending angle of the device itself has become sharper. The supply of copper-clad laminates has become essential.

このような背景のもと、銅箔の屈曲性を改善する手段として、銅箔の厚みを薄くする ことが知られている。この場合、屈曲の際の曲げ部外周に生じる歪みが減少し、屈曲性 が向上する、しかしながら、銅張積層板を薄くするだけでは、設計に制約を受けてしま うなどの理由により限界がある。     Against this background, it is known to reduce the thickness of the copper foil as a means for improving the flexibility of the copper foil. In this case, the strain generated on the outer periphery of the bent portion during bending is reduced, and the flexibility is improved. However, simply thinning the copper-clad laminate has limitations due to design limitations. .

また、屈曲性に優れる銅箔として、圧延銅箔が知られている。圧延銅箔の製造方法と しては、電気銅をインゴットに鋳造し、圧延と焼鈍を繰り返して箔状にする。この方法 により製造された銅箔は伸び率も高く、表面が平滑であるため、クラックが入りにくく 耐折性に優れている。しかしながら、圧延銅箔は高価で、製造時の機械的な制約により 、銅箔の幅1m以上のものは製造することが困難であった。これまで、圧延銅箔は屈曲 性に優れる銅箔としてフレキシブル銅張積層板への適用が報告されている。例えば、特 開2000−256765号公報(特許文献1)では、高い耐屈曲性を有する銅張積層 板を得るために、結晶粒径が大きい圧延銅箔を使用することが開示されている。しかし ながら、このような圧延銅箔は柔らかく、厚さが35μm以下の薄い銅箔では、積層板 製造時におけるハンドリングで変形しやすい。また、特開平8−296082号公報 (特許文献2)には、再結晶性の良好な電解銅箔が示され、特開平8−283886号 公報(特許文献3)には、屈曲特性が改良されたフレキシブル配線基板用電解銅箔が示 されている。しかし、例えば、溶液状のポリイミド前駆体樹脂を塗工し、乾燥及び熱硬 化(イミド化)のための熱処理を行うキャスト法による銅張積層板の製造方法において は、その熱処理工程で300℃以上の熱がかかる。このような高い温度で熱処理すると 、銅箔は完全に焼鈍され、伸びがなくなり脆くなってしまう。また、銅箔の熱収縮によ りシワが入るため搬送性が悪くなるという課題もあった。     Moreover, the rolled copper foil is known as a copper foil excellent in flexibility. As a method for producing a rolled copper foil, electrolytic copper is cast into an ingot, and rolling and annealing are repeated to form a foil. The copper foil produced by this method has a high elongation rate and a smooth surface, so that it is difficult to crack and has excellent folding resistance. However, the rolled copper foil is expensive, and it is difficult to produce a copper foil having a width of 1 m or more due to mechanical restrictions during production. So far, rolled copper foil has been reported to be applied to flexible copper-clad laminates as a copper foil with excellent flexibility. For example, Japanese Patent Publication No. 2000-256765 (Patent Document 1) discloses the use of a rolled copper foil having a large crystal grain size in order to obtain a copper-clad laminate having high bending resistance. However, such a rolled copper foil is soft, and a thin copper foil having a thickness of 35 μm or less tends to be deformed by handling at the time of manufacturing a laminated board. JP-A-8-296082 (Patent Document 2) shows an electrolytic copper foil with good recrystallization, and JP-A-8-283886 (Patent Document 3) has improved bending characteristics. An electrolytic copper foil for a flexible wiring board is shown. However, for example, in a method for producing a copper clad laminate by a casting method in which a solution-like polyimide precursor resin is applied and heat treatment for drying and thermosetting (imidization) is performed, the heat treatment step is performed at 300 ° C. It takes more heat. When heat treatment is performed at such a high temperature, the copper foil is completely annealed, and does not stretch and becomes brittle. In addition, there is a problem that the transportability is deteriorated because the copper foil is wrinkled by heat shrinkage.

特開2000−256765号公報JP 2000-256765 A 特開平8−296082号公報JP-A-8-296082 特開平8−283886号公報JP-A-8-283886

本発明は、積層板製造におけるハンドリング性を改善し、しかも30μm以下の細線 加工が可能で、且つ耐屈曲性に優れた積層板を提供することを目的とする。     It is an object of the present invention to provide a laminated sheet that improves handling in the production of laminated sheets, can be processed into fine wires of 30 μm or less, and has excellent bending resistance.

本発明者らは種々検討した結果、特定の特性を有する電解銅箔を用い、その銅箔にポ リイミド樹脂層を積層した後、特定の工程を経由することで上記課題を解決し得ること を見出し、本発明を完成した。     As a result of various studies, the present inventors have found that the above problems can be solved by using an electrolytic copper foil having specific characteristics, laminating a polyimide resin layer on the copper foil, and then passing through a specific process. The headline and the present invention were completed.

すなわち、本発明は、銅箔層の一方の面にポリイミド樹脂層が形成された銅張積層板 の製造方法において、銅箔として、二次イオン質量分析(SIMS)で分析測定した場合、 銅ピーク強度50.0に対して炭素ピーク強度が4.0以下であり、厚みが5μm〜
35μmの範囲内にあって、熱処理前の銅箔の平均結晶粒径が2μm未満である電解銅箔 を用意する工程と、用意された銅箔の上にポリイミド前駆体樹脂溶液を塗布し、続く熱 処理によって乾燥及び硬化を行ってポリイミド樹脂層を形成する工程と、ポリイミド樹 脂層と接していない銅箔層面を化学研摩して、銅箔厚みの10〜90%を除去する工程 とを含むことを特徴とするフレキシブル銅張積層板の製造方法である。
That is, the present invention relates to a method for producing a copper clad laminate in which a polyimide resin layer is formed on one surface of a copper foil layer. When the copper foil is analyzed and measured by secondary ion mass spectrometry (SIMS), a copper peak The carbon peak intensity is 4.0 or less with respect to the intensity 50.0, and the thickness is 5 μm to
A step of preparing an electrolytic copper foil within the range of 35 μm and having an average crystal grain size of the copper foil before heat treatment of less than 2 μm, and applying a polyimide precursor resin solution on the prepared copper foil, followed by A step of drying and curing by heat treatment to form a polyimide resin layer, and a step of chemically polishing the copper foil layer surface not in contact with the polyimide resin layer to remove 10 to 90% of the copper foil thickness. It is a manufacturing method of the flexible copper clad laminated board characterized by the above-mentioned.

上記フレキシブル銅張積層板の製造方法において、次のいずれか1以上を満足するこ とは、より優れたフレキシブル銅張積層板を与える。
1) 熱処理が、300〜400℃の温度範囲で3分〜40分保持する工程を含むこと 。
2) 熱処理後の銅箔の平均結晶粒径が2〜7μmの範囲内であること。
3) 化学研摩が、過酸化水素を0.5〜10重量%及び硫酸を0.5〜15重量%の濃度 で含有するエッチング液でなされること。
4) 化学研摩後の銅箔層の表面粗度Rzが2.5μm以下であること。
Satisfying one or more of the following in the method for producing a flexible copper-clad laminate gives a more excellent flexible copper-clad laminate.
1) The heat treatment includes a step of holding in a temperature range of 300 to 400 ° C. for 3 minutes to 40 minutes.
2) The average crystal grain size of the copper foil after the heat treatment is in the range of 2 to 7 μm.
3) Chemical polishing is performed with an etching solution containing hydrogen peroxide at a concentration of 0.5 to 10% by weight and sulfuric acid at a concentration of 0.5 to 15% by weight.
4) The surface roughness Rz of the copper foil layer after chemical polishing is 2.5 μm or less.

以下、本発明をその好適な実施形態に即して詳細に説明する。     Hereinafter, the present invention will be described in detail with reference to preferred embodiments thereof.

本発明のフレキシブル銅張積層板の製造方法は、次の工程を有する。
a) 銅箔として、二次イオン質量分析(SIMS)で分析測定した場合、銅ピーク強度50 .0に対して炭素ピーク強度が4.0以下であり、厚みが5μm〜35μmの範囲内にあっ て、熱処理前の銅箔の平均結晶粒径が2μm未満である電解銅箔を用意する工程、
b)用意された銅箔の上にポリイミド前駆体樹脂溶液を塗布し、続く熱処理によって乾燥 及び硬化を行ってポリイミド樹脂層を形成する工程、
c)ポリイミド樹脂層と接していない銅箔層面を化学研摩して、銅箔厚みの10〜90% を除去する工程。
The manufacturing method of the flexible copper clad laminated board of this invention has the following process.
a) When the copper foil is analyzed and measured by secondary ion mass spectrometry (SIMS), the carbon peak intensity is 4.0 or less with respect to the copper peak intensity of 50.0, and the thickness is within the range of 5 μm to 35 μm. Preparing an electrolytic copper foil in which the average crystal grain size of the copper foil before heat treatment is less than 2 μm;
b) a step of applying a polyimide precursor resin solution on the prepared copper foil, followed by drying and curing by heat treatment to form a polyimide resin layer;
c) A step of chemically polishing the copper foil layer surface not in contact with the polyimide resin layer to remove 10 to 90% of the copper foil thickness.

本発明の銅張積層板は、銅箔とポリイミド樹脂層とから構成される。なお、銅箔は銅 張積層板において、銅箔層又は導体層を形成するので、銅箔層又は導体層ともいう。ま た、銅箔は上記工程b)において、熱処理を受けることによりその物性が変化するので、 熱処理前と後の銅箔を区別する必要がある場合は、それぞれ熱処理前の銅箔、熱処後の 銅箔という。     The copper clad laminate of the present invention is composed of a copper foil and a polyimide resin layer. In addition, since copper foil forms a copper foil layer or a conductor layer in a copper clad laminate, it is also referred to as a copper foil layer or a conductor layer. Also, since the physical properties of copper foil change due to heat treatment in step b) above, if it is necessary to distinguish between the copper foil before and after heat treatment, the copper foil before heat treatment and after heat treatment respectively. Called copper foil.

工程a)で用意する銅箔としては、電解銅箔が使用される。電解銅箔は、公知の方法で 製造することができ、硫酸銅を主成分とした電解液から電気分解により析出させて得る ことができる。しかし、熱処理前の銅箔の特性としては、二次イオン質量分析(SIMS) で成分測定した場合、銅ピーク強度50.0に対して炭素ピーク強度が4.0以下である ものであること、及び平均結晶粒径が2μm未満であることが必要である。     As the copper foil prepared in step a), an electrolytic copper foil is used. The electrolytic copper foil can be produced by a known method and can be obtained by electrolysis from an electrolytic solution mainly composed of copper sulfate. However, as a characteristic of the copper foil before the heat treatment, when the component is measured by secondary ion mass spectrometry (SIMS), the carbon peak intensity is 4.0 or less with respect to the copper peak intensity 50.0, And the average crystal grain size must be less than 2 μm.

本発明において定義する銅箔の平均結晶粒径は、銅箔サンプルを用意し、銅箔表面に 物理研磨を施した後、更に酸性の腐食液を用いてエッチングし、これを超深度形状測定 顕微鏡により2,000倍の倍率で観察し、切断法によるASTM粒度測定(ASTM E112)に 準拠して測定される値をいう。このような電解銅箔は、市販の電解銅箔について上記測 定を行うことにより選択可能である。例えば、日本電解株式会社製HL箔や古川サーキッ トフォイル株式会社製WS箔がある。また、二次イオン質量分析(SIMS)による成分測定 は後記する条件による。     The average crystal grain size of the copper foil defined in the present invention is obtained by preparing a copper foil sample, subjecting the copper foil surface to physical polishing, and further etching with an acidic corrosive solution, which is then measured using an ultra-deep shape measurement microscope. Is a value measured in accordance with ASTM particle size measurement (ASTM E112) by the cutting method. Such an electrolytic copper foil can be selected by performing the above measurement on a commercially available electrolytic copper foil. For example, there are HL foil manufactured by Nippon Electrolytic Co., Ltd. and WS foil manufactured by Furukawa Circuit Foil Co., Ltd. Component measurement by secondary ion mass spectrometry (SIMS) depends on the conditions described later.

電解銅箔の屈曲特性を制御する手段として、銅箔が含有する炭素成分と平均結晶粒径 の2つの因子を制御することが重要となる。金属結晶の物理的性質が素材の純度に依存 することは古くから知られており、特に銅結晶中に含有する成分は、それ自身が格子欠 陥としての作用が大きい。銅箔が塑性変形を繰り返すうちに、炭素成分の格子欠陥が徐 々に増加し、格子欠陥の周りが完全結晶ではなくなる、いわゆる加工硬化と呼ばれる現 象が生じ、この加工硬化が進んで、金属疲労による破断が生じる。このため、用意する 銅箔の炭素成分は上記範囲内とする必要がある。この銅箔中の炭素成分は、上記炭素ピ ーク強度として、好ましくは2以下であり、より好ましくは0.1〜1.0である。ま た、平均結晶粒径は2μm以上になると、銅箔自体が柔らかくなり、積層板製造時のハ ンドリングで変形しやすいので、用意する銅箔の平均結晶粒径は上記範囲内とする必要 がある。熱処理前の銅箔の平均結晶粒径は、好ましくは0.5μm以上2μm未満であり 、より好ましくは1.0〜1.5μmの範囲である。また、熱処理を受けると平均結晶粒 径は大きくなる傾向があるが、熱処理後の銅箔の平均結晶粒径は2〜7μm、好ましく は2.5〜5μmの範囲とすることがよい。なお、銅箔中の炭素成分は、熱処理の前後 によってその量は実質的に変化しない。     As a means of controlling the bending characteristics of the electrolytic copper foil, it is important to control two factors including the carbon component contained in the copper foil and the average crystal grain size. It has been known for a long time that the physical properties of metal crystals depend on the purity of the material, and in particular, the components contained in copper crystals themselves have a large effect as lattice defects. As the copper foil repeatedly undergoes plastic deformation, the lattice defects of the carbon component gradually increase, and a so-called work hardening phenomenon occurs in which the periphery of the lattice defects is no longer a complete crystal. Fracture due to fatigue occurs. For this reason, the carbon component of the prepared copper foil needs to be within the above range. The carbon component in the copper foil is preferably 2 or less, more preferably 0.1 to 1.0 as the carbon peak strength. Also, when the average crystal grain size is 2 μm or more, the copper foil itself becomes soft and easily deformed by the handling during the production of the laminate, so the average crystal grain size of the prepared copper foil must be within the above range. is there. The average crystal grain size of the copper foil before the heat treatment is preferably 0.5 μm or more and less than 2 μm, and more preferably in the range of 1.0 to 1.5 μm. Further, when subjected to heat treatment, the average crystal grain size tends to increase, but the average crystal grain size of the copper foil after the heat treatment is preferably in the range of 2 to 7 μm, preferably 2.5 to 5 μm. The amount of carbon component in the copper foil does not substantially change before and after the heat treatment.

使用する銅箔の厚さは5〜35μmの範囲内、好ましくは9〜25μmの範囲内、更 に好ましくは12〜18μmの範囲内である。銅箔の厚みが35μmより大きくなると、 化学研摩による薄肉化に時間がかかる。また、銅箔の厚さが5μm未満であると、積層 板製造時のテンション調整が困難となる。     The thickness of the copper foil used is in the range of 5 to 35 μm, preferably in the range of 9 to 25 μm, and more preferably in the range of 12 to 18 μm. When the thickness of the copper foil exceeds 35 μm, it takes time to reduce the thickness by chemical polishing. Further, if the thickness of the copper foil is less than 5 μm, it is difficult to adjust the tension during the production of the laminate.

工程b)では用意された銅箔の上にポリイミド前駆体樹脂溶液を塗布し、続く熱処理に よってポリイミド樹脂層を形成する。     In step b), a polyimide precursor resin solution is applied on the prepared copper foil, and a polyimide resin layer is formed by subsequent heat treatment.

ポリイミド樹脂及びその前駆体樹脂は、公知のジアミンと酸無水物とを溶媒の存在下 で反応して製造することができる。用いられるジアミンとしては、例えば、4,4'-ジア ミノジフェニルエーテル、2'-メトキシ-4,4'-ジアミノベンズアニリド、1,4-ビス(4- アミノフェノキシ)ベンゼン、1,3-ビス(4-アミノフェノキシ)ベンゼン、2,2'-ビス [4-(4-アミノフェノキシ)フェニル]プロパン、2,2'-ジメチル-4,4'-ジアミノビフェニ ル、3,3'-ジヒドロキシ-4,4'-ジアミノビフェニル、4,4'-ジアミノベンズアニリド等が 挙げられる。また、酸無水物としては、例えば、無水ピロメリット酸、3,3',4,4'-ビ フェニルテトラカルボン酸二無水物、3,3',4,4'-ジフェニルスルフォンテトラカルボン 酸二無水物、4,4'-オキシジフタル酸無水物が挙げられる。ジアミン及び酸無水物は、 1種又は2種以上を使用することもできる。     The polyimide resin and its precursor resin can be produced by reacting a known diamine and an acid anhydride in the presence of a solvent. Examples of the diamine used include 4,4′-diaminodiphenyl ether, 2′-methoxy-4,4′-diaminobenzanilide, 1,4-bis (4-aminophenoxy) benzene, 1,3-bis ( 4-Aminophenoxy) benzene, 2,2'-bis [4- (4-aminophenoxy) phenyl] propane, 2,2'-dimethyl-4,4'-diaminobiphenyl, 3,3'-dihydroxy-4 4,4'-diaminobiphenyl, 4,4'-diaminobenzanilide and the like. Examples of the acid anhydride include pyromellitic anhydride, 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride, 3,3 ′, 4,4′-diphenylsulfonetetracarboxylic acid diacid, and the like. Anhydrides and 4,4'-oxydiphthalic anhydride are mentioned. Diamine and an acid anhydride can also use 1 type (s) or 2 or more types.

また、この反応は有機溶媒中で行わせることが好ましく、このような有機溶媒として は特に限定されないが、具体的には、ジメチルスルフォキシド、N,N−ジメチルホルム アミド、N,N−ジメチルアセトアミド、N−メチル−2−ピロリドン、ヘキサメチルホ スホルムアミド、フェノール、クレゾール、γ−ブチロラクトン等が挙げられ、これら は単独で又は混合して用いることができる。また、このような有機溶媒の使用量として は特に制限されるものではないが、重合反応よって得られる前駆体樹脂(ポリアミック 酸)溶液の濃度が5〜30重量%程度になるような使用量に調整して用いることが好ま しい。     In addition, this reaction is preferably carried out in an organic solvent, and such an organic solvent is not particularly limited. Specifically, dimethyl sulfoxide, N, N-dimethylformamide, N, N-dimethyl is used. Examples include acetamide, N-methyl-2-pyrrolidone, hexamethylformamide, phenol, cresol, and γ-butyrolactone, and these can be used alone or in combination. Further, the amount of such organic solvent used is not particularly limited, but the amount used is such that the concentration of the precursor resin (polyamic acid) solution obtained by the polymerization reaction is about 5 to 30% by weight. It is preferable to use it after adjusting.

ポリイミド前駆体樹脂溶液を塗布する方法は特に制限されず、コンマ、ダイ、ナイフ 、リップ等のコーターにて塗布することが可能である。この塗布工程では、重合された 前駆体樹脂溶液の粘度を500〜35,000cpsの範囲とすることが好ましい。     The method for applying the polyimide precursor resin solution is not particularly limited, and the polyimide precursor resin solution can be applied with a coater such as a comma, die, knife, or lip. In this coating step, it is preferable that the polymerized precursor resin solution has a viscosity in the range of 500 to 35,000 cps.

塗布されたポリイミド前駆体樹脂層は、続く熱処理工程で乾燥、硬化(イミド化)さ れる。この場合の熱処理条件は100〜400℃の温度範囲で計10〜40分程度行う ことができるが、本発明においては、160℃以下で溶媒を乾燥させた後に、銅箔の屈 曲特性を制御するために、少なくとも300℃〜400℃の温度範囲で3〜40分保持 することが好ましい。より好ましい保持条件は、310〜390℃の温度範囲で5〜3 0分、更に好ましくは、320〜380℃の温度範囲で7〜20分の範囲である。熱処 理における保持条件を上記範囲内とすることで、銅張積層板としての屈曲特性を向上さ せることができる。     The applied polyimide precursor resin layer is dried and cured (imidized) in the subsequent heat treatment step. In this case, the heat treatment can be performed in a temperature range of 100 to 400 ° C. for about 10 to 40 minutes. In the present invention, after the solvent is dried at 160 ° C. or less, the bending characteristics of the copper foil are controlled. In order to achieve this, it is preferable to hold for at least 3 to 40 minutes in the temperature range of 300 to 400 ° C. A more preferable holding condition is 5 to 30 minutes in a temperature range of 310 to 390 ° C, and more preferably 7 to 20 minutes in a temperature range of 320 to 380 ° C. By setting the holding conditions in the heat treatment within the above range, the bending characteristics as a copper clad laminate can be improved.

ここで、銅張積層板のポリイミド樹脂層は、単層のみから形成されるものでも、複数 層からなるものでもよい。ポリイミド樹脂層を複数層とする場合、異なる構成成分から なるポリイミド前駆体樹脂層の上に他のポリイミド前駆体樹脂を順次塗布して形成する ことができる。ポリイミド樹脂層が3層以上からなる場合、同一の構成のポリイミド樹 脂を2回以上使用してもよい。     Here, the polyimide resin layer of the copper clad laminate may be formed of only a single layer or may be formed of a plurality of layers. In the case where a plurality of polyimide resin layers are used, other polyimide precursor resins can be sequentially applied and formed on polyimide precursor resin layers made of different components. When the polyimide resin layer is composed of three or more layers, the polyimide resin having the same configuration may be used twice or more.

上記ポリイミド樹脂層は、単層、複数層いずれの場合であっても、熱線膨張係数が3 0ppm/K未満、有利には5ppm/K〜25ppm/Kの範囲にある低熱膨張性ポリイミド樹脂層 を有することが好ましい。そして、この低熱膨張性ポリイミド樹脂層のいずれか一方又 は両面の面にガラス転移温度が400℃以下、好ましくは250〜380℃、更に好ま しくは300〜350℃の範囲にある熱可塑性ポリイミド樹脂層を設けることが好まし い。     Whether the polyimide resin layer is a single layer or a plurality of layers, a low thermal expansion polyimide resin layer having a thermal expansion coefficient of less than 30 ppm / K, preferably in the range of 5 ppm / K to 25 ppm / K. It is preferable to have. A thermoplastic polyimide resin having a glass transition temperature of 400 ° C. or lower, preferably 250 to 380 ° C., more preferably 300 to 350 ° C. on one or both surfaces of the low thermal expansion polyimide resin layer. It is preferable to provide a layer.

ここで、上記低熱膨張性ポリイミド樹脂としては、下記一般式(1)で表される構造 単位を主たる構成単位とすることが好ましい。     Here, as the low thermal expansion polyimide resin, a structural unit represented by the following general formula (1) is preferably used as a main structural unit.

Figure 2008143032

但し、Ar1は式(2)又は式(3)で表される4価の芳香族基を示し、Ar3は式(4) 又は式(5)で表される2価の芳香族基を示し、qは構成単位の存在モル比を示し、 0.1〜1.0の範囲である。
Figure 2008143032

However, Ar < 1 > shows the tetravalent aromatic group represented by Formula (2) or Formula (3), and Ar < 3 > represents the divalent aromatic group represented by Formula (4) or Formula (5). Q represents the molar ratio of the constituent units and is in the range of 0.1 to 1.0.

Figure 2008143032

但し、R1は独立に炭素数1〜6の1価の炭化水素基又はアルコキシ基を示し、X及 びYは独立に、単結合又は炭素数1〜15の2価の炭化水素基、O、S、CO、SO、SO2若し くはCONHから選ばれる2価の基を示し、nは独立に0〜4の整数を示す。
Figure 2008143032

Provided that R 1 independently represents a monovalent hydrocarbon group or alkoxy group having 1 to 6 carbon atoms, and X and Y independently represent a single bond or a divalent hydrocarbon group having 1 to 15 carbon atoms, O , S, CO, SO, SO 2 or a divalent group selected from CONH, and n independently represents an integer of 0 to 4.

熱可塑性ポリイミド樹脂も、公知のジアミンと公知の酸無水物をそれぞれ1種以上適 宜組み合わせて使用することで得ることができる。熱可塑性ポリイミド樹脂層は、ガラ ス転位温度が、400℃以下であることが好ましく、より好ましくは250〜380℃ 、更に好ましくは300〜350℃の範囲にあると同時に熱膨張係数が30ppm/K以上 であることが好ましい。ここで、熱膨張係数は、サーモメカニカルアナライザーを用い て測定される100℃から250℃の平均線熱膨張係数の値を指し、また、ガラス転移 温度は、動的粘弾性測定装置によって測定される損失弾性率のピーク値を指す。     A thermoplastic polyimide resin can also be obtained by using one or more known diamines and known acid anhydrides in appropriate combination. The thermoplastic polyimide resin layer preferably has a glass transition temperature of 400 ° C. or less, more preferably 250 to 380 ° C., and still more preferably 300 to 350 ° C., and a thermal expansion coefficient of 30 ppm / K. The above is preferable. Here, the thermal expansion coefficient refers to a value of an average linear thermal expansion coefficient of 100 ° C. to 250 ° C. measured using a thermomechanical analyzer, and the glass transition temperature is measured by a dynamic viscoelasticity measuring apparatus. The peak value of loss modulus.

ポリイミド樹脂層の総厚みは、15〜50μmの範囲にあることが好ましく、更に好 ましくは20〜40μmの範囲にあることがよい。ポリイミド樹脂層を低熱膨張性ポリ イミド樹脂層と熱可塑性ポリイミド樹脂層とで構成する場合、その合計厚みの1/2以 上、有利には2/3〜9/10は低熱膨張性ポリイミド樹脂層で構成することがよい。 また、耐熱性や寸法安定性の観点から、熱可塑性ポリイミド樹脂層の一層の厚みは、5 μm以下、有利には1〜4μmの範囲にあることがよい。     The total thickness of the polyimide resin layer is preferably in the range of 15 to 50 μm, and more preferably in the range of 20 to 40 μm. When the polyimide resin layer is composed of a low thermal expansion polyimide resin layer and a thermoplastic polyimide resin layer, the total thickness is 1/2 or more, preferably 2/3 to 9/10 is a low thermal expansion polyimide resin layer. It is good to comprise. Further, from the viewpoint of heat resistance and dimensional stability, the thickness of one layer of the thermoplastic polyimide resin layer is preferably 5 μm or less, more preferably in the range of 1 to 4 μm.

有利には、ポリイミド樹脂層全体としての熱線膨張係数が30ppm/K未満、好ましく は5〜25ppm/Kの範囲とすることがよい。また、熱処理後の銅箔の平均結晶粒径が2 μm〜7μm、好ましくは3〜6μmの範囲内となるように熱処理することがよい。     Advantageously, the thermal expansion coefficient of the entire polyimide resin layer should be less than 30 ppm / K, preferably in the range of 5-25 ppm / K. Moreover, it is good to heat-process so that the average crystal grain diameter of the copper foil after heat processing may become in the range of 2 micrometers-7 micrometers, Preferably it is 3-6 micrometers.

上記工程b)では、銅箔上にポリイミド樹脂層が設けられた積層体が得られる。そこで 、工程c)では、絶縁層と接していない銅箔面を、エッチング液で化学研磨することによ って、銅箔の一部を除去して銅箔厚みを薄くして本発明の銅張積層体とする。エッチン グ液としては、過酸化水素0.5〜10重量%及び硫酸0.5〜15重量%を含有すエッ チング液が好ましい。銅箔の除去は、銅箔厚みの10〜90%、好ましくは20〜75 %、更に好ましくは40〜70%を除去することがよい。そして、銅箔の厚さは3〜 18μm、好ましくは5〜12μmとすることがよい。銅箔の厚さが18μmよりも大き くなると、耐屈曲性が低くなるばかりでなく、回路での微細加工が困難となる。銅箔の 厚さが3μm未満になると、回路の耐エレクトロマイグレーション性が劣る。化学研磨 後の化学研磨面の銅箔の表面粗度(Rz)は十点平均粗さで2.5μm以下、好ましくは 1.5μm以下、更に好ましくは1.0μm以下とすることがよい。より好ましくは0.5 〜1.0μmの範囲以下とすることがよい。銅箔の表面粗度が2.5μmよりも大きくな ると、回路での微細加工が困難となる。     In the step b), a laminate in which a polyimide resin layer is provided on the copper foil is obtained. Therefore, in step c), the copper foil surface not in contact with the insulating layer is chemically polished with an etching solution to remove a part of the copper foil and reduce the thickness of the copper foil. A stretched laminate. As the etching solution, an etching solution containing 0.5 to 10% by weight of hydrogen peroxide and 0.5 to 15% by weight of sulfuric acid is preferable. The removal of the copper foil may remove 10 to 90%, preferably 20 to 75%, more preferably 40 to 70% of the copper foil thickness. The thickness of the copper foil is 3 to 18 μm, preferably 5 to 12 μm. When the thickness of the copper foil is larger than 18 μm, not only the bending resistance is lowered, but also fine processing in the circuit becomes difficult. When the copper foil thickness is less than 3 μm, the electromigration resistance of the circuit is poor. The surface roughness (Rz) of the copper foil on the chemically polished surface after chemical polishing is a 10-point average roughness of 2.5 μm or less, preferably 1.5 μm or less, and more preferably 1.0 μm or less. More preferably, it is good to set it as 0.5-1.0 micrometer or less. When the surface roughness of the copper foil is larger than 2.5 μm, it becomes difficult to finely process the circuit.

また、銅箔のポリイミド樹脂層側の表面粗度は特に限定されるものではないが、特に 、フレキシブル銅張積層板が15〜40μmピッチの微細回路幅の用途(例えば、FPC) に適用される場合、ポリイミド樹脂層側の表面粗度(Rz)は1.5μm以下が好ましく、 より好ましくは0.1〜1.5μmの範囲、更に好ましくは0.5〜1.0μmの範囲がよ い。     Moreover, the surface roughness of the polyimide resin layer side of the copper foil is not particularly limited, but in particular, the flexible copper-clad laminate is applied to applications with a fine circuit width of 15 to 40 μm pitch (for example, FPC). In this case, the surface roughness (Rz) on the polyimide resin layer side is preferably 1.5 μm or less, more preferably in the range of 0.1 to 1.5 μm, and still more preferably in the range of 0.5 to 1.0 μm.

本発明によって製造される銅張積層板は、銅箔層をポリイミド樹脂層の片面に有する 片面銅張積層板である。本発明によって製造される銅張積層板からは、銅箔層を両面に 有する両面銅張積層板を得ることもできる。両面銅張積層板は、例えば上記2組の銅張 積層板を準備し、樹脂層側面を向かい合わせ、熱プレスにより圧着する方法によって製 造することができる。この場合、その間にポリイミドフィルムを挟んで加熱圧着する方 法も好ましい。なお、熱プレスにより圧着する場合、ここで上記熱処理と同等以上の熱 を受けるときは、熱処理と熱プレスの合計の時間を上記範囲内に収めることがよい。     The copper clad laminate produced according to the present invention is a single-sided copper clad laminate having a copper foil layer on one side of a polyimide resin layer. From the copper clad laminate produced according to the present invention, a double-sided copper clad laminate having a copper foil layer on both sides can also be obtained. The double-sided copper-clad laminate can be manufactured, for example, by preparing the above-mentioned two sets of copper-clad laminates, facing the resin layer side-by-side, and press-bonding with a hot press. In this case, a method of thermocompression bonding with a polyimide film interposed therebetween is also preferable. In addition, when press-bonding by hot pressing, when receiving heat equal to or higher than that of the heat treatment, the total time of heat treatment and hot pressing should be within the above range.

屈曲性に優れる不純物の低減した電解銅箔をベースに、導体と絶縁体の間の接着力が 高く、耐エレクトロマイグレーション性に優れ、30μmピッチ以下の微細加工が可能 で、かつ、耐屈曲性に優れる銅張積層体が得られる。これによりフレキシブルプリント 基板用のCOF用途として有効に利用できる。また、圧延銅箔に比べて高導電性の電解 銅箔を使用することで、微細回路での電気抵抗を低く抑えることができる。     Based on electrolytic copper foil with reduced impurities and excellent flexibility, it has high adhesion between conductors and insulators, excellent electromigration resistance, fine processing of 30μm pitch or less, and high bending resistance. An excellent copper clad laminate is obtained. As a result, it can be effectively used as a COF application for flexible printed circuit boards. In addition, by using electrolytic copper foil with higher conductivity than rolled copper foil, the electrical resistance in the fine circuit can be kept low.

以下、本発明を実施例により更に詳細に説明するが、本発明はこれに限定されるもの ではない。なお、以下の実施例において、特に断りのない限り各種評価は下記によるも のである。     Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited thereto. In the following examples, unless otherwise specified, various evaluations are as follows.

1)二次イオン質量分析(SIMS)による炭素成分の測定
各実施例及び比較例で得られた銅張積層板を、CAMECA社製のIMS−4Fにより、銅箔 の塗工面側に一次イオンとして、Cs+を14.5KeV、50nAの強さで、100μm2の領 域に照射し、そこから放出される銅と炭素の二次イオン(負イオン)を60μmφの測 定範囲内について、各1秒ずつ強度を計測した。
1) Measurement of carbon component by secondary ion mass spectrometry (SIMS) The copper-clad laminate obtained in each Example and Comparative Example was used as primary ions on the coated surface side of the copper foil using IMS-4F manufactured by CAMECA. , Cs + is irradiated at an intensity of 14.5 KeV and 50 nA in a region of 100 μm 2 , and copper and carbon secondary ions (negative ions) emitted from the region are 1 second each within a measurement range of 60 μmφ. The intensity was measured one by one.

2)銅箔の結晶粒径の測定
用意した銅箔については、(株)キーエンス社製の超深度形状測定顕微鏡VK8500 により2,000倍の倍率で観察し、切断法によるASTM粒度測定(ASTM E112)に準拠し た方法を用いて、平均の結晶粒径を求めた。また、各実施例及び比較例で得られた銅張 積層板の銅箔については、これらの銅箔表面に物理研磨を施した後、更に酸性の腐食液 を用いてエッチングし、これを上記と同様にして平均の結晶粒径を求めた。
2) Measurement of crystal grain size of copper foil The prepared copper foil was observed at a magnification of 2,000 times with an ultra-deep shape measurement microscope VK8500 manufactured by Keyence Corporation, and ASTM particle size measurement by a cutting method (ASTM E112 ) Was used to determine the average crystal grain size. Moreover, about the copper foil of the copper clad laminated board obtained by each Example and the comparative example, after performing physical grinding | polishing to these copper foil surfaces, it etched using acidic corrosive liquid, and this was set as above. Similarly, the average crystal grain size was determined.

3)MIT屈曲試験方法
屈曲試験サンプルは、銅張積層板を各屈曲試験用に回路加工して、回路が形成された 面に12μm厚のポリイミドフィルムに15μmのエポキシ系接着剤層が設けられた市販 のカバー材を回路形成面と接着剤層とが向かい合わさるようにし、40kgf/cm2の圧力 、160℃、60分間の条件で高温真空プレス機を用いて熱圧着させて得た。以下、試 験片と呼ぶ。
(株)東洋精機製作所製のMIT屈曲試験装置により、下記条件下で屈曲を繰り返し、 試験片が断線するまでの回数を屈曲回数として求めた。
試験片幅:9mm、試験片長さ:90mm、回路幅/絶縁幅=150μm/200μm、試 験片採取方向:試験片の長さが機械方向と平行になるように採取、屈曲半径r2= 0. 8mm、振動ストローク=20mm、振動速度:1500回/分、おもりの重250g、折 り曲げ角度=90±2°の条件で試験を行った。
3) MIT bending test method The bending test sample was obtained by processing a copper-clad laminate for each bending test and providing a 15 μm epoxy adhesive layer on a 12 μm thick polyimide film on the surface on which the circuit was formed. A commercially available cover material was obtained by thermocompression bonding using a high-temperature vacuum press machine under conditions of a pressure of 40 kgf / cm 2 and a temperature of 160 ° C. for 60 minutes so that the circuit forming surface and the adhesive layer face each other. In the following, this is called a test piece.
Using the MIT bending test apparatus manufactured by Toyo Seiki Seisakusho, bending was repeated under the following conditions, and the number of times until the test piece was disconnected was determined as the number of bendings.
Specimen width: 9 mm, Specimen length: 90 mm, Circuit width / Insulation width = 150 μm / 200 μm, Specimen sampling direction: Specimen sample length is parallel to the machine direction, bending radius r2 = 0. The test was performed under the conditions of 8 mm, vibration stroke = 20 mm, vibration speed: 1500 times / minute, weight of weight 250 g, bending angle = 90 ± 2 °.

4)銅箔の表面粗度の測定
超深度形状測定顕微鏡(KEYENCE製、VK−8500)を用いて、2,000倍で銅箔 面の長さ方向に140μm測定した。
4) Measurement of surface roughness of copper foil Using an ultra-deep shape measuring microscope (manufactured by KEYENCE, VK-8500), it was measured at a magnification of 2,000 and 140 μm in the length direction of the copper foil surface.

5)ガラス転移温度の測定
粘弾性アナライザー(レオメトリックサイエンスエフィー株式会社製RSA-II)にて、 合成例から得られたポリイミドフィルムを10mm幅のサンプルとして用い、1Hzの振動 を与えながら、室温から400℃まで10℃/分の速度で昇温した際の動的粘弾性を測 定し、ガラス転移温度(損失正接(Tanδ)の極大値)を求めた。
5) Measurement of glass transition temperature Using a viscoelasticity analyzer (RSA-II, manufactured by Rheometric Science Effy Co., Ltd.), the polyimide film obtained from the synthesis example was used as a 10 mm wide sample, and a 1 Hz vibration was applied from room temperature. The dynamic viscoelasticity when the temperature was raised to 400 ° C. at a rate of 10 ° C./min was measured to determine the glass transition temperature (maximum value of loss tangent (Tan δ)).

6)熱線膨張係数の測定
サーモメカニカルアナライザー(セイコーインスツルメンツ社製)にて、合成例で得 られたポリイミドフィルムを250℃まで昇温し、更にその温度で10分保持した後、 5℃/分の速度で冷却し、240℃から100℃までのポリイミドフィルムの寸法変化 から平均の熱線膨張係数を求めた。
6) Measurement of the coefficient of thermal expansion The temperature of the polyimide film obtained in the synthesis example was raised to 250 ° C. with a thermomechanical analyzer (manufactured by Seiko Instruments Inc.) and held at that temperature for 10 minutes, and then 5 ° C./min. It cooled at the speed | rate and calculated | required the average thermal linear expansion coefficient from the dimensional change of the polyimide film from 240 degreeC to 100 degreeC.

合成例1
反応容器に、N,N-ジメチルアセトアミドを入れる。この反応容器に4,4'-ジアミノ-2 '-メトキシベンズアニリド(MABA)を容器中で撹拌しながら溶解させた。次に、無水ピロ メリット酸(PMDA)及び4,4'-ジアミノジフェニルエーテル(DAPE)を加えた。モノマーの 投入総量が15wt%で、各ジアミンのモル比率は、MABA:DAPE、60:40となるよう 投入した。その後、3時間撹拌を続けて重合反応を行い、粘稠なポリイミド前駆体樹脂 液aを得た。また、本合成例によって得られたポリイミド前駆体樹脂液aを、ポリイミ ド樹脂フィルムとし、その熱線膨張係数を測定したところ、15ppm/Kであった。
Synthesis example 1
N, N-dimethylacetamide is placed in a reaction vessel. In this reaction vessel, 4,4′-diamino-2′-methoxybenzanilide (MABA) was dissolved in the vessel with stirring. Next, pyromellitic anhydride (PMDA) and 4,4′-diaminodiphenyl ether (DAPE) were added. The total amount of monomers was 15 wt%, and the molar ratio of each diamine was MABA: DAPE, 60:40. Thereafter, stirring was continued for 3 hours to carry out a polymerization reaction to obtain a viscous polyimide precursor resin liquid a. Further, the polyimide precursor resin liquid a obtained in this synthesis example was used as a polyimide resin film, and the coefficient of thermal expansion was measured, and it was 15 ppm / K.

合成例2
反応容器に、N,N-ジメチルアセトアミドを入れる。この反応容器に2,2'ビス[4-(4- アミノフェノキシ)フェニル]プロパン(BAPP)及び1,4-ビス(4-アミノフェノキシ)ベ ンゼン(TPE-Q)を容器中で撹拌しながら溶解させた。次に、BPDA及びPMDAを加えた。モ ノマーの投入総量が15wt%で、各ジアミンのモル比率は、BAPP:TPE-Q、80:20と なるよう投入した。その後、3時間撹拌を続けて重合反応を行い、粘稠なポリイミド前 駆体樹脂液bを得た。また、本合成例によって得られたポリイミド前駆体樹脂液bをイミ ド化してガラス転移温度を測定したところ、319℃であった。
Synthesis example 2
N, N-dimethylacetamide is placed in a reaction vessel. In this reaction vessel, 2,2′bis [4- (4-aminophenoxy) phenyl] propane (BAPP) and 1,4-bis (4-aminophenoxy) benzene (TPE-Q) were stirred in the vessel. Dissolved. Next, BPDA and PMDA were added. The total amount of monomers introduced was 15 wt%, and the molar ratio of each diamine was BAPP: TPE-Q, 80:20. Thereafter, stirring was continued for 3 hours to carry out a polymerization reaction to obtain a viscous polyimide precursor resin liquid b. Further, the polyimide precursor resin liquid b obtained in this synthesis example was converted into an imide and the glass transition temperature was measured.

銅張積層板の作製にあたり、下記3種類の銅箔を準備した。なお、炭素ピーク強度は 、SIMSによる銅ピーク強度50.0に対する強度である。また、研磨面側Rzは、化学研 磨する側の表面粗度Rzである。
1)銅箔1:電解銅箔、厚み12μm、炭素ピーク強度0.29、熱処理前の平均結晶粒 径1.0μm、絶縁層側Rz0.6μm、研磨面側Rz0.7μm
2)銅箔2:電解銅箔、厚み12μm、炭素ピーク強度0.58、熱処理前の平均結晶粒 径1.2μm、絶縁層側Rz1.3μm、研磨面側Rz0.9μm
3)銅箔3:電解銅箔、厚み12μm、炭素ピーク強度8.25、熱処理前の平均結晶粒 径1.2μm、絶縁層側Rz0.8μm、研磨面側Rz1.7μm、三井金属株式会社製 VLP箔
In producing the copper-clad laminate, the following three types of copper foils were prepared. The carbon peak intensity is an intensity with respect to the copper peak intensity of 50.0 by SIMS. The polished surface side Rz is the surface roughness Rz on the side subjected to chemical polishing.
1) Copper foil 1: electrolytic copper foil, thickness 12 μm, carbon peak intensity 0.29, average crystal grain diameter 1.0 μm before heat treatment, insulating layer side Rz 0.6 μm, polished surface side Rz 0.7 μm
2) Copper foil 2: electrolytic copper foil, thickness 12 μm, carbon peak intensity 0.58, average crystal grain size before heat treatment 1.2 μm, insulating layer side Rz 1.3 μm, polished surface side Rz 0.9 μm
3) Copper foil 3: electrolytic copper foil, thickness 12 μm, carbon peak intensity 8.25, average crystal grain size before heat treatment 1.2 μm, insulating layer side Rz 0.8 μm, polished surface side Rz 1.7 μm, manufactured by Mitsui Kinzoku Co., Ltd. VLP foil

中間体の積層体の化学研摩に使用するエッチング液は下記のものを用意した。
エッチング液:過酸化水素/硫酸系化学研摩液(硫酸濃度20g/L、過酸化水素濃度 80g/L)
The following etching solutions were used for chemical polishing of the intermediate laminate.
Etching solution: Hydrogen peroxide / sulfuric acid based chemical polishing solution (sulfuric acid concentration 20 g / L, hydrogen peroxide concentration 80 g / L)

銅箔として銅箔1を使用した。この銅箔上に合成例2で得られたポリイミド前駆体樹 脂液bを硬化後の厚みが約2μmとなるように均一に塗布したのち、130℃で加熱乾燥 し溶媒を除去した。次に、その上に積層するように合成例1で調整したポリイミド前駆 体樹脂aを硬化後の厚みが約35μmとなるように均一に塗布し、135℃で加熱乾燥し 溶媒を除去した。更にこのポリイミド前駆体樹脂層上にポリイミド前駆体樹脂液bを硬 化後の厚みが約3μmとなるように均一に塗布し、130℃で加熱乾燥し溶媒を除去し た。
この積層体を、その後130℃から380℃まで10分かけて段階的に昇温された熱 処理工程を経由させ、ポリイミド樹脂層の厚みが40μmである中間体の積層体を得た 。この際、最高加熱温度は380℃であり、この温度で6分の熱処理を行った。300 ℃から380℃の温度範囲における合計の保持時間は、約10分である。この熱処理後 の銅箔の平均結晶粒径は4.0μmであった。
この中間体の積層体の銅箔層をエッチング液で化学研摩して、銅箔層が8.0μmにな るようにして、銅張積層板Aを得た。このようにして得られた銅張積層板Aにおいて、銅 箔層の化学研磨面側の表面粗度Rzは0.8μmであった。
Copper foil 1 was used as the copper foil. On the copper foil, the polyimide precursor resin solution b obtained in Synthesis Example 2 was uniformly applied so that the thickness after curing was about 2 μm, and then dried by heating at 130 ° C. to remove the solvent. Next, the polyimide precursor resin a prepared in Synthesis Example 1 so as to be laminated thereon was uniformly applied so as to have a thickness after curing of about 35 μm, and dried by heating at 135 ° C. to remove the solvent. Further, the polyimide precursor resin liquid b was uniformly applied onto the polyimide precursor resin layer so that the thickness after curing was about 3 μm, and the solvent was removed by heating and drying at 130 ° C.
This laminated body was then passed through a heat treatment step in which the temperature was raised stepwise from 130 ° C. to 380 ° C. over 10 minutes to obtain an intermediate laminated body having a polyimide resin layer thickness of 40 μm. At this time, the maximum heating temperature was 380 ° C., and heat treatment was performed at this temperature for 6 minutes. The total holding time in the temperature range of 300 ° C. to 380 ° C. is about 10 minutes. The average crystal grain size of the copper foil after the heat treatment was 4.0 μm.
The copper foil layer of the intermediate laminate was chemically polished with an etching solution to obtain a copper clad laminate A so that the copper foil layer became 8.0 μm. In the copper clad laminate A thus obtained, the surface roughness Rz on the chemical polishing surface side of the copper foil layer was 0.8 μm.

銅箔として、銅箔2を使用し、実施例1と同様にポリイミド樹脂層の厚みが40μm である中間体の積層体を得た。この中間体の積層体の銅箔層を、実施例1と同様にして 、化学研摩を行い、銅張積層板Bを得た。なお、得られた銅張積層板Bの銅箔の平均結晶 粒径は、3.0μmであり、化学研磨面側の表面粗度Rzは0.6μmであった。     The copper foil 2 was used as the copper foil, and an intermediate laminate having a polyimide resin layer thickness of 40 μm was obtained in the same manner as in Example 1. The copper foil layer of this intermediate laminate was subjected to chemical polishing in the same manner as in Example 1 to obtain a copper clad laminate B. The average crystal grain size of the copper foil of the obtained copper clad laminate B was 3.0 μm, and the surface roughness Rz on the chemically polished surface side was 0.6 μm.

比較例1
銅箔として、銅箔3を使用し、実施例1と同様にポリイミド樹脂層の厚みが40μm である中間体の積層体を得た。この中間体の積層体の銅箔層を、実施例1と同様にして 、化学研摩を行い、銅張積層板Dを得た。なお、得られた銅張積層板Dの銅箔の平均結晶 粒径は、1.3μmであり、化学研磨面側の銅箔層の表面粗度Rzは1.0μmであった。
Comparative Example 1
The copper foil 3 was used as the copper foil, and an intermediate laminate having a polyimide resin layer thickness of 40 μm was obtained in the same manner as in Example 1. The copper foil layer of this intermediate laminate was subjected to chemical polishing in the same manner as in Example 1 to obtain a copper clad laminate D. In addition, the average crystal grain size of the copper foil of the obtained copper-clad laminate D was 1.3 μm, and the surface roughness Rz of the copper foil layer on the chemically polished surface side was 1.0 μm.

以上の結果をまとめて表1に示す。     The above results are summarized in Table 1.

Figure 2008143032
Figure 2008143032

Claims (5)

銅箔層の一方の面にポリイミド樹脂層が形成された銅張積層板の製造方法において、
銅箔として、二次イオン質量分析(SIMS)で分析測定した場合、銅ピーク強度50.0 に対して炭素ピーク強度が4.0以下であり、厚みが5μm〜35μmの範囲内にあって 、熱処理前の銅箔の平均結晶粒径が2μm未満である電解銅箔を用意する工程と、用意 された銅箔の上にポリイミド前駆体樹脂溶液を塗布し、続く熱処理によって乾燥及び硬 化を行ってポリイミド樹脂層を形成する工程と、
ポリイミド樹脂層と接していない銅箔層面を化学研摩して、銅箔厚み10〜90%を除 去する工程とを含むことを特徴とするフレキシブル銅張積層板の製造方法。
In the method for producing a copper clad laminate in which a polyimide resin layer is formed on one surface of the copper foil layer,
When the copper foil is analyzed and measured by secondary ion mass spectrometry (SIMS), the carbon peak intensity is 4.0 or less with respect to the copper peak intensity 50.0, and the thickness is in the range of 5 μm to 35 μm. A step of preparing an electrolytic copper foil in which the average crystal grain size of the copper foil before heat treatment is less than 2 μm, and applying a polyimide precursor resin solution on the prepared copper foil, followed by drying and hardening by heat treatment Forming a polyimide resin layer,
And a step of chemically polishing a copper foil layer surface not in contact with the polyimide resin layer to remove the copper foil thickness of 10 to 90%.
熱処理が、300〜400℃の温度範囲で3分〜40分保持する工程を含むことを特 徴とする請求項1記載のフレキシブル銅張積層板の製造方法。     The method for producing a flexible copper-clad laminate according to claim 1, wherein the heat treatment includes a step of holding for 3 to 40 minutes in a temperature range of 300 to 400 ° C. 熱処理後の銅箔の平均結晶粒径が2〜7μmの範囲内であることを特徴とする請求項 1又は2記載のフレキシブル銅張積層板の製造方法。     The method for producing a flexible copper-clad laminate according to claim 1 or 2, wherein the average crystal grain size of the copper foil after heat treatment is in the range of 2 to 7 µm. 化学研摩が、過酸化水素を0.5〜10重量%及び硫酸を0.5〜15重量%の濃度で 含有するエッチング液でなされることを特徴する請求項1〜3のいずれかに記載のフレ キシブル銅張積層板の製造方法。     The chemical polishing is performed with an etching solution containing hydrogen peroxide at a concentration of 0.5 to 10% by weight and sulfuric acid at a concentration of 0.5 to 15% by weight. A method for producing a flexible copper-clad laminate. 化学研摩後の銅箔層の表面粗度Rzが2.5μm以下であることを特徴とする請求項1〜 4のいずれかに記載のフレキシブル銅張積層板の製造方法。     The method for producing a flexible copper-clad laminate according to any one of claims 1 to 4, wherein the surface roughness Rz of the copper foil layer after chemical polishing is 2.5 µm or less.
JP2006333174A 2006-12-11 2006-12-11 Method for producing flexible copper-clad laminate Active JP4823884B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006333174A JP4823884B2 (en) 2006-12-11 2006-12-11 Method for producing flexible copper-clad laminate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006333174A JP4823884B2 (en) 2006-12-11 2006-12-11 Method for producing flexible copper-clad laminate

Publications (2)

Publication Number Publication Date
JP2008143032A true JP2008143032A (en) 2008-06-26
JP4823884B2 JP4823884B2 (en) 2011-11-24

Family

ID=39603728

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006333174A Active JP4823884B2 (en) 2006-12-11 2006-12-11 Method for producing flexible copper-clad laminate

Country Status (1)

Country Link
JP (1) JP4823884B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101066075B1 (en) 2009-05-15 2011-09-20 한국생산기술연구원 Method for forming fine pattern of printed circuit board using fine structure of copper foil

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0360183A (en) * 1989-07-28 1991-03-15 Mitsubishi Gas Chem Co Inc Manufacture of circuit board covered with thin copper foil
JPH09272994A (en) * 1996-04-05 1997-10-21 Furukawa Electric Co Ltd:The Electrolytic copper foil for fine pattern
JP2004292734A (en) * 2003-03-28 2004-10-21 Mitsui Chemicals Inc Polyimide composition and polyimide/metal laminate
JP2005319633A (en) * 2004-05-07 2005-11-17 Shin Etsu Chem Co Ltd Method for manufacturing flexible copper clad laminated sheet
WO2006068000A1 (en) * 2004-12-22 2006-06-29 Nippon Steel Chemical Co., Ltd. Stacked body for cof substrate, method for manufacturing such stacked body for cof substrate, and cof film carrier tape formed by using such stacked body for cof substrate

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0360183A (en) * 1989-07-28 1991-03-15 Mitsubishi Gas Chem Co Inc Manufacture of circuit board covered with thin copper foil
JPH09272994A (en) * 1996-04-05 1997-10-21 Furukawa Electric Co Ltd:The Electrolytic copper foil for fine pattern
JP2004292734A (en) * 2003-03-28 2004-10-21 Mitsui Chemicals Inc Polyimide composition and polyimide/metal laminate
JP2005319633A (en) * 2004-05-07 2005-11-17 Shin Etsu Chem Co Ltd Method for manufacturing flexible copper clad laminated sheet
WO2006068000A1 (en) * 2004-12-22 2006-06-29 Nippon Steel Chemical Co., Ltd. Stacked body for cof substrate, method for manufacturing such stacked body for cof substrate, and cof film carrier tape formed by using such stacked body for cof substrate

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101066075B1 (en) 2009-05-15 2011-09-20 한국생산기술연구원 Method for forming fine pattern of printed circuit board using fine structure of copper foil

Also Published As

Publication number Publication date
JP4823884B2 (en) 2011-11-24

Similar Documents

Publication Publication Date Title
JP5180814B2 (en) Laminated body for flexible wiring board
US20110005812A1 (en) Metal foil laminated polyimide resin substrate
JP4781930B2 (en) Method for producing highly flexible flexible copper clad laminate
WO2002064363A1 (en) Laminate and process for producing the same
WO2001028767A1 (en) Laminate and process for producing the same
KR101241265B1 (en) Process of high flexuous flexible copper clad laminate
JP2013129116A (en) Double-sided metal clad laminated sheet and method for manufacturing the same
JP2006248142A (en) Laminate
JP2007098791A (en) Flexible one side copper-clad polyimide laminated plate
JP2008087254A (en) Flexible copper-clad laminate and flexible copper clad laminate with carrier
JP5133724B2 (en) Method for producing polyimide resin laminate and method for producing metal-clad laminate
JP2008063560A (en) Method for surface modification of polyimide resin layer and manufacturing process for metal-clad laminate
JP4777206B2 (en) Method for producing flexible copper-clad laminate
JP7212518B2 (en) METAL-CLAD LAMINATE, METHOD FOR MANUFACTURING SAME AND CIRCUIT BOARD
JP4790582B2 (en) Method for producing highly flexible flexible copper clad laminate
KR20050090139A (en) Bonding sheet and one-side metal-clad laminate
JP4921420B2 (en) Metal-clad laminate and manufacturing method thereof
JP4823884B2 (en) Method for producing flexible copper-clad laminate
JP2007062274A (en) Flexible laminated board cladded with copper layer on single site and manufacturing method of it
TW201635868A (en) Copper-clad laminated board and printed circuit board
TWI683836B (en) Polyimide laminated film, method for producing polyimide laminated film, method for producing thermoplastic polyimide, and method for producing flexible metal clad laminate
JP2007245525A (en) Flexible laminate
JP2007189011A (en) Substrate for flexible printed wiring board and its production process
JP4332739B2 (en) Method for producing flexible copper-clad laminate
JP2008031448A (en) Manufacturing method of polyimide film and manufacturing method of laminated plate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090828

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110513

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110524

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110707

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110906

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110907

R150 Certificate of patent or registration of utility model

Ref document number: 4823884

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140916

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140916

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140916

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250