JPH06232841A - Synchronism holding device for spread spectrum communication system - Google Patents

Synchronism holding device for spread spectrum communication system

Info

Publication number
JPH06232841A
JPH06232841A JP3490093A JP3490093A JPH06232841A JP H06232841 A JPH06232841 A JP H06232841A JP 3490093 A JP3490093 A JP 3490093A JP 3490093 A JP3490093 A JP 3490093A JP H06232841 A JPH06232841 A JP H06232841A
Authority
JP
Japan
Prior art keywords
angle
demodulation
spread
outputs
demodulating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3490093A
Other languages
Japanese (ja)
Other versions
JP2864930B2 (en
Inventor
Yukinobu Ishigaki
行信 石垣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Victor Company of Japan Ltd
Original Assignee
Victor Company of Japan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Victor Company of Japan Ltd filed Critical Victor Company of Japan Ltd
Priority to JP3490093A priority Critical patent/JP2864930B2/en
Publication of JPH06232841A publication Critical patent/JPH06232841A/en
Application granted granted Critical
Publication of JP2864930B2 publication Critical patent/JP2864930B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To provide a synchronism holding device whose operation is sure and stable at low cost. CONSTITUTION:The device is provided with a spread code generating circuit 28 for demodulation to respectively output a spread code advanced for prescribed chip time and a spread code delayed for prescribed chip time, first and second correlating means MX2 and MX3 for correlating these respective spread codes with an input spread spectrum signal, first and second angle demodulating means 17 and 18 for providing angle demodulated outputs by demodulating the angles of respective correlated outputs, first and second filter means BF5, BF6, 19 and 20 for removing carrier components or the like from the respective angle demodulated outputs, subtracting means 23, D1, D2 and 40 for subtracting the outputs of both filter means, and clock signal generating means 26 and 27 for providing clock signals by converting the provided subtracted outputs to error signals and supplying them to a voltage controlled oscillator. Then, a synchronism holding loop is constituted by generating these two kinds of spread codes by supplying these clock signals to the spread code generating circuit and supplying them to the respective correlating means.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はスペクトル拡散(以下
“SS”と記載する)通信方式における同期保持装置に
係り、特に、同期保持に必須であったAGC(自動利得
制御)回路を不要にし、しかも高安定な同期保持動作を
可能にした同期保持装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a synchronization holding device in a spread spectrum (hereinafter referred to as "SS") communication system, and in particular, eliminates the need for an AGC (automatic gain control) circuit, which is essential for holding synchronization. Moreover, the present invention relates to a synchronization holding device that enables highly stable synchronization holding operation.

【0002】[0002]

【技術的背景】近年のSS通信(無線伝送)技術におい
て、SS技術による多元接続法を用いた移動体通信が実
用域に達して来ている。周知の如く電波資源は有限なの
で、周波数を有効に利用する必要がある。その点、SS
信号は広い周波数帯域に拡散されてそのパワースペクト
ル密度は非常に小さくなり、これにより他の通信に与え
る影響は小さく、既存の通信周波数帯での混用も可能に
なるため、その面での効用も大きく、原理的に周波数利
用効率の向上に寄与できるものである。また最近、わが
国の郵政省において、SS通信専用の周波数帯域も認可
されようとしており、今後は業務用或いは家庭用音響機
器等の無線伝送にまで応用が拡大されつつあり、その将
来性や発展性が大きく嘱望されている。
TECHNICAL BACKGROUND In recent SS communication (wireless transmission) technology, mobile communication using a multiple access method based on the SS technology has reached a practical range. As is well known, since radio resources are limited, it is necessary to effectively use frequencies. That point, SS
The signal is spread over a wide frequency band and its power spectral density becomes extremely small, which has a small effect on other communications and allows it to be mixed in existing communication frequency bands. In principle, it can contribute to the improvement of frequency utilization efficiency. Recently, the Ministry of Posts and Telecommunications in Japan is also approving a frequency band dedicated to SS communication, and its application is expanding to wireless transmission of audio equipment for business use or household use in the future. Is greatly desired.

【0003】[0003]

【従来の技術】SS通信用の受信機(復調装置)におい
て、復調動作時の同期捕捉と同期保持は基本的に重要な
ものであり、今までに種々の同期捕捉方法や保持方法が
提案され、実用化されている。特に、復調装置に供給さ
れるSS変調信号のレベル変動が大きすぎると、同期が
外れ易くなり、保持が困難であったので、復調回路の前
段にAGC(自動利得制御)回路を接続して、入力SS
変調信号のレベルが大きすぎる時には減衰し、小さい時
には増幅して、レベルを所定の範囲内に維持することが
必須の要件であった。
2. Description of the Related Art In a receiver (demodulation device) for SS communication, synchronization acquisition and synchronization holding during demodulation operation are basically important, and various synchronization acquisition methods and holding methods have been proposed so far. Has been put to practical use. In particular, if the level fluctuation of the SS modulation signal supplied to the demodulation device is too large, it is easy to lose synchronization and it is difficult to hold it. Therefore, connect an AGC (automatic gain control) circuit in the preceding stage of the demodulation circuit, Input SS
It was an essential requirement that the level of the modulation signal be attenuated when it is too high, and that it be amplified when it is low to maintain the level within a predetermined range.

【0004】かかる従来の復調装置及び同期保持装置に
ついて図面と共に説明する前に、この復調装置(受信
機)に対して、信号を送る側である送信機(SS変調装
置)の構成について、図1と共に説明する。図中、2は
角度変調回路(MOD)、5は拡散符号発生器(PN
G)、BF1 は帯域濾波器(BPF)、Mx1は乗算器であ
る。角度変調回路2では、音声や情報等の被変調信号に
対して1次変調である角度変調を施すが、その角度変調
にはFM(周波数変調)やPM(位相変調)等があり、
特に被変調信号がディジタル信号の場合にはShift Keyi
ng(シフトキーイング;SK)と呼ばれる。これにはF
(Frequency)SK,P(Phase)SK,M(Minimum)SK
及びGM(Gausian Minimum)SK等の変調方式があり、
従来はPSK変調を行なっていた。
Before describing such a conventional demodulation device and synchronization holding device with reference to the drawings, FIG. Will be explained together. In the figure, 2 is an angle modulation circuit (MOD), 5 is a spread code generator (PN).
G) and BF1 are bandpass filters (BPF), and Mx1 is a multiplier. The angle modulation circuit 2 performs angle modulation, which is a primary modulation, on a modulated signal such as voice or information. The angle modulation includes FM (frequency modulation) and PM (phase modulation).
Especially when the modulated signal is a digital signal, Shift Keyi
It is called ng (shift keying; SK). F for this
(Frequency) SK, P (Phase) SK, M (Minimum) SK
And modulation methods such as GM (Gausian Minimum) SK,
Conventionally, PSK modulation was performed.

【0005】入力端子In1 より供給される音声や情報等
の被変調信号S(t)は、角度変調回路2にてPSK変調さ
れて、1次変調信号f(t)となる。一方、入力端子In2 か
らクロック信号C(t)を拡散符号発生回路5に供給して、
ここで位相τ0 を持つ拡散符号Pn(t-τ0 )を生成し
て、拡散変調用の乗算器Mx1に出力している。従って、
乗算器Mx1では拡散符号と上記角度変調出力信号f(t)と
の乗算が行われてスペクトル拡散変調波SS(t) が生成さ
れ、BPFBF1 にて不要な周波数成分を除去された後、
出力端子Out1を介して図示しないアンテナより出力され
る。
The modulated signal S (t) such as voice and information supplied from the input terminal In1 is PSK-modulated by the angle modulation circuit 2 and becomes a primary modulation signal f (t). On the other hand, the clock signal C (t) is supplied from the input terminal In2 to the spread code generating circuit 5,
Here, the spread code Pn (t-τ 0 ) having the phase τ 0 is generated and output to the multiplier Mx1 for spread modulation. Therefore,
The multiplier Mx1 multiplies the spread code and the angle modulation output signal f (t) to generate a spread spectrum modulated wave SS (t), and after removing unnecessary frequency components by BPFBF1,
It is output from an antenna (not shown) via the output terminal Out1.

【0006】かかるSS変調波は、大気等の伝送媒体を
介して、受信機側のアンテナ(図示せず)でキャッチさ
れ、SS復調装置で復調されて、元の音声や情報等に戻
される。以下、かかるSS復調装置の従来例について、
図2のブロック構成図を参照して説明するが、大抵のS
S通信装置は、前記図1のSS変調装置とこのSS復調
装置の両方の構成を夫々変調部及び復調部として備えて
おり、その場合にはアンテナやPNG等一部の構成要素
は共用される。
The SS modulated wave is caught by an antenna (not shown) on the receiver side through a transmission medium such as the atmosphere, demodulated by an SS demodulator, and returned to the original voice, information or the like. Hereinafter, regarding the conventional example of the SS demodulator,
As will be described with reference to the block diagram of FIG. 2, most S
The S communication device includes both the configurations of the SS modulator and the SS demodulator of FIG. 1 as a modulator and a demodulator, and in that case, some components such as an antenna and PNG are shared. .

【0007】従来のSS復調装置は、図2に示す如く、
3つのBPFBF2 〜BF4,自動利得制御(AGC)回路3
3,拡散符号発生回路(PNG)28,2つの乗算器M
x2,Mx3及びエンベロープ検出器(Env.DET)38,3
9;引算回路40,ループフィルタ(LF)26,及び
電圧制御発振器(VCO)27等を有し、これらを図示
の如く結線して構成されている。このうち、BPFBF2
とAGC回路33を除く部分が同期保持装置の構成であ
り、拡散符号発生器28はVCO出力をクロック信号と
して2種類の拡散符号、即ち所定のチップ時間T(1/2
チップ)進んだ拡散符号RE (t) と 1/2 チップ遅れた
拡散符号RL (t) を生成している。
As shown in FIG. 2, the conventional SS demodulation device is as follows.
Three BPFs BF2 to BF4, automatic gain control (AGC) circuit 3
3, spreading code generation circuit (PNG) 28, two multipliers M
x2, Mx3 and envelope detector (Env.DET) 38, 3
9; has a subtraction circuit 40, a loop filter (LF) 26, a voltage controlled oscillator (VCO) 27, etc., and these are connected as shown in the drawing. Of these, BPFBF2
The portion excluding the AGC circuit 33 and the AGC circuit 33 is the configuration of the synchronization holding device, and the spreading code generator 28 uses two kinds of spreading codes, that is, a predetermined chip time T (1/2
Chip) advanced spread code R E (t) and spread code R L (t) delayed by 1/2 chip.

【0008】次に、図3の同期保持動作説明用の相関特
性図を併せ参照し乍ら、かかるSS復調動作及び同期保
持動作(装置)について説明する。なお、伝送媒体通過
中に混入するノイズを白色ガウス雑音n(t)とすると、入
力端子In3 に入来するSS変調信号Cs(t)は、 Cs(t)=AP(t−τ0 )sinωt+n(t) ……………………
…………(1) と表わされる。かかるSS信号Cs(t)は、帯域濾波器BF
2 にて不要な周波数成分を除去され、更にAGC回路3
3にて適当なレベルに増幅又は減衰されて、乗算器Mx2
及びMx3に供給される。
Next, the SS demodulation operation and the synchronization holding operation (apparatus) will be described with reference to the correlation characteristic diagram for explaining the synchronization holding operation in FIG. If white Gaussian noise n (t) is the noise mixed in while passing through the transmission medium, the SS modulation signal Cs (t) coming into the input terminal In3 is Cs (t) = AP (t−τ 0 ) sinωt + n (t) ……………………
………… It is expressed as (1). The SS signal Cs (t) is supplied to the bandpass filter BF.
Unnecessary frequency components are removed by 2 and AGC circuit 3
Amplified or attenuated to an appropriate level at 3 and multiplier Mx2
And Mx3.

【0009】乗算器Mx2には、拡散符号発生器28から
正しい同期位置より 1/2 チップ進んだ拡散符号R
E (t) を供給され、乗算器Mx3には 1/2 チップ遅れた
拡散符号RL (t) が夫々供給されている。これらの拡散
符号RE (t) 及びRL (t) を夫々次式で表わすと、 RE (t) =P{t−τ+(Δ/2)} ……………………
……………(2) RL (t) =P{t−τ−(Δ/2)} ……………………
……………(3) 乗算器Mx2の出力CSL(t) 及び乗算器Mx3の出力C
SE(t) は、夫々 CSL(t)=AP(t−τ0 )*P{t−τ+(Δ/2)}sinωt+n(t)
P{t−τ+(Δ/2)}……(4)CSE(t)=AP(t−τ0 )*P{t
−τ-(Δ/2)}sinωt+n(t)P{t−τ-(Δ/2)}……(5)と
なる。なお、τは時間の推定誤差量、Δは拡散符号の1
チップ時間を示す。
The multiplier Mx2 has a spreading code R that is 1/2 chip ahead of the correct synchronization position from the spreading code generator 28.
E (t) is supplied, and the spread code RL (t) delayed by 1/2 chip is supplied to the multiplier Mx3. Representing these spreading codes R E (t) and R L (t) by the following equations, respectively, R E (t) = P {t−τ + (Δ / 2)} ……………………
…………… (2) RL (t) = P {t−τ− (Δ / 2)} ……………………
(3) Output C SL (t) of multiplier Mx2 and output C of multiplier Mx3
SE (t) is C SL (t) = AP (t−τ 0 ) * P {t−τ + (Δ / 2)} sinωt + n (t)
P {t−τ + (Δ / 2)} …… (4) C SE (t) = AP (t−τ 0 ) * P {t
−τ− (Δ / 2)} sinωt + n (t) P {t−τ− (Δ / 2)} (5) Note that τ is the time estimation error amount and Δ is the spreading code 1
Indicates tip time.

【0010】通常、乗算器Mx2及びMx3においては、逆
拡散による復調が行なわれるが、以下、同期保持の動作
についてのみ説明する。これらの(6),(7) 式において、
白色ガウス雑音n(t)の項は、同期保持装置におけるルー
プ応答の計算において無視できるから、夫々の出力は次
のようになる。
Usually, the multipliers Mx2 and Mx3 perform demodulation by despreading, but only the operation for holding synchronization will be described below. In these equations (6) and (7),
The term of the white Gaussian noise n (t) can be ignored in the calculation of the loop response in the synchronization holding device, so that the respective outputs are as follows.

【0011】 CSL(t)=ARP{-τ0 +τ−(Δ/2)}sinωt ………
……………(6) CSE(t)=ARP{-τ0 +τ+(Δ/2)}sinωt ………
……………(7) これらの各乗算出力は、帯域濾波器BF3,BF4 にて夫々必
要な周波数成分のみを抽出され、更にエンベロープ検出
器38,39にて包絡線検波されて、夫々図3(A)及び
(B) に示すような波形となる。この両出力は引算回路4
0に供給されて互に減算され、更にループフィルタ26
により誤差電圧Es(τ0 −τ) とされる。
C SL (t) = ARP {−τ 0 + τ− (Δ / 2)} sinωt ...
…………… (6) C SE (t) = ARP {-τ 0 + τ + (Δ / 2)} sinωt ………
…………… (7) Each of these multiplication outputs is extracted by the band-pass filters BF3 and BF4, only the necessary frequency components, and envelope-detected by the envelope detectors 38 and 39. 3 (A) and
The waveform is as shown in (B). Both outputs are subtraction circuit 4
0 and are subtracted from each other, and the loop filter 26
Therefore, the error voltage Es (τ 0 −τ) is obtained.

【0012】ここでτ0 −τ=εと置くと、 Es(ε)=RP{-ε-(Δ/2)}−RP{-ε+(Δ/2)} ………
……………(8) となる。この誤差電圧Es(ε) を電圧制御発振器27に
供給して、電圧制御発振器27の発振周波数を制御する
ことにより、拡散符号発生用のクロック信号を得てい
る。このクロック信号を拡散符号発生器28に供給し、
各ビットクロックを適当に選定することにより、2種類
の拡散符号RE (t) 及びRL (t) を発生させている。図
3(C) にこの(10)式で表現されるVCO用誤差電圧Es
(ε) の相関特性を示す。同図(C) で、0点の位置が理
想的な同期保持点である。
When τ 0 −τ = ε is set here, Es (ε) = RP {-ε- (Δ / 2)}-RP {-ε + (Δ / 2)} .....
…………… (8). The error voltage Es (ε) is supplied to the voltage controlled oscillator 27 to control the oscillation frequency of the voltage controlled oscillator 27, thereby obtaining the clock signal for generating the spread code. This clock signal is supplied to the spread code generator 28,
By appropriately selecting each bit clock, two kinds of spreading codes R E (t) and R L (t) are generated. The error voltage Es for VCO expressed by the equation (10) is shown in FIG. 3 (C).
The correlation characteristic of (ε) is shown. In the same figure (C), the position of 0 point is an ideal synchronization holding point.

【0013】[0013]

【発明が解決しようとする課題】上記従来のスペクトル
拡散通信方式における同期保持装置においては、乗算器
Mx2,Mx3に供給される入力レベルを一定に保つ必要が
あり、そのためにAGC回路33が用いられる。しか
し、実際のAGC回路は、その出力が一定な理想的出力
にはならず、ある程度のレベル変動が生じる。かかるレ
ベル変動が生じると、乗算器Mx2,Mx3の出力レベルが
当然変化し、ループ利得が変化して、同期保持は安定に
保たれ難いという問題が生じていた。また、AGC回路
は周知の如く回路規模として大きく、システムコストが
高くなるという問題点があった。
In the synchronization holding device in the conventional spread spectrum communication system, it is necessary to keep the input level supplied to the multipliers Mx2 and Mx3 constant, and the AGC circuit 33 is used for that purpose. . However, the actual AGC circuit does not become an ideal output whose output is constant, and some level fluctuation occurs. When such a level change occurs, the output levels of the multipliers Mx2 and Mx3 naturally change, the loop gain changes, and it is difficult to keep the synchronization stable. Further, as is well known, the AGC circuit has a large circuit scale, and there is a problem that the system cost becomes high.

【0014】[0014]

【課題を解決するための手段】本発明のスペクトル拡散
通信方式における同期保持装置は、所定のチップ時間進
んだ拡散符号と所定のチップ時間遅れた拡散符号を夫々
出力する復調用の拡散符号発生回路と、この拡散符号発
生回路からの各拡散符号と入力スペクトル拡散信号との
相関をとる第1,第2の相関手段と、これらの相関出力
を角度復調して角度復調出力を得る第1,第2の角度復
調手段と、得られた夫々の角度復調出力からキャリヤ成
分を除去する第1,第2のフィルタ手段と、両フィルタ
手段の出力を引算して引算出力を得る引算手段と、得ら
れた引算出力を誤差信号に変換して電圧制御発振器に供
給してクロック信号を得るクロック信号生成手段とを備
え、得られたクロック信号を上記拡散符号発生回路に供
給して所定チップ時間進んだ拡散符号と所定チップ時間
遅れた拡散符号を生成して、上記各々の相関手段に供給
する同期保持ループを構成することにより、上記課題を
解決した。
A synchronization holding device in a spread spectrum communication system according to the present invention is a spread code generating circuit for demodulation which outputs a spread code advanced by a predetermined chip time and a spread code delayed by a predetermined chip time. And first and second correlating means for correlating each spread code from the spread code generating circuit with the input spread spectrum signal, and first and second correlating outputs of these correlation outputs to obtain an angle demodulated output. Two angle demodulation means, first and second filter means for removing carrier components from the obtained respective angle demodulation outputs, and subtraction means for subtracting the outputs of both filter means to obtain a subtractive force. Clock signal generating means for converting the obtained subtraction calculation force into an error signal and supplying it to a voltage controlled oscillator to obtain a clock signal, and supplying the obtained clock signal to the spread code generating circuit for a predetermined chip. Generates a spreading code delayed spread code and the predetermined chip time advanced between, by configuring the synchronization hold loop to supply to the correlation means of the respective, the above-mentioned problems are eliminated.

【0015】[0015]

【実施例】図4以降を参照し乍ら、本発明のスペクトル
拡散通信方式における同期保持装置の一実施例について
説明する。図4は本発明のスペクトル拡散方式における
同期保持装置1のブロック系統図であり、この図におい
て、17,18は角度復調回路(DEM)、19,20
は低域濾波器(LPF)、23は反転増幅器、D1,2
はダイオードであり、その他、図2に示した従来装置と
同一構成要素には同一符号を付してその詳細な説明を省
略する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of a synchronization holding device in a spread spectrum communication system of the present invention will be described with reference to FIG. FIG. 4 is a block system diagram of the synchronization holding device 1 in the spread spectrum system of the present invention. In this figure, 17 and 18 are an angle demodulation circuit (DEM), 19, 20.
Is a low pass filter (LPF), 23 is an inverting amplifier, D 1 and D 2
Is a diode, and other components that are the same as those of the conventional device shown in FIG. 2 are denoted by the same reference numerals, and detailed description thereof will be omitted.

【0016】なお、かかる同期保持装置を含んだ復調装
置(受信機)に対して、信号を送る側である送信機(S
S変調装置)の構成は前記図1に示したものと大差ない
が、角度変調回路(MOD)2では、音声や情報等の被
変調信号に対して、以下の如くFM変調を施している。
It is to be noted that a transmitter (S) which is a side for transmitting a signal is sent to a demodulating device (receiver) including the synchronization holding device.
Although the configuration of the S modulator) is not so different from that shown in FIG. 1, the angle modulation circuit (MOD) 2 performs FM modulation on a modulated signal such as voice or information as follows.

【0017】入力端子In1 より供給される音声や情報等
の被変調信号s(t)は、角度変調回路2にて搬送波Esin
ωt によりFM変調されて、1次変調信号f(t): f(t)=Esin{ωt+s(t)} ………………………
…(9) となる。一方、入力端子In2 からのクロック信号C(t)を
基に、拡散符号発生回路5では拡散符号P(t)を生成し
て、拡散変調用の乗算器Mx1に出力している。従って、
ここで拡散符号と上記角度変調出力信号f(t)との乗算が
行われて次式のようなスペクトル拡散変調波SS(t) が生
成され、BPFBF1 にて不要な周波数成分が除去された
後、出力端子Out1を介して図示しないアンテナより出力
される。
The modulated signal s (t) such as voice and information supplied from the input terminal In1 is transmitted by the carrier wave Esin in the angle modulation circuit 2.
The signal is FM-modulated by ωt and the primary modulation signal f (t): f (t) = E sin {ωt + s (t)} ……………………………
… (9). On the other hand, the spread code generating circuit 5 generates a spread code P (t) based on the clock signal C (t) from the input terminal In2 and outputs the spread code P (t) to the multiplier Mx1 for spread modulation. Therefore,
Here, the spread code and the angle modulation output signal f (t) are multiplied to generate a spread spectrum modulated wave SS (t) as shown in the following equation, and after unnecessary frequency components are removed by BPFBF1 , Is output from an antenna (not shown) via the output terminal Out1.

【0018】SS(t) =EP(t)sin{ωt+s(t)} ………
…………………(10) 次に、図4及び図5の波形図を併せ参照して、本発明の
同期保持装置について説明する。入力端子In3 より入来
するスペクトル拡散変調波には、前記従来例同様白色ガ
ウスノイズn(t)が含まれており、帯域濾波器(BPF)
BF2 を介して相関復調用乗算器Mx2及びMx3に供給され
る。通常、乗算器Mx2及びMx3においては、拡散符号発
生器28からの拡散符号との乗算,即ち逆拡散復調が行
なわれるが、本発明の主旨に直接関係しないので、ここ
では従来例同様、同期保持に関する動作についてのみ説
明する。
SS (t) = EP (t) sin {ωt + s (t)} ...
(10) Next, referring to the waveform diagrams of FIGS. 4 and 5, the synchronization holding device of the present invention will be described. The spread spectrum modulated wave coming from the input terminal In3 contains white Gaussian noise n (t) as in the above-mentioned conventional example, and a bandpass filter (BPF).
It is supplied to the correlation demodulating multipliers Mx2 and Mx3 via BF2. Normally, in the multipliers Mx2 and Mx3, multiplication with the spread code from the spread code generator 28, that is, despread demodulation, is performed, but since it is not directly related to the gist of the present invention, the synchronization is maintained here as in the conventional example. Only the operation regarding will be described.

【0019】拡散符号発生器28より、乗算器Mx2には
拡散符号の所定チップ時間T,即ち0.5チップ時間進ん
だ拡散符号Pn(t-τ+ Δ/2) =RE (t) が供給され、乗
算器Mx3には 0.5チップ時間遅れた拡散符号Pn(t-τ-
Δ/2) =RL (t) が供給されている。従って、乗算器M
x2及びMx3の出力eL (t),eE (t) は夫々、 eL (t)=ERP{-τ0 + τ-(Δ/2)}sin{ωt+s(t)}+n(t)Pn{t-τ+(Δ/2)}……(11) eE (t)=ERP{-τ0 + τ+(Δ/2)}sin{ωt+s(t)}+n(t)Pn{t-τ-(Δ/2)}……(12) となる。なお、 RP{-τ0 + τ-(Δ/2)}や RP{-τ0 +
τ+(Δ/2)}は相関利得である。
The spread code generator 28 supplies the spread code Pn (t-τ + Δ / 2) = R E (t) to the multiplier Mx2 by advancing the predetermined chip time T of the spread code, that is, 0.5 chip time. , The spreading code Pn (t-τ- is delayed by 0.5 chip time in the multiplier Mx3.
Δ / 2) = RL (t) is supplied. Therefore, the multiplier M
The outputs e L (t) and e E (t) of x2 and Mx3 are respectively e L (t) = ERP {-τ 0 + τ- (Δ / 2)} sin {ωt + s (t)} + n (t) Pn {t-τ + (Δ / 2)} …… (11) e E (t) = ERP {-τ 0 + τ + (Δ / 2)} sin {ωt + s (t)} + n (t) Pn {t-τ- (Δ / 2)} (12) Note that RP {-τ 0 + τ- (Δ / 2)} and RP {-τ 0 +
τ + (Δ / 2)} is the correlation gain.

【0020】ここで、τ−τ0 をτE とし、n(t)の項を
ループ解析において無視するものとすれば、(11),(12)
式は夫々、 eL (t) =ERP{τE -(Δ/2)}sin{ωt+s(t)} …………
………(13) eE (t) =ERP{τE +(Δ/2)}sin{ωt+s(t)} …………
………(14) となる。前記図3の特性図から明らかに RP{τE -(Δ
/2)}は、
Here, if τ−τ 0 is τ E and the term n (t) is ignored in the loop analysis, (11), (12)
The formulas are e L (t) = ERP {τ E- (Δ / 2)} sin {ωt + s (t)} …………
……… (13) e E (t) = ERP {τ E + (Δ / 2)} sin {ωt + s (t)} …………
……… (14) Obviously from the characteristic diagram of FIG. 3, RP {τ E-
/ 2)} is

【0021】[0021]

【数1】 ……………………(15) と近似できる。同様に RP{τE +(Δ/2)}は、[Equation 1] …………………… It can be approximated with (15). Similarly, RP {τ E + (Δ / 2)} is

【数2】 ……………………(16) となる。従って、(13),(14) 式は夫々、[Equation 2] …………………… (16). Therefore, equations (13) and (14) are

【0022】 eL (t) =E{(1/2)+(τE /Δ)}sin{ωt+s(t)} ………
…………(17) eE (t) =E{(1/2)-(τE /Δ)}sin{ωt+s(t)} ………
…………(18) となる。(17),(18) 式の中のEは全体の振幅値であり、
1/2 は角度変調波の振幅を示す。又、τE /Δは時間の
関数でもあり、実際は拡散成分Pn(t)として表現するこ
ともできる。
E L (t) = E {(1/2) + (τ E / Δ)} sin {ωt + s (t)} ………
………… (17) e E (t) = E {(1/2)-(τ E / Δ)} sin {ωt + s (t)} ………
………… It becomes (18). E in equations (17) and (18) is the overall amplitude value,
1/2 indicates the amplitude of the angle modulated wave. Further, τ E / Δ is also a function of time, and can actually be expressed as a diffusion component Pn (t).

【0023】各々の相関出力はBPFBF3,BF4 を夫々介
して角度復調回路17及び18に供給されて角度復調が
行われる。角度復調は、一般に入力信号を振幅制限して
から微分し、更にエンベロープ検出(包絡線検波)する
ことによって行われる。従って、角度復調回路17,1
8は振幅制限器(リミッタ)やエンベロープ検出器等を
含んで構成され、角度復調回路17の復調出力DL (t)
は、E=1,角度変調波の振幅を1とすると、
The respective correlation outputs are supplied to the angle demodulation circuits 17 and 18 via BPFBF3 and BF4, respectively, and the angle demodulation is performed. The angle demodulation is generally performed by limiting the amplitude of the input signal, differentiating it, and further performing envelope detection (envelope detection). Therefore, the angle demodulation circuits 17, 1
A demodulation output D L (t) of the angle demodulation circuit 17 is composed of an amplitude limiter (limiter), an envelope detector and the like.
Is E = 1 and the amplitude of the angle modulated wave is 1,

【0024】 DL (t) =s'(t)+Pn(t)s'(t)+Pn'(t) …………
…………(19) となり、同様に角度復調回路18の復調出力DE (t)
は、 DE (t) =s'(t)-Pn(t)s'(t)-Pn'(t) …………
…………(20) となる。この両式中に含まれる各成分s'(t),Pn(t)s'
(t),Pn'(t) の波形を、夫々図5の(A),(B),(C) に示
す。なお、s'(t) の如く"'”が付されているのは、元の
信号s(t)に比べて微分された信号波形であることを意味
する。FM信号はこれを微分してから包絡線検波(エン
ベロープ検出)することにより情報が復調されるところ
から、このように表現している。
D L (t) = s ′ (t) + Pn (t) s ′ (t) + Pn ′ (t) …………
………… (19), and similarly the demodulation output D E (t) of the angle demodulation circuit 18
Is D E (t) = s' (t) -Pn (t) s' (t) -Pn '(t) …………
………… It becomes (20). Each component s '(t), Pn (t) s' included in both equations
Waveforms of (t) and Pn '(t) are shown in (A), (B), and (C) of FIG. 5, respectively. It should be noted that the addition of "" as in s' (t) means that the signal waveform is differentiated from the original signal s (t). The FM signal is expressed in this way because information is demodulated by differentiating it and performing envelope detection (envelope detection).

【0025】ところで(19),(20) 式において、Pn(t)s'
(t) はレベル的に小さいため、復調出力DL (t) やDE
(t) は次のように近似できる。
By the way, in equations (19) and (20), Pn (t) s'
Since (t) is small in level, demodulation output D L (t) and D E
(t) can be approximated as follows.

【数3】 …………………………(21)[Equation 3] …………………………(twenty one)

【数4】 …………………………(22)[Equation 4] …………………………(twenty two)

【0026】(21),(22) 式右辺のPn'(t) は復調された
拡散成分で、拡散符号の周期の逆数を基本周波数とし、
その高次の高調波成分を含む成分で成り立ち、その成分
のレベルの大小を比較すれば誤差信号として利用できる
ことが分かる。そこで、BPFBF5,BF6 にて情報信号周
波数帯域を除去した後、BPFBF5 の出力のみ反転増幅
器23で反転(及びレベル調整)して、ダイオード2
4,25を使用して両BPF出力を引算すると、次のよ
うな誤差信号ε(t) が得られる。
Pn '(t) on the right side of the equations (21) and (22) is a demodulated spread component, and the reciprocal of the period of the spread code is the fundamental frequency,
It can be understood that it can be used as an error signal if it is composed of components including the higher-order harmonic components and the levels of the components are compared. Therefore, after removing the information signal frequency band by BPFBF5 and BF6, only the output of BPFBF5 is inverted (and level adjusted) by the inverting amplifier 23, and the diode 2
Subtracting both BPF outputs using 4, 25 yields the following error signal ε (t).

【0027】 ε(t) =(τE /Δ)d/dt 但し、|τE |≦(Δ/2)
…………(23) このτE が誤差成分として存在し、次段のループフィル
タ26により誤差電圧化されて、電圧制御発振器27に
供給される。この誤差電圧により、電圧制御発振器27
の出力周波数が制御されて前記図3(C) の0点に落ち着
き、ループの同期保持が持続することになる。なお、誤
差信号ε(t) は、実際には角度復調回路における振幅制
限動作により、τE /Δの瞬時周波数成分として検出さ
れることになり、その復調誤差信号レベルは時間差τE
にのみ比例する。従って、同期保持装置の入力スペクト
ル拡散変調波SS'(t)の振幅が変動してもτE /Δは変動
しないため、ループは正常に動作することになる。
Ε (t) = (τ E / Δ) d / dt where | τ E | ≦ (Δ / 2)
(23) This τ E exists as an error component, is converted into an error voltage by the loop filter 26 in the next stage, and is supplied to the voltage controlled oscillator 27. Due to this error voltage, the voltage controlled oscillator 27
The output frequency is controlled to settle at the 0 point in FIG. 3 (C), and the synchronization of the loop is maintained. Note that the error signal ε (t) is actually detected as an instantaneous frequency component of τ E / Δ by the amplitude limiting operation in the angle demodulation circuit, and the demodulation error signal level is the time difference τ E.
Proportional only to. Therefore, τ E / Δ does not change even if the amplitude of the input spread spectrum modulated wave SS ′ (t) of the synchronization holding device changes, so that the loop operates normally.

【0028】次に、本発明装置の第2実施例について説
明する。前記図4に示した第1実施例装置の構成より、
BPFBF5,BF6 ,反転増幅器23,及びダイオードD1,
2が除かれ、引算回路40のみが追加されており、第
1実施例装置よりも構成が簡素化されている。その他は
同一構成なので同一符号を付して、その詳細な動作説明
を省略する。即ち、LPF19,20までは同じ構成で
あり、LPF19及び20の出力を夫々DL (t),D
E (t) とすると、引算回路40の出力は次式、
Next, a second embodiment of the device of the present invention will be described. From the configuration of the first embodiment device shown in FIG. 4,
BPF BF5, BF6, inverting amplifier 23, and diode D 1,
D 2 is removed and only the subtraction circuit 40 is added, and the configuration is simpler than that of the first embodiment device. Since the other configurations are the same, the same reference numerals are given and detailed description of the operation is omitted. That is, the LPFs 19 and 20 have the same configuration, and the outputs of the LPFs 19 and 20 are respectively set to D L (t), D
If E (t), the output of the subtraction circuit 40 is

【0029】[0029]

【数5】 …………………………(24) となる。この場合、情報s(t)は引算で打ち消されること
が条件となる。実際には、(21)と(22)式中の復調情報s'
(t) は、その復調レベルは夫々等しいため、情報は打ち
消されて正常に動作することになる。従って、反転増幅
器23のようなレベル調整手段も不要となり、角度復調
回路以降の伝送ラインは直流伝送を基本とすればよい。
[Equation 5] ………………………… (24). In this case, the information s (t) must be canceled by subtraction. Actually, the demodulation information s'in Eqs. (21) and (22)
Since the demodulation levels of (t) are the same, the information is canceled and the normal operation is achieved. Therefore, the level adjusting means such as the inverting amplifier 23 is unnecessary, and the transmission line after the angle demodulation circuit may be based on direct current transmission.

【0030】[0030]

【発明の効果】本発明のスペクトル拡散通信方式におけ
る同期保持装置は以上のように構成したので、角度復調
回路の使用により、従来の同期保持装置に必須であった
AGC回路は不要となって構成が簡素化され、しかも、
従来装置におけるAGC回路が理想的特性ではないこと
により発生するループ利得の変動問題は皆無となる。こ
れにより、本発明の同期保持装置は、その入力レベルが
変動しても安定に動作し、ループの基本的性質,動作は
従来の同期保持装置と変わらないため、正常な同期保持
動作を実現でき、更に、前記第2実施例の如く構成すれ
ば、構成が一層簡素化されるという特長をも有する。
Since the synchronization holding device in the spread spectrum communication system of the present invention is configured as described above, the use of the angle demodulation circuit eliminates the need for the AGC circuit which is essential to the conventional synchronization holding device. Is simplified, and yet
The problem of loop gain variation caused by the non-ideal characteristics of the AGC circuit in the conventional device is eliminated. As a result, the synchronization holding device of the present invention operates stably even if the input level changes, and the basic characteristics and operation of the loop are the same as those of the conventional synchronization holding device, so that a normal synchronization holding operation can be realized. Further, the structure as in the second embodiment has a feature that the structure is further simplified.

【図面の簡単な説明】[Brief description of drawings]

【図1】スペクトル拡散方式における一般的なSS変調
装置を示すブロック図。
FIG. 1 is a block diagram showing a general SS modulator in a spread spectrum system.

【図2】SS受信部(復調部)における従来の同期保持
装置のブロック構成図。
FIG. 2 is a block configuration diagram of a conventional synchronization holding device in an SS reception unit (demodulation unit).

【図3】従来装置及び本発明装置における同期保持動作
説明用の相関特性図。
FIG. 3 is a correlation characteristic diagram for explaining the synchronization holding operation in the conventional device and the device of the present invention.

【図4】本発明の同期保持装置の第1実施例のブロック
構成図。
FIG. 4 is a block configuration diagram of a first embodiment of a synchronization holding device of the present invention.

【図5】角度復調回路の復調出力に含まれる各信号成分
の波形図。
FIG. 5 is a waveform diagram of each signal component included in the demodulation output of the angle demodulation circuit.

【図6】本発明の同期保持装置の第2実施例のブロック
構成図。
FIG. 6 is a block configuration diagram of a second embodiment of the synchronization holding device of the present invention.

【符号の説明】[Explanation of symbols]

2 角度変調回路 5,28 拡散符号発生器(PNG) 17,18 角度復調回路(DEM) 19,20 低域濾波器(LPF) 23 反転増幅器 26 ループフィルタ(LF) 27 電圧制御発振器(VCO) 40 引算回路 BF1 〜BF6 帯域濾波器(BPF) D1,2 ダイオード Mx1〜Mx6 乗算器2 angle modulation circuit 5,28 spreading code generator (PNG) 17,18 angle demodulation circuit (DEM) 19,20 low pass filter (LPF) 23 inverting amplifier 26 loop filter (LF) 27 voltage controlled oscillator (VCO) 40 subtraction circuit BF1 ~BF6 bandpass filter (BPF) D 1, D 2 diodes Mx1~Mx6 multiplier

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】情報が角度変調された角度変調波を更にス
ペクトル拡散変調して送出されたスペクトル拡散信号を
受信復調する復調装置に用いられる同期保持装置であっ
て、 所定のチップ時間進んだ拡散符号と所定のチップ時間遅
れた拡散符号を夫々出力する復調用の拡散符号発生回路
と、該拡散符号発生回路からの各拡散符号と入力スペク
トル拡散信号との相関をとる第1,第2の相関手段と、
これらの相関出力を角度復調して角度復調出力を得る第
1,第2の角度復調手段と、得られた夫々の角度復調出
力からキャリヤ成分を除去する第1,第2のフィルタ手
段と、両フィルタ手段の出力を引算して引算出力を得る
引算手段と、得られた引算出力を誤差信号に変換して電
圧制御発振器に供給してクロック信号を得るクロック信
号生成手段とを備え、 得られたクロック信号を上記拡散符号発生回路に供給す
ることにより、上記所定チップ時間進んだ拡散符号と所
定チップ時間遅れた拡散符号を生成して、上記各々の相
関手段に供給する同期保持ループを構成したことを特徴
とする、スペクトル拡散通信方式における同期保持装
置。
1. A synchronization holding device used in a demodulating device for further spread-spectrum modulating an angle-modulated wave in which information is angle-modulated and receiving and demodulating a spread-spectrum signal transmitted, wherein the spread is advanced by a predetermined chip time. Code and a spreading code generating circuit for demodulation that outputs a spreading code delayed by a predetermined chip time, and first and second correlations for correlating each spreading code from the spreading code generating circuit with the input spread spectrum signal Means and
First and second angle demodulation means for angle demodulating these correlation outputs to obtain an angle demodulation output, and first and second filter means for removing a carrier component from each of the obtained angle demodulation outputs. And a subtraction unit for subtracting the output of the filter unit to obtain a subtraction calculation force, and a clock signal generation unit for converting the obtained subtraction calculation force into an error signal and supplying the error signal to a voltage controlled oscillator to obtain a clock signal. A synchronization holding loop for supplying the obtained clock signal to the spreading code generation circuit to generate the spreading code advanced by the predetermined chip time and the spreading code delayed by the predetermined chip time, and supplying the generated diffusion code to each of the correlating means. A synchronization holding device in a spread spectrum communication system, characterized in that
【請求項2】情報が角度変調された角度変調波を更にス
ペクトル拡散変調して送出されたスペクトル拡散信号を
受信復調する復調装置に用いられる同期保持装置であっ
て、 逆拡散復調用の所定チップ時間進んだ拡散符号と入力ス
ペクトル拡散信号との相関をとる第1の相関手段と、逆
拡散復調用の所定チップ時間遅れた拡散符号と入力スペ
クトル拡散信号との相関をとる第2の相関手段と、該第
1,第2の相関手段の相関出力を夫々角度復調して角度
復調出力を得る第1,第2の角度復調手段と、得られた
夫々の角度復調出力から復調情報とキャリヤ成分を除去
する第1,第2のフィルタ手段と、該第1,第2のフィ
ルタ手段からの復調情報の除かれた夫々の残留復調拡散
成分を検出して引算することにより誤差信号を得る引算
手段と、得られた誤差信号を制御電圧に変換して電圧制
御発振器に供給してクロック信号を得るクロック信号生
成手段と、該クロック信号を基に上記所定チップ時間進
んだ拡散符号と所定チップ時間遅れた拡散符号とを生成
する復調用拡散符号発生回路とを備え、 該得られた2種類の拡散符号を夫々上記第1,第2の相
関手段に供給することにより同期保持ループを構成した
ことを特徴とする、スペクトル拡散通信方式における同
期保持装置。
2. A synchronization holding device used in a demodulation device for receiving and demodulating a spread spectrum signal transmitted by spread spectrum modulating an angle modulated wave whose information is angle modulated, and a predetermined chip for despread demodulation. A first correlating means for correlating the spread code and the input spread spectrum signal which are advanced in time, and a second correlating means for correlating the spread code and the input spread spectrum signal which are delayed by a predetermined chip for despread demodulation. , First and second angle demodulating means for angle demodulating the correlation outputs of the first and second correlating means to obtain angle demodulating outputs, and demodulation information and carrier components from the obtained angle demodulating outputs. First and second filter means to be removed, and subtraction to obtain an error signal by detecting and subtracting each residual demodulation diffusion component from which the demodulation information from the first and second filter means is removed Means and got A clock signal generating means for converting the generated error signal into a control voltage and supplying it to a voltage controlled oscillator to obtain a clock signal; and a spreading code advanced by the predetermined chip time and a diffusion code delayed by the predetermined chip time based on the clock signal. And a spreading code generating circuit for demodulation, and a synchronization holding loop is configured by supplying the obtained two kinds of spreading codes to the first and second correlation means, respectively. , Synchronization holding device in spread spectrum communication system.
JP3490093A 1993-01-29 1993-01-29 Synchronization holding device in spread spectrum communication system Expired - Lifetime JP2864930B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3490093A JP2864930B2 (en) 1993-01-29 1993-01-29 Synchronization holding device in spread spectrum communication system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3490093A JP2864930B2 (en) 1993-01-29 1993-01-29 Synchronization holding device in spread spectrum communication system

Publications (2)

Publication Number Publication Date
JPH06232841A true JPH06232841A (en) 1994-08-19
JP2864930B2 JP2864930B2 (en) 1999-03-08

Family

ID=12427066

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3490093A Expired - Lifetime JP2864930B2 (en) 1993-01-29 1993-01-29 Synchronization holding device in spread spectrum communication system

Country Status (1)

Country Link
JP (1) JP2864930B2 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0211034A (en) * 1988-06-29 1990-01-16 Mitsubishi Electric Corp Spread spectrum communication receiver
JPH02164150A (en) * 1988-12-19 1990-06-25 Icom Inc Spread spectrum communication equipment
JPH02164151A (en) * 1988-12-19 1990-06-25 Icom Inc Spread spectrum communication equipment
JPH033530A (en) * 1989-05-31 1991-01-09 Nec Corp Correlation demodulator
JPH03291018A (en) * 1990-04-09 1991-12-20 Mitsubishi Electric Corp Delay locked loop circuit
JPH0442629A (en) * 1990-06-08 1992-02-13 Ricoh Co Ltd Spread spectrum communication system

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0211034A (en) * 1988-06-29 1990-01-16 Mitsubishi Electric Corp Spread spectrum communication receiver
JPH02164150A (en) * 1988-12-19 1990-06-25 Icom Inc Spread spectrum communication equipment
JPH02164151A (en) * 1988-12-19 1990-06-25 Icom Inc Spread spectrum communication equipment
JPH033530A (en) * 1989-05-31 1991-01-09 Nec Corp Correlation demodulator
JPH03291018A (en) * 1990-04-09 1991-12-20 Mitsubishi Electric Corp Delay locked loop circuit
JPH0442629A (en) * 1990-06-08 1992-02-13 Ricoh Co Ltd Spread spectrum communication system

Also Published As

Publication number Publication date
JP2864930B2 (en) 1999-03-08

Similar Documents

Publication Publication Date Title
US8040935B2 (en) Methods and apparatus for spread spectrum modulation and demodulation
US5712869A (en) Data transmitter and receiver of a spread spectrum communication system using a pilot channel
CN100583665C (en) Cancellation of pilot and unwanted traffic signals in a CDMA system
US9137081B2 (en) Satellite navigational signal generating method generating device receiving method and receiving device
KR100326312B1 (en) Synchronous transceiver of spread spectrum communication manner
EP0562529A2 (en) Spread spectrum communication system and method
JP2728034B2 (en) Spread spectrum signal receiver
KR0159201B1 (en) Coherent dual-channel qpsk modulator, demodulator and modulating and demodulating method for cdma systems
US6094449A (en) Spread spectrum communication synchronization acquisition decoding apparatus
US4953178A (en) Spread spectrum communication system
JP2907284B1 (en) Spread spectrum signal demodulation circuit
JPH10308688A (en) Reception device for spread spectrum communication
JP2864930B2 (en) Synchronization holding device in spread spectrum communication system
KR980013162A (en) Code division multiple access (CDMA) modulator with reduced interference and demodulation method and communication system using the same
US20040141546A1 (en) Method and apparatus for ultra wideband communications system employing a spread spectrum technique transmitting a baseband signal over a wide frequency band
JP2714226B2 (en) Spread spectrum communication system
JPH06244820A (en) Signal processing circuit
JPH08237169A (en) Preamble synchronization system
JPH0779176A (en) Spread spectrum radio equipment
JPH0568017A (en) Spread spectrum receiver and spread spectrum transmitter and spread spectrum communication system
JP3662818B2 (en) Interference cancellation apparatus, radio terminal apparatus, and interference cancellation method
JP2679576B2 (en) Spread spectrum demodulator
JPH0442629A (en) Spread spectrum communication system
JP2667895B2 (en) Spread spectrum communication equipment
JP2650557B2 (en) Synchronous spread spectrum modulated wave demodulator