JP2008136011A - 光スイッチおよび光クロスコネクト装置 - Google Patents

光スイッチおよび光クロスコネクト装置 Download PDF

Info

Publication number
JP2008136011A
JP2008136011A JP2006321018A JP2006321018A JP2008136011A JP 2008136011 A JP2008136011 A JP 2008136011A JP 2006321018 A JP2006321018 A JP 2006321018A JP 2006321018 A JP2006321018 A JP 2006321018A JP 2008136011 A JP2008136011 A JP 2008136011A
Authority
JP
Japan
Prior art keywords
optical
port
switch
unit
optical switch
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006321018A
Other languages
English (en)
Other versions
JP4826450B2 (ja
Inventor
Yasuyuki Fukashiro
深代康之
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Communication Technologies Ltd
Original Assignee
Hitachi Communication Technologies Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Communication Technologies Ltd filed Critical Hitachi Communication Technologies Ltd
Priority to JP2006321018A priority Critical patent/JP4826450B2/ja
Priority to CN2007101960037A priority patent/CN101193329B/zh
Priority to US11/987,398 priority patent/US7877011B2/en
Publication of JP2008136011A publication Critical patent/JP2008136011A/ja
Application granted granted Critical
Publication of JP4826450B2 publication Critical patent/JP4826450B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0005Switch and router aspects
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0005Switch and router aspects
    • H04Q2011/0007Construction
    • H04Q2011/0035Construction using miscellaneous components, e.g. circulator, polarisation, acousto/thermo optical
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0005Switch and router aspects
    • H04Q2011/0037Operation
    • H04Q2011/0039Electrical control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0005Switch and router aspects
    • H04Q2011/0052Interconnection of switches
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0062Network aspects
    • H04Q2011/0079Operation or maintenance aspects
    • H04Q2011/0083Testing; Monitoring
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0062Network aspects
    • H04Q2011/009Topology aspects
    • H04Q2011/0098Mesh

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Optical Communication System (AREA)
  • Use Of Switch Circuits For Exchanges And Methods Of Control Of Multiplex Exchanges (AREA)

Abstract

【課題】 装置規模を縮小し且つ増設性を備えた光クロスコネクト装置を提供する。
【解決手段】 k入力k出力のポートを備えた第1の光スイッチ及び第2の光スイッチと、k入力k出力の双方向伝送可能な第3の光スイッチと、2k個の第1の光サーキュレータと、2k個の第2の光サーキュレータと、2k個の選択スイッチで構成され、1〜k番目のインタフェースは、第1の光スイッチにより相互接続され、k+1〜2k番目のインタフェースは、第2の光スイッチにより相互接続され、1〜k番目のインタフェースは、k+1〜2k番目のインタフェースのいずれかと、第3の光スイッチにより相互接続される。
【選択図】 図3

Description

本発明は,他国間あるいは全国をカバーする幹線網あるいは県内網等で使用される光伝送システムおよび光ネットワークに係わり,特に光信号の経路切替や帯域管理を行う光クロスコネクト装置に関する。
近年のインターネットに代表されるデータトラフィックの急増により,通信ネットワークの伝送容量の大容量化が進んでいる。伝送の光化が実用化されている現在では,時分割多重技術や光波長多重技術を用いて伝送容量が大容量化している。例えば、1チャネルあたり毎秒10ギガビットのデータを伝送できる伝送装置や,1本のファイバで数チャネルから数十チャネル分のチャネルを1本の光ファイバに波長多重し,光増幅器あるいは再生中継器等を用いて数百kmを超える長距離伝送が可能なポイント・ツー・ポイント型の波長多重伝送装置が実用化されている。
一方,今後の伝送容量の需要増や、さらなる経済化,サービスの多様化に対応するため,通信ノードを環状に接続したリング型光ネットワークや,あるいは,より経路選択の自由度を増すために網目状に接続したメッシュ型光ネットワークが検討されている。こうした光ネットワークでは,各ノード装置を遠隔一元管理する網監視制御システムによる運用の簡素化や,あるいは各ノード装置の監視制御部が相互に連携することで,回線の始点から終点までの,いわゆるエンド・ツー・エンドのパス管理の容易化,パス設定の高速化が期待できる。さらに,光ネットワークをメッシュ型とすることで,メッシュ網内の予備容量を必要なときに必要な回線が使うように選択できるので,予備系を複数の現用パスで共有することが可能となり,網全体を経済的に実現できると考えられている。
上述のようなメッシュ型光ネットワークを実現するため,入出力インタフェースとしてSTM−1/OC−3等の低速光信号からSTM−64/OC−192や10Giga Bit Ethernet(登録商標)あるいはSTM−256/OC−768等の高速光信号を収容でき,帯域管理や経路切替えあるいは予備装置への切替えを行う光信号切替え装置もしくは光クロスコネクト装置と呼ばれる装置の開発が進められている。光クロスコネクト装置は,あるノードに接続されている伝送路同士の接続関係あるいは,伝送路とユーザ装置の接続関係を,自律分散制御的に,もしくは集中・遠隔制御的に変更することができる。
いわゆるO-E-O(光-電気-光)型光クロスコネクト装置では、装置外部の伝送路やユーザ装置とのインタフェースは光信号であるが、装置内部における信号の切替え・回線編集処理は、伝送単位,例えばSTM−64あるいはOC−192より細かな例えばSTS−1単位で電子回路により実現するので,効率的な信号切替えが可能である。一方,光信号を電気信号に変換せずに光スイッチを用いて切替えを行う,いわゆるO-O-O型の光クロスコネクト装置は,ノードで処理する情報量の大容量化に対応して,O-E-O型光クロスコネクト装置の電子回路では実現困難な大容量情報の処理を行うことができると期待されている。ここで、O-O-O型光クロスコネクト装置は、光スイッチの入力あるいは出力部で、信号の品質監視や再生中継処理のために一旦電気信号に変換してから再び光信号として光スイッチで処理する構成の光クロスコネクト装置も含んでいる。
伝送容量をより一層増加するため波長多重伝送の波長多重数を増やした場合、複数の方路からのファイバを収容するノードでは、それぞれの方路からの各波長信号を相互接続する際の接続の自由度を確保するため、ノードに設置される光クロスコネクト装置の光スイッチの大容量化が必須となる。現在、光スイッチを実現する技術として、材料に電界を印加することで生じる屈折率変化を応用した半導体スイッチやLiNO3スイッチ、材料に熱を加えることで生じる屈折率変化を応用したPLC(Planar Lightwave Circuit)型スイッチ、電磁石を利用して光ファイバやレンズの位置を移動させる可動型光スイッチ、静電力を利用して半導体技術で作成した微小なミラーを制御するMEMS(Micro-Electro-Mechanical Systems)型スイッチなどが知られている。
MEMS型スイッチとしては、2D型と3D型が知られている。2D型は、縦横2次元に格子状にミラーを配置し、光信号の光路上にミラーを挿入するか否かで光の経路を切り替えるもので、ミラーの制御が単純な反面、ミラー数が、入出力ポート数の2乗に比例して増加するので、32入力32出力を超える規模の光スイッチを構成することは一般に難しいと考えられている。例えば、16入力16出力のためには、16^2=256個のミラー素子が必要になる。
一方、3D型は、ミラーの角度を連続的に変化させることで様々に光信号の方向を制御するもので、例えば32入力32出力を超えるような大規模な光スイッチを実現する技術として期待されている。3D型では、例えば32入力32出力でも、入力用32個+出力用32個の計64個のミラー素子があればよい。しかし3D型の光スイッチは必要なミラー素子の数が少なくてすむ反面、2D型と比較してミラーの制御が複雑である。
上述の光スイッチ技術で大規模な光スイッチを実現しようとする場合、1個の光スイッチで大規模なものを用いる方法と、小規模の光スイッチを複数組み合わせる方法とが考えられる。1個の大規模な光スイッチを用いる方法では、ノードの規模に応じた増設ができないという問題がある。また現状では製造技術やコストの観点から市販されているスイッチ規模には制限があり、例えば、3D型MEMSスイッチでは、64×64から128×128程度である。
現状で1個の光スイッチにより実現可能な光スイッチの規模には限界があることや増設性を考慮すると、小規模な光スイッチを複数組み合わせて大規模な光スイッチを構成することが実用的である。例えば光スイッチを3段に構成するクロス網が知られており、このような考え方を応用した従来例として、特許文献1がある。特許文献1では、光スイッチを3段構成とすることで大規模化を図り、さらに光サーキュレータを用いて、ハードウェア規模の削減を図ったもので、光スイッチの両側に接続されるインタフェース間の相互接続が可能である。
また、電気的レベルで回線編集を行う装置で増設時のハードウェア規模を削減するものの例として特許文献2がある。
特開2002−182250号公報 特開2002−77238号公報
回線間の接続の自由度を増すために、ノード装置は自身が収容する回線同
士を任意に接続することが要求される。しかしながら、小規模な光スイッチを組み合わせて大規模な光スイッチを構成する場合、複数の光スイッチを相互に接続することから設定できる光信号の経路に制約が生じ、相互に接続をできない回線ができる。
光伝送路とのインタフェースを、光サーキュレータを介して基本スイッチと接続し、当該基本スイッチに接続されたインタフェース間を任意に接続できるようにする。さらに、インタフェースから基本スイッチへ向かう光信号をセレクタによって拡張スイッチへ導くよう構成すれば、当該拡張スイッチに接続された、同じ基本スイッチに接続されていないインタフェース間をも任意に接続することができる。
本発明の光スイッチおよび光クロスコネクト装置によれば,k×k規模の光スイッチ3個を選択スイッチおよび光サーキュレータを用いて接続することより,従来の3段構成の場合より少ない素子数で2k個のインタフェースの相互接続が実現できるので,光スイッチのハードウェアを削減でき、制御の簡素化を図ることができ、増設性のある光スイッチを実現できる。
以下,本発明の一実施例である光クロスコネクト装置について,図面を使用して詳細に説明する。図1に本発明の光クロスコネクト装置を適用可能な光ネットワークの一実施例を示す。図1において,光ネットワーク10は,光クロスコネクト装置20と,光クロスコネクト装置20を接続する伝送路30と,ネットワーク監視制御装置40と,ネットワーク監視制御装置40と光クロスコネクト装置20間の監視制御信号を授受するための監視制御用ネットワーク50と、伝送路間に設置される中継器60で構成される。本実施例で光クロスコネクト装置20に接続される伝送路ファイバ数はあくまで一例であり、光クロスコネクト装置20は、より多数の伝送路ファイバを収容しても良い。
ネットワーク監視制御装置40は,光ネットワーク10の構成管理,障害管理,帯域管理,性能管理,セキュリティ管理などを行う。ネットワーク監視制御装置40は、例えば,任意の光クロスコネクト装置20間に需要に応じた通信帯域を確保するために,光クロスコネクト装置20の装置監視制御部21に問い合わせを行い、光クロスコネクト装置20の各機能の使用状況等の情報を含む構成管理情報や、障害が発生した伝送路ファイバ30や光クロスコネクト装置20の情報を含む障害管理情報を参照して、該当する光クロスコネクト装置の利用可能なリソースと,障害の発生していない経路を選択し,該当する光クロスコネクト装置を含む複数の光クロスコネクト装置を制御して、要求された通信帯域を有する通信路またはパスを設定する。このようにネットワーク監視制御装置40は、光伝送路ファイバや各光クロスコネクト装置の情報を収集して、光ネットワーク10内に光信号の伝送路を形成するよう光クロスコネクト装置20に指示を出す。光クロスコネクト装置20はこの指示を受けて、装置内の光スイッチを制御し、要求された伝送路同士を接続する。
ネットワーク監視制御装置40は1台の装置で構成しても良いし、あるいは複数台の冗長化されたサーバ等の装置による集中制御方式でも良い。あるいは,光クロスコネクト装置20内の後述する装置監視制御部21が互いに通信してネットワークの状態情報交換や経路計算を行う分散制御方式を採用しても良い。分散制御方式を採用する場合,ネットワーク監視制御装置40は省略あるいは簡略化してもよい。例えば,このような装置間通信制御技術としては,IETF(The Internet Engineering Task Force)のRFC3471−3473等で規定されているいわゆるGMPLS(Generalized MultiProtocol Label Switching)のプロトコル群を利用することが可能である。
光クロスコネクト装置20の間には伝送路ファイバ30を介して,伝送距離を延長するための再生中継あるいは線形中継を行う中継器60が設置されている。中継器60は,伝送距離やファイバの種類や局舎の位置に応じて,所定の主信号品質を保つ様,適切な距離間隔に設置される。主信号品質基準は,例えば,ビット誤り率が10−12以下となるように設定される。光クロスコネクト装置間に複数の中継器60−1が設置されることもある。再生中継器は,伝送路を伝播してきた光信号を一旦電気信号へ変換し,波形整形やディジタル的な品質監視,即ちビットインターリーブトパリティ(Bit Interleaved Parity;BIP)と呼ばれる方法によるビット誤り監視等を行う。線形中継器は,例えばエルビウム添加ファイバやラマン増幅などを利用した光ファイバ増幅器により,波長多重信号の一括増幅を行う。光ファイバ増幅器でなく,光半導体増幅器でも良い。ここで中継器は,伝送距離を延伸できる機能があれば,ファイバや半導体中の非線形効果などを利用することで光信号を電気信号に変換することなく波形整形や信号対雑音比の改善効果のあるいわゆる光2Rまたは光3R中継器でも良い。中継器では光合波・分波フィルタや光スイッチを用いて,複数ある回線のうち,所望の回線のみを分岐・挿入する構成としても良い。特に光信号を電気信号に変換せずに上述の分岐・挿入を行う装置は,OADM(Optical Add Drop Multiplexer)と呼ばれることがある。
図2に,上述の光クロスコネクト装置20の詳細な構成の一実施例を示す。光クロスコネクト装置20−1は,装置監視制御部21と,主信号の切替えを行う光信号切替部22と,主信号に付されたオーバーヘッドの処理や,上述のBIPを用いた主信号品質監視や,クライアント装置100からの信号の波長を伝送路で用いる波長へ変換する等の処理を必要に応じて行う複数のインタフェース(IF)部23と,複数のIF部23の出力を波長多重して伝送路ファイバ30へ送出するWDM部24で構成される。
装置監視制御部21は、ネットワーク監視制御装置40との間で通信をし、また光クロスコネクト装置20内の他の処理部と通信を行うための通信制御部211と、光クロスコネクト装置の制御に必要な処理を実行するCPU212と、CPU212の処理に必要なプログラムやデータを格納するメモリ213を有する。メモリ213は、例えば、IF部23と光スイッチ部がどのように接続されているかを示す光スイッチ接続情報214や、その他に光クロスコネクト装置20内部の各機能の使用状況等の情報を含む構成管理情報、障害が発生した伝送路ファイバ30や光クロスコネクト装置20の情報を含む障害管理情報等の情報を格納している。例えば構成管理情報には、IF部やWDM部やスイッチ部や装置監視制御部自体の種別や数量や実装位置情報に加えても良い。また、光スイッチ接続情報214は,ネットワーク監視制御装置40や,装置監視制御部21に接続された制御端末から,管理者により手動で入力しても良いし,装置側に接続構成の自動検出機能を具備して,装置実装とともに自動検出できるようにしても良い。また、異なる光クロスコネクト装置20内の装置監視制御部21同士が互いに通信して経路計算などを行う場合には、ネットワーク構成情報や経路情報などをメモリ213に保持すれば良く、経路計算などの各種演算はCPU212にて行うことができる。メモリ213は、市販のハードディスクや半導体メモリで実現できる。
光信号切替部22は、装置監視制御部21と通信を行なうための通信制御部221や、光スイッチ部を制御するためのCPU222、光スイッチ部の制御に必要な情報を格納するメモリ223および光スイッチ部224を有する。本実施例では光スイッチ部にもCPU222やメモリ223を設けて、光信号切替部がある程度自律的に光信号の経路切替えを行いうる構成としているが、装置監視制御部21のCPU212やメモリ213により光スイッチ部224を直接制御するようにして、CPU222やメモリ223を省略する構成としても良い。
IF部23は光信号を電気信号に変換し、信号の同期調整やオーバヘッド処理等を必要に応じて行う。本実施例では、このIF部23を単位に、光スイッチ部224にて光信号の経路切替え処理を行う。IF部23は,伝送距離拡大や,ファイバの季節変動や物理的外力による損失変動や部品の経年劣化など他の要因による品質劣化を補償するために,例えば,ITU勧告 G.709に示されるような誤り訂正符号処理を行うこともある。IF部23は,例えば,STM−16(2.5Gbit/s),STM−64(10Gbit/s),STM−256(40G)をインタフェースとするクライアント装置100からの信号を収容し,それぞれITU−T G.709 OTNで規定されるOTU−1(2.7Gbit/s),OTU−2(10.7Gbit/s),OTU−3(42.8Gbit/s)で且つITU−Tで規定された波長を持つ信号へ変換してWDM部へ出力し,またはWDM部24からの信号を上記とは逆に変換する機能を持つ。またIF部23は,ある光クロスコネクト装置20で一方の伝送路から別の伝送路へ転送される信号に対しては,OTU−n(n=1,2,3)の信号を再生中継する機能を持っても良い。クライアント信号としては,他に例えばIEEE 802.3zで規定されるGbE(1Gbit/s)や,IEEE 802.3aeで規定される10GbE(10.3Gbit/s)を収容することも可能であり,その場合,WDM部とのインタフェース速度は,これらに誤り訂正符合分の比率,例えば7%程度を付加したものになる。なお、この比率は適宜必要な訂正能力に応じて変更してよい。
WDM部24は,IF部23からの光信号を波長多重し,必要な場合は増幅して伝送路ファイバ30へ送出し,伝送路ファイバ30からの波長多重信号を波長分離してIF部23へ送出する。IF部は必ずしもWDM部24と接続されている必要はなく、IF部23の光信号が波長多重や分離をされずに光クロスコネクト装置外との間で入出力されるようにしても良い。さらにWDM部24は必要に応じて,波長分離の前もしくは後でIF部23への送出の前に増幅し,または主信号に監視制御用信号を波長多重し、又は分離する。伝送路ファイバ30へ送出する際の光信号のパワーは,波長数や光クロスコネクト装置間の損失や光増幅器の雑音指数による光信号対雑音比(Optical Signal−to−Noise Ratio;OSNR)や,ファイバ中の非線形効果による波形劣化や雑音増加の程度を考慮して決められる。非線形効果としては,自己位相変調(Self Phase Modulation;SPM)や相互位相変調(Cross Phase Modulation;XPM)や四波混合(Four Wave Mixigin;FWM)といったものが知られ,波形劣化量は,波長数,ファイバの分散,非線形定数等に依存する。ファイバの分散や非線形定数はファイバがシングルモード(SMF)か分散シフトファイバ(DSF)かによっても異なり、同じDSFであっても個体差も存在する。IF部23への送出前の増幅器の出力パワーは受信器のダイナミックレンジや受信感度を考慮して決められる。
ファイバの波長分散による波形劣化を相殺する分散補償器をWDM部24に組み込んでも良い。分散補償器としては,伝送路ファイバと符号が異なる分散補償ファイバや,ファイバ回折格子,光学レンズ,共振器など利用したものが市販されている。WDMから出力される波長は,例えばITU−T勧告 G694.1やG694.2で規定される波長グリッド上の波長を使うことができ、波長数は、8波、16波、20波、40波、64波、80波、128波、160波など、伝送条件を工夫することで様々に選ぶことができる。
図3は,本実施例における光クロスコネクト装置20の光スイッチ部224の一構成例を示す。図3において,光スイッチ部224は,k入力k出力のポートを備えた第1の基本スイッチ(OSW−B1)83−1と、k入力k出力のポートを備えた第2の基本スイッチ(OSW−B2)83−2と、2k個のポートを備え1番目からk番目のポートと、k+1番目から2k番目のポートとの間で、それぞれ任意のポート同士を一対一に相互接続可能な、双方向伝送性をもつ拡張スイッチ(OSW−E)84−1と、3つのポートを備えた2k個の第1の光サーキュレータ81−1と、同じく3つのポートを備えた2k個の第2の光サーキュレータ81−2と、第1ポートと第2ポートと共通ポートを備え、共通ポートと第1ポート又は第2ポートのいずれかを任意に接続することができる2k個の選択スイッチ(SEL)82で構成される。
図3の実施例においては、1番目からk番目のIF部23が基本スイッチ83−1を介して相互に接続される一まとまりのIF部23である。また、k+1番目から2k番目のIF部23が、基本スイッチ83−2を介して相互に接続される一まとまりのIF部23である。以下、具体的な接続関係を説明するために,光スイッチ部224と1番目のIF部23−との接続関係,および2k番目のインタフェースとの接続関係を示す。
まず、基本スイッチ83−1(OSW−B1)と接続される第1の光サーキュレータ81−3の各ポートの接続について説明する。第1の光サーキュレータ81−3の第1ポートはIF部23−2(IF1)の出力と接続され、第3ポートは当該IF部23−2の入力と接続され、第2ポートは選択スイッチ82−1(SEL1)の共通ポートcに接続される。次に、選択スイッチ82−1の各ポートの接続について説明する。選択スイッチ82−1の第1ポートaは、第2の光サーキュレータ81−4の第1ポートと接続され、第2ポートbは拡張スイッチ84−1の1番目の双方向ポートと接続される。次に第2の光サーキュレータ81−4の各ポートの接続について説明する。第2の光サーキュレータ81−4の第2ポートは、第1の基本スイッチ83−1の第1入力ポートと接続され、第3ポートは、第1の基本スイッチ83−1の第1の出力ポートと接続される。
次に、基本スイッチ83−2(OSW−B2)と接続される2k番目の第1の光サーキュレータ81−5の各ポートの接続関係について説明する。第1の光サーキュレータ81−5の第1ポートはIF部23−3(IF2k)の出力と接続され、第3ポートは当該IF部23−3の入力と接続され、第2ポートは選択スイッチ82−3(SEL2k)の共通ポートcに接続される。次に選択スイッチ82−3の各ポートの接続関係について説明する。選択スイッチ82−3の第1ポートaは、第2の光サーキュレータ81−6の第1ポートと接続され、選択スイッチ82−3の第2ポートbは、拡張スイッチ84−1(OSW−E)の2k番目の双方向ポートと接続される。次に第2の光サーキュレータ81−6の接続関係について説明する。第2の光サーキュレータ81−6の第2ポートは、第2の基本スイッチ83−2の第2k番目の入力ポートと接続され、当該第2の光サーキュレータ81−6の第3ポートは、第2の基本スイッチ83−2の第2k番目の出力ポートと接続される。
なお,図3に示すとおり、2番目からk番目までのIF部23の光スイッチ部224内における接続関係は,上述の1番目のIF部23−2の接続関係と同様であり,k+1番目から(2k−1)番目までのIF部23の光スイッチ部224内における接続関係は、上述の2k番目のIF部23−3の接続関係と同様である。
図4に,図3で示される光サーキュレータ81の動作を示す。光サーキュレータ81は,光の入出力関係が循環性を示す。即ち,ポート1からの入力がポート2に出力され,ポート2からの入力がポート3から出力され,ポート3からの入力がポート1から出力される光部品であり,市販されている。構成方法はいくつかあるが,例えば,偏光ビームスプリッタ,偏光回転子,プリズムなどで構成されている。
次に、図5〜図7により,図3で示した実施例における光スイッチ部224を用いた光信号経路切替えによるIF部23の相互接続の手順について説明する。図5は,図2で示した本実施例の光スイッチ部224の制御シーケンスである。
まず光パスを設定する際,例えば図1や図2で示すネットワーク監視制御装置40が、各光クロスコネクト装置20に対し、複数のIF部23のうち任意の2つのIF部であるIF−AとIF−Bを接続するよう装置監視制御部21へ指示する(S01)。指示を受けた装置監視制御部21は光スイッチ接続情報214を参照し、IF−AとIF−Bが,基本スイッチ83−1と基本スイッチ83−2のいずれに接続されているのかを確認する。
図8に示すとおり光スイッチ接続情報214は、各IF部23がいずれの選択スイッチ82(SEL)に接続されているか、いずれの基本スイッチ83(OSW−B)に接続されているか、そして拡張スイッチ84(OSW−E)のいずれのポートに接続されているかを判別するための情報を有する。
そして、装置監視制御部21−1は、IF−AとIF―Bが同じ基本スイッチ83に接続されているかを判定する(S02)。この判定で,2つのIF部は同一の基本スイッチ83に接続されていると判明(S02の処理結果Yes)した場合,装置監視制御部21は,IF−AとIF−Bの接続先が同じ基本スイッチ83となるよう、IF−AとIF−Bが接続されたそれぞれの選択スイッチ82に対し,ポートcとポートaを接続するよう制御する(S03)。
IF−AがIF部23−2(IF1)であり、IF−BがIF部23−4(IFk)であった場合のスイッチの接続構成を図6に示す。IF部23−2から出力された光信号は,光信号経路90−1で示すように,第1の光サーキュレータ81−3の第1ポートから第3ポートを経て選択スイッチ82−1(SEL1)の共通ポートcに入力される。装置監視制御部21は、光スイッチ接続情報214を参照し、IF部23−2およびIF部23−4が両方とも基本スイッチ83−1(OSW−B1)と接続されていると判定して、IF部23−2に対応する選択スイッチ82−1と、IF部23−4に対応する選択スイッチ82−2(SELk)のポートcをポートaとをあらかじめ接続する。このため選択スイッチ82−1のポートcに入力された光信号はポートaから出力されて第2の光サーキュレータ81−4の第1ポートに入力し、第3ポートを経て,第1の基本スイッチ83−1のポート1に入力される。
装置監視制御部21は、IF−AとIF−Bを接続するため、光スイッチ接続情報を参照し、これらIF部23に接続される基本スイッチ83−1の入力ポート1と出力ポートkをあらかじめ接続する。基本スイッチ83−1のポートkから出力される光信号は、第1の光サーキュレータ81−5の第3ポートから第1ポートを経て選択スイッチ82−2のポートaに入力される。選択スイッチ82−2のポートaは前述のとおりポートcと接続されている。従って,選択スイッチ82−2のポートaから入力された光信号は共通ポートcから出力され,光サーキュレータ81−7の第3ポートから第1ポートを経てIF−BであるIF部23−4と接続される。一方,IF部23−4から出力される光信号は,上述と同様の動作で,光信号の経路90−2で示されるように,最終的にはIF−AであるIF部23−2へ入力される。このようにして,IF23−2とIF23−4間の双方向の相互接続が実現される。
この後,装置監視制御部21は、IF部23−2とIF部23−4により例えば信号のビット誤り数を計数したり、あるいはオーバヘッドに挿入されたトレース情報を参照することで信号をモニタし、このモニタ結果をネットワーク監視制御装置40−1へ送信する。ネットワーク監視制御装置40−1は、送信されたモニタ監視と、正常性を判断するためにあらかじめ定められた閾値と比較するなどして、IF−AとIF−B間の主信号導通が所定の品質で達成されたか否かを判断する(S05)。
この監視結果が正常であれば,ネットワーク監視制御装置40−1は経路設定処理が正常に終了したと判定し(S06),処理が終了する。また,IF−AとIF−B間の主信号導通が異常であった場合は,異常判定され(S07),処理が終了する。
以上の実施例では、接続する2つのIF部23が同じ基本スイッチ83に接続されている場合を説明した。次に,ネットワーク監視制御装置40から接続を指示された2つのIF部23が、異なる基本スイッチ83に接続されている場合について説明する。図5の処理(S02)でIF−AとIF−Bが異なる基本スイッチ83に属し、図5の(S02)の処理結果がNoとなる場合について説明する。
これは,例えば,IF−AがIF部23−2(IF1),IF−BがIF部23−3(IF2k)の場合である。この場合,装置監視制御部21は光スイッチ接続情報を参照し、IF部23−2とIF部23−3がそれぞれ異なる基本スイッチ83−1(OSW−B1)、基本スイッチ83−2(OSW−B2)に接続されていると判断する。すると装置監視制御部21は、IF部23−2とIF部23−3に接続される選択スイッチ82−1(SEL1)および82−3(SEL2k)について、ポートcとポートbを接続するとともに,IF部23−3に接続されるポート1とIF部23−3に接続されるポート2kが接続されるよう拡張スイッチ84(OSW−E)を制御する(S04)。
このように制御することで,IF部23−2からの出力信号は,光信号経路90−3に沿って,IF部23−3へ入力されるとともに,IF部23−3からの出力信号は,光信号経路90−4に沿って,IF部23−2へ入力されるので,IF部23−2とIF部23−3間の双方向の相互接続が実現される。S05〜S07の処理については,上述のIF部23−2とIF部23−4を接続する場合の説明と同様である。
以上の動作によれば,選択スイッチ82をポートa側に選択することで基本スイッチ83−1と接続される1番目からk番目のIF部23は,基本スイッチ83−1が非閉塞であれば,任意の組み合せで相互接続が可能である。また、選択スイッチ82をポートa側に選択することで、基本スイッチ83−2と接続されるk+1番目から2k番目のIF部23は,基本スイッチ83−2が非閉塞であれば,任意の組み合せで相互接続が可能である。
さらに,選択スイッチ82をポートb側に選択することで拡張スイッチ84−1のポート1〜kに接続される1番目からk番目のIF部23のいずれか任意の1つは,拡張スイッチ84−1が非閉塞であれば,同じく選択スイッチ82をポートb側に選択することで拡張スイッチ84−1のポートk+1〜2kに接続されるk+1番目から2k番目のIF部23のいずれか任意の1つと,任意の組み合わせで相互に接続することが可能である。即ち,本発明の光スイッチ22によれば,k入力k出力の基本スイッチ2個と,2k個のポートを備え1番目からk番目のポートはk+1番目から2k番目のポートのいずれかと相互接続可能な双方向伝送性をもつ拡張スイッチ1個を、2k個の選択スイッチおよび4k個の光サーキュレータを用いて上述の如く構成することで,2k×2kの非閉塞な光スイッチが実現できる。
以上説明したように,本実施例の光スイッチによれば,接続対象の2つのIF部23が同一の基本スイッチ83に属するか否かの判定により,わずか2ポートの選択スイッチ82の設定と,基本スイッチ83または拡張スイッチ84いずれか一個の光スイッチの接続を設定することで2つのIF部23を任意に接続することができる。このように簡素な光スイッチや光サーキュレータの組み合わせにより、2k×2kの入出力ポート間を任意に接続可能な大規模光スイッチを構成できるため、従来の3段のスイッチ構成と比較して制御の簡素化が図れる。
また,ハードウェア削減効果について,例えば,256×256規模の光スイッチについて,3段構成のクロス網と比較してみる。クロス網の場合,16×32規模の光スイッチが16個,16×16規模の光スイッチが32個必要となる。これを3D-MEMS型スイッチで実現する場合,スイッチ素子数は,原理的には,(16+32)×16+(16+16)×32=1792個が必要となる。一方,本発明によるスイッチ構成の場合,光サーキュレータは受動部品であり制御の必要が無いため除外すると,128×128規模の3D-MEMS型スイッチが3個と,1×2規模の光スイッチが256個あれば良いので,合計で,(128+128)×3+256=1024個の光スイッチを用意すれば良く,制御対象数やハードウェア規模が,約57%に削減できる。
本実施例の選択スイッチ82については,1×2型の光スイッチを用いれば良い。半導体スイッチやLiNO3スイッチ、PLC型スイッチ、可動型光スイッチ、MEMS型スイッチなどを用いることができるが,光信号を双方向に通過可能な光スイッチであれば,これらの限りではないことは明白である。
拡張スイッチ84について,双方向伝送性を確保するためには,光信号の経路上に光アイソレータなどの光信号の伝播する方向を制限するような素子を用いずに構成することで実現が可能である。
本実施例では図3,図6,図7において,基本スイッチ83を2個用い、拡張スイッチ84を1個用いる構成を示したが、これらの一部だけを使用することもできるため、本実施例の光スイッチ部224は拡張性に優れる。例えば,IF部23の数が1〜kの場合は,直列に2つの光サーキュレータを接続したものをk組と、k入力k出力の基本スイッチ1個あればk×kのスイッチとして使用することができる。これにさらに直列に2つの光サーキュレータを接続したものk組と、k入力k出力の第2の基本スイッチ1個を追加することで,k×kのスイッチとして2個独立に動作でき,2k個のインタフェースを収容可能である。
さらに,直列に接続した2つのサーキュレータの間に選択スイッチを配置し、選択スイッチの一方のポートを1つの拡張スイッチに接続することで,既存の2組のk×kスイッチの既設のパスを乱すことなく,2k×2kのスイッチへの増設あるいはアップグレードが可能である。また,収容する回線数が少なくなる場合は,使用するインタフェースを1番目からk番目へ徐々に集約していくことで,拡張スイッチや第2の基本スイッチを減設することが可能である。
また,2k×2kのスイッチを主に基本スイッチ2個と拡張スイッチ1個の3つのスイッチで構成しているので,いずれか1つのスイッチが故障しても,光クロスコネクト装置が収容する回線全てに影響することはなく,スイッチ故障の波及範囲を限定できるという効果もある。
本発明による光スイッチおよび光クロスコネクト装置は本実施例に限定されるものではない。また、本実施例では,光クロスコネクト装置にWDM部にWDM機能を内蔵する例を示したが,本発明の効果は,WDM機能を内蔵しない場合でも同様に効果がある。
また、複数の光スイッチを組み合わせる場合、光スイッチ部を拡張(増設)可能に構成することでノード建設時の初期コストを抑え、また光スイッチ部の切替え制御を簡素にすることで監視制御装置への負荷を軽減することができる。
光ネットワークの一例を示す図。 光クロスコネクト装置の一実施例を示す図。 光スイッチの一実施例を示す図。 光サーキュレータの入出力関係を示す図。 光スイッチの制御シーケンスの一実施例を示す図。 光クロスコネクト状態の一実施例を示す図。 光クロスコネクト状態の別の一実施例を示す図。 光スイッチ接続情報の一実施例を示す図。
符号の説明
10…光ネットワーク
20…光クロスコネクト装置
21…装置監視制御部
214…光スイッチ接続情報
22…光信号切替部
224…光スイッチ部
81…光サーキュレータ
82…選択スイッチ
83…基本スイッチ
84…拡張スイッチ

Claims (4)

  1. 第1のポートから第2のポートへ、前記第2のポートから第3のポートへ、前記第3のポートから前記第1のポートへ、それぞれ入力された光信号を出力する光サーキュレータを用いた光信号の経路切替装置において、
    それぞれが第4のポートと第5のポートと第6のポートを持ち、前記第4のポートと、前記第5のポート又は前記第6のポートのいずれか任意の1つとの間に光信号の経路を設定することができる、2k個の第1の光スイッチと、
    それぞれがk個の第7のポートとk個の第8のポートを持ち、前記第7のポートと第8のポートの間を任意に一対一に接続する、第2の光スイッチおよび第3の光スイッチと、
    k個のポートを有する第9のポートとk個のポートを有する第10のポートを持ち、当該第9のポートと第10のポートの間を任意に一対一に接続する、第3の光スイッチと、
    それぞれの前記第2のポートが前記第2の光スイッチの第7のポートに一対一に接続され、前記第3のポートが前記第2の光スイッチの第8のポートに一対一に接続された、k個の第1の光サーキュレータと、
    それぞれの前記第2のポートが前記第3の光スイッチの第7のポートに一対一に接続され、前記第3のポートが前記第3の光スイッチの第8のポートに一対一に接続された、k個の第2の光サーキュレータとを有し、
    前記第1の光スイッチのうちk個について、前記第5のポートと前記第1の光サーキュレータの第1のポートとを一対一に接続し、前記第6のポートを前記第3の光スイッチの前記第9のポートの1つに一対一に接続し、
    前記第1の光スイッチのうち残りのk個について、前記第5のポートと前記第2の光サーキュレータの第1のポートとを一対一に接続し、前記第6のポートを前記第3の光スイッチの前記第10のポートの1つに一対一に接続することを特徴とする光信号の経路切替装置。
  2. 請求項1に記載の光信号の経路切替装置において、
    前記第1の光スイッチの第3のポートのそれぞれに第3の光サーキュレータが接続されていることを特徴とする光信号の経路切替装置。
  3. 請求項1に記載の光信号の経路切替装置において、
    前記第1の光サーキュレータにそれぞれ接続された、2つの前記第1の光スイッチ同士の間に光信号の経路を設定する場合、
    前記第1の光スイッチは前記第4のポートと前記第5のポートを接続し、
    前記第2の光スイッチは、光信号の経路を設定する2つの前記第1の光スイッチに接続された2つの前記第1の光サーキュレータについて、1つの光サーキュレータの第2のポートに接続された前記第7のポートと、もう1つの光サーキュレータの第3のポートに接続された前記第8のポートとの間を接続することを特徴とする光信号の切替装置。
  4. 請求項1に記載の光信号の経路切替装置において、
    前記第1の光サーキュレータの任意の1つに接続された前記第1の光スイッチと、前記第2の光サーキュレータの任意の1つに接続された前記第1の光スイッチとを接続する場合、
    前記第1の光スイッチは前記第4のポートと前記第6のポートを接続し、
    前記第3の光スイッチは、光信号の経路を設定する2つの前記第1の光スイッチについて、前記第1の光サーキュレータの任意の1つに接続された前記第1の光スイッチの前記第6のポートと接続されている前記第9のポートと、前記第2の光サーキュレータの任意の1つに接続された前記第1の光スイッチの前記第6のポートと接続されている前記第10のポートとの間を接続することを特徴とする光信号の切替装置。
JP2006321018A 2006-11-29 2006-11-29 光スイッチおよび光クロスコネクト装置 Expired - Fee Related JP4826450B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2006321018A JP4826450B2 (ja) 2006-11-29 2006-11-29 光スイッチおよび光クロスコネクト装置
CN2007101960037A CN101193329B (zh) 2006-11-29 2007-11-28 光开关及光交叉连接装置
US11/987,398 US7877011B2 (en) 2006-11-29 2007-11-29 Optical switch and optical crossconnect apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006321018A JP4826450B2 (ja) 2006-11-29 2006-11-29 光スイッチおよび光クロスコネクト装置

Publications (2)

Publication Number Publication Date
JP2008136011A true JP2008136011A (ja) 2008-06-12
JP4826450B2 JP4826450B2 (ja) 2011-11-30

Family

ID=39463831

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006321018A Expired - Fee Related JP4826450B2 (ja) 2006-11-29 2006-11-29 光スイッチおよび光クロスコネクト装置

Country Status (3)

Country Link
US (1) US7877011B2 (ja)
JP (1) JP4826450B2 (ja)
CN (1) CN101193329B (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010081297A (ja) * 2008-09-26 2010-04-08 Kddi Corp 全光ネットワーク運用管理装置
WO2011018926A1 (ja) * 2009-08-12 2011-02-17 日本電気株式会社 ネットワーク管理装置および波長パス設定方法
JP5216862B2 (ja) * 2008-09-19 2013-06-19 日本電信電話株式会社 帯域可変通信装置及び帯域可変通信方法
JPWO2020225882A1 (ja) * 2019-05-08 2020-11-12
WO2021200097A1 (ja) * 2020-03-30 2021-10-07 日本電気株式会社 監視装置、監視方法及びプログラムが格納された非一時的なコンピュータ可読媒体
JP2022022319A (ja) * 2015-07-13 2022-02-03 ノーザン バージニア エレクトリック コーポレイティブ 単一ファイバストランド上のデータの双方向伝送システム、装置、および方法
WO2023100320A1 (ja) * 2021-12-02 2023-06-08 日本電信電話株式会社 光ノード装置、光通信システム及び転送方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5213911B2 (ja) * 2010-06-08 2013-06-19 株式会社日立製作所 光中継システム
CN102820951B (zh) * 2012-07-30 2016-12-21 华为技术有限公司 光传送网中传送、接收客户信号的方法和装置
CN106792282B (zh) 2015-11-24 2020-03-10 华为技术有限公司 一种光信号处理方法及光交叉装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000152293A (ja) * 1998-11-13 2000-05-30 Nec Corp 双方向光伝送装置、光クロスコネクト装置及び光ネットワーク装置
JP2000324521A (ja) * 1999-05-10 2000-11-24 Fujitsu Ltd 光パスクロスコネクト装置
JP2002182250A (ja) * 2000-12-15 2002-06-26 Toshiba Corp 光スイッチ装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002077238A (ja) 2000-08-31 2002-03-15 Fujitsu Ltd パケットスイッチ装置
CN1159605C (zh) * 2002-05-23 2004-07-28 上海交通大学 自由空间4×4阵列光开关
ATE278274T1 (de) * 2002-06-24 2004-10-15 Cit Alcatel Vorrichtung für ein passives optisches netzwerk
KR100442663B1 (ko) * 2002-10-07 2004-08-02 삼성전자주식회사 광 회선분배 시스템
KR100498955B1 (ko) * 2003-02-05 2005-07-04 삼성전자주식회사 파장분할다중방식 자기치유 환형 광통신망
CN1255995C (zh) * 2003-07-24 2006-05-10 华中科技大学 全光波长路由交叉模块

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000152293A (ja) * 1998-11-13 2000-05-30 Nec Corp 双方向光伝送装置、光クロスコネクト装置及び光ネットワーク装置
JP2000324521A (ja) * 1999-05-10 2000-11-24 Fujitsu Ltd 光パスクロスコネクト装置
JP2002182250A (ja) * 2000-12-15 2002-06-26 Toshiba Corp 光スイッチ装置

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5216862B2 (ja) * 2008-09-19 2013-06-19 日本電信電話株式会社 帯域可変通信装置及び帯域可変通信方法
US8526438B2 (en) 2008-09-19 2013-09-03 Nippon Telegraph And Telephone Corporation Bandwidth variable communication apparatus and bandwidth variable communication method
JP2010081297A (ja) * 2008-09-26 2010-04-08 Kddi Corp 全光ネットワーク運用管理装置
WO2011018926A1 (ja) * 2009-08-12 2011-02-17 日本電気株式会社 ネットワーク管理装置および波長パス設定方法
JP2022022319A (ja) * 2015-07-13 2022-02-03 ノーザン バージニア エレクトリック コーポレイティブ 単一ファイバストランド上のデータの双方向伝送システム、装置、および方法
JPWO2020225882A1 (ja) * 2019-05-08 2020-11-12
WO2020225882A1 (ja) * 2019-05-08 2020-11-12 日本電信電話株式会社 サーバ、光伝送方法、光伝送システム、および、光伝送プログラム
JP7192975B2 (ja) 2019-05-08 2022-12-20 日本電信電話株式会社 サーバ、光伝送方法、光伝送システム、および、光伝送プログラム
WO2021200097A1 (ja) * 2020-03-30 2021-10-07 日本電気株式会社 監視装置、監視方法及びプログラムが格納された非一時的なコンピュータ可読媒体
WO2023100320A1 (ja) * 2021-12-02 2023-06-08 日本電信電話株式会社 光ノード装置、光通信システム及び転送方法

Also Published As

Publication number Publication date
US7877011B2 (en) 2011-01-25
US20080124078A1 (en) 2008-05-29
CN101193329B (zh) 2010-07-21
JP4826450B2 (ja) 2011-11-30
CN101193329A (zh) 2008-06-04

Similar Documents

Publication Publication Date Title
JP4826450B2 (ja) 光スイッチおよび光クロスコネクト装置
US9509408B2 (en) Optical data transmission system
US6532320B1 (en) Equipments, transpondor and methods for optical fiber transmission
KR101396954B1 (ko) 광 전송 장치 및 광 전송 시스템
US7072584B1 (en) Network hub employing 1:N optical protection
JP6115364B2 (ja) 光伝送装置、光伝送システム、及び光伝送方法
JP5002431B2 (ja) 光伝送システム
JP5287993B2 (ja) 光信号送信装置、光信号受信装置、波長多重分離光通信装置および波長パスシステム
US8625993B2 (en) Wavelength-switched optical add-drop multiplexer with wavelength broadcasting capability
WO2008060007A1 (en) Multi-degree cross-connector system, operating method and optical communication network using the same
EP1536583A2 (en) Optical ring network with optical subnets
US7283747B2 (en) Optical switch router
JP5681394B2 (ja) 光電気ハイブリッドノード
JP2007243508A (ja) 光信号切替え装置および光信号切替え方法
US6574386B1 (en) Dynamically reconfigurable optical switching system
EP1111953B1 (en) An optical switching node and method for operating same
JP4852491B2 (ja) 光クロスコネクトスイッチ機能部及び光クロスコネクト装置
JP5911104B2 (ja) 光多重分離伝送装置、制御方法および光多重分離伝送制御システム
JP2012004800A (ja) 光ネットワークシステムのノード装置および冗長切替方法
JP4966278B2 (ja) 光伝送装置、及び光伝送ネットワークシステム
JP2011259381A (ja) 光経路制御方法
JP4768661B2 (ja) 波長群ネットワークにおける波長選択方法及び装置及びプログラム
Ye et al. Modular WSS-based OXCs for Large-Scale Optical Networks
Parveen Open Line System components, use cases, and challenges
EP2448159A1 (en) Multidirectional add and drop devices for an optical network element

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090703

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090703

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20090914

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110405

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110531

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110816

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110829

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140922

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140922

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees