JP2008141747A - Receiver for ultra wideband communications, method of generating reproduction data for ultra wideband communications, and ultra wideband communications system - Google Patents

Receiver for ultra wideband communications, method of generating reproduction data for ultra wideband communications, and ultra wideband communications system Download PDF

Info

Publication number
JP2008141747A
JP2008141747A JP2007304100A JP2007304100A JP2008141747A JP 2008141747 A JP2008141747 A JP 2008141747A JP 2007304100 A JP2007304100 A JP 2007304100A JP 2007304100 A JP2007304100 A JP 2007304100A JP 2008141747 A JP2008141747 A JP 2008141747A
Authority
JP
Japan
Prior art keywords
signal
low
amplifier
pass filter
demodulator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007304100A
Other languages
Japanese (ja)
Other versions
JP4571178B2 (en
Inventor
Masaru Nakamura
勝 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP2007304100A priority Critical patent/JP4571178B2/en
Publication of JP2008141747A publication Critical patent/JP2008141747A/en
Application granted granted Critical
Publication of JP4571178B2 publication Critical patent/JP4571178B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Noise Elimination (AREA)
  • Circuits Of Receivers In General (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an ultra wideband communications technology, namely, a receiver for ultra wideband communications, method of generating reproduction data for ultra wideband communications, and ultra wideband communications system, wherein a modulation and demodulation technique of constantly transmitting a plurality of carriers in a wide frequency bandwidth is employed for a baseband communication using an ultra wideband and an automatic gain control amplifier having a wide dynamic range is set after a despread demodulation operation is performed, so as to reduce negative influence to other radio waves. <P>SOLUTION: They are provided with: a low-gain amplifier for reception which performs low-gain amplification on a received despread demodulation signal; a despread demodulator for demodulating the signal on which the low-gain amplification has been performed; a high-pass filter which blocks only an information signal band before spreading at an input terminal of the despread demodulator; a low-pass filter which passes only an information signal band before spreading at an output terminal of the despread demodulator; an automatic gain control amplifier which has a wide dynamic range and amplifies a signal demodulated by the despread demodulator to a signal having a constant amplitude level; and a determiner for determining the amplified signal to reproduce data. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、超広帯域通信システムに適用される超広帯域通信用受信機および超広帯域通信用の再生データ生成方法、および、超広帯域通信システムに関する。   The present invention relates to a receiver for ultra-wideband communication applied to an ultra-wideband communication system, a reproduction data generation method for ultra-wideband communication, and an ultra-wideband communication system.

一般的に、伝統的な通信技術では、使用される周波数帯域幅をでき得る限り抑えることで(すなわち、狭帯域化することで)、限られた周波数資源の有効利用を図ってきた。しかし、周波数帯域幅を狭帯域化すればするほどノイズ耐性(通信路の雑音に対する耐久性)や耐干渉性(他チャンネルの信号などによって信号が歪むことに対する耐性)などが劣化する。この結果として、データの再送などによって通信路の帯域が余計に消費されてしまうという不都合が生じる。   In general, traditional communication techniques have been designed to effectively use limited frequency resources by limiting the frequency bandwidth used as much as possible (that is, by narrowing the bandwidth). However, as the frequency bandwidth is narrowed, noise resistance (durability against communication channel noise), interference resistance (resistance to signal distortion due to signals of other channels, etc.) and the like deteriorate. As a result, there arises an inconvenience that an extra bandwidth of the communication path is consumed due to data retransmission or the like.

この不都合を解消するために、超広帯域ベースバンド信号を用いた超広帯域(Ultra Wide Band)通信方式が知られている。この通信方式では、無線通信路やADSL(Asymmetric Digital Subscriber Line)と言った減衰の大きな伝送路を介して通信が行われる。   In order to eliminate this inconvenience, an ultra wide band communication method using an ultra wide band baseband signal is known. In this communication system, communication is performed via a wireless communication path or a transmission path having a large attenuation such as an ADSL (Asymmetric Digital Subscriber Line).

超広帯域通信方式では、データをたとえば1GHz程度の広さの周波数帯に拡散して送受信を行う。超広帯域通信方式を採用したシステムでは、スペクトラムは非常に広帯域に分布するが(通常、数百KHz〜数MHzの帯域幅を持つ)、その分スペクトラムの密度は薄く、同じ周波数帯域で他の通信が行なわれていてもほとんど影響を受けなくなる。また、周波数帯域同士がたとえ衝突しても、データに付加した強力なエラー訂正コードでエラー修正が行なわれる。   In the ultra-wideband communication system, data is transmitted and received by spreading data in a frequency band of about 1 GHz, for example. In a system using an ultra-wideband communication system, the spectrum is distributed over a very wide band (usually having a bandwidth of several hundreds KHz to several MHz), but the spectrum density is much smaller and other communications in the same frequency band. Even if it is done, it is almost unaffected. Even if the frequency bands collide, error correction is performed with a powerful error correction code added to the data.

超広帯域通信方式では、広い周波数帯域に微弱なスペクトルを分散させるので、(1)同一帯域上で多くの通信を同時並行的に行なうことができる、(2)他局に対する影響が少ない(ほとんどない)、(3)ノイズや他ノードからの影響をほとんど受けない、(4)信号内容を追跡したり検出したりすることが困難なので秘匿性が高い、といった特徴を持つ。   In the ultra-wideband communication method, since a weak spectrum is distributed over a wide frequency band, (1) many communications can be performed simultaneously on the same band, and (2) there is little influence on other stations (almost no ), (3) It is hardly affected by noise and other nodes, and (4) It is difficult to track and detect the signal contents, so that it has high secrecy.

代表的な超広帯域通信方式の一つに直接拡散方式がある。直接拡散方式は、信号データにある帯域幅をもった擬似乱数系列を乗算して、データ列自身の周波数帯域を広げ、それを変調して送信する方法である。   One of the typical ultra-wideband communication methods is the direct diffusion method. The direct spreading method is a method of multiplying the frequency band of the data string itself by multiplying the signal data with a pseudo-random number sequence having a bandwidth, modulating it, and transmitting it.

すなわち、この方法では、デジタル信号にビットレートが大きい拡散符号を付加しすることで、帯域幅が狭く電力密度が高いデジタル信号を、電力密度が低く帯域幅の広いものに変調している。受信機は、受信した電波の中からその擬似雑音符号と同じビット列を持つ信号だけを相関器で取り出し,情報データに復元することができる。   That is, in this method, a digital signal having a narrow bandwidth and a high power density is modulated into a signal having a low power density and a wide bandwidth by adding a spreading code having a high bit rate to the digital signal. The receiver can extract only the signal having the same bit string as the pseudo-noise code from the received radio wave by the correlator and restore it to information data.

超広帯域通信方式の中には、回路の実現がし易いインパルスを利用した通信方式がある(特許文献1参照)。インパルスは瞬時の信号であり、かつ周波数スペクトルは極めて広いので、他の帯域への影響を小さくできる。
特表平11−504480号公報
Among ultra-wideband communication systems, there is a communication system that uses impulses that are easy to realize a circuit (see Patent Document 1). The impulse is an instantaneous signal and the frequency spectrum is extremely wide, so that the influence on other bands can be reduced.
Japanese National Patent Publication No. 11-504480

しかしながら、特許文献1では、インパスルが出る瞬間には大電力の信号が出るため、他の信号への影響が生じる。   However, in Patent Document 1, since a high-power signal is output at the moment when an impulse is generated, other signals are affected.

本発明は、かかる実情に鑑みてなされたものであり、多数のキャリアが時間的に継続して送信される変復調方式を超広帯域ベースバンド通信に採用し、逆拡散復調処理の後に高ダイナミックレンジの自動利得制御増幅器を設け、他の電波への影響を軽減することができる超広帯域通信技術、すなわち、超広帯域通信用受信機および超広帯域通信用の再生データ生成方法、および、超広帯域通信システムを提供することを目的としている。   The present invention has been made in view of such circumstances, adopting a modulation / demodulation method in which a large number of carriers are continuously transmitted in ultra-wideband baseband communication, and having a high dynamic range after despreading demodulation processing. An ultra-wideband communication technology capable of reducing the influence on other radio waves by providing an automatic gain control amplifier, that is, a receiver for ultra-wideband communication, a reproduction data generation method for ultra-wideband communication, and an ultra-wideband communication system It is intended to provide.

本発明は、受信した拡散変調信号を低利得増幅する低利得増幅器と、前記低利得増幅器により低利得増幅した信号を復調する逆拡散復調器と、前記低利得増幅器と前記逆拡散復調器の間に設けられ、拡散前の情報信号帯域のみを阻止する高域通過フィルタと、前記逆拡散復調器の出力端子に設けられ、拡散前の情報信号帯域のみを通過させる低域通過フィルタと、前記逆拡散復調器により復調した信号を一定レベルの振幅の信号に増幅する広ダイナミックレンジの自動利得制御増幅器と、前記自動利得制御増幅器により増幅された信号を判定してデータ再生を行なう判定器とを備えた超広帯域通信用受信機である。   The present invention relates to a low gain amplifier that amplifies the received spread modulation signal by low gain, a despread demodulator that demodulates a signal that has been low gain amplified by the low gain amplifier, and between the low gain amplifier and the despread demodulator. A high-pass filter that blocks only the information signal band before spreading, a low-pass filter that is provided at the output terminal of the despread demodulator and passes only the information signal band before spreading, and the inverse filter A wide dynamic range automatic gain control amplifier that amplifies the signal demodulated by the spread demodulator to a signal having a constant level, and a determination unit that determines the signal amplified by the automatic gain control amplifier and reproduces the data. It is a receiver for ultra-wideband communication.

また、受信した拡散変調信号を低利得増幅し、この低利得増幅した信号について拡散前の情報信号帯域のみを阻止する高域通過フィタ処理を行い、この後期通過フィルタ処理後の信号を復調し、この復調した信号について拡散前の情報信号帯域のみを通過させる低域通過フィルタ処理を行い、この低域通過フィルタ処理後の信号を一定レベルの振幅の信号に増幅し、この一定レベルの振幅の信号からデータ再生を行うことを特徴とする超広帯域通信用の再生データ生成方法である。   Further, the received spread modulation signal is amplified by low gain, and the low gain amplified signal is subjected to high-pass filter processing that blocks only the information signal band before spreading, and the signal after this late-pass filter processing is demodulated, The demodulated signal is subjected to a low-pass filter process that passes only the information signal band before spreading, and the signal after the low-pass filter process is amplified to a signal having a certain level of amplitude. The reproduction data generation method for ultra-wideband communication is characterized in that data reproduction is performed from above.

また、送信データを、多数のキャリアが時間的に継続して送信される形式の広帯域信号に拡散変調する拡散変調器と、前記拡散変調器により拡散変調した拡散変調信号を増幅する送信用増幅器とを備え、前記送信用増幅器により増幅した信号をベースバンド信号のまま有線または無線により送信することを特徴とする超広帯域通信用送信機と、受信した拡散変調信号を低利得増幅する低利得増幅器と、前記低利得増幅器により低利得増幅した信号を復調する逆拡散復調器と、前記低利得増幅器と前記逆拡散復調器の間に設けられ、拡散前の情報信号帯域のみを阻止する高域通過フィルタと、前記逆拡散復調器の出力端子に設けられ、拡散前の情報信号帯域のみを通過させる低域通過フィルタと、前記逆拡散復調器により復調した信号を一定レベルの振幅の信号に増幅する広ダイナミックレンジの自動利得制御増幅器と、前記自動利得制御増幅器により増幅された信号を判定してデータ再生を行なう判定器とを備えてなることを特徴とする超広帯域通信用受信機とを備えてなることを特徴とする超広帯域通信システムである。   Also, a spread modulator that spreads and modulates transmission data into a wideband signal of a format in which a large number of carriers are transmitted continuously in time, and a transmission amplifier that amplifies the spread modulation signal spread and modulated by the spread modulator A transmitter for ultra wideband communication characterized in that the signal amplified by the transmission amplifier is transmitted as a baseband signal by wire or wireless, and a low gain amplifier for low gain amplification of the received spread modulation signal, A despreading demodulator that demodulates a signal gain-amplified by the low-gain amplifier, and a high-pass filter that is provided between the low-gain amplifier and the despreading demodulator and blocks only the information signal band before spreading And a low-pass filter provided at the output terminal of the despread demodulator for passing only the information signal band before spreading, and a signal demodulated by the despread demodulator at a constant level. A wide dynamic range automatic gain control amplifier that amplifies the signal to a signal having a signal amplitude and a determination unit that performs data reproduction by determining the signal amplified by the automatic gain control amplifier. An ultra-wideband communication system comprising a communication receiver.

したがって、本発明によれば、受信側では、低利得増幅器で混入したノイズの影響を除去することができ、受信感度を向上することができるという効果を得る。   Therefore, according to the present invention, on the receiving side, it is possible to remove the influence of noise mixed in by the low gain amplifier and to obtain the effect that the receiving sensitivity can be improved.

また、多数のキャリアが時間的に継続して送信される変復調方式を超広帯域ベースバンド通信に採用し、逆拡散復調処理の後に高ダイナミックレンジの自動利得制御増幅器を設けたので、インパルス通信の場合に比べて、他の電波への影響を軽減することができるという効果も得る。   In addition, in the case of impulse communication, a modulation / demodulation method in which a large number of carriers are transmitted in time is adopted for ultra-wideband baseband communication, and an automatic gain control amplifier with a high dynamic range is provided after despread demodulation processing. Compared to the above, there is an effect that the influence on other radio waves can be reduced.

以下、添付図面を参照しながら、本発明の実施の形態を詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings.

図1は第1態様の実施形態を示す基本システム構成図である。

図1の通信システムでは、送信機11は、送信データが入力される拡散変調器111と、送信用増幅器112とからなる。
FIG. 1 is a basic system configuration diagram showing an embodiment of the first aspect.

In the communication system of FIG. 1, the transmitter 11 includes a spread modulator 111 to which transmission data is input, and a transmission amplifier 112.

受信機12は、低利得増幅器121と、逆拡散復調器122と、自動利得制御増幅器(AGCアンプ)123と、レベル検出器124と、再生データを出力する判定器125とからなる。   The receiver 12 includes a low gain amplifier 121, a despread demodulator 122, an automatic gain control amplifier (AGC amplifier) 123, a level detector 124, and a determination unit 125 that outputs reproduction data.

送信機11と受信機12とは伝送路/伝播路Pを介して接続される。   The transmitter 11 and the receiver 12 are connected via a transmission path / propagation path P.

送信機11側では、拡散変調器111は、送信データを多数のキャリアが時間的に継続して送信される形式の広帯域信号に拡散変調する。送信用増幅器112は、この拡散変調された信号を増幅してベースバンド信号のまま有線または無線による送信を行なう。   On the transmitter 11 side, the spread modulator 111 spread-modulates transmission data into a wideband signal in a format in which a large number of carriers are transmitted continuously in time. The transmission amplifier 112 amplifies the spread-modulated signal and performs wired or wireless transmission with the baseband signal.

受信機12側では、受信用低利得増幅器121は、拡散変調信号を受信してSNを劣化させない程度に増幅する。この後、これを逆拡散復調器122により復調し、当該復調した信号をダイナミックレンジが広い自動利得制御増幅器123により一定レベルの振幅の信号に増幅し、これを判定器125で判定してデータ再生を行なう。受信信号は受信用低利得増幅器121でSNを劣化させない程度に増幅するにとどめている。また、逆拡散復調器122により、伝送路で混入する干渉信号を逆拡散した後、広ダイナミックレンジの自動利得制御増幅器123で増幅している。したがって、逆拡散復調器の前段に自動利得制御増幅器を置く方式に比べて干渉信号により復調信号が歪むこともなく、受信感度が向上する。   On the receiver 12 side, the reception low gain amplifier 121 receives the spread modulation signal and amplifies the signal so as not to degrade the SN. Thereafter, the signal is demodulated by the despreading demodulator 122, and the demodulated signal is amplified to a signal having a constant amplitude by the automatic gain control amplifier 123 having a wide dynamic range. To do. The received signal is only amplified by the low gain amplifier 121 for reception to the extent that SN is not degraded. Further, the despreading demodulator 122 despreads the interference signal mixed in the transmission path, and then amplifies it by the wide dynamic range automatic gain control amplifier 123. Therefore, compared with a system in which an automatic gain control amplifier is placed before the despreading demodulator, the demodulated signal is not distorted by the interference signal, and reception sensitivity is improved.

図2は、図1の通信システムにおいて感度をさらに改善したシステムを示している。図2では、送信機11側の送信用増幅器112の前段または後段に、拡散前の情報信号帯域のみを阻止する高域通過フィルタ(以下、「HPF」と言う)411が設けられている。また、図2では、受信機12側の逆拡散復調器122の入力端子に拡散前の情報信号帯域のみを阻止するHPF421を設け、逆拡散復調器122の出力端子には拡散前の情報信号帯域のみを通過させる低域通過フィルタ(LPF)が設けられている。   FIG. 2 shows a system with further improved sensitivity in the communication system of FIG. In FIG. 2, a high-pass filter (hereinafter referred to as “HPF”) 411 that blocks only the information signal band before spreading is provided in the upstream or downstream of the transmission amplifier 112 on the transmitter 11 side. In FIG. 2, an HPF 421 that blocks only the information signal band before spreading is provided at the input terminal of the despreading demodulator 122 on the receiver 12 side, and the information signal band before spreading is provided at the output terminal of the despreading demodulator 122. A low-pass filter (LPF) that passes only the filter is provided.

図2の通信システムでは上記のようにHPF411を設けることで、逆拡散復調器122の入出力信号スペクトルの重なる領域が無くなる。このため、逆拡散復調器122内での信号の漏洩によるノイズ混入を相当量低減でき、受信感度をさらに大幅に向上させることができる。   In the communication system of FIG. 2, by providing the HPF 411 as described above, the region where the input / output signal spectrum of the despreading demodulator 122 overlaps is eliminated. For this reason, noise mixing due to signal leakage in the despreading demodulator 122 can be considerably reduced, and the receiving sensitivity can be further greatly improved.

図3は、図1および図2の通信システムの動作説明図である。図3(a−1),(a−2),(a−3),(a−4)、および図3(b−1),(b−2),(b−3),(b−4)において、横軸が周波数で縦軸が電力密度である。   FIG. 3 is an operation explanatory diagram of the communication system of FIGS. 1 and 2. 3 (a-1), (a-2), (a-3), (a-4) and FIGS. 3 (b-1), (b-2), (b-3), (b- In 4), the horizontal axis represents frequency and the vertical axis represents power density.

図3(a−1)は送信機11の送信用増幅器112の出力端における信号スペクトルを、図3(a−2)は逆拡散復調器122の入力端の信号スペクトルを、図3(a−3)は逆拡散復調器122内の参照拡散信号スペクトルを、(a−4)は逆拡散復調器122の出力端の信号スペクトルを示している。   3A-1 shows a signal spectrum at the output end of the transmission amplifier 112 of the transmitter 11, FIG. 3A-2 shows a signal spectrum at the input end of the despreading demodulator 122, and FIG. 3) shows the reference spread signal spectrum in the despread demodulator 122, and (a-4) shows the signal spectrum at the output end of the despread demodulator 122.

また、図3(b−1)は図2の感度改善した通信システムの送信用増幅器112の出力端(HPF411の出力端)における信号スペクトルを、図3(b−2)は逆拡散復調器122の入力端(HPF421の出力端)の信号スペクトルを、図3(b−3)は逆拡散復調器122内の参照拡散信号スペクトルを、図3(b−4)は逆拡散復調器122の出力端における信号スペクトルを示す。   3B-1 shows the signal spectrum at the output end (output end of the HPF 411) of the transmission amplifier 112 of the communication system with improved sensitivity shown in FIG. 2, and FIG. 3B-2 shows the despread demodulator 122. 3 (b-3) shows the signal spectrum of the reference spread signal in the despread demodulator 122, and FIG. 3 (b-4) shows the output of the despread demodulator 122. The signal spectrum at the end is shown.

図3(a−1)〜(a−4)、すなわち図1の通信システムでは、送信機11は狭帯域のデータ信号が拡散され送信信号として送出されるが、これが受信端に届くと、希望波以外に様々な干渉波やノイズが混入する。そのため、参照拡散信号との相関出力は図3(a−4)のように、本来の所望相関出力以外に受信信号および参照拡散信号が直接出力端に漏洩してくることにより、受信信号レベルが低い場合に十分なSN比を取れなくなり、通信品質が大きく劣化することがある。   3 (a-1) to 3 (a-4), that is, in the communication system of FIG. 1, the transmitter 11 spreads a narrowband data signal and transmits it as a transmission signal. Various interference waves and noise are mixed in addition to the waves. Therefore, as shown in FIG. 3A-4, the correlation output with the reference spread signal is such that the received signal level and the reference spread signal leak directly to the output end in addition to the original desired correlation output. If it is low, a sufficient SN ratio cannot be obtained, and the communication quality may be greatly deteriorated.

一方、図3(b−1)〜(b−4)、すなわち図2の通信システムでは、送信機11の出力はHPF411を通しているので、送信信号自体に所望相関信号帯域の信号が除去され、受信側でも逆拡散復調器122の前段でHPF421により再度所望相関信号帯域の信号および他からの干渉信号やノイズが除去される。このため、干渉信号やノイズが相関出力に影響することがなくなる。   3 (b-1) to 3 (b-4), that is, in the communication system of FIG. 2, since the output of the transmitter 11 passes through the HPF 411, the signal of the desired correlation signal band is removed from the transmission signal itself, and reception is performed. Also on the side, the signal in the desired correlation signal band and the interference signal and noise from the other are removed again by the HPF 421 before the despreading demodulator 122. For this reason, interference signals and noise do not affect the correlation output.

また、逆拡散復調器122における相関器への参照拡散信号についても、HPF421を通して所望相関信号帯域の成分を除去しているので、これが漏洩して相関出力に影響することもなくなる。その結果、相関出力は所望相関出力とそれより高い周波数領域に回り込んだノイズ成分に明確に分かれるので、続くLPF423で所望相関信号のみを取出せるようになる。この後、この所望信号のみを自動利得制御増幅器123で増幅することにより大幅にノイズを低減した信号を再生できるため、受信感度を大幅に向上でき、通信品質も向上する。なお、受信側にHPF421が設けられているので、送信側でのHPF411は必須ではない。   Also, with respect to the reference spread signal to the correlator in the despread demodulator 122, since the component of the desired correlation signal band is removed through the HPF 421, this does not leak and affect the correlation output. As a result, the correlation output is clearly divided into a desired correlation output and a noise component that circulates in a higher frequency range, so that only the desired correlation signal can be extracted by the subsequent LPF 423. Thereafter, by amplifying only the desired signal with the automatic gain control amplifier 123, a signal with greatly reduced noise can be reproduced, so that reception sensitivity can be greatly improved and communication quality is also improved. Since the HPF 421 is provided on the reception side, the HPF 411 on the transmission side is not essential.

図4は第2態様の実施形態を示す基本システム構成図である。第2形態では、直接拡散方式により拡散変調を行なう。すなわち、信号データにある帯域幅をもった擬似乱数系列を乗算して、データ列自身の周波数帯域を広げ、それを変調して送信することで、帯域幅が狭く電力密度が高いデジタル信号を、電力密度が低く帯域幅が広いものに変えることができる。   FIG. 4 is a basic system configuration diagram showing an embodiment of the second aspect. In the second embodiment, diffusion modulation is performed by a direct diffusion method. In other words, by multiplying the signal data by a pseudo-random number sequence having a bandwidth to widen the frequency band of the data sequence itself, and modulating and transmitting it, a digital signal with a narrow bandwidth and high power density is obtained. It can be changed to one with low power density and wide bandwidth.

図4の通信システムでは、送信機21は、送信データが入力される擬似雑音符号発生器211と、乗算器212と、送信用増幅器213とからなり、受信機22は、低利得増幅器221と、クロック再生回路222と、擬似雑音符号発生器223と、相関器224と、自動利得制御増幅器225と、レベル検出器226と、判定器227とからなる。   In the communication system of FIG. 4, the transmitter 21 includes a pseudo noise code generator 211 to which transmission data is input, a multiplier 212, and a transmission amplifier 213, and the receiver 22 includes a low gain amplifier 221, The clock recovery circuit 222 includes a pseudo noise code generator 223, a correlator 224, an automatic gain control amplifier 225, a level detector 226, and a determiner 227.

送信機21側では、疑似雑音符号発生器(PNG)211は、所定クロックを入力して擬似雑音符号を生成し、この擬似雑音符号と送信データとを乗算器212により乗算して拡散復調信号を生成する。そして、この拡散変調信号を送信用増幅器213で増幅してベースバンド信号のまま有線または無線による送信を行なう。   On the transmitter 21 side, a pseudo noise code generator (PNG) 211 inputs a predetermined clock to generate a pseudo noise code, and the pseudo noise code and transmission data are multiplied by a multiplier 212 to generate a spread demodulated signal. Generate. Then, the spread modulation signal is amplified by the transmission amplifier 213 and transmitted by wire or wireless as the baseband signal.

受信機22側では、低利得増幅器221は拡散変調信号を受信してSNを劣化させない程度に増幅する。そして、この増幅信号からクロック再生回路222によりクロックを再生した後に、これを用いて擬似雑音符号発生器223により擬似雑音符号を生成する。そして、擬似雑音符号を用いて相関器224により、低利得増幅器221からの増幅された受信信号を復調する。広ダイナミックレンジの自動利得制御増幅器225は、復調した信号を広ダイナミックレンジの一定レベルの振幅の信号に増幅し、これを判定器227で判定してデータ再生を行なう。   On the receiver 22 side, the low gain amplifier 221 receives the spread modulation signal and amplifies the signal so as not to degrade the SN. Then, after the clock is recovered from the amplified signal by the clock recovery circuit 222, a pseudo noise code generator 223 is used to generate a pseudo noise code. Then, the amplified reception signal from the low gain amplifier 221 is demodulated by the correlator 224 using the pseudo noise code. The wide dynamic range automatic gain control amplifier 225 amplifies the demodulated signal into a signal having a constant amplitude with a wide dynamic range, and the decision unit 227 determines this to reproduce data.

図5は、図4の通信システムにおいて感度をさらに改善したシステムを示している。図5では、送信機21側の送信用増幅器213の後段に、拡散前の情報信号帯域のみを阻止するHPF511を設けている。   FIG. 5 shows a system with further improved sensitivity in the communication system of FIG. In FIG. 5, an HPF 511 that blocks only the information signal band before spreading is provided after the transmission amplifier 213 on the transmitter 21 side.

また、受信機22側の相関器224の受信用低利得増幅信号の入力端子には拡散前の情報信号帯域のみを阻止するHPF521が設けられている。また、相関器224の擬似雑音符号の入力端子にも情報信号帯域のみを阻止するHPF522が設けられている。さらに、相関器224の出力端子には、拡散前の情報信号帯域のみを通過させるLPF523が設けられている。   Also, an HPF 521 that blocks only the information signal band before spreading is provided at the input terminal of the low gain amplified signal for reception of the correlator 224 on the receiver 22 side. An HPF 522 that blocks only the information signal band is also provided at the input terminal of the pseudo-noise code of the correlator 224. Furthermore, an LPF 523 that passes only the information signal band before spreading is provided at the output terminal of the correlator 224.

図5の通信システムでは、上記のようにフィルタを設けることで、ノイズ混入を相当量低減でき、受信感度をさらに大幅に向上させることができる。   In the communication system of FIG. 5, by providing a filter as described above, it is possible to considerably reduce noise mixing, and it is possible to further significantly improve reception sensitivity.

図6は第3態様の実施形態を示す基本システム構成図である。第3形態でも、直接拡散方式により拡散変調を行なう。   FIG. 6 is a basic system configuration diagram showing an embodiment of the third aspect. Also in the third embodiment, diffusion modulation is performed by the direct diffusion method.

図6の通信システムでは、送信機31は、所定クロックを分周する分周器311と、分周器311からの分周クロックにより第1の擬似雑音符号を生成する第1の疑似雑音符号発生器(PNG)3121と、前記所定クロックにより第2の擬似雑音符号を生成する第2の疑似雑音符号発生器(PNG)3122と、送信データと第1の疑似雑音符号発生器(PNG)3121が生成する第1の擬似雑音符号を乗算する第1の乗算器3131と、第2の擬似雑音符号発生器3122が生成する第2の擬似雑音符号と第1の乗算器3131からの信号を乗算する第2の乗算器3132と、送信用増幅器314とからなる。   In the communication system of FIG. 6, the transmitter 31 divides a predetermined clock, and a first pseudo-noise code generation that generates a first pseudo-noise code using the frequency-divided clock from the frequency-divider 311. Generator (PNG) 3121, a second pseudo-noise code generator (PNG) 3122 for generating a second pseudo-noise code by the predetermined clock, transmission data and first pseudo-noise code generator (PNG) 3121 The first multiplier 3131 that multiplies the first pseudo-noise code to be generated, the second pseudo-noise code generated by the second pseudo-noise code generator 3122, and the signal from the first multiplier 3131 are multiplied. It comprises a second multiplier 3132 and a transmission amplifier 314.

また、受信機32は、低利得増幅器321と、クロック再生回路322と、クロック再生回路322からのクロックを分周する分周器323と、クロック再生回路322からのクロックにより動作する第1の擬似雑音符号発生器3241と、分周器323からの分周クロックにより動作する第2の擬似雑音符号発生器3242と、低利得増幅器321からの増幅した受信信号と第1の擬似雑音符号発生器3241からの擬似雑音符号を入力する第1の相関器3251と、第1の相関器3251からの信号を入力する第1の自動利得制御増幅器3261と、第1の自動利得制御増幅器3261からの信号と第2の擬似雑音符号発生器3242からの信号を入力する第2の相関器3252と、第2の相関器3252からの信号を入力する第2の自動利得制御増幅器3262と、第2の自動利得制御増幅器3262からの信号を入力し再生データを出力する判定器328とからなる。   The receiver 32 also includes a low gain amplifier 321, a clock recovery circuit 322, a frequency divider 323 that divides the clock from the clock recovery circuit 322, and a first pseudo that operates according to the clock from the clock recovery circuit 322. A noise code generator 3241, a second pseudo noise code generator 3242 that operates according to the divided clock from the frequency divider 323, an amplified received signal from the low gain amplifier 321, and a first pseudo noise code generator 3241. A first correlator 3251 that receives a pseudo-noise code from the first automatic gain control amplifier 3261 that receives a signal from the first correlator 3251 and a signal from the first automatic gain control amplifier 3261 A second correlator 3252 that inputs a signal from the second pseudo-noise code generator 3242 and a second self-input that receives a signal from the second correlator 3252. A gain control amplifier 3262 consists determiner 328 Metropolitan which inputs a signal from the second automatic gain control amplifier 3262 outputs the reproduced data.

送信機31側では、所定クロックを入力する分周器311は分周信号を第1の疑似雑音符号発生器(PNG)3121に送出する。第1の疑似雑音符号発生器(PNG)3121は、分周クロックから第1の擬似雑音符号を生成し、この擬似雑音符号と送信データとを乗算器3131により乗算して一次拡散復調信号を生成する。一方、第2の疑似雑音符号発生器(PNG)3122は、前記所定クロックを入力し、このクロックから第2の擬似雑音符号を生成し、この擬似雑音符号と乗算器3131からの一次拡散復調信号とを乗算して二次拡散変調信号を生成し、これを送信用増幅器314で増幅してベースバンド信号のまま有線または無線による送信を行なう。   On the transmitter 31 side, a frequency divider 311 that inputs a predetermined clock sends a frequency-divided signal to a first pseudo noise code generator (PNG) 3121. The first pseudo-noise code generator (PNG) 3121 generates a first pseudo-noise code from the divided clock, and multiplies the pseudo-noise code and transmission data by a multiplier 3131 to generate a primary spread demodulated signal. To do. On the other hand, a second pseudo-noise code generator (PNG) 3122 receives the predetermined clock, generates a second pseudo-noise code from this clock, and a primary spread demodulated signal from the pseudo-noise code and the multiplier 3131. To generate a second spread modulation signal, which is amplified by the transmission amplifier 314 and transmitted by wire or wireless as the baseband signal.

受信機32側では、低利得増幅器321は受信した散変調信号を拡散変調信号を受信してSNを劣化させない程度に増幅する。そして、この増幅信号からクロック再生回路322によりクロックを再生した後に、これを用いて第1の擬似雑音符号発生器3241により擬似雑音符号を生成し、この擬似雑音符号を用いて第1の相関器3251により低利得増幅器321により増幅した受信信号を一次拡散復調し、これを第1の自動利得制御増幅器3261により増幅する。一方、分周器323は、前記所定クロックを用いて第2の擬似雑音符号発生器3242により擬似雑音符号を生成し、この擬似雑音符号を用いて第2の相関器3252により自動利得制御増幅器3262により増幅した受信信号を二次拡散復調し、これを第2の自動利得制御増幅器3262によりダイナミックレンジが広い一定レベルの振幅の信号に増幅する。第2の自動利得制御増幅器3262からの信号は判定器328に入力され、判定器328は再生データを出力する。   On the receiver 32 side, the low gain amplifier 321 amplifies the received spread modulation signal to such an extent that the spread modulation signal is received and the SN is not deteriorated. Then, after the clock is regenerated from the amplified signal by the clock regenerating circuit 322, a pseudo noise code is generated by the first pseudo noise code generator 3241 using this, and the first correlator is generated by using this pseudo noise code. The received signal amplified by the low gain amplifier 321 is first spread demodulated by 3251 and amplified by the first automatic gain control amplifier 3261. On the other hand, the frequency divider 323 generates a pseudo noise code by the second pseudo noise code generator 3242 using the predetermined clock, and an automatic gain control amplifier 3262 by the second correlator 3252 using the pseudo noise code. The received signal amplified in step (2) is second-order spread demodulated and amplified by a second automatic gain control amplifier 3262 to a signal having a constant level with a wide dynamic range. A signal from the second automatic gain control amplifier 3262 is input to the determiner 328, and the determiner 328 outputs reproduction data.

図7は、図6の通信システムにおいて感度をさらに改善したシステムを示している。図7では、送信機31側の送信用増幅器314の後段に、拡散前の情報信号帯域のみを阻止するHPF611を設けている。   FIG. 7 shows a system with further improved sensitivity in the communication system of FIG. In FIG. 7, an HPF 611 that blocks only the information signal band before spreading is provided after the transmission amplifier 314 on the transmitter 31 side.

受信機32側の第1の相関器3251の受信用低利得増幅信号の入力端子には拡散前の情報信号帯域のみを阻止するHPF621が設けられている。また、第1の相関器3251の擬似雑音符号の入力端子にも情報信号帯域のみを阻止するHPF622が設けられている。さらに、第1の相関器3251の出力端子には、拡散前の情報信号帯域のみを通過させるLPF625が設けられている。   An HPF 621 that blocks only the information signal band before spreading is provided at the input terminal of the low gain amplified signal for reception of the first correlator 3251 on the receiver 32 side. In addition, an HPF 622 that blocks only the information signal band is also provided at the pseudo noise code input terminal of the first correlator 3251. Furthermore, the output terminal of the first correlator 3251 is provided with an LPF 625 that passes only the information signal band before spreading.

第2の相関器3252の受信用低利得増幅信号の入力端子には拡散前の情報信号帯域のみを阻止するHPF623が設けられている。また、第2の相関器3252の擬似雑音符号の入力端子にも情報信号帯域のみを阻止するHPF624が設けられている。さらに、第2の相関器3252の出力端子には、拡散前の情報信号帯域のみを通過させるLPF626が設けられている。   An HPF 623 that blocks only the information signal band before spreading is provided at the input terminal of the low gain amplified signal for reception of the second correlator 3252. An HPF 624 that blocks only the information signal band is also provided at the pseudo noise code input terminal of the second correlator 3252. Furthermore, an LPF 626 that passes only the information signal band before spreading is provided at the output terminal of the second correlator 3252.

以上のように、本発明では、多数のキャリアが時間的に継続して送信される変復調方式を超広帯域ベースバンド通信に採用し、逆拡散復調処理の後に高ダイナミックレンジの自動利得制御増幅器を設けたので、インパルス通信の場合に比べて、他の電波への影響を軽減することができる。   As described above, in the present invention, a modulation / demodulation method in which a large number of carriers are transmitted continuously in time is adopted for ultra-wideband baseband communication, and an automatic gain control amplifier with a high dynamic range is provided after despreading demodulation processing. Therefore, the influence on other radio waves can be reduced as compared with the case of impulse communication.

また、受信信号は初段の低利得増幅器でSNを劣化させない程度に増幅するにとどめ、逆拡散復調器により伝送路で混入する干渉信号を逆拡散したあと、高ダイナミックレンジの自動利得制御増幅器で増幅しているので、逆拡散復調器の前段に自動利得制御増幅器を置く場合に比べて干渉信号により復調信号が歪むこともなく、受信感度が向上する。   In addition, the received signal is amplified to the extent that SN is not degraded by the low gain amplifier at the first stage, and after despreading the interference signal mixed in the transmission line by the despreading demodulator, it is amplified by the automatic gain control amplifier with a high dynamic range. Therefore, compared with the case where an automatic gain control amplifier is placed in front of the despreading demodulator, the demodulated signal is not distorted by the interference signal, and the reception sensitivity is improved.

また、逆拡散復調器の入力にHPFを設けることで、逆拡散復調器内での信号の漏洩によるノイズ混入を、相当量低減でき、受信感度を大幅に向上できる。   In addition, by providing an HPF at the input of the despreading demodulator, it is possible to considerably reduce noise mixing due to signal leakage in the despreading demodulator and to greatly improve reception sensitivity.

また、拡散変調に疑似雑音発生器からのPN信号をデータ信号に単純に掛け合わせる直接拡散型の拡散変調を採用することができる。この場合には、多数のキャリアが時間的に継続して送信される形式の広帯域信号を簡単な回路で低コストで実現でき、インパルスベースの超広帯域通信システムに比較して他への干渉の影響を低減できる。   Further, it is possible to employ direct diffusion type diffusion modulation in which the PN signal from the pseudo noise generator is simply multiplied to the data signal for the diffusion modulation. In this case, it is possible to realize a broadband signal in which a large number of carriers are transmitted continuously in time with a simple circuit at a low cost, and the influence of interference on others compared to an impulse-based ultra-wideband communication system. Can be reduced.

