JP4688238B1 - Box-shaped metal wall plate with square tube reinforcement - Google Patents

Box-shaped metal wall plate with square tube reinforcement Download PDF

Info

Publication number
JP4688238B1
JP4688238B1 JP2010125711A JP2010125711A JP4688238B1 JP 4688238 B1 JP4688238 B1 JP 4688238B1 JP 2010125711 A JP2010125711 A JP 2010125711A JP 2010125711 A JP2010125711 A JP 2010125711A JP 4688238 B1 JP4688238 B1 JP 4688238B1
Authority
JP
Japan
Prior art keywords
wall plate
box
shear
plate
shaped metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010125711A
Other languages
Japanese (ja)
Other versions
JP2011252295A (en
Inventor
敏郎 鈴木
Original Assignee
株式会社 構造材料研究会
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 構造材料研究会 filed Critical 株式会社 構造材料研究会
Priority to JP2010125711A priority Critical patent/JP4688238B1/en
Application granted granted Critical
Publication of JP4688238B1 publication Critical patent/JP4688238B1/en
Publication of JP2011252295A publication Critical patent/JP2011252295A/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Load-Bearing And Curtain Walls (AREA)
  • Panels For Use In Building Construction (AREA)

Abstract

【課題】面内せん断を受け且つ必要に応じ圧縮荷重を支える箱状金属壁板について、表裏金属平板が薄板となる前記金属壁板に対し降伏せん断荷重の確保と降伏後のせん断変形の進行にもせん断耐力の安定的な維持を図る。
【解決手段】箱状金属壁板を角形管状部材で構成する本発明の代表的補強構造の斜視図を示したが、壁板の長手方向に角形管状部材2を一定間隔毎に層状に配して中間層となる骨組みを構成し、前記骨組みの表裏両面に金属平板1を添接し且つ周辺枠4で補強して箱状金属壁板とするもので、内側補強材を角形管状部材とすることで箱状となる壁板に加えて閉鎖形断面を重複し組入れて捩り剛性を大幅に上げ且つ金属壁板のせん断変形の進行に伴う前記骨組みによる強度付加を低く抑えて、表裏金属平板で決まる降伏せん断荷重の安定的維持を図り且つ必要に応じ壁板内部の角形管状部材により箱状金属壁板に加わる軸圧縮力を支えるものとする。
【選択図】図1
The present invention relates to a box-shaped metal wall plate that is subjected to in-plane shear and supports a compressive load as needed, to secure a yield shear load on the metal wall plate whose front and back metal flat plates are thin and to progress shear deformation after yielding. In order to maintain stable shear strength.
A perspective view of a typical reinforcing structure of the present invention in which a box-shaped metal wall plate is formed of a rectangular tubular member is shown, but a rectangular tubular member 2 is arranged in layers at regular intervals in the longitudinal direction of the wall plate. A metal plate 1 is attached to both front and back surfaces of the frame and reinforced with a peripheral frame 4 to form a box-shaped metal wall plate, and the inner reinforcing material is a rectangular tubular member. In addition to the box-shaped wall plate, it is determined by the front and back metal flat plates by overlapping the closed cross section and greatly increasing the torsional rigidity and suppressing the added strength by the above-mentioned framework accompanying the progress of shear deformation of the metal wall plate. The yield shear load is stably maintained, and the axial compression force applied to the box-shaped metal wall plate is supported by a rectangular tubular member inside the wall plate as necessary.
[Selection] Figure 1

Description

本発明は、面内せん断を受け必要に応じ圧縮荷重を支える箱状金属壁板の補強構造で、金属系建物の各種構造壁,制振ないし耐震を目的とするせん断パネルの全て乃至一部で構成される構造体である。閉鎖形断面となる箱状金属壁板は捩り剛性,即ちせん断剛性を大幅に上げることが出来、更に薄板角形管状部材を内部に挿入し構成することで力学的効果が倍加されて薄板で軽量の金属壁板となる。   The present invention is a reinforcing structure of a box-shaped metal wall plate that receives in-plane shear and supports a compressive load as necessary, and includes all or a part of various structural walls of metal-based buildings and shear panels for vibration suppression or earthquake resistance. It is a structured body. A box-shaped metal wall plate with a closed cross-section can greatly increase torsional rigidity, that is, shear rigidity, and by inserting and configuring a thin rectangular tube member inside, the mechanical effect is doubled, and it is thin and lightweight. It becomes a metal wall board.

せん断力を受ける金属壁板は、せん断座屈荷重がせん断降伏荷重を上回るようにしてもせん断降伏後のせん断変形が進行する過程でせん断耐力を維持し且つ正負交番に繰り返されるせん断荷重に対し安定した履歴性状とすることは難しく、このためせん断力を受ける平板の幅厚比を小さくすることが必要となり、結果的には多くのスティフナ−を格子状に配して平板全域を細分化し補強することがこれまでの代表的な方法であった。   The metal wall plate subjected to shear force maintains shear strength in the process of shear deformation after shear yielding even if the shear buckling load exceeds the shear yield load, and is stable against repeated shear load. Therefore, it is necessary to reduce the width-thickness ratio of the flat plate subjected to the shearing force. As a result, a large number of stiffeners are arranged in a lattice shape to subdivide and reinforce the entire area of the flat plate. This has been the typical method so far.

金属壁板の降伏せん断荷重を確保し且つ降伏後のせん断耐力の維持を図るために、設計で要求されるせん断強度に対し降伏点応力度の低い材料を使うことで金属平板の板厚を上げて早期のせん断座屈を回避し降伏後の塑性変形能力を高める方法がある。この他、制振ないし耐震を目的としてせん断パネルを波板や折板とするもの,壁板と建物部位との接合方法を工夫したもの等様々な提案がされている。   In order to secure the yield shear load of the metal wall plate and maintain the shear strength after yielding, the thickness of the metal plate is increased by using a material with a lower yield point stress than the shear strength required by the design. There is a method to avoid early shear buckling and increase the plastic deformation ability after yielding. In addition to this, various proposals have been made such as those in which shear panels are corrugated or folded for the purpose of vibration suppression or earthquake resistance, and those in which the method of joining the wall plate and the building part is devised.

特開2006−037586 公開特許公報Japanese Patent Laid-Open No. 2006-037586 特開2006−342622 公開特許公報Japanese Patent Laid-Open No. 2006-342622 特開2008−008364 公開特許公報JP 2008-008364 A Patent Publication 特開2009−161984 公開特許公報JP2009-161984 Published Patent Gazette 特開2009−293254 公開特許公報JP 2009-293254 A Patent Publication

木原碩美/鳥井信吾著 「極低降伏点鋼板壁を用いた制震構造の設計」建築技術 1998年11月Tomomi Kihara / Shingo Torii “Design of damping structure using steel plate wall with extremely low yield point” Architectural Technology November 1998 鈴木敏郎著 「捩り剛性を主体とするせん断剛性と平板のせん断座屈」日本建築学会 2008年9月Toshio Suzuki “Shear stiffness mainly composed of torsional stiffness and shear buckling of flat plate” Architectural Institute of Japan, September 2008

解決しようとする課題は、面内せん断を受け且つ必要に応じ圧縮荷重を支える箱状金属壁板について、閉鎖形断面としてせん断剛性を大幅に上げて表裏金属平板の降伏せん断荷重を確保する有力な構造体であるが、表裏金属平板で決まる塑性せん断荷重を更に低く即ち前記板厚を薄くするために箱状金属壁板の内側に配される補強材が前記降伏せん断荷重に影響しないようにする必要がある。   The problem to be solved is a powerful method to ensure the yield shear load of the front and back metal plates by significantly increasing the shear rigidity of the box-shaped metal wall plate that receives in-plane shear and supports the compressive load as necessary. Although it is a structure, in order to further reduce the plastic shear load determined by the front and back metal flat plates, that is, to reduce the plate thickness, the reinforcing material disposed inside the box-shaped metal wall plate does not affect the yield shear load. There is a need.

面内せん断を受け且つ必要に応じ圧縮荷重を支える箱状金属壁板について、閉鎖形断面となる壁板の内側構成部材は表裏金属平板を座屈補剛し且つ壁板全体の剛性を上げることが要求され、更に前記金属壁板がせん断変形の進行に伴う内側構成部材による強度付加を低くし降伏後の耐力上昇を抑えるために、金属壁板内側の構成部材全てを原則として薄板で構成される角形管状部材とする。   For a box-shaped metal wall plate that receives in-plane shear and supports a compressive load as necessary, the inner structural member of the wall plate that has a closed cross section buckles and stiffens the front and back metal plates and increases the rigidity of the entire wall plate. In addition, in order to lower the strength added by the inner structural member as the shear deformation progresses and to suppress the increase in yield strength after yielding, all the structural members inside the metal wall plate are made of thin plates in principle. A rectangular tubular member.

図2(a)は角形管状部材(以下角管部材と呼称する)を捩った場合の斜視図で、平板を流れるせん断応力と捩り中心との距離の積が捩り力に相当するため角管部材の捩り強さは断面の外郭寸法により決まり、板厚の中央線が捩り中心である矩形平板の捩り強さに比べ極めて大きな値となる。(b)図に示すように矩形角管部材にせん断力Qが作用すること即ち断面から離れた位置から捩り力MTが作用することと同じであり、面内せん断を受ける平板は捩り力学の範疇にあり箱状金属壁板であることの構造的優位さもこの点にある。 FIG. 2A is a perspective view when a rectangular tubular member (hereinafter referred to as a square tube member) is twisted, and the product of the distance between the shear stress flowing through the flat plate and the torsion center corresponds to the torsion force, and the square tube. The torsional strength of the member is determined by the outline dimensions of the cross section, and is an extremely large value compared to the torsional strength of a rectangular flat plate whose center line is the torsion center. (b) from the position shear force Q to the rectangular angle pipe member away from it ie sectional act as shown in FIG. it is the same as that acts twisting force M T, Plates under in-plane shear of the torsional dynamics This is also the structural advantage of being a box-like metal wall plate.

数式(1)は正方形断面の角管部材の塑性捩り荷重であり、比較のための数式(2)は前記断面を構成する板要素1枚の塑性捩り荷重である。構成板要素4枚に対する角管部材の塑性捩り荷重比は数式(3)であり、正方形角管断面の塑性捩り荷重は板要素幅厚比の数値から見て略2倍に相当することが判る。同じ外形寸法の角管断面とすれば構成板要素の幅厚比が大きくなれば塑性捩り荷重は比例的に上がり、限りなく薄い板厚に対しても力学的安定性を追及することが可能となろう。   Formula (1) is a plastic torsion load of a square tube member having a square cross section, and Formula (2) for comparison is a plastic torsion load of one plate element constituting the cross section. The plastic torsional load ratio of the square tube member to the four constituent plate elements is expressed by Equation (3), and it can be seen that the plastic torsional load of the cross section of the square square tube is approximately twice as large as the numerical value of the plate element width / thickness ratio. . If the cross section of the square tube has the same external dimensions, the plastic torsional load increases proportionally as the width-thickness ratio of the component plate elements increases, and it is possible to pursue mechanical stability even for extremely thin plate thicknesses. Become.

図3は建設用鋼材リストから略全ての角管断面を選び断面板要素の幅厚比B/tを横軸に角管部材と構成板要素の塑性捩り荷重の比Qy/qyを縦軸に示したものである。斜め直線状に分布する●印は正方形断面の場合で、x軸上↑から点線で結ぶy軸に向かう←で示すように板要素幅厚比の略2.0倍の数値が塑性捩り荷重に対応する。○印は任意矩形断面の長辺側幅厚比と塑性捩り荷重との関係で略1.5倍の数値を中に分散している。 Figure 3 shows almost all square tube cross-sections from the construction steel material list, and the ratio of the plastic torsional load Q y / q y between the square tube members and the component plate elements is plotted vertically with the width-thickness ratio B / t of the cross-section plate elements as the horizontal axis. It is shown on the axis. The ● mark distributed in an oblique straight line is for a square cross section, and the numerical value approximately 2.0 times the plate element width / thickness ratio corresponds to the plastic torsional load as indicated by ← from the ↑ on the x-axis to the y-axis connected by the dotted line . The circle indicates that the numerical value of about 1.5 times is dispersed in the relation between the long side width-thickness ratio of the arbitrary rectangular cross section and the plastic torsional load.

図4は矩形角管部材にせん断荷重が加わる場合とこれと対比して矩形断面部材にせん断荷重が加わる場合について、せん断荷重とせん断変形角の関係を示した数値解析結果である。縦軸はせん断応力比τ/τy,横軸はせん断変形角比γ/γyの無次元化量で示した図である。せん断を受ける矩形角管部材は実線で示す3本の曲線で左から右へ角管板厚を6mm,9mm,12mmで幅厚比は50,33,25に相当し、点線の3本の曲線で示す矩形断面板厚36mm,54mm,72mmの場合とは略同じ塑性変形能力となっている。 FIG. 4 shows the results of numerical analysis showing the relationship between the shear load and the shear deformation angle when the shear load is applied to the rectangular tube member and when the shear load is applied to the rectangular cross-section member. The vertical axis represents the shear stress ratio τ / τ y , and the horizontal axis represents the dimensionless amount of the shear deformation angle ratio γ / γ y . The rectangular rectangular tube member subjected to shearing has three curves shown by solid lines. From left to right, the square tube thickness is 6mm, 9mm, 12mm, and the width-thickness ratio is 50, 33, 25. The plastic deformation capacity is substantially the same as in the case of the rectangular cross-section plate thicknesses of 36 mm, 54 mm, and 72 mm shown in FIG.

本発明の金属壁板の補強構造は表裏金属平板を薄板とする場合にも降伏せん断荷重の確保と安定的維持を意図しており、金属壁板を箱状の形態とし且つ内側に角管部材を挿入したもので、捩りに強い閉鎖形断面を平板全域と内側補強材とを重複して組入れて捩り剛性を大幅に高くし、内部補強材を薄い角管部材とすることで表裏面金属平板で決まる降伏せん断荷重への強度付加を最小限に抑えることができる。   The reinforcing structure of the metal wall plate of the present invention is intended to secure and stably maintain the yield shear load even when the front and back metal flat plates are thin plates, and the metal wall plate is shaped like a box and has a rectangular tube member inside. The front and back metal plates are made by inserting a closed cross section that is strong against torsion into the entire flat plate and the inner reinforcing material in an overlapping manner to greatly increase the torsional rigidity and making the internal reinforcing material a thin square tube member. The strength addition to the yield shear load determined by can be minimized.

箱状金属壁板の内部に角管を並列配置する構造体を示す斜視図である。It is a perspective view which shows the structure which arranges a square tube in parallel inside a box-shaped metal wall board. 基本的力学概念を説明する角管部材の捩りとせん断の力作用図である。It is a force action figure of the twist and shear of a square tube member explaining the fundamental dynamic concept. 角管断面を構成する板要素の幅厚比と塑性捩り荷重との相関図である。It is a correlation diagram of the width thickness ratio of the plate element which comprises a square tube cross section, and a plastic torsion load. 矩形角管部材と充実断面部材とを対比して示す塑性せん断変形図である。It is a plastic shear deformation | transformation figure which compares and shows a rectangular tube member and a solid cross-section member. 角管部材で補強された代表的箱状金属壁板の構造図である。(実施例1)It is a structural diagram of a typical box-shaped metal wall plate reinforced with a rectangular tube member. Example 1 表裏金属平板の板厚が異なる箱状金属壁板に関する解析結果図である。It is an analysis result figure regarding the box-shaped metal wall board from which the plate | board thickness of a front and back metal flat plate differs. 薄い表裏金属平板に対する箱状金属壁板の構造図である。(実施例2)It is a structural diagram of the box-shaped metal wall board with respect to a thin front and back metal flat plate. (Example 2) 表裏金属平板で決まる降伏せん断荷重確保に関する解析結果図である。It is an analysis result figure about the yield shear load ensuring decided by the front and back metal plates. 長方形箱状金属壁板の内側部及び外側面の補強図である。(実施例3)It is a reinforcement figure of the inner side part and outer side surface of a rectangular box-shaped metal wall board. (Example 3) 長辺方向長さに対応する内側角管部材の構成を示す断面詳細図である。It is a cross-sectional detail drawing which shows the structure of the inner side square tube member corresponding to the length in a long side direction. 角管断面に応じた箱状金属壁板の塑性変形に関する解析結果図である。It is an analysis result figure regarding the plastic deformation of the box-shaped metal wall board according to a square tube section. 一定軸力下でせん断を受ける長方形箱状金属壁板の解析結果図である。It is an analysis result figure of the rectangular box-shaped metal wall board which receives a shear under fixed axial force. 本発明の長方形箱状金属壁板の捩りを伴う変形を示す斜視図である。It is a perspective view which shows the deformation | transformation accompanying the twist of the rectangular box-shaped metal wall board of this invention. 添接補強された表裏金属平板の板厚変化を示す断面構成と説明図である。It is a cross-sectional structure and explanatory drawing which show the plate | board thickness change of the front and back metal flat plate by which the reinforcement was carried out. 分離補強された表裏金属平板による簡易組立式壁板を示す斜視図である。It is a perspective view which shows the simple assembly-type wall board by the front and back metal flat plate by which separation reinforcement was carried out.

図1は本発明の代表的構造を示す斜視図である。壁板を構成する長手方向の略全長に亘り角管部材2を一定間隔に並列配置した骨組みとし、前記骨組みを中間層としてその表裏両面に金属平板1を添接し且つコの字枠4を被せて箱状金属壁板を構成するもので、閉鎖形断面を重複して組込むことで捩り剛性を大幅に上げ且つ角管部材からの強度付加を低く抑えて降伏せん断耐力の安定的維持を図り、更に壁面に圧縮荷重を受ける場合には内側を構成する複数本の角管部材が負担するようにした異方性構造体である。   FIG. 1 is a perspective view showing a typical structure of the present invention. It is a framework in which square tube members 2 are arranged in parallel at regular intervals over substantially the entire length of the wall plate. The metal plate 1 is attached to both the front and back surfaces of the framework as an intermediate layer, and a U-shaped frame 4 is covered. The box-shaped metal wall plate is constructed, and the torsional rigidity is greatly increased by incorporating the closed section in an overlapping manner, and the strength addition from the square tube member is kept low to stably maintain the yield shear strength. Further, when a compressive load is applied to the wall surface, it is an anisotropic structure in which a plurality of rectangular tube members constituting the inside bear the burden.

面内せん断を受け且つ必要に応じ圧縮荷重を支える長方形金属壁板として、前記平板の長手方向に角管部材を並列配置することで部材が添接される部位とその他の部位とで実質的な板厚差が生まれて降伏初期時点でせん断降伏領域は板厚の薄い短冊状領域に限定されるため、前記短冊状領域の弾性せん断座屈荷重が降伏せん断荷重を下回らないように前記領域の短手方向の幅厚比を設定し,薄い表裏金属平板で構成された金属壁板であっても未だ弾性となる領域を層状に残して安定した弾塑性力学性状とする。   As a rectangular metal wall plate that receives in-plane shear and supports a compressive load as necessary, a rectangular tube member is arranged in parallel in the longitudinal direction of the flat plate, so that the portion where the member is attached and the other portion are substantially Since the shear yield region is limited to a strip-like region with a thin plate thickness at the initial stage of yielding after the plate thickness difference is born, the elastic shear buckling load of the strip-like region is not reduced below the yield shear load. The width-to-thickness ratio in the hand direction is set, and even a metal wall plate composed of thin front and back metal flat plates is left in a layered area to have stable elastic-plastic mechanical properties.

図5は本発明の箱状金属壁板の基本的構造を示すもので、(a)図は複層となる金属壁板内側を構成する角管部材2の配置を示し、(b)図は面内せん断を受ける表裏金属平板1のせん断歪み分布即ち斜張力が進行する様子を模式的に示したものである。中間層を構成する角管部材は長手方向の略全長に亘り並列配置され、箱状金属壁板の上下端部には加力部を保護し且つ補強するために表裏金属平板を外側から挟み込むようコの字状の枠組み4を設けている。   FIG. 5 shows the basic structure of the box-shaped metal wall plate of the present invention. FIG. 5 (a) shows the arrangement of the square tube members 2 constituting the inner side of the metal wall plate that is a multilayer, and FIG. The shear strain distribution of the front and back metal flat plates 1 subjected to in-plane shear, that is, the state in which the oblique tension proceeds, is schematically shown. The square tube members constituting the intermediate layer are arranged in parallel over substantially the entire length in the longitudinal direction, and the upper and lower ends of the box-shaped metal wall plate sandwich the front and back metal flat plates from the outside in order to protect and reinforce the applied portion. A U-shaped frame 4 is provided.

本実施例は2,250mmx900mmの箱状金属壁板に対し角管断面100mmx50mmx3.2mmの5本を壁板短辺方向幅900mmに亘り100mm間隔に配置して骨組みを構成し、その表裏両面に金属平板として板厚が1.6mm,1.9mm,2.3mm,3.2mm,4.5mm,6.0mmを選択するが角管部材は全て3.2mm板厚の同一断面としている。本数値解析では、材料は降伏点応力度σy=30kN/cm2,SS400相当の軟鋼とし、以下の解析もこれに準じて行っている。 In this example, a box-shaped metal wall plate of 2,250 mm x 900 mm is composed of 5 pieces with a square tube cross-section of 100 mm x 50 mm x 3.2 mm arranged at 100 mm intervals over the width of 900 mm on the short side of the wall plate. The plate thickness is selected from 1.6 mm, 1.9 mm, 2.3 mm, 3.2 mm, 4.5 mm, and 6.0 mm, but all the square tube members have the same cross section with a thickness of 3.2 mm. In this numerical analysis, the yield stress is σ y = 30 kN / cm 2 and mild steel equivalent to SS400, and the following analysis is performed in accordance with this.

図6は板厚の異なる全ての非線形解析結果を降伏せん断荷重Qyの比とせん断変形δを壁板長さHの比で示した関係図である。本結果の特徴は、表裏金属平板の板厚即ちせん断強度に大きな差があるものの同じ角管部材による補強であっても降伏後の塑性変形能力が略同じになっていることである。並列する角管部材で挟まれた短冊状領域の短辺方向幅厚比で62.5〜43.5となる壁板は3本の実線で示すように耐力低下は緩やかであるのに対し、幅厚比31.3〜16.7の壁板は3本の点線で示すように耐力低下は急である。 FIG. 6 is a relational diagram showing all nonlinear analysis results with different plate thicknesses, the ratio of the yield shear load Q y and the shear deformation δ as the ratio of the wall plate length H. The feature of this result is that the plastic deformation ability after yielding is substantially the same even if reinforcement is performed by the same square tube member, although the plate thickness, that is, the shear strength, of the front and back metal flat plates is greatly different. Wall plates with a width-thickness ratio of 62.5 to 43.5 in the strip-shaped region sandwiched between parallel square tube members have a gradual decrease in yield strength as shown by the three solid lines, whereas a width-thickness ratio of 31.3 As shown by the three dotted lines, the proof stress of ˜16.7 is steep.

図7は本発明の箱状金属壁板について表裏金属平板1を更に薄板とする場合で、(a)図は金属壁板の内側を構成する角管部材2を間隔を狭めて配置し、前記壁板の上下端部にも角管部材3を配し周辺部を固めた構造である。(b)図は面内せん断を受ける箱状金属壁板の表裏金属平板のせん断応力及び歪みの様子を模式的に示したものであり、長手方向両側辺に沿い略全長に亘りコの字状の枠4で補強している。表裏金属平板が薄く且つ内側の角管部材板厚が薄い場合には有効である。   FIG. 7 is a case where the front and back metal flat plates 1 are further thinned with respect to the box-shaped metal wall plate of the present invention. FIG. 7A is a diagram in which square tube members 2 constituting the inner side of the metal wall plate are arranged at a small interval. This is a structure in which square tube members 3 are arranged at the upper and lower ends of the wall plate to harden the peripheral portion. (B) The figure schematically shows the state of the shear stress and distortion of the front and back metal plates of the box-shaped metal wall plate that undergoes in-plane shearing. The frame 4 is reinforced. This is effective when the front and back metal flat plates are thin and the inner square tube member plate is thin.

解析例題として、2,250mmx900mmの箱状金属壁板に対し角管断面100mmx50mmx1.6mmを900mm幅全域に幅60mm離して配置しており、平板の上下両側加力部にも角管部材を配し且つ僅かな隙間を設けてせん断変形の進行を阻害しないようにした表裏金属平板が薄い場合に対応する構造である。表裏金属平板の各板厚は0.3mm,0.4mm,0.6mm,0.8mm,1.0mm,1.2mmで、角管部材は全て1.6mm板厚の同一断面とし長手方向側辺の外側枠材は板厚100mmx6mmの帯状平板で側辺部の内側角管部材に合せて添接している。   As an analysis example, a square tube cross section of 100 mm x 50 mm x 1.6 mm is placed 60 mm wide across the entire width of 900 mm on a 2,250 mm x 900 mm box-shaped metal wall plate, and square tube members are also placed on the upper and lower sides of the flat plate and This structure corresponds to the case where the front and back metal flat plates are provided with a slight gap so as not to inhibit the progress of shear deformation. The thicknesses of the front and back metal flat plates are 0.3 mm, 0.4 mm, 0.6 mm, 0.8 mm, 1.0 mm, and 1.2 mm. All the square tube members have the same cross section with a thickness of 1.6 mm, and the outer frame material on the longitudinal side is the plate. It is a strip-like flat plate with a thickness of 100mmx6mm, and is attached to the inner square tube member on the side.

図8は薄い板厚に対する非線形解析結果であり角管部材数を多くし且つ角管断面板厚を下げて対応しているが、表裏金属平板で決まるせん断降伏荷重が確保され且つ降伏後の塑性変形能力も前掲例題の厚板の場合と同じかそれ以上である。並列する角管部材で挟まれた短冊状領域の短辺方向幅厚比で160〜50の場合は4本の実線で示すように降伏せん断耐力は維持され、幅厚比150〜200の場合は2本の点線で示すようにせん断降伏荷重が若干下がるもののその後せん断耐力は維持される。    FIG. 8 shows a nonlinear analysis result for a thin plate thickness, which corresponds to an increase in the number of square tube members and a reduction in the square tube cross-sectional plate thickness. However, the shear yield load determined by the front and back metal plates is secured and the plasticity after yielding The deformation capacity is the same as or higher than that of the plank. When the width-thickness ratio in the short-side direction of the strip-shaped region sandwiched between the parallel square tube members is 160-50, the yield shear strength is maintained as shown by the four solid lines, and in the case of the width-thickness ratio 150-200 As shown by the two dotted lines, the shear yield strength is maintained, although the shear yield load is slightly reduced.

図9は箱状金属壁板の短手方向幅が900mmで長手方向長さを3,600mm,3,000mm,2,250mmとし面内せん断を受けた場合の力学性状を検証するものである。(a)図は壁板内側の角管部材の配置を示したもので、せん断荷重の作用位置である壁板上下端部には長手方向の角管部材2とは僅かな隙間を設けて短手方向に角管断面の加力冶具3を設置している。(b)図は長方形金属壁板の表裏金属平板1と外面の補強を示すもので、長手方向両側辺部に帯状平板5を添接して壁板両側辺の面外変形は自由としている。   Fig. 9 verifies the mechanical properties of the box-shaped metal wall plate when the transverse width is 900mm and the longitudinal length is 3,600mm, 3,000mm, 2,250mm and subjected to in-plane shear. (A) The figure shows the arrangement of the square tube members on the inner side of the wall plate. The upper and lower end portions of the wall plate, which is the position where the shear load is applied, are slightly shorter than the square tube member 2 in the longitudinal direction. The force jig 3 having a square tube cross section is installed in the hand direction. (B) The figure shows the reinforcement of the front and back metal flat plate 1 and the outer surface of the rectangular metal wall plate, and the strip-shaped flat plate 5 is attached to both sides in the longitudinal direction so that the out-of-plane deformation on both sides of the wall plate is free.

図10は箱状金属壁板の断面詳細図で、平板の長さに応じて上から下へ断面100mmx100mmx3.2mm,100mmx75mmx3.2mm,100mmx50mmx3.2mmの角管部材2としている。表裏金属平板1の各板厚は3.2mmとし、前記2枚の平板で決まる降伏せん断荷重は略Qy=900kN/cm2である。表裏金属平板の長手方向側辺部に添接される断面100mmx6mmの帯状平板5は隅肉溶接で補強し、前記平板と内側配置の各補強材とは金属接着剤の添接を主にボルトでの挟み込みを副として考えている。 FIG. 10 is a detailed cross-sectional view of a box-shaped metal wall plate, which is a square tube member 2 having a cross section of 100 mm × 100 mm × 3.2 mm, 100 mm × 75 mm × 3.2 mm, 100 mm × 50 mm × 3.2 mm from top to bottom depending on the length of the flat plate. Each plate thickness of the front and back metal flat plate 1 is 3.2 mm, and the yield shear load determined by the two flat plates is approximately Q y = 900 kN / cm 2 . The strip-shaped flat plate 5 having a cross section of 100 mm × 6 mm, which is attached to the longitudinal side edges of the front and back metal flat plates, is reinforced by fillet welding, and the flat plate and each of the reinforcing members arranged inside are mainly bolted with metal adhesive. Is considered as a deputy.

図11は長方形箱状金属壁板の非線形解析結果で、縦軸をせん断荷重Qと横軸をせん断変形角δ/Hで示している。壁板短辺方向幅900mmに対し長辺方向のせいH=2,250mm,3,000mm,3,600mmで比率は0.75:1.0:1.2であり、壁板厚さ方向の角管断面幅で0.67:1.0:1.33の比率となっている。せん断降伏後の荷重変形関係は三者略同じで、最大荷重点から耐力低下に至る経過も類似している。図中下部の点線は壁板面外への曲げ変形であるが、箱状金属壁板中央の変形は壁板の全体厚さTとの比で最大荷重時点で1/2を下回る。   FIG. 11 shows the result of nonlinear analysis of a rectangular box-shaped metal wall plate, in which the vertical axis indicates the shear load Q and the horizontal axis indicates the shear deformation angle δ / H. The length H is 2,250mm, 3,000mm, 3,600mm and the ratio is 0.75: 1.0: 1.2 with respect to the width of 900mm in the short side direction of the wallboard, and the ratio of the cross section width in the direction of wallboard thickness is 0.67: 1.0: The ratio is 1.33. The load deformation relationship after shear yielding is almost the same, and the process from the maximum load point to the decrease in yield strength is similar. The dotted line at the bottom of the figure is the bending deformation to the outside of the wall plate surface, but the deformation at the center of the box-shaped metal wall plate is less than 1/2 at the time of maximum load in comparison with the total thickness T of the wall plate.

図12は箱状金属壁板の上下端部から一定の面内軸力が作用する場合の解析例で、軸力P=50tonの場合を実線で又軸力P=100tonの場合を点線で示している。前掲の軸力の無い場合と比較しても殆どその差はない。設定した軸力の内前者は角管補強材の全断面積で換算される降伏軸力の35%,30%,26%に相当し且つ後者は前記数値の更に2倍で平均60%程度となっており、内側の角管部材は箱状金属壁板に圧縮軸力が作用する場合に於いてもこれを支えるに有効に機能している。   Fig. 12 shows an example of analysis when a certain in-plane axial force is applied from the upper and lower ends of the box-shaped metal wall plate. The axial force P = 50ton is indicated by a solid line, and the axial force P = 100ton is indicated by a dotted line. ing. There is almost no difference compared to the case without the axial force described above. The former of the set axial force corresponds to 35%, 30%, 26% of the yield axial force converted by the total cross-sectional area of the square tube reinforcement, and the latter is twice the above value and averages about 60%. The inner square tube member functions effectively to support the box-shaped metal wall plate even when a compression axial force acts on it.

図13は本発明の箱状金属壁板の解析シミュレーションによる大変形領域での壁板全体の変形を示す斜視図で、壁板上下側辺に沿い水平方向にせん断力が加わることと壁板を捩ることは同一の力学体系にあり、このことは壁板全体が曲げ捩り変形していることからも窺える。前記壁板の内側を構成する角管部材は壁板に対し捩り剛性,捩り強さに寄与する以外に力を負担しておらず、金属壁板面内に作用する圧縮荷重を支える部材として機能し且つ長辺方向両側辺の面外変形を拘束することなく対応できている。   FIG. 13 is a perspective view showing the deformation of the entire wall plate in the large deformation region by the analysis simulation of the box-shaped metal wall plate of the present invention. The shear force is applied in the horizontal direction along the upper and lower sides of the wall plate and the wall plate is Twisting is in the same dynamic system, which can be seen from the fact that the entire wall plate is bent and twisted. The square tube member that forms the inside of the wall plate does not bear any force other than contributing to the torsional rigidity and torsional strength of the wall plate, and functions as a member that supports the compressive load acting on the metal wall plate surface. In addition, it is possible to deal with without restraining out-of-plane deformation on both sides in the long side direction.

半無限縁平板のせん断座屈について弾性せん断座屈応力度を数式(4)に,半無限縁平板の座屈係数k=8.98とする弾性せん断座屈応力度が降伏せん断応力度となる平板短冊状領域の短辺方向幅厚比を数式(5)に示している。角管部材で挟まれた細長い短冊状領域に於いてせん断降伏開始時点でまず塑性化が進むことを考えれば長方形金属壁板が面内せん断を受ける場合には前記条件を満たすことが必要であり、前記平板短冊状領域の短辺方向幅厚比は設計の一つの目安にはなろう。   Shear buckling of a semi-infinite edge flat plate A plate strip whose elastic shear buckling stress is the yield shear stress with the elastic shear buckling stress of Equation (4) as the buckling coefficient k = 8.98. The width / thickness ratio in the short side direction of the region is shown in Equation (5). Considering that plasticization proceeds at the start of shear yielding in a long and narrow strip region sandwiched between square tube members, the above condition must be satisfied when rectangular metal wall plates are subjected to in-plane shear. The width-thickness ratio in the short side direction of the flat plate-like region will be one guide for design.

図14の(a)図は箱状金属壁板と内側を構成する角管部材の配置を示し且つ(b)図は表裏金属平板の板厚変化を示す拡大断面図であり層状に薄板となる表裏金属平板の板厚tと角管断面板厚を加えたt+t'とは1.5〜3.5倍にある。鋼材として降伏点応力度σy=30kN/cm2,ヤング係数はE=20,500kN/cm2,軽金属材として降伏点応力度σy=20kN/cm2,ヤング係数はE=7,200kN/cm2と考えれば、目安となる幅厚比は鋼材で略b/t=100,軽金属材料で略b/t=70 である。 FIG. 14 (a) shows the arrangement of the box-shaped metal wall plate and the square tube member constituting the inside, and FIG. 14 (b) is an enlarged cross-sectional view showing the plate thickness change of the front and back metal flat plates, which become thin plates in layers. The thickness t of the front and back metal flat plates and t + t ′ including the square tube cross-sectional thickness are 1.5 to 3.5 times. Yield stress of σ y = 30kN / cm 2 as a steel material, Young's modulus is E = 20,500kN / cm 2, yield stress as a light metal material of σ y = 20kN / cm 2, Young's modulus is E = 7,200kN / cm 2 Therefore, the standard width-thickness ratio is about b / t = 100 for steel materials and about b / t = 70 for light metal materials.

本発明の代表的構造は図1の斜視図に示しているが、主に面内せん断を受ける表裏金属平板とその内側に角管部材を略均等間隔に配置し構成するもので、前記金属平板と角管部材とは金属接着剤乃至隅肉溶接により一体化することを標準とするがスポット溶接乃至ネジ止め更にそれらを併用することも有る。角管部材の補強による管状体金属平板の組立て方法は比較的簡単で且つ前記壁板全体が軽量であり、設計の容易さと製作の簡便さは特記すべき長所である。   The typical structure of the present invention is shown in the perspective view of FIG. 1, and is mainly composed of front and back metal flat plates that are subject to in-plane shear and square tube members arranged at substantially equal intervals inside the metal flat plates. The square tube member and the square tube member are integrated by metal adhesive or fillet welding as a standard, but spot welding or screwing may be used together. The method of assembling the tubular metal flat plate by reinforcing the rectangular tube member is relatively simple and the entire wall plate is lightweight, and the ease of design and the ease of manufacture are notable advantages.

本発明は閉鎖型断面となる箱状金属壁板の補強構造であり、これを構成して製作する上での問題解決は実用化に向け必須の課題である。図15は簡易組立て方式による箱状金属壁板で、同じ構成となる2組みの壁板要素を周辺枠材と内部補強材が面を向き合うように重ねて擬似的閉鎖形断面となる箱状金属壁板を組み立てる。この構成方法によれば表裏金属壁板それぞれに対して必要とされる力学的性能の過半は予め確保されるため、これを重ねて複層に構成する際の接合は周辺枠と平板内側の限られた複数箇所で許容される。   The present invention is a reinforcing structure of a box-shaped metal wall plate having a closed cross section, and solving the problem in constructing and manufacturing this is an indispensable problem for practical use. FIG. 15 shows a box-shaped metal wall plate by a simple assembling method, in which two sets of wall plate elements having the same configuration are overlapped so that the peripheral frame member and the internal reinforcing material face each other and form a pseudo closed cross section. Assemble the wallboard. According to this construction method, a majority of the mechanical performance required for each of the front and back metal wall plates is secured in advance, so that when the layers are stacked to form a multilayer, the joint between the peripheral frame and the flat plate is limited. Allowed at multiple locations.

本発明は面内せん断を受け必要に応じ圧縮荷重を支える箱状金属壁板に対する補強構造を提案したもので、捩りを主体とする力学的対処方法として箱状の壁板とし更に内部補強材を角管部材とすることで閉鎖型断面を重ねて組込み、壁板の捩り剛性即ちせん断剛性を大幅に高くし且つ内部補強材による強度付加を低く抑えて表裏金属平板の薄板化を図り、軽量化した箱状金属壁板としては金属系建物の壁面構成パネル,制振ないし耐震を目的とする構造壁板への用途は広い。   The present invention proposes a reinforcement structure for a box-shaped metal wall plate that receives in-plane shear and supports a compressive load as necessary. As a mechanical countermeasure mainly based on torsion, a box-shaped wall plate is used and an internal reinforcement is further provided. The square tube member is built in with a closed cross section, and the torsional rigidity, that is, shear rigidity, of the wall plate is greatly increased, and the addition of strength by the internal reinforcing material is suppressed to reduce the thickness of the front and back metal plates, thereby reducing the weight. As a box-shaped metal wall plate, it can be used for a wide variety of applications such as wall panels for metal buildings and structural wall plates for vibration control or earthquake resistance.

1 面内せん断を受ける金属平板
2 長辺方向に並列する角形管状部材
3 短手方向側辺に沿う角形管状部材
4 壁板周辺部を保護するコの字補強材
5 長辺方向両側辺に沿う帯状平板
DESCRIPTION OF SYMBOLS 1 Metal flat plate which receives in-plane shear 2 The rectangular tubular member parallel to a long side direction 3 The rectangular tubular member along a short side side 4 A U-shaped reinforcement which protects a wall-plate periphery 5 Along a long side direction both sides Strip

Claims (4)

面内せん断を受け且つ必要に応じ圧縮荷重を支える箱状金属壁板として、壁板長手方向の略全長に亘り角形管状部材を一定間隔に並列配置した骨組みとし、前記骨組みを中間層としてその表裏両面に金属平板を添接して構成するもので、前記壁板が表裏金属平板と両側辺部角形管状部材とで閉鎖形断面となることで壁板全体の捩り剛性を上げ、前記壁板を構成する表裏金属平板で決まる降伏せん断荷重の確保と塑性変形能力の改善を図る制振乃至耐震構造壁板。   As a box-shaped metal wall plate that receives in-plane shear and supports a compressive load as necessary, it is a framework in which rectangular tubular members are arranged in parallel at regular intervals over the entire length of the wall plate in the longitudinal direction. It consists of a metal flat plate attached to both sides, and the wall plate has a closed cross section made up of a front and back metal flat plate and both sides of the rectangular tubular member, thereby increasing the torsional rigidity of the entire wall plate and configuring the wall plate. Damping or seismic structure wall plate that secures the yield shear load determined by the front and back metal plates and improves the plastic deformation capacity. 面内せん断を受け且つ必要に応じ圧縮荷重を支える箱状金属壁板として、壁板長手方向に角形管状部材を一定間隔に並列配置し且つ前記部材と直交して壁板両端部短辺方向に角形管状部材を配した骨組みとし、前記骨組みを中間層としてその表裏両面に金属平板を添接して構成するもので、前記箱状金属壁板の周辺部を角形管状部材で囲み、前記壁板を構成する表裏金属平板で決まる降伏せん断荷重の確保と塑性変形能力の改善を図る制振乃至耐震構造壁板。   As a box-shaped metal wall plate that receives in-plane shear and supports a compressive load as necessary, square tubular members are arranged in parallel at regular intervals in the longitudinal direction of the wall plate and perpendicular to the members in the short side direction at both ends of the wall plate. It is a framework in which a rectangular tubular member is arranged, and is constructed by attaching a metal flat plate to both the front and back surfaces of the framework as an intermediate layer, surrounding the peripheral portion of the box-shaped metal wall plate with a rectangular tubular member, A damping or seismic structure wall plate that secures the yield shear load determined by the front and back metal plates and improves the plastic deformation capacity. 面内せん断を受け且つ必要に応じ圧縮荷重を支える箱状金属壁板として、壁板表裏面の各金属平板に対し長手方向に同一の角形管状部材を配した2組の壁板要素を構成し、互いの前記金属平板を外面にして角形管状部材が添付される面を向かい合わせに重ねて周囲側辺部で接合し且つ壁板内部の複数箇所で接合して閉鎖形断面とするもので、前記壁板を構成する表裏金属平板で決まる降伏せん断荷重の確保と塑性変形能力の改善を図る制振乃至耐震構造壁板。   As a box-shaped metal wall plate that receives in-plane shear and supports a compressive load as necessary, it constitutes two sets of wall plate elements in which the same rectangular tubular members are arranged in the longitudinal direction for each metal plate on the front and back of the wall plate. In addition, the metal flat plate of each other is used as the outer surface, the surfaces to which the rectangular tubular members are attached are overlapped face to face, joined at the peripheral side portions, and joined at a plurality of locations inside the wall plate to form a closed cross section, A vibration-damping or earthquake-resistant structural wall plate for securing a yield shear load determined by the front and back metal flat plates constituting the wall plate and improving plastic deformation ability. 面内せん断を受け且つ必要に応じ圧縮荷重を支える箱状金属壁板として、壁板長手方向の両側辺に沿い又は壁板周囲四辺に沿い、壁板側辺部にコの字形断面部材を被せ,または表裏金属平板内側の厚さ方向に帯板を取付け,または表裏金属平板の外側両面又は片面から帯板を幅広面で添接し、前記壁板を構成する表裏金属平板で決まる降伏せん断荷重の確保と塑性変形能力の改善を図る請求項1,請求項2,請求項3の何れかに記載の制振乃至耐震構造壁板。   As a box-shaped metal wall plate that receives in-plane shear and supports a compressive load as necessary, a U-shaped cross-section member is placed along the side of the wall plate or along the four sides of the wall plate and on the side of the wall plate. , Or by attaching strips in the thickness direction inside the front and back metal plates, or by attaching the strips with wide surfaces from both sides or one side of the front and back metal plates, yield shear load determined by the front and back metal plates constituting the wall plate 4. A vibration-damping or earthquake-resistant structural wall plate according to claim 1, which is intended to ensure and improve plastic deformation capacity.
JP2010125711A 2010-06-01 2010-06-01 Box-shaped metal wall plate with square tube reinforcement Expired - Fee Related JP4688238B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010125711A JP4688238B1 (en) 2010-06-01 2010-06-01 Box-shaped metal wall plate with square tube reinforcement

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010125711A JP4688238B1 (en) 2010-06-01 2010-06-01 Box-shaped metal wall plate with square tube reinforcement

Publications (2)

Publication Number Publication Date
JP4688238B1 true JP4688238B1 (en) 2011-05-25
JP2011252295A JP2011252295A (en) 2011-12-15

Family

ID=44193899

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010125711A Expired - Fee Related JP4688238B1 (en) 2010-06-01 2010-06-01 Box-shaped metal wall plate with square tube reinforcement

Country Status (1)

Country Link
JP (1) JP4688238B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106013514A (en) * 2016-07-05 2016-10-12 风范绿色建筑(常熟)有限公司 Steel tube combined wall component

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2974990B2 (en) * 1997-10-13 1999-11-10 株式会社タクリュー Metal square pillar for wall foundation
JPH11303310A (en) * 1998-04-24 1999-11-02 Kubota Corp Panel for forming grain storage part
JP4004947B2 (en) * 2002-12-27 2007-11-07 大和ハウス工業株式会社 Structure for forming column-free large space in steel structure building
JP5176855B2 (en) * 2008-10-10 2013-04-03 新日鐵住金株式会社 Folded panel structure and building structure

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106013514A (en) * 2016-07-05 2016-10-12 风范绿色建筑(常熟)有限公司 Steel tube combined wall component

Also Published As

Publication number Publication date
JP2011252295A (en) 2011-12-15

Similar Documents

Publication Publication Date Title
JP4901491B2 (en) Buckling restraint brace
US8590220B2 (en) Metal joint, damping structure, and architectural construction
JP6941467B2 (en) Damper and how to make the damper
JP5301337B2 (en) Anisotropic reinforced metal flat plate
JP4688234B1 (en) Rectangular metal plate square tube reinforcement structure
JP7228344B2 (en) Joint structure of reinforced concrete frame and brace and precast member
JP4414833B2 (en) Seismic walls using corrugated steel
JP4688238B1 (en) Box-shaped metal wall plate with square tube reinforcement
JP4945428B2 (en) Reinforced structure
JP4618805B2 (en) Reinforcement structure of multi-layer metal flat plate
JP4883639B2 (en) Reinforcement structure of tubular metal flat plate
JP5492163B2 (en) Reinforced concrete wall column
WO2010116660A1 (en) Anisotropic reinforcing metal plate
JP2022111782A (en) Hot-rolled steel strip, H-shaped steel, floor structure, floor structure design method, and floor structure construction method
JP4881084B2 (en) Seismic structure
JP2022111579A (en) Floor structure, design method of floor structure, and construction method of floor structure
JP2008138447A (en) Multi-layered light metal wall structure
JP7262518B2 (en) Stud type steel damper
JP6682903B2 (en) Buckling stiffening structure and steel structure of H-shaped cross-section member
JP5806843B2 (en) Seismic structure of building and building
JP6240420B2 (en) Seismic reinforcement structure
JP7127244B2 (en) Seismic reinforcement structure
JP5454494B2 (en) Underground wall structure
JP5588212B2 (en) Unit building and unit building structure calculation method
JP4854759B2 (en) Construction method of closed type multi-layer metal flat plate

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140225

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees