JP4883639B2 - Reinforcement structure of tubular metal flat plate - Google Patents

Reinforcement structure of tubular metal flat plate Download PDF

Info

Publication number
JP4883639B2
JP4883639B2 JP2007317926A JP2007317926A JP4883639B2 JP 4883639 B2 JP4883639 B2 JP 4883639B2 JP 2007317926 A JP2007317926 A JP 2007317926A JP 2007317926 A JP2007317926 A JP 2007317926A JP 4883639 B2 JP4883639 B2 JP 4883639B2
Authority
JP
Japan
Prior art keywords
flat plate
tubular
shear
frame
yield
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007317926A
Other languages
Japanese (ja)
Other versions
JP2009138480A5 (en
JP2009138480A (en
Inventor
敏郎 鈴木
Original Assignee
株式会社 構造材料研究会
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 構造材料研究会 filed Critical 株式会社 構造材料研究会
Priority to JP2007317926A priority Critical patent/JP4883639B2/en
Publication of JP2009138480A publication Critical patent/JP2009138480A/en
Publication of JP2009138480A5 publication Critical patent/JP2009138480A5/ja
Application granted granted Critical
Publication of JP4883639B2 publication Critical patent/JP4883639B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an aseismic shear panel which can stably maintain needed yield shearing proof strength after the yield until reaching a large deformation area by securing a shearing yielding load by increasing a shearing buckling load of a substantially rectangular flat metal plate mainly receiving the shearing force. <P>SOLUTION: A reinforcing structure 1 of the substantially rectangular flat metal plate indicates a tubular flat plate, being a structural bisect anisotropic body, in which framed peripheral frame body 3 and inside parallel reinforcing members 4 are arranged. When the flat plate receives the shear force from the peripheral part, obverse/reverse flat metal plate 2 yields by the y-axis directional shear force in the leafy areas surrounded by the peripheral frame body and the inside reinforcing members. After that, the bearing force is maintained against the x-axis directional force until reaching the large deformation area contributed by the inside reinforcing members. Plasticization of the tubular flat plate is limited to the leafy areas for a while and is still partly in an elastic state even after the shear yield, and stable hysteretic nature against the load repeatedly applied in a positive-negative alternating manner is obtained. <P>COPYRIGHT: (C)2009,JPO&amp;INPIT

Description

本発明は、制振ないし耐震を目的とする構造壁、間柱,境界梁,筋違の交差部位等の全て乃至一部を構成する主にせん断力を受ける略矩形金属平板について、早期のせん断座屈を回避してせん断降伏荷重を確保するとともに降伏後の大変形領域に於いてもせん断耐力が低下することなく安定して推移し、平板の塑性変形能力を高めることを意図した補強構造に関するものである。   The present invention provides an early shear seat for a substantially rectangular metal flat plate that mainly receives a shearing force and constitutes all or a part of a structural wall, a stud, a boundary beam, a crossing portion of a strut for vibration suppression or earthquake resistance. Reinforcement structure intended to increase the plastic deformation capacity of a flat plate by avoiding bending and securing a shear yield load and maintaining stable shear strength without decreasing in the large deformation region after yielding It is.

せん断力を受ける略矩形金属平板は、せん断座屈荷重を確保できてもその後の座屈変形が成長する過程で耐力を維持し且つ正負交番に繰り返される荷重に対し安定した履歴性状とすることは難しく、このためせん断座屈荷重を相当高くする必要があって平板の幅厚比は小さくなり、結果的には多くのスティフナ−を格子状に配して平板全域を細分化することになる。   A substantially rectangular metal flat plate subjected to shearing force can maintain a yield strength in the process in which subsequent buckling deformation grows even if a shear buckling load can be secured, and to have a stable hysteretic property with respect to a load that is repeated alternately in positive and negative directions. For this reason, it is necessary to considerably increase the shear buckling load, and the width-thickness ratio of the flat plate becomes small. As a result, a large number of stiffeners are arranged in a lattice shape to subdivide the entire flat plate region.

金属平板のせん断座屈荷重を降伏せん断荷重に対して相対的に高くする必要から、設計で要求されるせん断強度に対し降伏点応力度の極めて低い材料を使うことで金属平板の板厚を上げ、早期のせん断座屈を回避し降伏後の塑性変形能力を高める方法がある。この他、せん断力を受ける金属平板の耐力維持を図るため,粘弾性材料を組み込んだ壁板,壁板と建物部位との接合方法を工夫したもの等様々な提案がされている。
特開2004−270208 公開特許公報 特開2005−042423 公開特許公報 特開2006−037586 公開特許公報 特開2006−342622 公開特許公報 木原碩美/鳥井信吾著 「極低降伏点鋼板壁を用いた制震構造の設計」建築技術 1998年11月
Since it is necessary to increase the shear buckling load of the metal plate relative to the yield shear load, the thickness of the metal plate can be increased by using a material with an extremely low yield point stress relative to the shear strength required for the design. There is a method to avoid early shear buckling and increase the plastic deformation ability after yielding. In addition, various proposals have been made to maintain the proof strength of a metal flat plate subjected to a shearing force, such as a wall plate incorporating a viscoelastic material, a method of joining a wall plate and a building part.
Japanese Patent Laid-Open No. 2004-270208 Japanese Patent Laid-Open No. 2005-042423 Japanese Patent Laid-Open No. 2006-037586 Japanese Patent Laid-Open No. 2006-342622 Tomomi Kihara / Shingo Torii “Design of damping structure using steel plate wall with extremely low yield point” Architectural Technology November 1998

解決しようとする課題は、主にせん断力を受ける略矩形金属平板に対して平板のせん断剛性を高くしてせん断座屈荷重を上げ且つせん断降伏後の耐力の安定的な維持を図るための補強方法を提示し、薄い金属平板に対しても塑性変形能力を高めて正負交番に繰り返される荷重にも安定した履歴性状となるせん断耐震パネルとすることである。   The problem to be solved is the reinforcement to increase the shear buckling load by increasing the shear rigidity of the flat plate, which is mainly subjected to shearing force, to increase the shear buckling load and to stably maintain the yield strength after shear yielding. A method is proposed to improve the plastic deformation ability even for a thin metal flat plate, and to make a shear earthquake-resistant panel that has a stable hysteresis property even with a load that is repeated alternately in positive and negative directions.

主にせん断力を受ける略矩形金属平板として、周囲四辺に充実乃至管状矩形断面部材が構成する額縁状の枠組みを設け且つその内部に枠材と同厚の充実乃至管状矩形断面部材を配置し、前記構成部材に表裏金属平板を添接して管状体平板とすることでせん断座屈荷重を上げ、降伏直後の耐力低化を防ぎ更にその後もせん断耐力を落とすことなく安定した力学性状となることを意図する。   As a substantially rectangular metal plate that mainly receives a shearing force, a frame-shaped frame composed of solid or tubular rectangular cross-section members is provided on the four sides, and a solid or tubular rectangular cross-section member having the same thickness as the frame material is disposed therein, By attaching a front and back metal flat plate to the component member to form a tubular body flat plate, the shear buckling load is increased, and a decrease in the yield strength immediately after yielding is prevented, and after that, stable mechanical properties are obtained without reducing the shear strength. Intended.

下記に示す数1はせん断力を受ける平板の釣合微分方程式であり、平板の剛性Dは第2式に示すように単位板幅の曲げ剛性として扱われるのが普通であるが、左辺中間項にかかる剛性は曲げ剛性のポアソン比成分を除けば基本的には第3式で示される捩り剛性でありせん断力に対し直接関与する。管状体平板として捩り剛性を高くするためには平板周辺部を固める必要があが、この対応は比較的容易でありせん断耐震パネルとして管状体平板は有力な構造体と考えられる。   Equation 1 shown below is a balanced differential equation of a flat plate subjected to a shearing force, and the flat plate stiffness D is usually treated as the bending stiffness of the unit plate width as shown in the second formula. Except for the Poisson's ratio component of the bending stiffness, the stiffness is basically the torsional stiffness represented by the third equation and is directly related to the shearing force. In order to increase the torsional rigidity as a tubular flat plate, it is necessary to harden the periphery of the flat plate, but this correspondence is relatively easy, and the tubular flat plate is considered to be a powerful structure as a shear earthquake resistant panel.

Figure 0004883639
Figure 0004883639

下記に示す数2は、厚さTの充実断面の平板に対して厚さtの薄板で構成される全体厚さTの管状体平板の剛性低下率をαとして示したものであるが、管状体を構成する板厚tが全体厚さTの10%で剛性は略50%低下するものの、剛性の3乗根が板厚とみると管状体平板の換算板厚は全体厚さの略80%と評価でき、管状体とすることによりせん断降伏荷重を大幅に下げ且つ見掛け上の幅厚比を小さくすることになるため、管状体平板はせん断降伏後の大変形領域に於いて安定した力学性状を確保できることになる。   The number 2 shown below indicates the rate of rigidity reduction of a tubular flat plate having an overall thickness T composed of a thin plate having a thickness t with respect to a solid cross-section flat plate having a thickness T as α. Although the plate thickness t constituting the body is 10% of the total thickness T and the rigidity is reduced by about 50%, the converted plate thickness of the tubular plate is about 80 of the total thickness when the cube root of the rigidity is the plate thickness. Since the tube yields a significant reduction in the shear yield load and the apparent width-to-thickness ratio, the flat plate of the tubular body has stable mechanics in the large deformation region after shear yielding. Properties can be secured.

Figure 0004883639
Figure 0004883639

管状体平板の力学的要件を満たすための構造モデルを図1に示している。周囲四辺に充実乃至管状矩形断面部材が構成する額縁状の枠組み3を設け且つその内部に枠材と同厚の充実乃至管状矩形断面部材4を周辺枠組みの一方と平行に一本乃至複数本を層状に配し中間層を構成し、更に前記中間層の表裏両面に金属平板2を添接して管状体平板とするもので、構造的直交異方性体を構成することによりせん断降伏後の変形の増大に対しても表裏金属平板のせん断降伏荷重を維持することができる。   A structural model for satisfying the mechanical requirements of the tubular flat plate is shown in FIG. A frame-shaped frame 3 composed of solid or tubular rectangular cross-section members is provided on the four sides, and one or a plurality of solid or tubular rectangular cross-section members 4 having the same thickness as the frame material are provided in parallel with one of the peripheral frames. It is arranged in layers to form an intermediate layer, and further, a metal plate 2 is attached to both the front and back surfaces of the intermediate layer to form a tubular plate. By forming a structural orthotropic body, deformation after shear yielding It is possible to maintain the shear yield load of the front and back metal flat plates even with respect to the increase in the thickness.

任意の長方形となる形状の管状体平板に対して、異方性補強構造を前提とするものの層状に配してなる内部補強材に加えて必要に応じ前記補強材と直交して前記部材を分断し乃至挿み込み充実乃至管状矩形断面部材を配置し、大きなせん断変形に対し降伏後に拡大成長する平板面外への曲げ変形を低く抑え正負交番に繰り返される荷重に対し安定した履歴性状となるようにする。   In addition to the internal reinforcing material that is arranged in layers on the premise of an anisotropic reinforcing structure, the member is divided perpendicularly to the reinforcing material as necessary, with respect to the tubular flat plate having an arbitrary rectangular shape. In order to achieve stable hysteresis for repeated repeated positive and negative alternating loads, it is possible to reduce the bending deformation to the outside of the flat plate surface that expands and grows after yielding against large shear deformation. To.

薄板で構成される管状体平板に対して、表裏金属平板に挟まれ且つ周囲四辺の枠組みと内部補強材乃至内部補強材同士の間隙部の一部乃至全域に金属体,紙質体,木質体,ゴム体,各種発泡体を充填し、表裏両面の金属平板の変形を相互に拘束することで管状体平板の形状を保ち、捩り剛性を高く維持して降伏後のせん断変形の成長にも安定した力学性状となるようにする。   For a tubular flat plate composed of thin plates, a metal body, a paper body, a wooden body, sandwiched between front and back metal flat plates and partly or entirely in the gap between the surrounding four-sided frame and the internal reinforcing material or internal reinforcing material, Filled with rubber body and various foams and constrains deformation of the metal flat plates on both sides, maintaining the shape of the tubular flat plate, maintaining high torsional rigidity and stable growth of shear deformation after yielding Try to have mechanical properties.

図2は、捩り剛性を調べるための説明図であるが、(a)図は正方形複層金属平板1の周辺部から加わる捩り偶力MTの作用図であり、(b)図はそれを受け薄い管状体平板の表裏両面に流れるせん断応力τを示している。(c)図は900mmx900mmで周辺部に90mmx16mmの枠材3を配した平板断面図でその内部にE=3kN/cm2の発泡体5を充填した例、(d)図は枠材はそのままで表裏金属平板2の内部は空洞とする例である。 Figure 2 is an explanatory diagram for examining torsional stiffness, (a) figure is an operation diagram of the torsional couple M T applied from the periphery of the square double layer metallic flat plate 1, it is (b) Fig. The shear stress τ flowing on both the front and back sides of the thin tubular flat plate is shown. (C) of FIG is filled with foam 5 of E = 3kN / cm 2 therein a flat cross section which arranged frame member 3 of 90mmx16mm the peripheral portion in 900mmx900mm, (d) drawing frame material is intact This is an example in which the inside of the front and back flat metal plate 2 is hollow.

図3は、捩り偶力が加わる初期の剛性Dxyについて全体を充実断面とする平板との比で示した図である。●印の曲線は枠幅90mmの管状体平板で発泡体を充填した場合であるが、充実断面の剛性と比較して略60%の大きさであることは特記すべきことである。変形の進行に伴い徐々に低下する▼印の曲線は枠材で囲まれた管状体平板内部が空洞の場合で、低下の原因は表裏両面の金属平板が捩りに伴い平行を保てないことによる。○印で示す枠幅30mmの場合でも充実断面材の略30%の剛性を確保できるが、点線で示す周辺枠がない場合は十分な剛性は確保できない。 FIG. 3 is a diagram showing the initial stiffness D xy to which the torsional couple is applied in a ratio with a flat plate having a solid cross section as a whole. The curve marked with ● is when the foam is filled with a tubular flat plate with a frame width of 90 mm. It should be noted that it is approximately 60% larger than the rigidity of the solid section. The curve marked with ▼ that gradually declines as the deformation progresses is when the inside of the tubular flat plate surrounded by the frame material is hollow, and the cause of the drop is due to the fact that the metal flat plates on both the front and back sides cannot keep parallel due to twisting . Even with a frame width of 30 mm indicated by a circle, it is possible to ensure approximately 30% rigidity of a solid cross-section material, but sufficient rigidity cannot be ensured if there is no peripheral frame indicated by a dotted line.

図4は、せん断降伏後の典型的な管状体平板1の力の流れを示したものであるが、周辺部の枠組みに作用するせん断力と釣合う主応力成分は実線で示す斜張力と点線で示す圧縮力とに分解される。降伏後のせん断変形に伴い実線の対角線方向に山・谷とする座屈波形が成長し、点線で示す斜め圧縮力により枠材3の隅角部が平板中央に引寄せられて降伏後の耐力低下の原因となるが、これを避けるための平板周辺部の額縁状枠組みは本構造の大きな特長である。本例題を含む以下の3例題は、表裏面板厚1.6mmの平板で構成される大きさ900mmx900mmで総厚T=19.2mmの管状体平板である。   FIG. 4 shows the flow of force of a typical tubular flat plate 1 after shear yielding. The principal stress components that balance the shear force acting on the peripheral frame are the diagonal tension and dotted line shown by the solid line. It is decomposed | disassembled with the compressive force shown by. With the shear deformation after yielding, a buckling waveform with peaks and valleys grows in the diagonal direction of the solid line, and the corner portion of the frame 3 is drawn toward the center of the flat plate by the diagonal compression force shown by the dotted line, and the yield strength after yielding The frame structure around the flat plate to avoid this is a major feature of this structure. The following three examples including this example are tubular flat plates having a size of 900 mm × 900 mm and a total thickness T = 19.2 mm constituted by flat plates having a thickness of 1.6 mm on the front and back surfaces.

図5は、額縁状周辺枠組みが平板降伏後の力学性状への影響を調べたものであり、以下の例題を含め降伏せん断応力σy及び降伏せん断歪みγyの無次元化指標で示している。周辺を囲む枠材の幅が90mmを□印,75mmを●印,50mmを○印で、その内部に並列に配された3本の補強材は幅50mmとする。周辺枠幅をある程度確保することで降伏後のせん断耐力は低下することなく維持されるが、枠幅が狭くなると降伏直後の耐力は低下する。下部に示す点線は外周部に平板から突出する150mmx16mmのフランジで囲まれた場合であり、降伏後せん断耐力を維持する直接的効果はないことが判る。 FIG. 5 shows the influence of the frame-shaped peripheral frame on the mechanical properties after plate yielding, and shows the dimensionless index of yield shear stress σ y and yield shear strain γ y including the following examples. . The width of the frame material surrounding the periphery is 90 mm, □, 75 mm is marked with ●, and 50 mm is marked with ○, and the three reinforcing members arranged in parallel inside are 50 mm wide. By securing the peripheral frame width to some extent, the shear strength after yielding is maintained without decreasing, but when the frame width is narrowed, the yield strength immediately after yielding decreases. The dotted line shown at the bottom is when the outer periphery is surrounded by a flange of 150 mm × 16 mm protruding from the flat plate, and it can be seen that there is no direct effect of maintaining the shear strength after yielding.

図6は、内部補強材4を一方向に並列に配して異方性体平板とする本補強構造の典型的な形を示したものである。補強材の本数及び間隔は管状体平板全体の剛性と表裏両面の金属平板2に対する座屈補剛の観点から決めることになる。この平板が周辺部よりせん断力を受けると、並列に配置された周辺枠材3と内部補強材4で囲まれた短冊状の領域でまずy軸方向のせん断力によって表裏両面の金属平板が降伏し、その後x軸方向のせん断力に対して補強材により徐々に耐力が上昇し釣合うと考えられる。   FIG. 6 shows a typical form of the present reinforcing structure in which the internal reinforcing members 4 are arranged in parallel in one direction to form an anisotropic flat plate. The number and interval of the reinforcing members are determined from the viewpoint of the rigidity of the entire tubular flat plate and the buckling stiffening of the metal flat plate 2 on both the front and back surfaces. When this flat plate receives a shearing force from the peripheral part, the metal flat plates on both the front and back surfaces are first yielded by a shearing force in the y-axis direction in a strip-shaped region surrounded by the peripheral frame member 3 and the internal reinforcement 4 arranged in parallel. Then, it is considered that the proof stress gradually increases and balances against the shearing force in the x-axis direction by the reinforcing material.

図7は、この異方性補強構造の力学的挙動を示すための解析例であり、前例と同じ管状体平板に対して内部補強材の寸法及び本数について検討したもので、補強材幅50mm3本の例を●印,幅75mm3本の例を○印,幅50mm4本の例を□印でそれぞれ図示している。直交異方性補強によれば補強材の本数や寸法が変っても影響は受け難く、表裏金属平板で決まるせん断降伏荷重が殆ど変ることはない。点線は幅25mmの補強材を縦横3本で格子状に配した平板の結果で、降伏初期から補強材強度が影響し耐力上昇している。   FIG. 7 is an example of analysis to show the mechanical behavior of this anisotropic reinforcing structure. The dimensions and number of internal reinforcing members were examined for the same tubular flat plate as in the previous example. An example of ●, an example of three with a width of 75 mm, and an example of four with a width of 50 mm are shown by □. According to the orthotropic reinforcement, even if the number or size of the reinforcing material is changed, it is hardly affected, and the shear yield load determined by the front and back metal flat plates hardly changes. The dotted line is the result of a flat plate with a 25 mm wide reinforcing material arranged in a grid with three vertical and horizontal lines. The strength of the reinforcing material has increased from the beginning of yielding, and the yield strength has increased.

数3は、直交する方向で剛性の異なる所謂異方性体平板の釣合微分方程式である。釣合微分方程式左辺の各係数は第1項と第3項は曲げ剛性であり、第2項は両曲げ剛性の相乗平均で主に捩り剛性Dxyである。平板降伏後の力学性状を安定したものとする上で直交方向に異方性を強調した補強は降伏後も平板の一部に弾性領域を残すことになり、降伏後のせん断剛性の低下を極端なものとしないことでせん断降伏以降の力学的安定を図ることができる。 Equation 3 is a so-called anisotropic flat plate balanced differential equation having different rigidity in the orthogonal direction. As for each coefficient on the left side of the balanced differential equation, the first and third terms are bending stiffnesses, and the second term is a geometric mean of both bending stiffnesses and is mainly torsional stiffness Dxy . Reinforcement that emphasizes anisotropy in the orthogonal direction in order to stabilize the mechanical properties after flat plate yielding will leave an elastic region in part of the flat plate even after yielding. By not doing so, mechanical stability after shear yielding can be achieved.

Figure 0004883639
Figure 0004883639

図8は、降伏後せん断変形が進行した状態での表裏金属平板の力学的釣合いを示しているが、表裏両面の金属平板2は周辺枠材3及び内部補強材4との間の短冊状の領域に於いて斜張力が分散して働き、これに対し周辺枠材と内部補強材とが協働して関わっていると考えられる。直交異方性体とする補強構造は表裏面の金属平板で決まるせん断降伏荷重への内部補強材の影響を最小限とし、繰返し履歴特性に関与する面外変形の成長を制御する上で効果的な方法である。   FIG. 8 shows the mechanical balance of the front and back metal flat plates in a state in which shear deformation has progressed after yielding. The metal flat plates 2 on both the front and back surfaces are strip-shaped between the peripheral frame member 3 and the internal reinforcing member 4. It is considered that the oblique tension acts in a distributed manner in the region, and the peripheral frame material and the internal reinforcing material cooperate with each other. An orthotropic reinforcement structure is effective in controlling the growth of out-of-plane deformation related to cyclic hysteresis characteristics by minimizing the influence of internal reinforcement on the shear yield load determined by the metal plates on the front and back surfaces. It is a simple method.

図9は、せん断力を受ける管状体平板の面外への曲げ変形の成長を全体厚さTの比として示したものである。●印の実線は前例の50mm幅3本の補強材配置の結果であり、点線は枠材並びに補強材の間の空隙部に発泡体を充填して表裏金属平板の変形を拘束したもので、全体厚さTと比較して面外変形は低く抑えられている。○印の変形は枠材と補強材の厚さを上げた場合、□印は内部補強材を増やして間隔を狭めた場合で、せん断降伏荷重を変えることなく面外変形を更に低く抑えることができる。   FIG. 9 shows the growth of bending deformation out of the plane of the tubular flat plate subjected to the shearing force as a ratio of the total thickness T. ● The solid line of the mark is the result of the arrangement of three reinforcing members of 50 mm width as in the previous example, and the dotted line is the one that restrains the deformation of the front and back metal flat plates by filling the gap between the frame material and the reinforcing material with foam. Compared to the overall thickness T, out-of-plane deformation is kept low. ○ Deformation is when the thickness of the frame and reinforcement is increased, □ is when the internal reinforcement is increased and the interval is narrowed, and it is possible to further suppress out-of-plane deformation without changing the shear yield load. it can.

図10は、主に既存建物の耐震補強用の組立て式間柱型せん断パネルで、単位パネル1を上下二面で構成する間柱の説明図である。(a)図は900mmx900mmの単位パネルで、75mmx12mmの周辺枠3と5本の30mmx12mmの補強材4で構成され且つ表裏金属平板2は厚さ0.8mmである。(b)図は900mmx900mmの単位パネル二枚で構成する2,250mmx900mmの間柱型せん断パネルで、外部補強材6のアングル2Ls-75x75x6を外面から挟み自立させ且つパネル同士及び上下の加力部位とは150mmx6mmの平板で止めている。 FIG. 10 is an explanatory diagram of a stud that is an assembly type stud-type shear panel mainly for seismic reinforcement of an existing building, and the unit panel 1 is composed of two upper and lower faces. (A) The figure is a unit panel of 900 mm × 900 mm, which is composed of a peripheral frame 3 of 75 mm × 12 mm and five reinforcing members 4 of 30 mm × 12 mm, and the front and back metal flat plates 2 are 0.8 mm thick. (B) The figure shows a 2250mmx900mm columnar shear panel composed of two 900mmx900mm unit panels, with the external reinforcement 6 angled 2L s -75x75x6 from the outer surface, and the panels and the upper and lower force application parts. It is fixed with a flat plate of 150mmx6mm.

図11は、上記実施例についての数値解析結果で、□印の曲線は周辺部枠材と内部補強材がSS400鋼材の場合、●印は内部補強材のみ6063-T6アルミニウム合金材とするものであり、全てをアルミニウム合金材とする場合は○印である。管状体平板の剛性は表裏金属平板の配置に関係するために枠材や補強材の材質に関わらずせん断降伏後の耐力維持に支障はなく軽量化のため軽金属材料も選択の一つと考えられるが、点線で示す平板の面外曲げ変形の成長からみて金属材料の剛性については考慮する必要がある。   Fig. 11 shows the numerical analysis results for the above example. The curve with □ indicates that the peripheral frame material and internal reinforcement are SS400 steel, and ● indicates that only the internal reinforcement is 6063-T6 aluminum alloy material. Yes, when all are made of an aluminum alloy material, the mark is ◯. Since the rigidity of the tubular flat plate is related to the arrangement of the front and back metal flat plates, regardless of the material of the frame or reinforcement, there is no problem in maintaining the yield strength after shear yielding. In view of the growth of the out-of-plane bending deformation of the flat plate indicated by the dotted line, it is necessary to consider the rigidity of the metal material.

図12は、2,500mmx1,000mmの間柱型のせん断耐震パネルで、表裏両面の金属平板2は厚さ6mmで降伏点応力度σy=21kN/cm2の低降伏点鋼LY225である。管状体平板を構成する周辺部枠材3は75mmx50mmの矩形断面部材とし、4本の内部補強材4は50mmx50mmの断面で板厚3.2mmの角管部材と充実断面部材としている。(b)図は、大きな軸力を受けることを前提に並行する枠組み外部から75mmx12mmの帯状矩形平板6で挟み込んだ組立図であり、表裏金属平板を除く間柱構成部材は全てSS400の軟鋼である。 FIG. 12 shows a 2,500 mm × 1,000 mm columnar type shear earthquake-resistant panel. The metal plate 2 on both sides is a low yield point steel LY225 with a thickness of 6 mm and a yield point stress σ y = 21 kN / cm 2 . The peripheral frame material 3 constituting the tubular flat plate is a 75 mm × 50 mm rectangular cross-section member, and the four internal reinforcement members 4 are a 50 mm × 50 mm cross-section square tube member having a thickness of 3.2 mm and a solid cross-section member. (B) The figure is an assembly drawing sandwiched between 75 mm × 12 mm strip-shaped rectangular flat plates 6 from the outside of the parallel frame on the assumption that a large axial force is received, and all of the inter-column constituent members excluding the front and back metal flat plates are SS400 mild steel.

図13は前記例題の解析結果で、○印は軸力P=0,●印はの外側補強材がある軸力P=2,000kNで内部補強材を角管部材とする結果、□印は軸力P=2,000kNで内部補強材を充実断面部材とする結果である。図中点線で縦方向枠材中央の面外変形の成長を示しているが、管状体平板は全体厚さを上げて剛性を高く出来るために従来の格子状リブ補強と同様に面外変形を低く抑えられ、表裏両面の平板で決まるせん断降伏荷重を確保し且つその後の大変形領域に於いても耐力を落とすことなく安定した力学性状となる。   FIG. 13 shows the result of the analysis of the above example. The mark ◯ indicates the axial force P = 0, the mark ● indicates the result of the axial force P = 2,000 kN with the outer reinforcing member, and the inner reinforcing member is the square tube member. The result is that the internal reinforcing material is a solid cross-section member at a force P = 2,000 kN. The dotted line in the figure shows the growth of out-of-plane deformation at the center of the longitudinal frame material. However, because the tubular flat plate can be increased in overall thickness and increased in rigidity, it can undergo out-of-plane deformation in the same way as conventional grid rib reinforcement. The shear yield load determined by the flat plates on both the front and back sides can be secured, and stable mechanical properties can be obtained without lowering the proof stress even in the subsequent large deformation region.

図14は、解析で取り上げた金属材料の機械的性質を示す引張試験結果であり、板厚差で区別した二種の鋼材は軟鋼SS400で降伏点応力度はσy=30kN/cm2,低降伏点鋼LY225の降伏点応力度はσy=21kN/cm2、両者のヤング係数はE=20,500kN/cm2として図中実線で示している。アルミニウム合金材6063-T6の降伏点応力度はσy=21kN/cm2でヤング係数はE=7,200kN/cm2として点線で示している。 FIG. 14 shows the tensile test results showing the mechanical properties of the metal materials taken up in the analysis. The two types of steel materials distinguished by the plate thickness difference are mild steel SS400 and the yield point stress is σ y = 30 kN / cm 2 , which is low. The yield point stress of the yield point steel LY225 is σ y = 21 kN / cm 2 , and the Young's modulus of both is E = 20,500 kN / cm 2 , which is indicated by a solid line in the figure. The aluminum alloy material 6063-T6 is represented by a dotted line with a yield point stress degree of σ y = 21 kN / cm 2 and a Young's modulus of E = 7,200 kN / cm 2 .

本発明の管状体平板は、矩形断面部材に対してH形断面部材や箱形断面部材が存在すると同じように、充実断面の平板に対して薄い管状体を構成する平板と考えればそれほど奇異なものではない。しかもせん断力を受ける平板にあっては対応する剛性は平板の捩り剛性であるため、表裏両面の金属平板が平行を保ち管状体が崩れることなくせん断流れが保持されればよく、管状体平板はせん断耐震パネルとして製作容易な実用性の高い構造と考えられる。   The tubular flat plate of the present invention is very strange when considered as a flat plate that forms a thin tubular body with respect to a flat cross-section flat plate, just as an H-shaped cross-section member and a box-shaped cross-section member exist with respect to a rectangular cross-section member. It is not a thing. Moreover, since the corresponding rigidity is the torsional rigidity of the flat plate subjected to the shearing force, it is sufficient that the metal flat plates on both the front and back surfaces are parallel and the shear flow is maintained without breaking the tubular body. It is considered to be a highly practical structure that can be easily manufactured as a shear earthquake resistant panel.

本発明の管状体平板は、管状体として高い剛性を見込むことができ且つ平板のせん断降伏荷重が管状体を構成する薄板のそれであることを考えると、見掛上の幅厚比が小さい平板が極めて低い降伏点応力度の金属材料であるかのように振る舞い、せん断降伏荷重と降伏後の安定した力学挙動を確保するには最適な構造である。管状体平板は薄い金属平板で且つ材料種別に関わり無く構成することが出来るため、せん断耐震パネルの軽量化に向けた道を開くものとなろう。   Considering that the tubular flat plate of the present invention can be expected to have high rigidity as a tubular member and the shear yield load of the flat plate is that of a thin plate constituting the tubular member, a flat plate having a small apparent width-thickness ratio is obtained. It behaves as if it is a metallic material with an extremely low yield stress, and is an optimal structure to ensure shear yield load and stable mechanical behavior after yielding. Since the tubular flat plate is a thin metal flat plate and can be constructed regardless of the material type, it will open the way for weight reduction of the shear earthquake resistant panel.

管状体平板の製作については、周囲四辺を囲む額縁状の枠組みと内部補強材とに表裏金属平板を添接して管状体平板とするものであり基本的には金属接着剤で添接されるが、表裏金属平板が薄い場合には接着面にネジ止めを併用し乃至外側から補強材を重ねて剥離を防止し、又表裏金属平板が溶接可能な板厚であれば管状体平板の片側面を乃至枠材外周部を溶接とすることで、パネルダンパーとして大変形領域で正負交番に加わる地震力に対し紡錘形履歴性状とすることができる。   Regarding the production of tubular flat plates, the front and back metal flat plates are attached to the frame-like frame surrounding the four sides and the internal reinforcement to form the tubular flat plate, which is basically attached with a metal adhesive. If the front and back metal flat plates are thin, use screwing together on the bonding surface or overlap the reinforcement from the outside to prevent peeling, and if the front and back metal flat plates are weldable, the one side of the tubular body flat plate Or by making the outer peripheral portion of the frame material into a welded state, it can be made into a spindle-type hysteresis property against the seismic force applied to the positive and negative alternating in the large deformation region as a panel damper.

本管状体平板の周辺枠組みと内部補強材の構成図である。It is a block diagram of the periphery frame of this tubular body flat plate, and an internal reinforcement. 管状体平板に周辺部から加わる捩り偶力の作用図である。(実施例1)It is an effect | action figure of the twist couple applied to a tubular body flat plate from a peripheral part. Example 1 管状体平板の捩り剛性について解析結果の説明図である。It is explanatory drawing of an analysis result about the torsional rigidity of a tubular body flat plate. 額縁状枠組みと降伏後顕著となる斜張力の釣合い図である。(実施例2)It is a balance diagram of the frame-like frame and the oblique tension that becomes prominent after yielding. (Example 2) 周辺枠組みと内部補強材の相互効果に関する解析結果の説明図である。It is explanatory drawing of the analysis result regarding the mutual effect of a surrounding framework and an internal reinforcement. 構造的直交異方性体となる内部補強材の構成図である。(実施例3)It is a block diagram of the internal reinforcement material used as a structural orthogonal anisotropic body. (Example 3) 直交異方性となる内部補強材に関する解析結果の説明図である。It is explanatory drawing of the analysis result regarding the internal reinforcement material used as orthogonal anisotropy. 管状体平板の張力場的応力流れを示した概念図である。(実施例4)It is the conceptual diagram which showed the tension field stress flow of the tubular body flat plate. Example 4 管状体平板の面外曲げ変形に関する解析結果の説明図である。It is explanatory drawing of the analysis result regarding the out-of-plane bending deformation of a tubular body flat plate. 組立て方式の間柱型せん断耐震パネルの説明図である。(実施例5)It is explanatory drawing of the column-type shear earthquake proof panel of an assembly system. (Example 5) 薄板で構成される管状体平板に関する解析結果の説明図である。It is explanatory drawing of the analysis result regarding the tubular body flat plate comprised with a thin plate. 間柱型管状体平板と曲げせん断加力の説明図である。(実施例6)It is explanatory drawing of a stud type | mold tubular body flat plate and bending shear force. (Example 6) 表裏金属平板が低降伏点鋼である本構造の解析結果の説明図である。It is explanatory drawing of the analysis result of this structure whose front and back metal plates are low yield point steel. 本明細書中の数値解析で扱った金属素材の応力−歪み関係図である。It is the stress-strain relationship figure of the metal raw material handled by the numerical analysis in this specification.

符号の説明Explanation of symbols

1 せん断力を受ける管状体平板
2 表裏両面を構成する金属平板
3 管状体平板の周辺枠組み
4 周辺枠組み内側の補強材
5 発泡体等の平板状充填材
6 管状体平板の外側補強材
DESCRIPTION OF SYMBOLS 1 Tubular flat plate which receives shear force 2 Metal flat plate which comprises both front and back surfaces 3 Peripheral frame of tubular flat plate 4 Reinforcement material inside peripheral frame 5 Flat filler such as foam 6 Outer reinforcement of tubular flat plate

Claims (3)

主に平板面内にせん断力を受ける略正方形管状体平板として、その周囲四辺に充実乃至管状矩形断面部材が構成する額縁状の枠組みを設け且つ周辺部枠組み内部に枠材と同厚の充実乃至管状矩形断面部材を両側枠組みの一方と平行に一本乃至複数本を層状に配して構造的直交異方性体とし、更に前記構造体の表裏両面に金属平板を添接して並列する空洞部を含む管状体平板とするもので、管状体として平板の捩り剛性を大幅に高くし表裏金属平板で決まるせん断降伏荷重を確保するとともに降伏後のせん断耐力の維持を図るせん断耐震パネルの補強構造。   As a substantially square tubular flat plate that receives shearing force mainly in the flat plate surface, a frame-shaped frame consisting of solid or tubular rectangular cross-section members is provided on its four sides, and the same thickness as the frame material is provided inside the peripheral frame One or more tubular rectangular cross-section members are arranged in layers in parallel with one of the two side frames to form a structurally orthotropic body, and further, a hollow portion in which a metal flat plate is attached to both the front and back surfaces of the structure. Reinforcement structure of a shear seismic panel that significantly increases the torsional rigidity of the flat plate as a tubular body, secures the shear yield load determined by the front and back metal plates, and maintains the shear strength after yielding. 主に平板面内にせん断力を受ける長方形管状体平板として、その周囲四辺に充実乃至管状矩形断面部材が構成する額縁状の枠組みを設け且つ周辺部枠組み内部に枠材と同厚の充実乃至管状矩形断面部材を長手両側枠組みと平行に一本乃至複数本を層状に配して構造的直交異方性体とするものの、前記部材の長手方向中間部を分断し充実乃至管状矩形断面部材を直交して配し、更に前記構造体の表裏両面に金属平板を添接して並列する空洞部を含む管状体平板とするもので、表裏金属平板で決まるせん断降伏荷重を確保するとともに降伏後のせん断耐力の維持を図るせん断耐震パネルの補強構造。   As a rectangular tubular flat plate that mainly receives shearing force in the flat plate surface, a frame-shaped frame composed of solid or tubular rectangular cross-section members is provided on the four sides around it, and a solid or tubular tube with the same thickness as the frame material inside the peripheral frame Although one or more rectangular cross-section members are arranged in layers in parallel with the longitudinal frame on both sides to form a structural orthogonal anisotropy body, the longitudinal intermediate portion of the member is divided and solid or tubular rectangular cross-section members are orthogonal Furthermore, it is a tubular flat plate including a hollow portion that is parallel to a metal flat plate attached to both the front and back surfaces of the structure, ensuring a shear yield load determined by the front and back metal flat plate and shear strength after yielding Reinforcement structure of shear seismic panel to maintain 主に平板面内にせん断力を受ける略正方形管状体平板乃至長方形管状体平板に対し、構造的直交異方性体を構成する周囲四辺の枠材及び枠組内側に層状に配される部材に添うように管状体平板の表裏両面乃至片面の外側から必要に応じ帯状矩形平板乃至突出フランジのある帯状矩形平板を添接して補強し、降伏後に拡大成長する平板面外への曲げ変形を低く抑え正負交番に繰り返される荷重に対し安定した履歴性状とし且つ表裏金属平板で決まるせん断降伏荷重を確保するとともに降伏後のせん断耐力の維持を図る請求項1,請求項2の何れかに記載のせん断耐震パネルの補強構造。   For substantially square tubular plates or rectangular tubular plates that receive shear forces mainly on the flat plate surface, it is attached to the frame material on the four sides surrounding the structural orthotropic body and the members arranged in layers inside the frame. In this way, a strip-shaped rectangular flat plate or a strip-shaped rectangular plate with protruding flanges is attached and reinforced as necessary from both the front and back sides or one side of the tubular flat plate, and the bending deformation to the outside of the flat plate surface that expands and grows after yielding is kept low The shear seismic panel according to any one of claims 1 and 2, wherein a stable hysteretic property with respect to a load repeated alternately and a shear yield load determined by the front and back metal plates are secured and the shear strength after the yield is maintained. Reinforcement structure.
JP2007317926A 2007-12-10 2007-12-10 Reinforcement structure of tubular metal flat plate Expired - Fee Related JP4883639B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007317926A JP4883639B2 (en) 2007-12-10 2007-12-10 Reinforcement structure of tubular metal flat plate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007317926A JP4883639B2 (en) 2007-12-10 2007-12-10 Reinforcement structure of tubular metal flat plate

Publications (3)

Publication Number Publication Date
JP2009138480A JP2009138480A (en) 2009-06-25
JP2009138480A5 JP2009138480A5 (en) 2011-08-04
JP4883639B2 true JP4883639B2 (en) 2012-02-22

Family

ID=40869370

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007317926A Expired - Fee Related JP4883639B2 (en) 2007-12-10 2007-12-10 Reinforcement structure of tubular metal flat plate

Country Status (1)

Country Link
JP (1) JP4883639B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4688234B1 (en) 2010-03-16 2011-05-25 株式会社 構造材料研究会 Rectangular metal plate square tube reinforcement structure
JP5098034B2 (en) * 2011-05-09 2012-12-12 株式会社 構造材料研究会 Plane stiffening structure of rectangular metal plate
CN110425411B (en) * 2019-07-31 2024-04-02 杭州一丞一木家居有限公司 Bending-resistant plate
KR102370132B1 (en) * 2020-06-04 2022-03-04 국방과학연구소 Method of manufacturing a vibration insulation structure

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2869005B2 (en) * 1994-08-30 1999-03-10 大和ハウス工業株式会社 Manufacturing method of glass fiber reinforced cement wall panel
JP2002294977A (en) * 2001-03-29 2002-10-09 Inax Corp Flat building material, and its execution structure
JP2006342622A (en) * 2005-06-10 2006-12-21 Kozo Zairyo Kenkyukai:Kk Reinforcement structure of flat metal plate
JP2007002416A (en) * 2005-06-21 2007-01-11 Kozo Zairyo Kenkyukai:Kk Reinforcing wall structure of light metal sheet

Also Published As

Publication number Publication date
JP2009138480A (en) 2009-06-25

Similar Documents

Publication Publication Date Title
Qin et al. Experimental seismic behavior of through-diaphragm connections to concrete-filled rectangular steel tubular columns
Tremblay et al. Testing and design of buckling restrained braces for Canadian application
Liu et al. Experimental research of replaceable Q345GJ steel shear links considering cyclic buckling and plastic overstrength
CN105696719B (en) A kind of flexion-proof energy consumption supporting structure constrained using GFRP angle steel
TW201400678A (en) Composite damping joint
JP4883639B2 (en) Reinforcement structure of tubular metal flat plate
Kim et al. Dynamic collapse test on eccentric reinforced concrete structures with and without seismic retrofit
Ma et al. Shaking-table test of a novel buckling-restrained multi-stiffened low-yield-point steel plate shear wall
JP5301337B2 (en) Anisotropic reinforced metal flat plate
JP4829384B1 (en) Four corner reinforcement structure of rectangular metal flat plate
CN107989450A (en) A kind of modularization assembling buckling-restrained bracing member
JP4688234B1 (en) Rectangular metal plate square tube reinforcement structure
CN108301675A (en) A kind of aluminium alloy inner core assembled buckling restrained brace that side can be inspected
Ding Cyclic tests of unbonded steel plate brace encased in steel–concrete composite panel
JP4618805B2 (en) Reinforcement structure of multi-layer metal flat plate
JP2012041700A (en) Earthquake-resisting wall
Ding Cyclic tests for unbonded steel plate brace encased in reinforced concrete panel or light-weight assembled steel panel
Kabeyasawa et al. Tests and analysis on flexural deformability of reinforced concrete columns with wing walls
CN109184307B (en) Combined type supporting structure and supporting system
Chen et al. Review on web buckling and hysteretic behavior of shear panel dampers
JP2006342622A (en) Reinforcement structure of flat metal plate
EP2418334A1 (en) Anisotropic reinforcing metal plate
Qu et al. Numerical assessment of seismic performance of continuously buckling restrained braced RC frames
JP2014136888A (en) Building structure
JP7262518B2 (en) Stud type steel damper

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100609

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100823

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100823

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110603

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20110603

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20110721

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110725

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110915

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111201

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111201

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141216

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees