JP4825940B1 - Seismic panel - Google Patents

Seismic panel Download PDF

Info

Publication number
JP4825940B1
JP4825940B1 JP2011154803A JP2011154803A JP4825940B1 JP 4825940 B1 JP4825940 B1 JP 4825940B1 JP 2011154803 A JP2011154803 A JP 2011154803A JP 2011154803 A JP2011154803 A JP 2011154803A JP 4825940 B1 JP4825940 B1 JP 4825940B1
Authority
JP
Japan
Prior art keywords
thin plate
earthquake
frame
shaft assembly
panel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2011154803A
Other languages
Japanese (ja)
Other versions
JP2013019211A (en
Inventor
吉男 松下
真志 星野
Original Assignee
学校法人 東洋大学
東電工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 学校法人 東洋大学, 東電工業株式会社 filed Critical 学校法人 東洋大学
Priority to JP2011154803A priority Critical patent/JP4825940B1/en
Application granted granted Critical
Publication of JP4825940B1 publication Critical patent/JP4825940B1/en
Publication of JP2013019211A publication Critical patent/JP2013019211A/en
Expired - Fee Related legal-status Critical Current

Links

Images

Abstract

【課題】軸組構造を有する構造物に適用される耐震パネルであって、耐力が大きく、大地震の際にも軸組みの損傷及び構造物の倒壊を可及的に防止する耐震パネルを提供すること。
【解決手段】耐震パネル10は、所定値以下の大きさの揺れに対しては弾性変形し、所定値を超える大きさの揺れに対しては塑性変形することにより、軸組み12に印加される負荷を軽減する矩形状の薄板1と、薄板1の全辺に設けられ、軸組み12に取り付けられることにより薄板1を全辺に亘って軸組み12に拘束させる枠2と、薄板1の隅部(四隅)にそれぞれ配置され、枠2と一体化されると共に薄板1と面接触する複数の火打ち板3,3,3,3と、を有し、軸組み12の開口部13に挿入されて軸組み12に装着される。
【選択図】図1
A seismic panel that is applied to a structure having a frame structure and has a large proof strength and prevents damage to the frame structure and collapse of the structure as much as possible even in the event of a large earthquake. To do.
A seismic panel is applied to a shaft assembly by elastically deforming when the vibration is less than a predetermined value and plastically deforming when the vibration exceeds a predetermined value. A rectangular thin plate 1 that reduces the load, a frame 2 that is provided on all sides of the thin plate 1 and is attached to the shaft assembly 12 to restrain the thin plate 1 on the shaft assembly 12 over all sides, and corners of the thin plate 1 Each of which has a plurality of fired plates 3, 3, 3 and 3 which are arranged at the respective parts (four corners), are integrated with the frame 2 and are in surface contact with the thin plate 1, and are inserted into the opening 13 of the shaft assembly 12. Are attached to the shaft assembly 12.
[Selection] Figure 1

Description

本発明は、軸組構造を有する構造物に装着される耐震パネルに関し、例えば、一般住宅の軸組み、或いは、寺社などの伝統的建築物の軸組みに装着される耐震パネルに関する。   The present invention relates to a seismic panel that is mounted on a structure having a frame structure, for example, a seismic panel that is mounted on a frame of a general house or a frame of a traditional building such as a temple.

軸組構造を有する構造物が、地震によって損傷したり、倒壊したりすることを防止するため、鉄骨架橋、油圧ダンパー、又は、パネルなどを、軸組みの開口部に後から装着する耐震補強構造が提案されている。   Seismic reinforcement structure that attaches steel bridges, hydraulic dampers, panels, etc. to the opening of the shaft afterwards in order to prevent the structure having the shaft structure from being damaged or collapsed by an earthquake. Has been proposed.

特許文献1及び2には、木造建物の軸組みの開口部に薄板を取り付け、薄板が軸組みと共に耐力壁を形成する構造が提案されている。   Patent Documents 1 and 2 propose a structure in which a thin plate is attached to an opening portion of a wooden building, and the thin plate forms a bearing wall together with the shaft.

特許文献3には、パネルを梁と土台の間に配置し、このパネルを梁には固定するが、土台には固定しないで載置する構造が提案されている。   Patent Document 3 proposes a structure in which a panel is disposed between a beam and a base, and the panel is fixed to the beam but not fixed to the base.

特許文献4には、二枚の金属平板の間に発泡体を挟み、さらに、金属平板の周囲四辺に額縁状の金属枠組を取り付けた複層金属平板を、木造建物の木枠に取り付ける構造が提案されている。   Patent document 4 has a structure in which a foam is sandwiched between two metal flat plates, and a multi-layer metal flat plate having a frame-like metal frame attached to the four sides around the metal flat plate is attached to a wooden frame of a wooden building. Proposed.

特許文献5には、軸組みを成す柱材に釘を用いて面材を取り付け、さらに、面材の裏面に断面がコの字状の受材を取り付け、受材の裏面にゴム等からなる粘弾性ダンパーを貼り付け、受材に粘弾性ダンパーを介して断面がL字状の取付部材の一面を取り付け、取付部材の他面を柱材に取り付けた、構造が開示されている。   In Patent Document 5, a face material is attached to a pillar material forming a shaft using a nail, and a receiving material having a U-shaped cross section is attached to the back surface of the face material, and the back surface of the receiving material is made of rubber or the like. A structure is disclosed in which a viscoelastic damper is attached, one surface of an attachment member having an L-shaped cross section is attached to a receiving material via a viscoelastic damper, and the other surface of the attachment member is attached to a column member.

特許文献6には、木造軸組みの矩形空間に嵌める金属製外枠の内部に、二つの筋交いを交叉させて配置し、筋交いと外枠が接する四隅と筋交い同士が交叉する中心部に補強板を取り付けた、筋交いパネルが提案されている。この筋交いパネルにおいて、外枠の内部は、X字状の筋交い以外の部分、すなわち、左側中間部、右側中間部、上側中間部及び下側中間部は、空間である。   In Patent Document 6, a reinforcing plate is provided at the center where the braces intersect with the four corners where the braces and the outer frame are in contact with each other, inside the metal outer frame that fits into the rectangular space of the wooden frame. A bracing panel is proposed, which is attached. In the bracing panel, the inside of the outer frame is a space other than the X-shaped bracing, that is, the left middle portion, the right middle portion, the upper middle portion, and the lower middle portion.

特開平11−172812号公報JP-A-11-172812 特開2007−40023号公報Japanese Patent Laid-Open No. 2007-40023 特許4098334号公報Japanese Patent No. 4098334 特開2007−2416号公報JP 2007-2416 A 特開2010−222899号公報JP 2010-222899 A 特開2002−106067号公報JP 2002-106067 A

特許文献1〜5の発明は、軸組みに薄板などを含む制震部材を取り付けることにより、軸組みの高剛性化を図るものとなっている。このため、大地震の場合には、軸組みに大きな負荷がかかり、制震部材を取り付けたことが、却って、軸組みの損傷を招くことが考えられる。   In the inventions of Patent Documents 1 to 5, the shaft assembly is made highly rigid by attaching a vibration control member including a thin plate to the shaft assembly. For this reason, in the case of a large earthquake, a large load is applied to the shaft assembly, and it is conceivable that the attachment of the vibration control member causes damage to the shaft assembly.

また、特許文献1〜5の発明は、薄板などを、基本的には弾性域で使用するものであって、実質的には塑性域で使用することを想定していない。したがって、特許文献1〜6の制震構造等は、小地震の場合には、小さな地震エネルギーを弾性的に吸収できるが、大地震の場合には、大きな地震エネルギーを十分に吸収することができず、この結果、軸組みの損傷を十分に防止することが困難である。   In addition, the inventions of Patent Documents 1 to 5 basically use a thin plate or the like in the elastic region, and do not assume that it is substantially used in the plastic region. Accordingly, the damping structures of Patent Documents 1 to 6 can absorb small earthquake energy elastically in the case of a small earthquake, but can sufficiently absorb large earthquake energy in the case of a large earthquake. As a result, it is difficult to sufficiently prevent the shaft assembly from being damaged.

特に、特許文献3の発明のように、耐震パネルの四辺が固定されていない構造では、制震機能はあるが、耐震機能が十分ではなく、大地震の場合、大きな地震エネルギーを十分に吸収することができないという問題がある。   In particular, as in the invention of Patent Document 3, the structure in which the four sides of the earthquake-resistant panel are not fixed has a vibration control function, but the earthquake resistance function is not sufficient, and in the case of a large earthquake, the large earthquake energy is sufficiently absorbed. There is a problem that can not be.

特に、特許文献5の発明のように、面材と軸組みの間に粘弾性ダンパーを設けた場合には、粘弾性ダンパーを設けたことによって、地震エネルギーが面材に十分に伝達されずに軸組みに伝達され、軸組みが損傷を受ける可能性が高まるという問題がある。   In particular, when a viscoelastic damper is provided between the face material and the shaft assembly as in the invention of Patent Document 5, the seismic energy is not sufficiently transmitted to the face material by providing the viscoelastic damper. There is a problem that the possibility of the shaft assembly being damaged is increased by being transmitted to the shaft assembly.

或いは、特許文献6の発明のように、薄板ではなく、棒状の筋交いを用いた構造によれば、筋交いの面積ないし容量が小さいため、耐力が小さく、特に、大地震の場合、大きな地震エネルギーを十分に吸収することができないという問題がある。   Alternatively, according to the structure using a bar-like bracing instead of a thin plate as in the invention of Patent Document 6, the area or capacity of the bracing is small, so the proof strength is small. There is a problem that it cannot be absorbed sufficiently.

本発明の目的は、軸組構造を有する構造物に適用される耐震パネルであって、耐力が大きく、大地震の際にも軸組みの損傷及び構造物の倒壊を可及的に防止する耐震パネルを提供することである。   An object of the present invention is an earthquake-resistant panel applied to a structure having a frame structure, which has a large proof strength and prevents the damage of the frame structure and the collapse of the structure as much as possible even in the event of a large earthquake. Is to provide a panel.

本発明は、第1の視点において、軸組構造を有する構造物の耐震性を改善するよう軸組みの開口部に挿入されて該軸組みに装着される耐震パネルであって、所定値以下の大きさの揺れに対しては弾性変形し、該所定値を超える大きさの揺れに対しては塑性変形することにより前記軸組みに印加される地震エネルギーを吸収する矩形状の薄板と、前記薄板の全辺に設けられ、前記軸組みに取り付けられることにより該薄板を全辺に亘って該軸組みに拘束させる枠と、前記薄板の隅部にそれぞれ配置され、前記枠と一体化されると共に前記薄板と面接触する複数の火打ち板と、を有する耐震パネルを提供する。   In a first aspect, the present invention is an earthquake-resistant panel that is inserted into an opening of a shaft assembly and is attached to the shaft assembly so as to improve the earthquake resistance of the structure having the shaft structure, and is a predetermined value or less. A rectangular thin plate that absorbs seismic energy applied to the shaft assembly by elastically deforming with respect to a swing of magnitude, and plastically deforming with a swing of magnitude exceeding the predetermined value, and the thin plate The frame is provided on all sides and is attached to the shaft assembly so as to constrain the thin plate to the shaft assembly over the entire side, and is disposed at each corner of the thin plate, and is integrated with the frame. A seismic panel having a plurality of fire striking plates in surface contact with the thin plate is provided.

本発明の耐震パネルによれば、枠及び火打ち板によって、耐震パネルの耐力を負担できる薄板の有効部分が拡大されて、薄板が大きな耐力を負担することができ、又、薄板の広い範囲が弾性ないし塑性変形して大きな地震エネルギーを吸収できる。この結果、本発明の耐震パネルが装着された軸組みを有する構造物の耐震性が大幅に改善される。さらに、本発明の耐震パネルは、社殿又は寺院のような文化財の外観を維持しながら、それらの耐震性を改善することもできる。以下、本発明の作用効果を詳細に説明する。   According to the seismic panel of the present invention, the effective portion of the thin plate that can bear the proof stress of the seismic panel is expanded by the frame and the fire plate, so that the thin plate can bear a large proof strength, and the wide range of the thin plate is elastic. It can absorb large earthquake energy by plastic deformation. As a result, the earthquake resistance of the structure having the shaft assembly to which the earthquake resistant panel of the present invention is attached is greatly improved. Furthermore, the seismic panels of the present invention can improve their seismic resistance while maintaining the appearance of cultural assets such as shrines or temples. Hereinafter, the function and effect of the present invention will be described in detail.

(1)薄板の隅部に配置された火打ち板と薄板の全辺に配置される枠との両方によって、薄板が拘束されていることにより、薄板の中央付近だけが局所的に表側又は裏側に向かって大きく突出することが防止され(面外変形の抑制)、薄板の広い範囲が略波状に変形するようになる。これによって、薄板の局所的な破壊が防止され、薄板の耐力が向上され、薄板による大きな地震エネルギーの吸収が期待される。
(2)薄板の隅部に、それぞれ火打ち板が配置され、火打ち板が薄板と面接触して薄板を押圧していることにより、薄板において、大きな耐力を負担できる領域が拡大される。
(3)薄板の全周ないし全辺が枠によって拘束されていることにより、薄板において、火打ち板により大幅な耐力向上が期待される領域以外の部分に対しても、応分の耐力を負担させることができる。
(4)本発明の耐震パネルは、軸組みの全ての開口部に装着しなくても耐震性が改善できるため、耐震パネルが装着される構造物の外観、特に、社殿又は寺院のような文化財の外観を維持しながら、その耐震性を改善することができる。
(5)本発明の耐震パネルの薄板は、汎用の材料、例えば、建築基準法で定められた鋼、ステンレス鋼から形成することができる。
(6)本発明の耐震パネルにおいては、軸組みの変形特性ないし耐震要求に適合させて、例えば、火打ち板の寸法を可変することにより、耐力等の耐震性を自在に変化させることができる。
(7)本発明の耐震パネルは、薄板、枠及び火打ち板の寸法変更が容易であるため、様々な開口幅を有する軸組みに対応することができる。
(1) Since the thin plate is constrained by both the fire plate disposed at the corner of the thin plate and the frame disposed at all sides of the thin plate, only the vicinity of the center of the thin plate is locally on the front side or the back side. Thus, a large range of the thin plate is deformed into a substantially wave shape. As a result, local destruction of the thin plate is prevented, the strength of the thin plate is improved, and the absorption of large seismic energy by the thin plate is expected.
(2) A fire-plated plate is disposed at each corner of the thin plate, and the fire-plated plate is in surface contact with the thin plate to press the thin plate, so that a region where a large proof stress can be borne in the thin plate is expanded.
(3) The entire circumference or all sides of the thin plate are constrained by a frame, so that the portion of the thin plate is provided with a suitable strength even for a portion other than a region where a significant improvement in the strength is expected by the fired plate. Can do.
(4) Since the seismic panel of the present invention can improve the seismic resistance without being installed in all the openings of the frame, the appearance of the structure to which the seismic panel is installed, in particular, a culture such as a shrine or temple. The earthquake resistance can be improved while maintaining the appearance of the goods.
(5) The thin plate of the earthquake-resistant panel of the present invention can be formed from a general-purpose material, for example, steel or stainless steel defined by the Building Standard Law.
(6) In the seismic panel of the present invention, the seismic properties such as the proof stress can be freely changed by adapting to the deformation characteristics or the seismic requirements of the shaft assembly, for example, by changing the dimensions of the fired plate.
(7) Since the seismic panel of the present invention can easily change the dimensions of the thin plate, the frame, and the fired plate, it can correspond to shaft assemblies having various opening widths.

本発明の一実施例に係る耐震パネルの正面図である。It is a front view of the earthquake-resistant panel concerning one example of the present invention. (A)は、図1のA矢視部分図であり、(B)は、図1のB部分断面図であり、(C)は、図1のC部分断面図である。(A) is an A arrow partial view of FIG. 1, (B) is B partial sectional drawing of FIG. 1, (C) is C partial sectional drawing of FIG. (A)〜(E)は、本発明の一実施例に係る耐震パネルの部品図である。(A)-(E) are component drawings of the earthquake-resistant panel which concerns on one Example of this invention. (A)及び(B)は、本発明の一実施例に係る耐震パネルにおける火打ち板及び枠の効果を説明する図であり、(C)は、(A)の耐震パネルが有する薄板及び火打ち板の変形例を示す図である。(A) And (B) is a figure explaining the effect of the fire-plate and frame in the earthquake-resistant panel which concerns on one Example of this invention, (C) is the thin board and flame-plate which the earthquake-resistant panel of (A) has FIG. (A)及び(B)は、本発明の一実施例に係る耐震パネルにおける全辺拘束効果を説明する図である。(A) And (B) is a figure explaining the all-side restraint effect in the earthquake-resistant panel which concerns on one Example of this invention. 本発明の一実施例に係る耐震パネルの適用例を示す図である。It is a figure which shows the example of application of the earthquake-resistant panel which concerns on one Example of this invention. (A)〜(D)は、本発明の一実施例に係る耐震パネルの軸組みへの装着例又は表装例を示す図である。(A)-(D) is a figure which shows the example of mounting to the frame assembly of the earthquake-resistant panel which concerns on one Example of this invention, or the example of a surface mounting. 本発明の一実施例に係る耐震パネルの荷重−変形曲線を示すグラフである。It is a graph which shows the load-deformation curve of the earthquake-resistant panel which concerns on one Example of this invention. (A)及び(B)は、本発明の一実施例に係る耐震パネルの耐力試験前後の状態を示す写真であって、(A)は荷重印加前、図9(B)は荷重印加後の状態を示している。(A) And (B) is a photograph which shows the state before and after the proof test of the earthquake-resistant panel which concerns on one Example of this invention, Comprising: (A) is before a load application, FIG.9 (B) is after a load application. Indicates the state.

本発明の好ましい実施の形態に係る耐震パネルにおいて、極めて稀な大地震に際して、薄板は、広範囲に塑性変形して大きな地震エネルギーを吸収することにより、軸組みの破壊や構造物の倒壊を可及的に防止する。   In the seismic panel according to the preferred embodiment of the present invention, in the case of a very rare earthquake, the thin plate is plastically deformed in a wide range and absorbs a large seismic energy, thereby allowing the destruction of the frame and the collapse of the structure. Prevent it.

本発明の好ましい実施の形態に係る耐震パネルにおいて、薄板の材質及び厚さは、構造物が設置されている地盤、想定される地震などの外部要因を考慮して、最適に設定される。   In the seismic panel according to a preferred embodiment of the present invention, the material and thickness of the thin plate are optimally set in consideration of external factors such as the ground on which the structure is installed and an assumed earthquake.

本発明の好ましい実施の形態に係る耐震パネルにおいて、前記薄板は、前記薄板の隅部に配置された複数の火打ち板によって拘束される領域と、前記枠によって拘束される領域と、を有することにより、耐震パネルの耐力を負担する領域がさらに拡大され、より大きな耐震性能が発揮される。   In the earthquake-resistant panel according to a preferred embodiment of the present invention, the thin plate has a region constrained by a plurality of fired plates arranged at corners of the thin plate and a region constrained by the frame. In addition, the area that bears the proof strength of the seismic panel is further expanded, and greater seismic performance is exhibited.

本発明の好ましい実施の形態に係る耐震パネルにおいて、前記枠及び複数の火打ち板は、前記薄板を挟持するよう該薄板の表裏両側に設けられる。   In the earthquake-resistant panel according to a preferred embodiment of the present invention, the frame and the plurality of fired plates are provided on both front and back sides of the thin plate so as to sandwich the thin plate.

本発明の好ましい実施の形態に係る耐震パネルにおいて、前記枠及び複数の火打ち板は、前記薄板の表側に設けられ、前記枠及び複数の火打ち板の裏側と前記軸組みの表側との間で、前記薄板が挟持されるよう、該枠が該軸組みに取り付けられる。   In the earthquake-resistant panel according to a preferred embodiment of the present invention, the frame and the plurality of fired plates are provided on the front side of the thin plate, and between the back side of the frames and the plurality of fired plates and the front side of the shaft assembly, The frame is attached to the shaft assembly so that the thin plates are sandwiched.

本発明の好ましい実施の形態に係る耐震パネルにおいて、対角配置されている一方の火打ち板と他方の火打ち板は、完全に対向していなくてもよい。地震時、薄板において、一方の火打ち板によって拘束されて変形する領域と、他方の火打ち板によって拘束されて変形する領域が、薄板の対角線上で繋がることによって、耐震パネル全体の耐力が向上され、耐震パネルが装着される軸組みの損傷が防止される。本発明の耐震パネルでは、薄板の左右方向の幅と、上下方向の長さの比は、1(左右幅)/2(上下長さ)程度よりも大きく設定することにより、火打ちの板の効果をより得ることができる。   In the earthquake-resistant panel according to a preferred embodiment of the present invention, one fired board and the other fired board disposed diagonally may not be completely opposed to each other. At the time of an earthquake, in the thin plate, the region constrained and deformed by one fire plate and the region constrained and deformed by the other fire plate are connected on the diagonal of the thin plate, thereby improving the proof strength of the entire seismic panel, Damage to the shaft assembly to which the seismic panels are attached is prevented. In the earthquake-resistant panel of the present invention, the ratio of the width in the left-right direction and the length in the up-down direction of the thin plate is set to be larger than about 1 (left-right width) / 2 (up-down length), so Can get more.

本発明の好ましい実施の形態に係る耐震パネルにおいて、枠は、軸組みに、ねじ等の締結部材を用いて固定される。枠は、薄板と面接触することがよい。なお、枠を薄板と一体に形成してもよい。   In the earthquake-resistant panel according to a preferred embodiment of the present invention, the frame is fixed to the shaft assembly using a fastening member such as a screw. The frame is preferably in surface contact with the thin plate. Note that the frame may be formed integrally with the thin plate.

本発明の好ましい実施の形態に係る耐震パネルにおいて、火打ち板は、枠に、ねじ等の締結部材を用いて固定される。また、火打ち板を、枠と一体に形成してもよい。   In the earthquake-resistant panel according to a preferred embodiment of the present invention, the fire striking plate is fixed to the frame using a fastening member such as a screw. Moreover, you may form a burning board integrally with a frame.

本発明の好ましい実施の形態において、本発明による耐震パネルは、耐震建具として、一般住宅の他、社殿や寺院のような軸組構造による伝統的木造建築物に装着され、文化財としての価値を有する建築物の外観ないし機能を維持させながら、それらの耐震性を改善することができる。   In a preferred embodiment of the present invention, the seismic panel according to the present invention is attached to a traditional wooden building having a frame structure such as a shrine or a temple as a seismic building fixture, and has a value as a cultural property. While maintaining the appearance or function of the building it has, it is possible to improve their earthquake resistance.

本発明の好ましい実施の形態に係る耐震パネルは、軸組みの様々に箇所に装着することができ、例えば、床上、床下、或いは、天井下などに装着できる。本発明の耐震パネルを、床下に設置する場合、耐震パネルの下辺を土台(基礎)に取り付けることができる。本発明の耐震パネルを、天井下に設置する場合、欄間に取り付けることができる。   The seismic panel according to a preferred embodiment of the present invention can be attached to various locations of the shaft assembly, for example, on the floor, below the floor, or below the ceiling. When the earthquake-resistant panel of the present invention is installed under the floor, the lower side of the earthquake-resistant panel can be attached to the foundation (foundation). When installing the earthquake-resistant panel of the present invention under the ceiling, it can be attached between the columns.

本発明の好ましい実施の形態に係る耐震パネルは、金属、又は、その他の材料から製作することができ、特に、建築基準法で規定されている構造材に使用される材質の金属を好適に採用することができる。   The seismic panel according to a preferred embodiment of the present invention can be manufactured from metal or other materials, and in particular, a metal of a material used for a structural material defined by the Building Standards Law is preferably employed. can do.

本発明の好ましい実施の形態に係る耐震パネルにおいて、薄板には、SS400等の構造材用の鋼板、好ましくは、例えば、SUS304、SUS307等の構造材用のステンレス鋼板を用いることができる。   In the earthquake-resistant panel according to a preferred embodiment of the present invention, a steel plate for a structural material such as SS400, preferably a stainless steel plate for a structural material such as SUS304 or SUS307 can be used as the thin plate.

本発明による耐震パネルにおいて、薄板が薄すぎると極めて稀な大地震における地震エネルギーを十分に吸収できず、又、薄板が厚すぎて剛性が高すぎると、軸組みに過負荷が加わる。したがって、薄板の厚さは、目的とする耐震能力に合わせて定められるものであるが、一例として、0.4〜2.3mmの範囲が好ましい。   In the earthquake-resistant panel according to the present invention, if the thin plate is too thin, it is not possible to sufficiently absorb the seismic energy in an extremely rare large earthquake, and if the thin plate is too thick and too rigid, an overload is applied to the shaft assembly. Therefore, the thickness of the thin plate is determined in accordance with the target seismic capacity, but as an example, the range of 0.4 to 2.3 mm is preferable.

以下、図面を参照して本発明の一実施例を説明する。図1は、本発明の一実施例に係る耐震パネルの正面図であって、耐震パネルを構造物の軸組みに取り付けた様子を示している。図2(A)は、図1のA矢視部分図であり、図2(B)は、図1のB部分断面図であり、図2(C)は、図1のC部分断面図である。図3(A)〜(E)は、図1に示した耐震パネルの部品図である。   An embodiment of the present invention will be described below with reference to the drawings. FIG. 1 is a front view of an earthquake-resistant panel according to an embodiment of the present invention, and shows a state in which the earthquake-resistant panel is attached to a shaft assembly of a structure. 2A is a partial sectional view taken along arrow A of FIG. 1, FIG. 2B is a partial sectional view of FIG. 1, and FIG. 2C is a partial sectional view of FIG. is there. 3A to 3E are component diagrams of the earthquake-resistant panel shown in FIG.

[耐震パネル10の構造]
図1及び図2(A)を参照すると、本発明の一実施例に係る耐震パネル10は、軸組構造を有する構造物の耐震性を改善するよう、軸組み12の開口部13に挿入されて軸組み12(梁12a,柱12b等)に装着される。
[Structure of earthquake-resistant panel 10]
Referring to FIGS. 1 and 2A, an earthquake-resistant panel 10 according to an embodiment of the present invention is inserted into an opening 13 of a shaft assembly 12 so as to improve the earthquake resistance of a structure having a shaft structure. The shaft assembly 12 (beam 12a, column 12b, etc.) is attached.

耐震パネル10は、所定値以下の大きさの揺れに対しては弾性変形し、所定値を超える大きさの揺れに対しては塑性変形することにより、軸組み12に印加される負荷を軽減する矩形状の薄板1と、薄板1の全辺に設けられ、軸組み12に取り付けられることにより薄板1を全辺に亘って軸組み12に拘束させる枠2と、薄板1の隅部(四隅)にそれぞれ配置され、枠2と一体化されると共に薄板1と面接触する複数の火打ち板3,3,3,3と、を有している。   The earthquake-resistant panel 10 reduces the load applied to the shaft assembly 12 by elastically deforming when the vibration is smaller than a predetermined value and plastically deforming when the vibration exceeds a predetermined value. A rectangular thin plate 1, a frame 2 provided on all sides of the thin plate 1 and attached to the shaft assembly 12 to restrain the thin plate 1 on the shaft assembly 12 over all sides, and corners (four corners) of the thin plate 1 And a plurality of fired plates 3, 3, 3, 3 which are integrated with the frame 2 and are in surface contact with the thin plate 1.

[薄板1]
図3(A)に示す薄板1は、鋼板やステンレス鋼板などの金属板から形成され、薄板1の周縁には、枠取付用の複数の孔1aが形成され、薄板1の四隅には、火打ち板取付用の複数の孔1bがそれぞれ形成されている。
[Thin plate 1]
A thin plate 1 shown in FIG. 3 (A) is formed from a metal plate such as a steel plate or a stainless steel plate. A plurality of holes 1a for frame attachment are formed on the periphery of the thin plate 1, and fire is placed at the four corners of the thin plate 1. A plurality of holes 1b for plate mounting are formed.

[枠2]
図3(C)に示す枠2は、図3(B)に示すような山型鋼(アングル形鋼)20を、複数本組み合わせて、それらの端部同士を溶接により一体化して形成することができる。枠2は、互いに直交する二つの面21,22を有し、一方の面(正面)21は薄板1に面接触し、他方の面(上下左右の側面)22は、軸組み12に取り付けられる。一方の面21には複数の孔2a、他方の面22には複数の孔2bがそれぞれ形成されている。
[Frame 2]
The frame 2 shown in FIG. 3C can be formed by combining a plurality of angle steels 20 as shown in FIG. 3B and integrating the ends thereof by welding. it can. The frame 2 has two surfaces 21 and 22 orthogonal to each other, one surface (front surface) 21 is in surface contact with the thin plate 1, and the other surface (upper and lower left and right side surfaces) 22 is attached to the shaft assembly 12. . A plurality of holes 2 a are formed on one surface 21, and a plurality of holes 2 b are formed on the other surface 22.

[火打ち板3]
図3(D)を参照すると、火打ち板3は、略三角片状であって、薄板1を挟持するための複数の孔3eが形成されている。図3(E)は、火打ち板3の変形例を示す正面図である。図3(E)を参照して、火打ち板3は、底辺ないし斜辺の一部を面取りすることができ、又、斜辺を複数の辺の組み合わせから構成したり、円弧状に形成したりすることができる。
[Fireplate 3]
Referring to FIG. 3 (D), the firing plate 3 has a substantially triangular piece shape, and a plurality of holes 3e for sandwiching the thin plate 1 are formed. FIG. 3E is a front view showing a modified example of the fired plate 3. Referring to FIG. 3 (E), the fire plate 3 can be chamfered on a part of the bottom side or the hypotenuse, and the hypotenuse is formed of a combination of plural sides or formed in an arc shape. Can do.

[耐震パネル10の製造方法]
(1)枠2の薄板1への取り付け
図2(B)を参照して、薄板1の表裏面にそれぞれ枠2を取り付ける場合には、薄板1の表面に表側の枠2を載置し、薄板1の裏面に裏側の枠2を載置し、孔2a,1a,2aにボルト4を通し、ボルトにナット5を締め込み、表裏の枠2,2の一方の面(正面)21,21を薄板1の表裏面にそれぞれ面接触させて、表裏の枠2に、薄板1を強固に挟持させる。
(2)枠2と火打ち板3の一体化
火打ち板3は、枠2の四隅に溶接等によってそれぞれ取り付けられる。火打ち板3は、その一角が薄板1ないし枠2の角に合うよう配置され、その両底辺が薄板1ないし枠2の上下辺又は左右辺に沿って延在するよう配置され、その斜辺が、対角にある別の火打ち板3の斜辺と向き合うよう配置される。
(3)火打ち板3と薄板1の密着
図2(C)を参照して、薄板1の表側に配置された火打ち板3の孔3e、薄板1の孔1b、薄板1の裏側に配置された火打ち板3の孔3eに、ボルト4を通し、ボルト4にナット5を締め込み、表裏の火打ち板3,3を薄板1の表裏面にそれぞれ面接触させて、表裏の火打ち板3,3に、薄板1を強固に挟持させる。
[Manufacturing method of earthquake-resistant panel 10]
(1) Attachment of frame 2 to thin plate 1 With reference to FIG. 2 (B), when attaching the frame 2 to the front and back surfaces of the thin plate 1, the front-side frame 2 is placed on the surface of the thin plate 1, The back frame 2 is placed on the back surface of the thin plate 1, the bolt 4 is passed through the holes 2 a, 1 a, 2 a, the nut 5 is tightened into the bolt, and one side (front side) 21, 21 of the front and back frames 2, 2 Are brought into surface contact with the front and back surfaces of the thin plate 1 so that the thin plate 1 is firmly held between the front and back frames 2.
(2) Integration of Frame 2 and Fireplate 3 The fireplate 3 is attached to the four corners of the frame 2 by welding or the like. The fire plate 3 is disposed so that one corner thereof matches the corner of the thin plate 1 or the frame 2, and both bottom sides thereof are disposed so as to extend along the upper or lower side or the left and right sides of the thin plate 1 or the frame 2, and the oblique side thereof is It arrange | positions so as to oppose the hypotenuse of the other hot-fired board 3 in a diagonal.
(3) Close contact between the fire plate 3 and the thin plate 1 Referring to FIG. 2C, the hole 3 e of the fire plate 3 disposed on the front side of the thin plate 1, the hole 1 b of the thin plate 1, and the back side of the thin plate 1. The bolt 4 is passed through the hole 3e of the flame plate 3, the nut 5 is tightened to the bolt 4, and the front and back flame plates 3, 3 are brought into surface contact with the front and back surfaces of the thin plate 1, respectively. The thin plate 1 is firmly clamped.

[耐震パネル10の軸組み12への取付け]
図1に示したネジ(釘)6が、枠2の他方の面(上下左右の側面)22に形成された孔2bを通じて、軸組み12に打ち込まれ(ないしネジ込まれ)、耐震パネル10が軸組み12に固定される。なお、ボルトやナットを用いて、耐震パネル10を軸組み12に取り付けてもよい。
[Attachment of seismic panel 10 to shaft assembly 12]
A screw (nail) 6 shown in FIG. 1 is driven (or screwed) into the shaft assembly 12 through a hole 2b formed in the other surface (upper, lower, left and right side surfaces) 22 of the frame 2, and the seismic panel 10 is It is fixed to the shaft assembly 12. In addition, you may attach the earthquake-resistant panel 10 to the shaft assembly 12 using a volt | bolt and a nut.

[火打ち板及び枠の効果]
図4(A)及び(B)は、本発明の一実施例に係る耐震パネルにおける火打ち板及び枠の効果を説明する図であり、(A)は、耐震パネルの正面図、(B)は、(A)の対角線上断面(B−B断面)を模式的に示す断面図であって、塑性変形前後の薄板の状態を示し、(C)は、(A)の耐震パネルが有する薄板及び火打ち板の変形例を示す図である。
[Effects of fireplate and frame]
4 (A) and 4 (B) are diagrams for explaining the effect of the fire striking plate and the frame in the earthquake resistant panel according to one embodiment of the present invention, (A) is a front view of the earthquake resistant panel, and (B) is a diagram. (A) is a cross-sectional view schematically showing a cross section on a diagonal line (BB cross section), showing the state of a thin plate before and after plastic deformation, (C) is a thin plate and It is a figure which shows the modification of a burning board.

図4(A)を参照すると、薄板1は、長方形状であり、図中、左上隅、右下隅、左下隅及び右上隅に配置された四枚の火打ち板3a,3b,3c及び3dはいずれも、直角二等辺三角形状である。以下、左上隅と右下隅に対角配置された二枚の火打ち板3a,3bに関して、上記効果を説明するが、右上隅と左下隅に対角配置された二枚の火打ち板3d,3cに関しても同様である。なお、薄板1上で対角配置されている左上隅と右下隅の二枚の火打ち板3a,3bにおいて、薄板1の角に位置する火打ち板3a,3bの頂角から火打ち板3a,3bの斜辺に下ろした垂線30a,30bが互いにずれている。換言すると、薄板1上で対角配置されている二枚の火打ち板3a,3bにおいて、火打ち板3a,3bの頂角の二等分線が互いにずれている。   Referring to FIG. 4 (A), the thin plate 1 has a rectangular shape, and in the figure, any of the four fired plates 3a, 3b, 3c and 3d arranged at the upper left corner, the lower right corner, the lower left corner and the upper right corner. Is also a right isosceles triangle. Hereinafter, the above-mentioned effect will be described with respect to the two fired plates 3a and 3b arranged diagonally at the upper left corner and the lower right corner, but with respect to the two fired plates 3d and 3c arranged diagonally at the upper right corner and the lower left corner. Is the same. In addition, in the two upper left corners and the lower right corner fired plates 3a and 3b arranged diagonally on the thin plate 1, from the top angle of the fired plates 3a and 3b positioned at the corners of the thin plate 1, The perpendiculars 30a and 30b down to the hypotenuse are shifted from each other. In other words, in the two fired plates 3a and 3b arranged diagonally on the thin plate 1, the bisectors of the apex angles of the fired plates 3a and 3b are shifted from each other.

図4(A)及び(B)を参照すると、火打ち板3a,3bによって、薄板1は、垂線30a,30bの間の領域、すなわち、薄板1の対角線上に延在する有効幅Wの領域で、大きな荷重を負担することができる。また、薄板1の隅部に配置された火打ち板3a,3bと薄板1の全辺に配置される枠2との両方によって、薄板1が拘束されていることにより、薄板1の中央付近だけが局所的に表側又は裏側に向かって大きく突出することが防止され(面外変形の抑制)、薄板1の広い範囲が略波状に変形するようになる。これによって、薄板1の局所的な破壊が防止され、薄板1の耐力が向上され、薄板1による大きな地震エネルギーの吸収が期待される。   Referring to FIGS. 4A and 4B, the thin plate 1 is formed in the region between the perpendiculars 30 a and 30 b, that is, the region of the effective width W extending on the diagonal line of the thin plate 1 by the fired plates 3 a and 3 b. , Can bear a large load. Further, since the thin plate 1 is constrained by both the fired plates 3a and 3b arranged at the corners of the thin plate 1 and the frame 2 arranged on all sides of the thin plate 1, only the vicinity of the center of the thin plate 1 is obtained. Protruding locally to the front side or the back side is prevented (suppression of out-of-plane deformation), and the wide range of the thin plate 1 is deformed in a substantially wave shape. Thereby, local destruction of the thin plate 1 is prevented, the proof stress of the thin plate 1 is improved, and absorption of large earthquake energy by the thin plate 1 is expected.

なお、薄板1の厚み(t)ないし火打ち板3a,3b,3c,3dの斜辺の幅(有効幅Wに関係する)は、耐震パネル10に要求される耐力と、薄板1の材質に応じて定まる降伏荷重を考慮して、設定することが好ましい。   Note that the thickness (t) of the thin plate 1 or the width of the hypotenuse of the fired plates 3a, 3b, 3c, 3d (related to the effective width W) depends on the proof stress required for the earthquake resistant panel 10 and the material of the thin plate 1. It is preferable to set in consideration of the determined yield load.

図4(C)を参照して、薄板1の形状は長方形に限定されず、正方形でもよく、正方形の場合、対角配置された火打ち板3a,3b同士、火打ち板3c,3d同士がそれぞれ完全に対向してもよい。   Referring to FIG. 4C, the shape of the thin plate 1 is not limited to a rectangle, but may be a square. In the case of a square, the fired plates 3a and 3b arranged diagonally, and the fired plates 3c and 3d are completely each other. It may be opposite.

[全辺拘束の効果]
図5(A)及び(B)は、本発明の一実施例に係る耐震パネルにおける全辺拘束効果を説明する図であって、(A)は、本発明の一実施例に関し、(B)は、比較例に関する。
[Effect of all-side constraint]
FIGS. 5A and 5B are diagrams for explaining the all-side restraining effect in the earthquake-resistant panel according to the embodiment of the present invention, and FIG. 5A relates to the embodiment of the present invention, and FIG. Relates to a comparative example.

図5(A)を参照すると、実施例に係る薄板1は、矩形状であって、全辺が軸組みに拘束される。薄板1は、四隅に設けた火打ち板3の効果によって、対角線付近上の領域で、大きな荷重を負担することができる。加えて、薄板1は、薄板1の四辺が枠2によって拘束されていることにより、薄板1は、対角線付近上の領域以外の領域、すなわち、左側中間部、右側中間部、上側中間部及び下側中間部の領域も、荷重を負担することができる。さらに、火打ち板3a,3bと枠2の両方によって、薄板1が拘束されていることにより、薄板1の面外変形が抑制され、薄板1の広い範囲が略波状に変形するようになる。これによって、薄板1の局所的な破壊が防止され、薄板1の耐力が向上され、薄板1による大きな地震エネルギーの吸収が期待される。   Referring to FIG. 5A, the thin plate 1 according to the embodiment is rectangular, and all sides are constrained by the shaft assembly. The thin plate 1 can bear a large load in the region near the diagonal line due to the effect of the fired plate 3 provided at the four corners. In addition, since the thin plate 1 is constrained by the frame 2 on the four sides of the thin plate 1, the thin plate 1 has a region other than the region near the diagonal line, that is, the left intermediate portion, the right intermediate portion, the upper intermediate portion, and the lower portion. The area of the side intermediate part can also bear the load. Further, since the thin plate 1 is constrained by both the fired plates 3a and 3b and the frame 2, the out-of-plane deformation of the thin plate 1 is suppressed, and the wide range of the thin plate 1 is deformed into a substantially wave shape. Thereby, local destruction of the thin plate 1 is prevented, the proof stress of the thin plate 1 is improved, and absorption of large earthquake energy by the thin plate 1 is expected.

図5(B)を参照すると、比較例に係る薄板1は、対角線付近上の領域の外側の領域が切り抜かれて4箇所の窓が形成されて、側面拘束がされていない。これによって、薄板1は、対角線付近上の領域でしか、荷重を負担することができない。よって、比較例に係る薄板1は、実施例に係る薄板1に比べて、耐力が劣る。また、比較例に係る薄板1は、枠2による側面拘束がないため、薄板1の中央付近だけが局所的に表側又は裏側に向かって大きく突出する(面外変形の発生)。これによって、薄板1の局所的な破壊が発生しやすくなり、薄板1の耐力が低下する。なお、筋交いをX字状に交差させて軸組みの開口部に取り付けた場合も、図5(B)に示した薄板1を用いた場合と同様である。   Referring to FIG. 5B, in the thin plate 1 according to the comparative example, the region outside the region near the diagonal is cut out to form four windows, and the side surface is not restrained. Thereby, the thin plate 1 can bear a load only in the area | region on the diagonal vicinity. Therefore, the thin plate 1 which concerns on a comparative example is inferior in yield strength compared with the thin plate 1 which concerns on an Example. Further, since the thin plate 1 according to the comparative example is not constrained by the side surfaces by the frame 2, only the vicinity of the center of the thin plate 1 locally protrudes greatly toward the front side or the back side (occurrence of out-of-plane deformation). As a result, local destruction of the thin plate 1 is likely to occur, and the yield strength of the thin plate 1 is reduced. Note that the case where the braces are crossed in an X shape and attached to the opening of the shaft assembly is the same as the case where the thin plate 1 shown in FIG. 5B is used.

本実施例においては、上述した本発明の一実施例に係る耐震パネル10を、社殿の軸組みに適用する例を説明する。図6は、本発明の一実施例に係る耐震パネルを社殿に装着する適用例を示す図であって、木造軸組構造を有する社殿を模式的示す正面図である。   In the present embodiment, an example will be described in which the earthquake-resistant panel 10 according to one embodiment of the present invention described above is applied to a shaft structure of a company building. FIG. 6 is a view showing an application example in which the earthquake-resistant panel according to one embodiment of the present invention is mounted on a company building, and is a front view schematically showing the company building having a wooden frame structure.

図6を参照すると、耐震パネル10は、下記に例示するように、社殿40の軸組み12の開口部13の様々な箇所に、図1に示したネジ6等を用いて装着することができる。
(1)社殿40の床下の軸組み12に耐震パネル10を装着する場合、耐震パネル10の下辺は、基礎を介して軸組み12に間接的に固定され、耐震パネル10の左右辺は、軸組み12の左右の柱に固定され、耐震パネル10の上辺は、軸組み12の梁に固定される。
(2)社殿40の床上の軸組み12に耐震パネル10を装着する場合、耐震パネル10の上下辺は、軸組み12の上下の梁に固定され、耐震パネル10の左右辺は、軸組み12の左右の柱に固定される。
(3)社殿40の天井下の軸組み12に耐震パネル10を装着する場合、耐震パネル10の上下左右辺は、軸組み12の一部を構成する欄間に固定される。
Referring to FIG. 6, the earthquake-resistant panel 10 can be attached to various locations of the opening portion 13 of the shaft assembly 12 of the company hall 40 using the screws 6 shown in FIG. .
(1) When the earthquake resistant panel 10 is mounted on the shaft assembly 12 under the floor of the company hall 40, the lower side of the earthquake resistant panel 10 is indirectly fixed to the shaft assembly 12 through the foundation, and the left and right sides of the earthquake resistant panel 10 are The upper side of the seismic panel 10 is fixed to the beam of the shaft set 12.
(2) When the seismic panel 10 is mounted on the shaft assembly 12 on the floor of the company hall 40, the upper and lower sides of the earthquake resistant panel 10 are fixed to the upper and lower beams of the shaft assembly 12, and the left and right sides of the earthquake resistant panel 10 are Fixed to the left and right pillars.
(3) When the earthquake resistant panel 10 is attached to the shaft assembly 12 under the ceiling of the company hall 40, the top, bottom, left and right sides of the earthquake resistant panel 10 are fixed between the columns constituting a part of the shaft assembly 12.

なお、耐震パネル10は、軸組み12の全ての開口部13に装着しなくてもよく、一部の開口部13に装着しても、社殿40の耐震性を改善することができる。これによって、耐震パネル10が装着されていない開口部13から、社殿40の奥を見ることができるため、社殿40の外観が維持される。また、耐震パネル10を、例えば、欄間に装着する場合、枠2及び複数の火打ち板3を薄板1の表側に設け、枠2及び複数の火打ち板3の裏側と軸組み(欄間)12の表側との間で、薄板1が挟持されるよう、枠2を軸組み12に取り付けてもよい。   The earthquake-resistant panel 10 does not have to be attached to all the openings 13 of the shaft assembly 12, and even if it is attached to some of the openings 13, the earthquake resistance of the company hall 40 can be improved. As a result, the interior of the shrine 40 can be seen from the opening 13 where the earthquake-resistant panel 10 is not mounted, so that the appearance of the shrine 40 is maintained. Further, when the seismic panel 10 is mounted, for example, between the columns, the frame 2 and the plurality of fired plates 3 are provided on the front side of the thin plate 1, and the back side of the frame 2 and the plurality of fired plates 3 and the front side of the shaft assembly (between the columns) 12 The frame 2 may be attached to the shaft assembly 12 so that the thin plate 1 is sandwiched therebetween.

図7(A)〜(C)は、本発明の一実施例に係る耐震パネルの軸組みへの装着例を示す図である。図7(D)は、本発明の一実施例に係る耐震パネルの表装例を示す図である。   FIGS. 7A to 7C are diagrams showing an example of mounting the earthquake-resistant panel according to one embodiment of the present invention on the shaft assembly. FIG. 7D is a diagram showing an example of the display of the earthquake-resistant panel according to one embodiment of the present invention.

図7(A)を参照すると、耐震パネル10は、軸組み12の開口部13に挿入され、梁、柱、柱及び梁(又は基礎)にネジ6等によって固定される。図7(B)を参照すると、耐震パネル10は、欄間において、梁、柱、柱及び梁にネジ6等によって固定される。図7(C)を参照すると、軸組み12の幅広な開口部13に中間柱が立てられ、耐震パネル10は、梁、柱、中間柱及び梁(又は基礎)にネジ6等によって固定される。図7(D)を参照すると、耐震パネル10の表面及び/又は裏面には、格子戸が装着される。   Referring to FIG. 7A, the earthquake-resistant panel 10 is inserted into the opening 13 of the shaft assembly 12, and fixed to the beam, column, column, and beam (or foundation) with screws 6 or the like. Referring to FIG. 7B, the earthquake resistant panel 10 is fixed to the beam, the column, the column, and the beam with screws 6 or the like between the columns. Referring to FIG. 7C, an intermediate column is set up in the wide opening 13 of the shaft assembly 12, and the earthquake-resistant panel 10 is fixed to the beam, the column, the intermediate column and the beam (or the foundation) with screws 6 or the like. . Referring to FIG. 7D, a lattice door is mounted on the front surface and / or the back surface of the earthquake-resistant panel 10.

上述した構造を有する、本発明の一実施例に係る耐震パネルの耐力試験を行った。本試験においては、耐震パネルを実際の建築物の軸組みを模擬した軸組みに装着し、軸組みや薄板に変形量を検出する検出器を取り付けた。そして、アクチュエータによって、軸組み及び耐震パネルに水平方向の荷重を印加して、耐震パネル(軸組み)の変形量と荷重の関係、及び、耐震パネルの薄板の変形状態などを調査した。   A proof test of the seismic panel according to an embodiment of the present invention having the above-described structure was performed. In this test, the seismic panels were mounted on a shaft that simulates the shaft of an actual building, and a detector that detects the amount of deformation was attached to the shaft and thin plate. Then, a horizontal load was applied to the shaft assembly and the earthquake resistant panel by the actuator, and the relationship between the deformation amount and the load of the earthquake resistant panel (shaft assembly) and the deformation state of the thin plate of the earthquake resistant panel were investigated.

[実験に用いた耐震パネル]
・SS鋼製耐震パネル 材質は全てSS400鋼
薄板 :厚さ1.2又は1.6mm、縦2240mm×横1250mm
枠 :正面幅40mm×奥行幅40mm×厚さ5mm×縦長2240mm×
横長1250mmのアングル状、
火打ち板:頂辺30mm×頂辺30mmの直角二等辺三角形状、厚さ4.5mm
・SUS鋼製耐震パネル 材質は全てSUS304鋼
薄板 :厚さ1.2mm、縦2240mm×横1250mm
枠 :正面幅40mm×奥行幅40mm×厚さ5mm×縦長2240mm×
横長1250mmのアングル状、
火打ち板:頂辺40mm×頂辺40mmの直角二等辺三角形状、厚さ5mm
[Seismic panels used in the experiment]
-SS steel earthquake resistant panel All materials are SS400 steel Thin plate: thickness 1.2 or 1.6mm, length 2240mm x width 1250mm
Frame: Front width 40mm x Depth width 40mm x Thickness 5mm x Vertical length 2240mm x
An angle of 1250mm in width,
Firing board: right isosceles triangle shape with top side 30mm x top side 30mm, thickness 4.5mm
・ SUS steel seismic panels All materials are SUS304 steel Thin plate: 1.2mm thick, 2240mm long x 1250mm wide
Frame: Front width 40mm x Depth width 40mm x Thickness 5mm x Vertical length 2240mm x
An angle of 1250mm in width,
Fireplate: right isosceles triangle shape with top 40mm x top 40mm, thickness 5mm

[試験1]
耐震パネル(SS鋼製、薄板の厚さ1.6mm)を、その上下左右の全辺で軸組みに拘束して耐力試験を行った。比較のため、同様の耐震パネルを、その側面(左右辺)を軸組みに拘束しないで耐力試験を行った。なお、側面拘束の効果を調べるため、いずれの耐震パネルとも、火打ち板を設けなかった。
[Test 1]
A seismic panel (made of SS steel, thin plate thickness 1.6 mm) was subjected to a proof stress test by constraining it to the shaft assembly on all sides of the top, bottom, left and right. For comparison, the same seismic panel was subjected to a proof test without constraining the side surfaces (left and right sides) to the shaft assembly. In addition, in order to investigate the effect of the side restraint, neither of the seismic panels provided a fireplate.

これらの耐力試験の結果、全辺拘束される耐震パネルは、側面拘束されない耐震パネルに比べて、破壊耐力が20%以上高かった。したがって、耐震パネルないし薄板の側面を含めた全辺を枠によって拘束することにより、耐震パネルの耐震性が向上することが確認された。さらに、薄板の厚さを1.2mmとして、上下左右の全辺で軸組みに拘束される耐震パネルの耐力試験を行ったところ、薄板を薄くしても同様に側面拘束及び全辺拘束の効果が得られることを確認した。   As a result of these strength tests, the seismic panels restrained on all sides were 20% or more higher in fracture strength than the seismic panels not restrained on the sides. Therefore, it was confirmed that the seismic performance of the seismic panel was improved by constraining all sides including the side of the seismic panel or thin plate with a frame. Furthermore, when the thickness of the thin plate was 1.2 mm and the strength test of the seismic panel constrained by the frame on all sides of the top, bottom, left and right was performed, the effect of side restraint and all side restraint was the same even if the thin plate was thinned. It was confirmed that

[試験2]
図5(A)に示すように、四角形状であって窓や切り欠きのない矩形状(全面)な薄板を有する耐震パネルと、図5(B)に示すように、四箇所の窓(切り欠き)が形成されたX字状の薄板を有する耐震パネルと、を用いて、耐力試験を行った。用いた耐震パネルはいずれも、SUS鋼製であって、薄板の厚さは1.2mmとした。なお、いずれの耐震パネルとも、火打ち板を設けている。
[Test 2]
As shown in FIG. 5 (A), the earthquake-resistant panel having a rectangular (entire) thin plate having a rectangular shape and no windows or notches, and four windows (notched) as shown in FIG. 5 (B). A proof test was performed using an earthquake-resistant panel having an X-shaped thin plate formed with a notch. All the earthquake-resistant panels used were made of SUS steel, and the thickness of the thin plate was 1.2 mm. In addition, all the earthquake-resistant panels are provided with a fire striking board.

これらの耐力試験の結果、矩形状で全面な薄板を有する耐震パネルは、X字状の薄板を有する耐震パネルに比べて、破壊耐力が20%以上高かった。したがって、全面な薄板においては、火打ち板によって特に耐力等が向上される対角線付近上の領域の外でも、荷重が負担され、薄板全体として、さらに耐力等が向上されることが確認された。   As a result of these proof stress tests, the quake-resistant panel having a rectangular and full thin plate had a fracture proof strength 20% or more higher than that of the quake resistant panel having an X-shaped thin plate. Therefore, it was confirmed that in the thin sheet on the entire surface, the load is borne even outside the region near the diagonal line where the proof stress is particularly improved by the fired plate, and the proof stress is further improved as a whole thin plate.

[試験3:耐震パネルの荷重−変形特性]
図5(A)に示すような、本発明の一実施例に係る耐震パネルに水平方向の荷重を印加して、耐震パネルやそれが装着された軸組みの変形を調べた。図8は、本発明の一実施例に係る耐震パネルの荷重−変位特性を示すグラフである。図8の変位角は、軸組みの水平方向変位量を階高で除したものである(変位角=軸組みの水平方向変位量/階高)。図9(A)及び(B)は、本発明の一実施例に係る耐震パネルの変形状態を示す写真であって、図9(A)は荷重印加前、図9(B)は荷重印加後の状態を示している。以下、図8並びに図9(A)及び(B)を参照して、本発明の一実施例に係る耐震パネルの荷重−変形特性、さらに、この耐震パネルによる社殿の耐震性改善を考察する。
[Test 3: Load-deformation characteristics of seismic panels]
As shown in FIG. 5A, a horizontal load was applied to the seismic panel according to one embodiment of the present invention, and the deformation of the seismic panel and the shaft assembly on which the seismic panel was mounted was examined. FIG. 8 is a graph showing the load-displacement characteristics of the earthquake-resistant panel according to one embodiment of the present invention. The displacement angle in FIG. 8 is obtained by dividing the horizontal displacement of the shaft by the floor height (displacement angle = horizontal displacement of the shaft / floor). 9A and 9B are photographs showing the deformation state of the earthquake-resistant panel according to one embodiment of the present invention, in which FIG. 9A is before applying a load, and FIG. 9B is after applying the load. Shows the state. Hereinafter, with reference to FIG. 8 and FIG. 9 (A) and (B), the load-deformation characteristic of the earthquake-resistant panel which concerns on one Example of this invention, Furthermore, the improvement of the earthquake resistance of a company building by this earthquake-resistant panel is considered.

図8を参照すると、荷重−変位特性線の直線部分が薄板の弾性域に相当し、曲線部分が薄板の塑性域に相当し、ヒステリシスを示すループ内の面積が吸収できる地震エネルギーに相当する。本発明の一実施例に係る耐震パネルは、稀な地震(中地震)時の地震力に相当する荷重(約15kN)を受けても変位が小さく、高い復元力を示し、又極めて稀な地震(大地震)時の地震力に相当する領域の荷重(約50kN)を受けても、塑性変形しながらも変位は小さく、破壊しなかった。したがって、本発明の一実施例に係る耐震パネルは、薄板の弾性領域における耐力が高く、薄板の塑性領域におけるエネルギー吸収力も高いことが確認された。   Referring to FIG. 8, the straight line portion of the load-displacement characteristic line corresponds to the elastic region of the thin plate, the curved portion corresponds to the plastic region of the thin plate, and corresponds to the seismic energy that can absorb the area in the loop showing hysteresis. The seismic panel according to an embodiment of the present invention has a small displacement even when subjected to a load (about 15 kN) corresponding to a seismic force during a rare earthquake (medium earthquake), exhibits a high restoring force, and is extremely rare. Even when subjected to a load (about 50 kN) in the region corresponding to the seismic force at the time of (a large earthquake), the displacement was small while the plastic deformation occurred, and it did not break. Therefore, it was confirmed that the earthquake-resistant panel according to one embodiment of the present invention has high yield strength in the elastic region of the thin plate and high energy absorption capacity in the plastic region of the thin plate.

また、図9(B)の66.3kNの荷重印加後の写真を参照すると、極めて稀な大地震時の地震力に相当する荷重を受けた後でも、耐震パネルないし薄板は、全体として形状を維持している。また、薄板において、対角に配置された火打ち板に挟まれた領域(図5(A)参照)で、大きな張力場が発生していることから、この領域で、大きな地震力が吸収されたことが確認された。また、薄板は、波状に変形して、大きな面外変形は抑制されていた。なお、図9(B)の薄板においては、左上隅から右下隅に張力場が発生しているが、これは、水平方向荷重の方向に関係するものであり、写真時と反対方向に荷重を印加したときには、右上隅から左下隅に張力場が発生する。図8中、荷重−変形角曲線が横にスリップしている部分を参照して、このような張力場の逆転が発生しても、本発明の一実施例に係る耐震パネルは、耐力を維持した。   In addition, referring to the photograph after applying the load of 66.3 kN in FIG. 9B, the shape of the seismic panel or thin plate as a whole even after receiving a load corresponding to the seismic force at the time of a very rare large earthquake. Is maintained. In addition, in the thin plate, a large tension field is generated in a region (see FIG. 5 (A)) sandwiched between diagonally placed fire plates, so that a large seismic force is absorbed in this region. It was confirmed. Further, the thin plate was deformed in a wave shape, and a large out-of-plane deformation was suppressed. In the thin plate in FIG. 9B, a tension field is generated from the upper left corner to the lower right corner. This is related to the direction of the horizontal load, and the load is applied in the opposite direction to that in the photograph. When applied, a tension field is generated from the upper right corner to the lower left corner. Referring to the portion where the load-deformation angle curve slips laterally in FIG. 8, the seismic panel according to one embodiment of the present invention maintains the proof strength even when the reverse of the tension field occurs. did.

次に、図8に示した荷重−変形特性を有する本発明の一実施例に係る耐震パネルを、伝統的木造建築である社殿の軸組みに装着することによる、社殿の耐震性改善を検討した。   Next, the improvement of the earthquake resistance of the company building was examined by mounting the earthquake resistant panel according to one embodiment of the present invention having the load-deformation characteristics shown in FIG. 8 to the building frame of the company building which is a traditional wooden building. .

社殿の揺れの許容値は、建築基準法、神戸地震および“重文基礎診断実施要綱”(文化庁)を参照すると、変形角(rad)に関して、稀な地震時(中地震時)に対しては1/200、極めて稀な地震時(大地震時)に対しては1/30と、設定できる。   The allowable values for the shaking of the shrine can be found in the case of rare earthquakes (medium earthquakes) with regard to the deformation angle (rad), referring to the Building Standards Act, the Kobe earthquake, and the “Summary of the implementation of heavy text basic diagnosis” (Culture Agency). 1/200, 1/30 can be set for extremely rare earthquakes (during large earthquakes).

[稀な地震時(中地震時)]
図8を参照すると、変形角1/200(=0.005)以上でも、本発明の一実施例に係る耐震パネルは、荷重の増加に対応して変形角が増加し、変形能力が高いから、本発明の一実施例に係る耐震パネルを軸組みに装着することによって、社殿の耐震性が改善されることがわかる。
[Rare earthquakes (medium earthquakes)]
Referring to FIG. 8, even when the deformation angle is 1/200 (= 0.005) or more, the earthquake resistant panel according to one embodiment of the present invention has a high deformation capability with an increased deformation angle corresponding to an increase in load. It can be seen that the earthquake resistance of the company is improved by mounting the earthquake resistant panel according to one embodiment of the present invention on the shaft assembly.

[極めて稀な地震時(大地震時)]
図8を参照すると、変形角1/30(=0.033)以上でも、本発明の一実施例に係る耐震パネルは、荷重の増加に対応して変形角が増加し、変形能力が高いから、本発明の一実施例に係る耐震パネルを軸組みに装着することによって、社殿の耐震性が改善されることがわかる。
[In extremely rare earthquakes (during large earthquakes)]
Referring to FIG. 8, even when the deformation angle is 1/30 (= 0.033) or more, the earthquake resistant panel according to an embodiment of the present invention has an increased deformation angle corresponding to an increase in load and a high deformation capacity. It can be seen that the earthquake resistance of the company is improved by mounting the earthquake resistant panel according to one embodiment of the present invention on the shaft assembly.

本発明の耐震パネルは、軸組構造を有する構造物に装着され、特に、木造軸組からなる建築物に装着され、一般住宅、或いは、寺社などの伝統的木造建築物の軸組みにも装着される。   The seismic panel of the present invention is mounted on a structure having a frame structure, particularly mounted on a building made of a wooden frame, and also mounted on a frame of a traditional wooden building such as a general house or a temple and shrine. Is done.

1 薄板
1a 孔
1b 孔
2 枠
2a 孔
2b 孔
20 山型鋼(アングル型鋼)
21 一方の面(正面)
22 他方の面(上下左右の側面)
3 火打ち板
3a 左上隅の火打ち板
3b 右下隅の火打ち板
3c 左下隅の火打ち板
3d 右上隅の火打ち板
3e 孔
4 ボルト
5 ナット
6 ネジ(釘)
10 耐震パネル
12 軸組み
12a 梁
12b 柱
13 開口部
30a,30b 火打ち板の頂角から同斜辺に下ろした垂線
40 社殿(軸組み構造物、伝統的木造建築物)
W 有効幅
1 Thin Plate 1a Hole 1b Hole 2 Frame 2a Hole 2b Hole 20 Angle Steel (Angle Steel)
21 One side (front)
22 The other side (up / down / left / right side)
3 Fire plate 3a Fire plate in upper left corner 3b Fire plate in lower right corner 3c Fire plate in lower left corner 3d Fire plate in upper right corner 3e Hole 4 Bolt 5 Nut 6 Screw (nail)
10 Seismic panel 12 Frame 12a Beam 12b Column 13 Opening 30a, 30b 40 vertical lines drawn from the top angle of the fireplate to the same hypotenuse (shaft structure, traditional wooden building)
W Effective width

Claims (5)

軸組構造を有する構造物の耐震性を改善するよう軸組みの開口部に挿入されて該軸組みに装着される耐震パネルであって、
所定値以下の大きさの揺れに対しては弾性変形し、該所定値を超える大きさの揺れに対しては塑性変形することにより前記軸組みに印加される地震エネルギーを吸収する矩形状の薄板と、
前記薄板の全辺に設けられ、前記軸組みに取り付けられることにより該薄板を全辺に亘って該軸組みに拘束させる枠と、
前記薄板の隅部にそれぞれ配置され、前記枠と一体化されると共に前記薄板と面接触する複数の火打ち板と、
を有する、ことを特徴とする耐震パネル。
A seismic panel that is inserted into the opening of the shaft assembly and is attached to the shaft assembly so as to improve the earthquake resistance of the structure having the shaft structure,
A rectangular thin plate that absorbs seismic energy applied to the shaft assembly by elastically deforming when the vibration is less than a predetermined value and plastically deforming when the vibration exceeds the predetermined value. When,
A frame that is provided on all sides of the thin plate and is attached to the shaft assembly to restrain the thin plate on the shaft assembly over all sides;
A plurality of fire-plates that are respectively arranged at the corners of the thin plate, integrated with the frame and in surface contact with the thin plate;
A seismic panel characterized by having.
前記薄板は、前記薄板の隅部に配置された複数の火打ち板によって拘束される領域と、前記枠によって拘束される領域を有する請求項1記載の耐震パネル。   2. The earthquake-resistant panel according to claim 1, wherein the thin plate has a region constrained by a plurality of fired plates arranged at corners of the thin plate and a region constrained by the frame. 前記枠及び複数の火打ち板は、前記薄板を挟持するよう該薄板の表裏両側に設けられる、請求項1又は2記載の耐震パネル。   The earthquake-resistant panel according to claim 1 or 2, wherein the frame and the plurality of fired plates are provided on both front and back sides of the thin plate so as to sandwich the thin plate. 前記枠及び複数の火打ち板は、前記薄板の表側に設けられ、
前記枠及び複数の火打ち板の裏側と前記軸組みの表側との間で、前記薄板が挟持されるよう、該枠が該軸組みに取り付けられる、請求項1又は2記載の耐震パネル。
The frame and the plurality of fired plates are provided on the front side of the thin plate,
The earthquake-resistant panel according to claim 1 or 2, wherein the frame is attached to the shaft assembly so that the thin plate is sandwiched between a back side of the frame and a plurality of fired plates and a front side of the shaft assembly.
前記薄板は、鋼板又はステンレス鋼板製である請求項1〜4のいずれか一に記載の耐震パネル。   The earthquake resistant panel according to any one of claims 1 to 4, wherein the thin plate is made of a steel plate or a stainless steel plate.
JP2011154803A 2011-07-13 2011-07-13 Seismic panel Expired - Fee Related JP4825940B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011154803A JP4825940B1 (en) 2011-07-13 2011-07-13 Seismic panel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011154803A JP4825940B1 (en) 2011-07-13 2011-07-13 Seismic panel

Publications (2)

Publication Number Publication Date
JP4825940B1 true JP4825940B1 (en) 2011-11-30
JP2013019211A JP2013019211A (en) 2013-01-31

Family

ID=45327139

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011154803A Expired - Fee Related JP4825940B1 (en) 2011-07-13 2011-07-13 Seismic panel

Country Status (1)

Country Link
JP (1) JP4825940B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106958307A (en) * 2017-04-26 2017-07-18 杭州铁木辛柯建筑结构设计事务所有限公司 Pre- tensile stress thin steel plate shear wall and its manufacture method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010095989A (en) * 2008-09-17 2010-04-30 Kozo Zairyo Kenkyukai:Kk Anisotropic reinforcing metal plate

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010095989A (en) * 2008-09-17 2010-04-30 Kozo Zairyo Kenkyukai:Kk Anisotropic reinforcing metal plate

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106958307A (en) * 2017-04-26 2017-07-18 杭州铁木辛柯建筑结构设计事务所有限公司 Pre- tensile stress thin steel plate shear wall and its manufacture method

Also Published As

Publication number Publication date
JP2013019211A (en) 2013-01-31

Similar Documents

Publication Publication Date Title
JP2007046235A (en) Vibration control panel and building
JP4070117B2 (en) Vibration control device
JP4733997B2 (en) Damping column base structure and damping structure using the same
JP2008248673A (en) Building
JP4825940B1 (en) Seismic panel
JP2010173860A (en) Device for horizontally supporting mast of tower crane
JP2010216611A (en) Seismic response control metallic plate
JP4902239B2 (en) Wall structure of building and vibration control panel used for this wall structure
JP2009263880A (en) Multistory parking system assembled inside building void and horizontal support device therefor
JP5946165B2 (en) Seismic reinforcement structure
JP2011038294A (en) Additional mass seismic response control building
JP5235530B2 (en) Damping structure with damping damper
JP2006348551A (en) Vibration damping material
JP6977313B2 (en) Damping structure of the structure
JP2010024656A (en) Joint damper and structure of joint portion
JP2014080802A (en) Vibration control wall for wooden structure
JP4279846B2 (en) Reinforcement structure of wooden frame building
JP2008297727A (en) Seismic reinforcing structure of existing building
JP2012233374A5 (en)
JP3200313U (en) Damping structure and damping panel
JP4413239B2 (en) building
JP6055346B2 (en) Building damping device
JP2006161518A (en) Bearing wall panel
JP6397192B2 (en) Supplemental forced vibration device
JP2017190619A (en) Frame body and building

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20110829

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110906

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110912

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140916

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees