JP2008138447A - Multi-layered light metal wall structure - Google Patents

Multi-layered light metal wall structure Download PDF

Info

Publication number
JP2008138447A
JP2008138447A JP2006325791A JP2006325791A JP2008138447A JP 2008138447 A JP2008138447 A JP 2008138447A JP 2006325791 A JP2006325791 A JP 2006325791A JP 2006325791 A JP2006325791 A JP 2006325791A JP 2008138447 A JP2008138447 A JP 2008138447A
Authority
JP
Japan
Prior art keywords
flat plate
light metal
shear
frame
plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006325791A
Other languages
Japanese (ja)
Inventor
Toshiro Suzuki
敏郎 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KOZO ZAIRYO KENKYUKAI KK
Original Assignee
KOZO ZAIRYO KENKYUKAI KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KOZO ZAIRYO KENKYUKAI KK filed Critical KOZO ZAIRYO KENKYUKAI KK
Priority to JP2006325791A priority Critical patent/JP2008138447A/en
Publication of JP2008138447A publication Critical patent/JP2008138447A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a reinforcing structure formed of a light metal plate, which bears shear force in a plane of the plate, wherein the light metal plate is made of an aluminum alloy having a very thin thickness and a low strength, serves as a vibration control type earthquake resisting wall plate applicable to a small building, and exerts stable dynamic energy without degrading shear resistance even after yielding. <P>SOLUTION: The multi-layered light metal plate 1 is set up by arranging a casing frame 3 formed of band-shaped wide width planes shown in Fig. (a) along four peripheral sides, arranging a plate-like aluminum core, a paper core, a foamed body 5 of a different type, or the like, inside the frame to form an intermediate layer, and further attaching thin aluminum alloy plates 2 to front and rear surfaces of the intermediate layer. The multi-layered light metal plate functions to prevent propagation of diagonal wavy shear deformation occurring in the front and rear metal plates as shown in Fig. (b) after shear yielding, by means of peripheral casing frame members. Further the multi-layered light metal plate serves as a plate-shaped pipe body formed of the peripheral band plates and the front and rear plates, and therefore torsional rigidity is drastically enhanced, which contributes to prevention of degradation of the shear resistance even after yielding. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、小規模建物用制振型耐震壁構造で、主にせん断力を受ける軽金属平板について弾性領域での早期のせん断座屈発生を回避してせん断降伏荷重を確保するとともに降伏後の変形に伴う荷重の低下を防ぎ、軽金属平板の塑性変形能力を高めることを意図した補強壁構造に関するものである。   The present invention is a vibration-damping type wall structure for small buildings, and avoids premature shear buckling in the elastic region for light metal plates mainly subjected to shear force to ensure shear yield load and deformation after yield. The present invention relates to a reinforced wall structure that is intended to prevent a decrease in load caused by the increase in the plastic deformation capacity of a light metal flat plate.

せん断力を受ける略矩形金属平板は、せん断座屈荷重を高くして降伏耐力を確保できてもその後の座屈変形が成長する過程で耐力を維持するのは難しく、その目的を達成するためにはせん断座屈応力度τcrをせん断降伏応力度τyの10倍ないしそれ以上と平板の幅厚比を相当に小さくしなければならず、結果的にはかなり厚い板厚とするか多くのスティフナ−を格子状に配して平板全域を細分化する必要がある。   In order to achieve its purpose, a substantially rectangular metal flat plate that receives shear force can maintain yield strength in the process of subsequent buckling deformation growth, even if the yield strength can be secured by increasing the shear buckling load. The shear buckling stress degree τcr must be 10 times or more than the shear yield stress degree τy and the width-thickness ratio of the flat plate must be considerably reduced. Must be arranged in a lattice pattern to subdivide the entire plate.

また、金属平板のせん断座屈と座屈後の耐力低下を避けるため、降伏点応力度の極めて低い材料を使うことで設計として要求されるせん断強度に対し降伏点応力度の低い分だけ金属平板の板厚を上げて板剛度を高め、早期に発生する座屈を回避し塑性化後の塑性変形能力を高める方法がある。   In addition, in order to avoid the shear buckling of metal flat plate and the decrease in yield strength after buckling, by using a material with a very low yield point stress level, the metal flat plate has a lower yield point stress level than the required shear strength as a design. There is a method of increasing the plate thickness to increase the plate rigidity, avoiding buckling that occurs early, and increasing the plastic deformation ability after plasticization.

この他、木造住宅等小規模建物の耐震補強壁として、補強壁のせん断強度を低く押さえるために軽金属材料を利用したものもあり、アルミニウム発泡体を免震材とする壁板や粘弾性材料から成る制振用板材を挿んでアルミニウム合金の波板を層状に重ねた補強壁等がある。
特開平11−247351 公開特許公報 特開2002−67217 公開特許公報 特開2002−235379 公開特許公報 特開2003−314083 公開特許公報 特開2004−124605 公開特許公報
Other than this, as a seismic reinforcement wall for small-scale buildings such as wooden houses, light metal materials are used to suppress the shear strength of the reinforcement walls to a low level. There is a reinforcing wall or the like in which aluminum damping corrugated plates are stacked in layers by inserting the damping plate material.
Japanese Patent Laid-Open No. 11-247351 Japanese Patent Application Laid-Open No. 2002-67217 Japanese Patent Laid-Open No. 2002-235379 Japanese Patent Laid-Open No. 2003-314083 Japanese Patent Application Laid-Open No. 2004-124605

解決しようとする課題は、せん断力を受ける金属平板に対して板厚を出来る限り薄くし且つ剛性,強度の低いアルミニウム合金等の金属材料を利用出来るようにすることで、早期のせん断座屈発生を回避し更にせん断降伏後のせん断耐力の低下を防いで塑性変形能力を高め、簡単で有効な補強構造による小規模建物等に対する薄くて軽量の耐震補強壁を提示することである。   The problem to be solved is to reduce the plate thickness as much as possible with respect to the metal flat plate subjected to shear force and to use metal materials such as aluminum alloy with low rigidity and strength so that early shear buckling occurs. In addition, it is intended to provide a thin and lightweight seismic reinforcement wall for small-scale buildings and the like with a simple and effective reinforcement structure by preventing a decrease in shear strength after shear yielding and increasing plastic deformation ability.

平板面内にせん断力を受ける軽金属平板の補強構造として、周囲四辺に金属帯板が幅を与える面で構成する額縁状の金属枠組みを設け且つその内部略全面に平板状のアルミコア,ペーパーコア,各種発泡体等を挿入し、前記補強構造の表裏面に薄い金属平板を添接して一体とする複層金属平板で、平板全体としてせん断荷重に対し安定した力学挙動となることを意図している。   As a light metal flat plate reinforcement structure that receives a shearing force in the flat plate surface, a frame-shaped metal frame is formed on the four sides of the metal strip to give a width, and a flat aluminum core, paper core, A multi-layer metal flat plate in which various foams are inserted and a thin metal flat plate is attached to the front and back surfaces of the reinforcing structure and is intended to be stable against shear load as a whole flat plate. .

本発明の複層軽金属平板は、表裏面の薄い金属平板と周辺部枠材を両側とする薄い矩形状管体を構成し且つ表裏面の平板が充填材により平行な間隔が保持されることからサンブナン捩り剛性が高くなり、複層金属平板全体としての板剛性は極めて大きくなりせん断降伏以降もせん断耐力の安定的な維持が可能となる。   The multi-layer light metal flat plate of the present invention comprises a thin metal plate on the front and back surfaces and a thin rectangular tube having both sides of the peripheral frame material, and the flat surfaces on the front and back surfaces are held in parallel by the filler. The St. Bunnan torsional rigidity is increased, the plate rigidity of the multilayer metal flat plate as a whole is extremely increased, and the shear strength can be stably maintained even after the shear yield.

本発明の軽金属平板は、表裏金属平板を面的に拘束することにより極めて薄い平板が利用でき且つ補強のためのに特別な加工を必要とせず、中小建物の制振ないし耐震補強壁として有効である。加えて枠組み内部に挿入する各種材料についても一般的に使用されているものでよくて調達し易く、壁板として薄く且つ軽いため小規模建物の工事に於ける取り扱いも容易である。   The light metal flat plate of the present invention can be used as an anti-vibration or anti-seismic reinforcement wall for small and medium-sized buildings without the need for special processing for reinforcement. is there. In addition, various materials to be inserted into the frame may be generally used and can be easily procured, and since they are thin and light as wallboards, they are easy to handle in the construction of small buildings.

本発明の軽金属平板は図1(a)に示すように平面内に主にせん断力Qを受ける金属平板で、(b)図はその組立図で周囲四辺に軽金属帯板が幅を与える面で構成する額縁状の枠組み3を更に必要に応じ内部補強材4を配し、前記帯板に囲まれた略全域に平板状のアルミコア,ペーパーコア,各種発泡体等5を挿入し、その表裏両面に軽金属薄板2を添接して複層軽金属平板1とするもので、図中破線で示すように分割して製作しその後一体化することもある。   The light metal flat plate of the present invention is a metal flat plate which mainly receives a shearing force Q in a plane as shown in FIG. 1 (a), and FIG. The frame-shaped frame 3 is further provided with an internal reinforcing material 4 as necessary, and a flat aluminum core, paper core, various foams, etc. 5 are inserted in substantially the entire area surrounded by the band plate, and both front and back surfaces thereof are inserted. A light metal thin plate 2 is attached to form a multilayer light metal flat plate 1, which may be divided into parts and then integrated as shown by a broken line in the figure.

図2は、本発明の構造的特徴である額縁状枠組みの力学的性能を確認するための解析例で、(a)図は大きさ1,800mmx900mmの表裏金属平板2と周辺部枠組み3とで構成される複層金属平板の構成図であり、(b)図はせん断降伏後表裏金属平板に形成される張力場の概念図で,周辺枠に沿うせん断力と斜め引張力とがトラス的釣合いにあり且つそれと交差するように⇒方向に圧縮力が作用し、これが斜め方向に生じる波状のせん断変形の成長を加速させ降伏以降のせん断耐力の低下に影響すると考えられる。   FIG. 2 is an analysis example for confirming the mechanical performance of the frame-like frame, which is a structural feature of the present invention. FIG. 2A is a diagram of the front and back metal flat plate 2 having a size of 1,800 mm × 900 mm and the peripheral frame 3. (B) is a conceptual diagram of the tension field formed on the front and back metal plates after shear yielding, where the shearing force along the peripheral frame and the diagonal tensile force are in truss balance. It is considered that the compressive force acts in the ⇒ direction so as to cross and intersect with it, which accelerates the growth of the wavy shear deformation occurring in the oblique direction and affects the decrease in shear strength after yielding.

図3は、前記大きさの複層軽金属平板について周辺部帯板を厚さ8mmの6063−T6材,表裏軽金属平板を各0.5mmの1050−O材,内部充填材とし弾性ヤング係数E=3kN/cm2とし、周辺帯板幅を変えてせん断降伏以降の力学挙動を見たものである。図中●印で示すように枠幅の大きさで耐力上昇が左右されるため適切な幅を設定することが必要で、○印で示すように枠幅が小さくなると耐力低下は早くなり仮に充填材の剛性を大幅に上げてもこの傾向は変らず、枠幅b1,b2は平板短辺方向幅B1の略5%かそれ以上は必要と考えられる。 FIG. 3 shows an elastic Young's modulus E = a multi-layered light metal flat plate having the above-mentioned size, with a peripheral band plate of 6063-T6 material having a thickness of 8 mm, a front and back light metal flat plate of 1050-O material of 0.5 mm each, and an internal filler. The mechanical behavior after shear yielding was observed by changing the width of the peripheral strip to 3 kN / cm 2 . In the figure, the increase in yield strength depends on the size of the frame width as shown by ●, so it is necessary to set an appropriate width. Even if the rigidity of the material is greatly increased, this tendency does not change, and it is considered that the frame widths b1 and b2 are required to be approximately 5% or more of the flat plate short side width B1.

図4は、複層軽金属平板の捩り剛性を調べるための説明図で、(a)図は大きさ1,800mmx900mmで周辺帯板90mmx8mm,表裏両面の板は厚さ0.5mmとする複層軽金属平板に材端部から捩りモーメントTを加えるものである。(b)図は両側枠材を挟み表裏両面の薄い平板で構成する幅の狭い管体としてせん断応力流れであり、(c)図の中央に示す表裏金属平板2と枠材3及びE=3kN/cm2とする充填材5とこれを挟んで上に9mm厚のアルミニウム合金板,下に表裏薄板間が空洞となる平板の断面図である。 FIG. 4 is an explanatory diagram for examining the torsional rigidity of a multilayer light metal flat plate. (A) The figure is a multilayer light metal having a size of 1,800 mm × 900 mm, a peripheral strip 90 mm × 8 mm, and both front and back plates having a thickness of 0.5 mm. A torsional moment T is applied to the flat plate from the end of the material. (B) The figure shows shear stress flow as a narrow tubular body composed of thin flat plates on both front and back sides with both side frame members sandwiched, and (c) front and back metal flat plate 2 and frame member 3 and E = 3 kN shown in the center of FIG. FIG. 5 is a cross-sectional view of a filler 5 having a thickness of / cm 2 and a 9 mm thick aluminum alloy plate sandwiched between the filler 5 and a flat plate in which a space is formed between the front and back thin plates.

図5は、解析結果図で捩りモーメントTと捩り角Φで示しているが、●印の実線は内部充填材が挿入された場合であり又点線は長辺方向に両側と同じ帯板が内部に加わった場合で、□印で示すアルミ平板の結果と比較して40〜50%であり薄い平板を複層とすることで極めて大きな捩り剛性となっていることが判る。○印は内部が空洞の場合で複層効果はなく両側の帯板の捩り剛性と考えられ、帯板幅を半分にしたものは更に略1/2になっている。これら平板の捩り剛性は座屈荷重を大きく左右し、塑性化以降の平板の力学挙動に大きく影響するものである。   Fig. 5 shows the analysis result diagram with torsional moment T and torsional angle Φ. The solid line marked with ● is when the internal filler is inserted, and the dotted line shows the same strip on both sides in the long side direction. In addition to the aluminum flat plate results indicated by □, it is 40 to 50%, and it can be seen that a very large torsional rigidity is obtained by forming a thin flat plate as a multilayer. The circles indicate that the inside is hollow and there is no multi-layer effect, and it is considered to be the torsional rigidity of the strips on both sides. The torsional rigidity of these flat plates greatly affects the buckling load and greatly affects the mechanical behavior of the flat plates after plasticization.

図6は、本複層軽金属平板の周辺部枠材及び内部補強材の構成が平板の力学的性状への影響を見るための解析例で、大きさ1,800mmx900mmの平板1で(a)図は75mmx8mmの長辺方向枠3と150mmx8mmの短辺方向枠3で構成するもの、(b)図は75mmx8mmの帯板で四辺を構成し且つ内部二箇所に補強材4を並列し構成するものである。内部補強材は壁板耐力をあまり上げないよう1050−O材とした。   FIG. 6 is an analysis example for observing the influence of the structure of the peripheral frame material and the internal reinforcing material of the multilayer light metal flat plate on the mechanical properties of the flat plate. The flat plate 1 having a size of 1,800 mm × 900 mm is shown in FIG. Is composed of a long side direction frame 3 of 75 mm x 8 mm and a short side direction frame 3 of 150 mm x 8 mm, (b) is composed of four sides of a strip of 75 mm x 8 mm and the reinforcing material 4 arranged in parallel at two locations inside. is there. The internal reinforcing material was 1050-O material so as not to increase the wall plate strength.

図7は、前記の複層軽金属平板について表裏面の薄板を1050−O材,枠材を6063−T6材とした解析結果であるが、○印は周辺部枠組みだけの場合で内部充填材のヤング係数E=3kN/cm2の場合に比べE=15kN/cm2では耐力は高く、●印の内部補強材のある例では平板を小区分化することで耐力は高くなるものの安定し、充填材のヤング係数がE=1kN/cm2とする低い場合に対しても同じ傾向にある。 FIG. 7 shows the result of analysis of the above-mentioned multilayer light metal flat plate with the thin plate on the front and back sides being 1050-O material and the frame material being 6063-T6 material. Youngs modulus E = strength at E = 15 kN / cm 2 compared to the case of 3 kN / cm 2 is high, stable although yield strength is increased by small partitioning a plate in the example with internal reinforcement marks ●, filler The same tendency is observed with respect to the case where the Young's modulus is as low as E = 1 kN / cm 2 .

図8は、前記例題での解析結果としてせん断降伏以降の大変形領域に於ける壁板の面外変形の成長を示したもので、周辺部枠材だけの例では○印,●印で示すように充填材の剛性に関わらず変形の成長は早く、(b)図の中間部位に帯板補強材を配置した□印,■印の結果は前者と比較して充填材の剛性によらず面外変形の成長は遅く且つ小さくなる。これら面外変形の成長を押さえることは地震による正負交番に加わるせん断力に対し紡錘形の履歴特性とする上で極めて重要である。   FIG. 8 shows the growth of the out-of-plane deformation of the wall plate in the large deformation region after the shear yield as the analysis result in the above example. Thus, the growth of deformation is fast regardless of the rigidity of the filler. (B) The results of the □ and ■ marks where the strip reinforcement is placed in the middle part of the figure do not depend on the rigidity of the filler compared to the former The out-of-plane deformation growth is slow and small. Suppressing the growth of these out-of-plane deformations is extremely important for the spindle-shaped hysteresis characteristics against the shearing force applied to the positive and negative alternations caused by earthquakes.

図9(a)は、既存木造建物の耐震補強壁として壁板二枚を組合せて建物へ取り付けた外観と、周辺枠組み3と表裏金属平板2の内側に平板状のアルミコア,ペーパーコア,各種発泡体等5を配し中間層の構成を示したもので、(b)図は並立する柱面に釘乃至ネジ等で取り付けるだけとし壁板の長手方向に平行で且つ逆方向へのせん断力が作用するものである。壁板一枚を複数枚で構成することは金属平板の製作や工事での取り扱いが容易であり、両平板の接する部位で連続的乃至断続的に変形を拘束し合うことは有効である。   Fig. 9 (a) shows the appearance of an existing wooden building with two wall plates combined as a seismic reinforcement wall and attached to the building, and a flat aluminum core, paper core, and various foams inside the peripheral frame 3 and the front and back metal plates 2 The structure of the intermediate layer is shown by arranging the body 5 and the like. (B) The figure shows that the shear force is parallel to the longitudinal direction of the wall plate and in the opposite direction only by being attached to the parallel column surfaces with nails or screws. It works. It is easy to manufacture a metal flat plate and handle it in construction, and it is effective to continuously and intermittently constrain deformation at a portion where both flat plates contact each other.

図10は、幅900mmで高さ810mm二枚を上下に配置して一枚の壁板とするもので、周辺枠材は75mmx8mmを基本に構成している。既存木造建物はその骨組み強度が低くそれに合わせて補強壁板のせん断強さを決める必要があり、●印で示すように板厚を下げることで対応できしかも本複層金属平板では表裏面の平板が薄くなっても安定した耐力維持が可能であり、又○印の点線で示すように不安定にならない範囲で枠幅を狭くすることによる耐力調整も一つの方法として考えられる。   In FIG. 10, two sheets of 900 mm width and 810 mm height are arranged vertically to form one wall plate, and the peripheral frame material is basically composed of 75 mm × 8 mm. Existing wooden buildings have low frame strength, and it is necessary to determine the shear strength of the reinforcing wall plate accordingly, and as shown by the ● mark, this can be dealt with by reducing the plate thickness. It is possible to maintain a stable proof strength even if the thickness is reduced, and to adjust the proof strength by narrowing the frame width within a range where it does not become unstable as shown by the dotted line with a circle.

図11はアルミニウム合金材料の引張り試験結果で、木造住宅等小規模建物の耐震補強壁は1,800mmx900mm一枚当たりのせん断耐力は10〜20kN程度とする必要があるため、純アルミニウム金属に近い1000〜3000番台のラウンドハウス型非線形性応力ー歪み関係のアルミニウム合金が最適なものと考えられる。アルミニウム合金の材料性質を構造材料であるアルミニウム合金との比較のなかで示しているが、それら弾性ヤング係数は略E=6000〜7500kN/cm2であり、又図中実線で強調したものは本解析で選択した材料であり実際にも推奨される組合せである。 FIG. 11 shows the result of a tensile test of an aluminum alloy material, and the seismic reinforcement wall of a small-scale building such as a wooden house needs to have a shear strength per 1,800 mm × 900 mm of about 10 to 20 kN, so that it is 1000 close to that of pure aluminum metal. It is considered that an aluminum alloy having a round house type nonlinear stress-strain relationship in the order of 3000s is optimal. The material properties of aluminum alloys are shown in comparison with structural aluminum alloys, but their elastic Young's modulus is approximately E = 6000-7500 kN / cm 2 . This is the material selected in the analysis and is actually the recommended combination.

本発明の補強軽金属壁板は、周辺部枠組みと表裏二面の金属平板とその内部に平板状のアルミコア,ペーパーコア,各種発泡体等を挿入して構成する複層金属平板で、表裏の軽金属平板は一定板厚の金属平板でよく敢えて特別の加工を施した金属平板としたり特殊な金属素材である必要はなく、薄い軽金属平板に対しせん断座屈荷重を上げて降伏以降もせん断耐力が下がることなく維持できるため、小規模建物に対する制振乃至耐震の構造壁として有効であって幅広く利用されるものである。   The reinforced light metal wall plate of the present invention is a multi-layer metal flat plate formed by inserting a peripheral frame, two flat metal plates on the front and back sides, and a flat aluminum core, paper core, various foams, etc. into the inside, and light metal The flat plate is a flat metal plate that does not have to be specially processed or specially made of metal, and it does not need to be a special metal material. The shear strength of the thin light metal plate is increased after yielding by increasing the shear buckling load. Therefore, it is effective as a structural wall for vibration control or earthquake resistance for small buildings.

本発明の複層軽金属平板は周辺部枠組みと共に中間層を構成する内部挿入材が重要であるが、材料としては表裏両面の薄い金属平板の変形を互いに拘束し合うものであって強度,剛性は極めて小さくてよく、弾性ヤング係数としてアルミコアで10〜30kN/cm2,ペーパーコアで1〜10kN/cm2,各種発泡体で0.3〜5kN/cm2であり、これら材料は一般的に使用されているものでその調達も容易且つ安価なものである。 In the multi-layer light metal flat plate of the present invention, the internal insertion material that constitutes the intermediate layer together with the peripheral frame is important. However, as the material, the deformation of the thin metal flat plates on both sides is constrained to each other, and the strength and rigidity are well very small, 10~30kN / cm 2 in an aluminum core as the elastic Young's Modulus, 1~10kN / cm 2 with a paper core, a 0.3~5kN / cm 2 at various foam, these materials are commonly used The procurement is easy and inexpensive.

本発明の補強軽金属壁板の構造詳細を示す説明図である。It is explanatory drawing which shows the structure details of the reinforced light metal wall board of this invention. 複層軽金属平板の周辺部枠の効果を検証する構造図である。(実施例1)It is a structural diagram which verifies the effect of the peripheral part frame of a multilayer light metal flat plate. Example 1 本発明の壁板の外部周辺枠の効果を検証する解析結果の説明図である。It is explanatory drawing of the analysis result which verifies the effect of the external periphery frame of the wall board of this invention. 複層軽金属平板の捩り剛性を確認するための説明図である。(実施例2)It is explanatory drawing for confirming the torsional rigidity of a multilayer light metal flat plate. (Example 2) 複層軽金属平板の捩り剛性に関する解析結果の説明図である。It is explanatory drawing of the analysis result regarding the torsional rigidity of a multilayer light metal flat plate. 平板の周辺枠と内部補強材の効果を見る解析対象図である。(実施例3)It is an analysis object figure which sees the effect of the peripheral frame of a flat plate, and an internal reinforcement. (Example 3) 本補強構造のせん断耐力の推移を見る解析結果の説明図である。It is explanatory drawing of the analysis result which sees transition of the shear strength of this reinforcement structure. 本補強構造のせん断変形の進行と平板の面外変形の成長を示す図である。It is a figure which shows progress of the shear deformation of this reinforcement structure, and the growth of the out-of-plane deformation of a flat plate. 前記構造壁の既存木造建物への取付け方法を示す図である。(実施例4)It is a figure which shows the attachment method to the existing wooden building of the said structural wall. Example 4 本補強壁に並立する柱からせん断力が加わる解析結果の説明図である。It is explanatory drawing of the analysis result to which a shear force is added from the column juxtaposed to this reinforcement wall. 本数値解析で扱った軽金属材料の応力−歪み関係図である。It is the stress-strain relationship figure of the light metal material handled by this numerical analysis.

符号の説明Explanation of symbols

1 せん断力を受ける複層金属平板
2 表裏両面を構成する金属平板
3 帯板等で構成する周辺枠組み
4 帯板等で構成する枠組み内部補強材
5 中間層内部に挿入する平板要素
6 木造建物の柱・梁構造軸組み
1 Multi-layer metal flat plate subject to shearing force 2 Metal flat plate constituting both front and back surfaces 3 Peripheral frame composed of strips, etc. 4 Frame internal reinforcement composed of strips, etc. 5 Flat plate elements inserted into the middle layer 6 Wooden building Column / beam structure

Claims (4)

平面内にせん断力を受ける軽金属平板の補強構造で、帯状矩形板の幅広面で構成する額縁状枠組みに薄い軽金属平板を前記枠組みの表裏両面に添接し複層金属平板とするもので、前記枠組み内部の略全域に枠と同厚のアルミコア,ペーパーコア,各種発泡体等を配して表裏の薄い金属平板が互いに変形拘束するようにし、周辺部帯板と表裏面の平板とで構成する管体として捩り剛性を大幅に高め、複層軽金属平板としてのせん断座屈荷重を上げ且つせん断降伏後の大変形領域に於いても耐力を維持し得るようにした補強構造。   A light metal flat plate reinforcement structure that receives a shearing force in a plane, a thin light metal flat plate attached to both the front and back sides of a frame-shaped frame composed of a wide surface of a strip-shaped rectangular plate to form a multilayer metal flat plate. A pipe composed of a peripheral band plate and front and back flat plates, with an aluminum core, paper core, various foams, etc., of the same thickness as the frame placed on almost the entire interior so that thin metal plates on the front and back sides are restrained from deformation. Reinforcement structure that greatly enhances torsional rigidity as a body, increases the shear buckling load as a multi-layer light metal flat plate, and maintains the proof stress even in a large deformation region after shear yielding. 平面内にせん断力を受ける軽金属平板の補強構造で、帯板による額縁状枠組みの内部に枠組みと平行に一本乃至複数本の帯板を配して小区分化し乃至は平板全体を予め複数の平板に分割しその後一体化する請求項1に記載する複層軽金属平板で、降伏以降のせん断変形に伴う面外曲げ変形の成長を低く抑え、せん断降伏後の大変形領域で正負交番に加わるせん断力に対して紡錘形の履歴特性となるようにした補強構造。   A light metal flat plate reinforcement structure that receives a shearing force in a plane, and one or more strips are arranged in parallel to the frame inside the frame-like frame made of strips, or the entire flat plate is A multi-layered light metal flat plate according to claim 1, which is divided into flat plates and then integrated, and suppresses the growth of out-of-plane bending deformation accompanying shear deformation after yielding, and shear is applied to positive and negative alternating in a large deformation region after shear yielding. Reinforcement structure that has a spindle-shaped hysteresis characteristic against force. 平面内にせん断力を受ける軽金属平板の補強構造で、帯板による額縁状枠組みの板幅は矩形平板を構成する二辺の内短辺方向長さの略5%乃至それ以上とし、表裏の軽金属平板がせん断降伏後張力場への移行に伴い生ずる斜め方向の波状のせん断変形を小さく抑え、せん断降伏後のせん断耐力の低下を防ぐための請求項1乃至請求項2の何れかに記載の補強構造。   It is a light metal flat plate reinforcement structure that receives a shear force in a plane. The frame width of the frame frame by the strip is approximately 5% or more of the inner short side length of the two sides of the rectangular flat plate. The reinforcement according to any one of claims 1 and 2, wherein the flat plate suppresses a shearing wave deformation in an oblique direction accompanying a transition to a tensile field after shear yielding, and prevents a decrease in shear strength after shear yielding. Construction. 小規模建物用制振型耐震壁板としてせん断耐力を低く押さえることを意図し、標準的大きさ1,800mmx900mmの平板に対し中間層を構成する周辺枠の厚さを5mm〜15mmとする複層構成の平板で、せん断耐力を決定する表裏両面の薄い軽金属平板は1mm厚さ乃至それ以下で材料の引張強度が略10kN/cm2かそれ以下且つ応力ー歪み関係がラウンドハウス型非線形となるアルミニウム合金材料とする請求項1乃至請求項2の何れかに記載の軽金属平板の補強構造。 A multi-layer with a thickness of 5 to 15 mm for the peripheral frame that constitutes the intermediate layer on a flat plate with a standard size of 1,800 mm x 900 mm, intended to suppress shear strength as a vibration-damping type seismic wall plate for small buildings A thin light metal flat plate with a thickness of 1 mm or less, the tensile strength of the material is about 10 kN / cm 2 or less, and the stress-strain relationship is a round house type nonlinearity. The light metal flat plate reinforcing structure according to any one of claims 1 to 2, wherein the light metal plate is made of an alloy material.
JP2006325791A 2006-12-01 2006-12-01 Multi-layered light metal wall structure Pending JP2008138447A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006325791A JP2008138447A (en) 2006-12-01 2006-12-01 Multi-layered light metal wall structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006325791A JP2008138447A (en) 2006-12-01 2006-12-01 Multi-layered light metal wall structure

Publications (1)

Publication Number Publication Date
JP2008138447A true JP2008138447A (en) 2008-06-19

Family

ID=39600207

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006325791A Pending JP2008138447A (en) 2006-12-01 2006-12-01 Multi-layered light metal wall structure

Country Status (1)

Country Link
JP (1) JP2008138447A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010116660A1 (en) * 2009-04-07 2010-10-14 株式会社構造材料研究会 Anisotropic reinforcing metal plate
JP2010261491A (en) * 2009-05-01 2010-11-18 Kozo Zairyo Kenkyukai:Kk Configuration method of closed type multi-layer metal flat plate
CN107268820A (en) * 2017-06-06 2017-10-20 同济大学 Without flexing waveform Structural Energy Dissipation component and its design method

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010116660A1 (en) * 2009-04-07 2010-10-14 株式会社構造材料研究会 Anisotropic reinforcing metal plate
CN102378844A (en) * 2009-04-07 2012-03-14 株式会社构造材料研究会 Anisotropic reinforcing metal plate
TWI418689B (en) * 2009-04-07 2013-12-11 Suzuki Lab Of Material And Structure Co Ltd Anisotropic metallic plate
CN102378844B (en) * 2009-04-07 2014-12-10 株式会社构造材料研究会 Anisotropic reinforcing metal plate
JP2010261491A (en) * 2009-05-01 2010-11-18 Kozo Zairyo Kenkyukai:Kk Configuration method of closed type multi-layer metal flat plate
CN107268820A (en) * 2017-06-06 2017-10-20 同济大学 Without flexing waveform Structural Energy Dissipation component and its design method
CN107268820B (en) * 2017-06-06 2023-07-04 同济大学 Buckling-free wave-shaped structure energy consumption component and design method thereof

Similar Documents

Publication Publication Date Title
JP5285452B2 (en) Buckling-restrained brace and load-bearing frame using the same
JP2005351078A (en) Construction method of steel frame reinforced concrete column
JP2006342510A (en) Multi-story shear wall
JP2008138447A (en) Multi-layered light metal wall structure
JP5301337B2 (en) Anisotropic reinforced metal flat plate
JP5021246B2 (en) Buckling stiffening brace
JP2010265662A (en) Buckling restraining brace
JP4618805B2 (en) Reinforcement structure of multi-layer metal flat plate
JP4688234B1 (en) Rectangular metal plate square tube reinforcement structure
JP4624288B2 (en) Method for assembling reinforcing structure of existing ALC vertical wall panel
JP2009270388A (en) Vibration control device for building and vibration control structure of building
JP4883639B2 (en) Reinforcement structure of tubular metal flat plate
JP6898219B2 (en) Compressive strength expression structure of honeycomb panel
JP2006037586A (en) Earthquake-resisting wall using corrugated steel plate
JP2008285899A (en) Flexible-element damping structure member and flexibility-and-rigidity-mixed damping structure
JP2007002416A (en) Reinforcing wall structure of light metal sheet
WO2010116660A1 (en) Anisotropic reinforcing metal plate
JP3131332U (en) Reinforced structure of light metal wall plate
JP6171596B2 (en) Wall panels
JP4688238B1 (en) Box-shaped metal wall plate with square tube reinforcement
JP2002030828A (en) Brace damper
JP2006342622A (en) Reinforcement structure of flat metal plate
JP4825940B1 (en) Seismic panel
JP6892732B2 (en) Honeycomb panel
JP2010168864A (en) Buckling restraining brace and bearing frame using the same