また、拡散変調、逆拡散復調処理を2段階に分けて処理しており、自動利得制御増幅器も2段に分けている。すなわち、1段では利得が高すぎてノイズによる発振が生じる場合に、2段にすることで利得を分割できる。これにより、より低レベルの信号を安定して復調できるようになり感度が向上する。この場合、2段階の相関処理のそれぞれにおいてその前後にフィルタを追加することによる感度改善を行なうことができる。   Further, the spread modulation and despread demodulation processes are processed in two stages, and the automatic gain control amplifier is also divided in two stages. That is, if the gain is too high at one stage and oscillation due to noise occurs, the gain can be divided by using two stages. As a result, a lower level signal can be demodulated stably and the sensitivity is improved. In this case, sensitivity can be improved by adding a filter before and after each of the two stages of correlation processing.

なお、散変調、逆拡散復調処理、あるいは自動利得制御を3段以上とすることで、さらに感度改善を行なうことができる。   It should be noted that sensitivity can be further improved by setting the spread modulation, despread demodulation processing, or automatic gain control to three or more stages.

図1は第1態様の実施形態を示す基本システム構成図である。FIG. 1 is a basic system configuration diagram showing an embodiment of the first aspect. 図1の通信システムにおいて感度をさらに改善したシステムを示す図である。It is a figure which shows the system which further improved the sensitivity in the communication system of FIG. 図1および図2の通信システムの動作説明図であり(a−1)〜(a−4),(b−1)〜(b−4)は各部のスペクトルを示す図である。FIG. 3 is an operation explanatory diagram of the communication system of FIG. 1 and FIG. 2, and (a-1) to (a-4) and (b-1) to (b-4) are diagrams illustrating the spectrum of each part. 図1の拡散変調器と逆拡散復調器をそれぞれ直接拡散型の変調器と復調器に置き換えた実施形態を示すシステム構成図である。FIG. 2 is a system configuration diagram showing an embodiment in which the spread modulator and the despread demodulator in FIG. 1 are replaced with a direct spread type modulator and a demodulator, respectively. 図4の通信システムにおいて感度をさらに改善したシステムを示す図である。It is a figure which shows the system which further improved the sensitivity in the communication system of FIG. 図4における拡散変調、逆拡散復調処理を2段階に分けて処理するよう変更した実施形態を示すシステム構成図である。FIG. 5 is a system configuration diagram showing an embodiment in which the spread modulation and despread demodulation processes in FIG. 4 are changed to be processed in two stages. 図6の通信システムにおいて感度をさらに改善したシステムを示す図である。It is a figure which shows the system which further improved the sensitivity in the communication system of FIG.

符号の説明Explanation of symbols

11,21,31 送信機
12,22,32 受信機
111 拡散変調器
112,213,314 送信用増幅器
121,221,321 低利得増幅器
122 逆拡散復調器
123,225,3261,3262 自動利得制御増幅器
11, 21, 31 Transmitter 12, 22, 32 Receiver 111 Spread modulator 112, 213, 314 Transmit amplifier 121, 221, 321 Low gain amplifier 122 Despread demodulator 123, 225, 3261, 3262 Automatic gain control amplifier

Claims (3)

受信した拡散変調信号を低利得増幅する低利得増幅器と、
前記低利得増幅器により低利得増幅した信号を復調する逆拡散復調器と、
前記低利得増幅器と前記逆拡散復調器の間に設けられ、拡散前の情報信号帯域のみを阻止する高域通過フィルタと、
前記逆拡散復調器の出力端子に設けられ、拡散前の情報信号帯域のみを通過させる低域通過フィルタと、
前記逆拡散復調器により復調した信号を一定レベルの振幅の信号に増幅する広ダイナミックレンジの自動利得制御増幅器と、
前記自動利得制御増幅器により増幅された信号を判定してデータ再生を行なう判定器と、
を備えてなることを特徴とする超広帯域通信用受信機。
A low gain amplifier for amplifying the received spread modulation signal with low gain;
A despreading demodulator that demodulates a signal gain-amplified by the low-gain amplifier;
A high pass filter provided between the low gain amplifier and the despreading demodulator and blocking only the information signal band before spreading;
A low-pass filter that is provided at the output terminal of the despreading demodulator and passes only the information signal band before spreading;
A wide dynamic range automatic gain control amplifier that amplifies the signal demodulated by the despreading demodulator into a signal having a constant level of amplitude;
A determination unit for determining the signal amplified by the automatic gain control amplifier and performing data reproduction;
A receiver for ultra-wideband communication, comprising:
受信した拡散変調信号を低利得増幅し、
この低利得増幅した信号について拡散前の情報信号帯域のみを阻止する高域通過フィルタ処理を行い、
この高域通過フィルタ処理後の信号を復調し、
この復調した信号について拡散前の情報信号帯域のみを通過させる低域通過フィルタ処理を行い、
この低域通過フィルタ処理後の信号を一定レベルの振幅の信号に増幅し、
この一定レベルの振幅の信号からデータ再生を行う、
ことを特徴とする超広帯域通信用の再生データ生成方法。
Low gain amplification of received spread modulation signal,
For this low gain amplified signal, perform high-pass filter processing to block only the information signal band before spreading,
Demodulate the signal after this high-pass filter processing,
Perform a low-pass filter process that passes only the information signal band before spreading for this demodulated signal,
Amplify the signal after this low-pass filter processing to a signal with a certain level of amplitude,
Data reproduction is performed from this constant level amplitude signal.
A reproduction data generation method for ultra-wideband communication.
送信データを、多数のキャリアが時間的に継続して送信される形式の広帯域信号に拡散変調する拡散変調器と、前記拡散変調器により拡散変調した拡散変調信号を増幅する送信用増幅器とを備え、前記送信用増幅器により増幅した信号をベースバンド信号のまま有線または無線により送信することを特徴とする超広帯域通信用送信機と、
受信した拡散変調信号を低利得増幅する低利得増幅器と、前記低利得増幅器により低利得増幅した信号を復調する逆拡散復調器と、前記低利得増幅器と前記逆拡散復調器の間に設けられ、拡散前の情報信号帯域のみを阻止する高域通過フィルタと、前記逆拡散復調器の出力端子に設けられ、拡散前の情報信号帯域のみを通過させる低域通過フィルタと、前記逆拡散復調器により復調した信号を一定レベルの振幅の信号に増幅する広ダイナミックレンジの自動利得制御増幅器と、前記自動利得制御増幅器により増幅された信号を判定してデータ再生を行なう判定器とを備えてなることを特徴とする超広帯域通信用受信機と、
を備えてなることを特徴とする超広帯域通信システム。
A spread modulator that spreads and modulates transmission data into a wideband signal of a format in which a large number of carriers are transmitted continuously in time, and a transmission amplifier that amplifies the spread modulation signal spread and modulated by the spread modulator A transmitter for ultra wideband communication, wherein the signal amplified by the transmission amplifier is transmitted as a baseband signal by wire or wirelessly;
A low gain amplifier for low gain amplification of the received spread modulation signal, a despread demodulator for demodulating a signal low amplified by the low gain amplifier, and provided between the low gain amplifier and the despread demodulator, A high-pass filter that blocks only the information signal band before spreading, a low-pass filter that is provided at the output terminal of the despreading demodulator and passes only the information signal band before spreading, and the despreading demodulator A wide dynamic range automatic gain control amplifier that amplifies the demodulated signal to a signal having a constant level amplitude, and a determination unit that determines the signal amplified by the automatic gain control amplifier and reproduces the data. A receiver for ultra-wideband communication,
An ultra-wideband communication system comprising:
JP2007304100A 2002-11-12 2007-11-26 Ultra-wideband communication receiver, reproduction data generation method for ultra-wideband communication, and ultra-wideband communication system Expired - Fee Related JP4571178B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007304100A JP4571178B2 (en) 2002-11-12 2007-11-26 Ultra-wideband communication receiver, reproduction data generation method for ultra-wideband communication, and ultra-wideband communication system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002328637 2002-11-12
JP2007304100A JP4571178B2 (en) 2002-11-12 2007-11-26 Ultra-wideband communication receiver, reproduction data generation method for ultra-wideband communication, and ultra-wideband communication system

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2003155197A Division JP4057467B2 (en) 2002-11-12 2003-05-30 Ultra-wideband communication receiver and reproduction data generation method for ultra-wideband communication

Publications (2)

Publication Number Publication Date
JP2008141747A true JP2008141747A (en) 2008-06-19
JP4571178B2 JP4571178B2 (en) 2010-10-27

Family

ID=39602686

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007304100A Expired - Fee Related JP4571178B2 (en) 2002-11-12 2007-11-26 Ultra-wideband communication receiver, reproduction data generation method for ultra-wideband communication, and ultra-wideband communication system

Country Status (1)

Country Link
JP (1) JP4571178B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010273307A (en) * 2009-05-25 2010-12-02 Canon Inc Signal transmission apparatus

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03220830A (en) * 1990-01-25 1991-09-30 Ricoh Co Ltd Frequency spread communication equipment
JPH05252134A (en) * 1992-03-03 1993-09-28 Fujitsu Ltd Quadrature spread spectrum communication system
JPH06177858A (en) * 1992-12-11 1994-06-24 Toyota Motor Corp Spread spectrum communication system
JPH0955685A (en) * 1995-06-07 1997-02-25 N T T Ido Tsushinmo Kk Double spread spectrum transmitter and receiver
JP2000165295A (en) * 1998-11-30 2000-06-16 Tokai Univ Synchronization acquisition deciding method for spread spectrum communication system, synchronization acquisition decision circuit, and synchronization acquisition circuit
JP2000252868A (en) * 1999-03-01 2000-09-14 Toshiba Corp Cdma communication equipment and its automatic gain control circuit
JP2001501798A (en) * 1997-10-23 2001-02-06 インターディジタル テクノロジー コーポレーション Method and apparatus for generating complex four-phase sequence for CDMA communication system
JP2002261656A (en) * 2001-02-27 2002-09-13 Sharp Corp Automatic gain controller for cdma receiver

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03220830A (en) * 1990-01-25 1991-09-30 Ricoh Co Ltd Frequency spread communication equipment
JPH05252134A (en) * 1992-03-03 1993-09-28 Fujitsu Ltd Quadrature spread spectrum communication system
JPH06177858A (en) * 1992-12-11 1994-06-24 Toyota Motor Corp Spread spectrum communication system
JPH0955685A (en) * 1995-06-07 1997-02-25 N T T Ido Tsushinmo Kk Double spread spectrum transmitter and receiver
JP2001501798A (en) * 1997-10-23 2001-02-06 インターディジタル テクノロジー コーポレーション Method and apparatus for generating complex four-phase sequence for CDMA communication system
JP2000165295A (en) * 1998-11-30 2000-06-16 Tokai Univ Synchronization acquisition deciding method for spread spectrum communication system, synchronization acquisition decision circuit, and synchronization acquisition circuit
JP2000252868A (en) * 1999-03-01 2000-09-14 Toshiba Corp Cdma communication equipment and its automatic gain control circuit
JP2002261656A (en) * 2001-02-27 2002-09-13 Sharp Corp Automatic gain controller for cdma receiver

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010273307A (en) * 2009-05-25 2010-12-02 Canon Inc Signal transmission apparatus

Also Published As

Publication number Publication date
JP4571178B2 (en) 2010-10-27

Similar Documents

Publication Publication Date Title
JP2998204B2 (en) Method and apparatus for canceling spread spectrum noise
US5224122A (en) Method and apparatus for canceling spread-spectrum noise
JP4286802B2 (en) Elimination of pilot and unwanted traffic signals in CDMA systems
USRE38603E1 (en) Data transmitter and receiver of a spread spectrum communication system using a pilot channel
US8040935B2 (en) Methods and apparatus for spread spectrum modulation and demodulation
US5353301A (en) Method and apparatus for combining multipath spread-spectrum signals
EP0867077B1 (en) Re-orthogonalization of wideband cdma signals
JPH09507119A (en) Method and apparatus for transmitting variable digital data
JPH08509590A (en) Method and apparatus for time division multiplexing the use of spreading codes in a communication system
JP4057467B2 (en) Ultra-wideband communication receiver and reproduction data generation method for ultra-wideband communication
JP4571178B2 (en) Ultra-wideband communication receiver, reproduction data generation method for ultra-wideband communication, and ultra-wideband communication system
JP3797099B2 (en) Method for detecting signals in spread spectrum communications
JPH09247046A (en) Receiver for spread spectrum communication
Stark et al. Wireless communications system architecture and performance
JPH03166833A (en) Spread spectrum modulation and demodulation system
JPH06350560A (en) Inverse spread demodulation circuit for spread spectrum communication
JPH05175939A (en) Automatic gain control circuit for receiving spread spectrum signal
JPH1188204A (en) Voice generator and voice transmission system
JP2004363668A (en) System for reducing suppression of reception sensitivity
JPH09200084A (en) Transmitter for spread spectrum communication
JPH06232841A (en) Synchronism holding device for spread spectrum communication system
JP2001230755A (en) Spread spectrum communication equipment
JPH08228168A (en) Spread spectrum communication equipment

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20090131

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20090217

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100216

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100810

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100811

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130820

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees