JP2008130707A - Superconducting magnet device and nuclear magnetic resonance imaging apparatus - Google Patents

Superconducting magnet device and nuclear magnetic resonance imaging apparatus Download PDF

Info

Publication number
JP2008130707A
JP2008130707A JP2006312410A JP2006312410A JP2008130707A JP 2008130707 A JP2008130707 A JP 2008130707A JP 2006312410 A JP2006312410 A JP 2006312410A JP 2006312410 A JP2006312410 A JP 2006312410A JP 2008130707 A JP2008130707 A JP 2008130707A
Authority
JP
Japan
Prior art keywords
magnetic field
magnetizing
superconducting magnet
main coil
face
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006312410A
Other languages
Japanese (ja)
Other versions
JP4866215B2 (en
Inventor
Takeshi Nakayama
武 中山
Mitsuji Abe
充志 阿部
Hiroyuki Watanabe
洋之 渡邊
Yoshiya Higuchi
佳也 樋口
Atsushi Kawamura
淳 川村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Engineering and Services Co Ltd
Hitachi Ltd
Original Assignee
Hitachi Engineering and Services Co Ltd
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Engineering and Services Co Ltd, Hitachi Ltd filed Critical Hitachi Engineering and Services Co Ltd
Priority to JP2006312410A priority Critical patent/JP4866215B2/en
Publication of JP2008130707A publication Critical patent/JP2008130707A/en
Application granted granted Critical
Publication of JP4866215B2 publication Critical patent/JP4866215B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Magnetic Resonance Imaging Apparatus (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a superconducting magnet device and a nuclear magnetic resonance imaging apparatus which can generate a static magnetic field having a high intensity while reducing a mutually attracting force between a pair of opposing static magnetic field generators in a technique for generating a static magnetic field having a high intensity. <P>SOLUTION: A pair of opposing magnetic field generators (30, 40) forming a superconducting magnet device (11) comprise a coolant container (35) containing a coolant (L) for cooling a main coil (31) and a shield coil (32), a fixing member (23) for concentrically fixing a first magnetizing member (21) and a second magnetizing member (22), and a linkage member (24) for linking an extension part (36) of the coolant container (35) to the fixing member (23). The first magnetizing member (21) is arranged so that the opposing inner end faces of the first magnetizing member are projected from an end face of the main coil (31) and outer end faces thereof opposed to the opposing inner end faces are recessed from the opposing end face of the main coil (31). <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、高強度の静磁場を形成する超電導磁石装置に関連する技術であって、特に、核磁気共鳴イメージング装置に適用するのに好適な超電導磁石装置に関する。   The present invention relates to a superconducting magnet apparatus that forms a high-intensity static magnetic field, and more particularly to a superconducting magnet apparatus suitable for application to a nuclear magnetic resonance imaging apparatus.

核磁気共鳴イメージング装置(Magnetic Resonance Imaging;以下、MRI装置という)は、核磁気共鳴(Nuclear Magnetic Resonance;以下、NMRという)現象により水素原子核スピンが放出する電磁波を計測し、その信号を演算処理することによって、被検者の断層を水素原子核の密度分布に依存する画像として撮像するものである。
このMRI装置による計測を実行する際は、その構成要素である超電導磁石装置が、磁場強度が高く(0.2T以上)、磁場密度の均一性の高い静磁場(10ppm程度)を撮像領域に形成する必要がある。
A nuclear magnetic resonance imaging apparatus (hereinafter referred to as an MRI apparatus) measures an electromagnetic wave emitted by a hydrogen nuclear spin due to a nuclear magnetic resonance (hereinafter referred to as NMR) phenomenon, and processes the signal. Thus, the tomography of the subject is taken as an image depending on the density distribution of the hydrogen nuclei.
When performing measurement using this MRI apparatus, the superconducting magnet device, which is a component thereof, forms a static magnetic field (about 10 ppm) with high magnetic field strength (0.2 T or more) and high magnetic field density uniformity in the imaging region. There is a need to.

この超電導電磁石装置において、静磁場の強度を上げようとすると、構成要素である超電導コイルを循環する永久電流の値を大きくする必要がある。しかし、この永久電流の値を大きくすると超電導コイルの超電導状態を維持するのに必要な臨界値を超えてしまう場合がある。
そこで、従来から、超電導電磁石装置が形成する磁気回路に、強磁性体からなる磁化部材を配置し、この撮像領域における静磁場の強度を高くする技術が公知になっている(例えば、特許文献1−5)。しかし、これら公知技術においては、熱容量の大きな磁化部材を冷媒(液化ヘリウム)とともに冷媒容器に収容する場合にあっては、初期冷却の際に冷媒の消費量が多くなる問題がある。また、磁化部材を真空容器で支持する構造をとる場合においては、この磁化部材は熱的な良導体でもあるため、外部から装置内部へ侵入する熱量が増加して、通常運転中に冷媒の消費量が増える問題がある。
In this superconducting electromagnet apparatus, in order to increase the strength of the static magnetic field, it is necessary to increase the value of the permanent current circulating through the superconducting coil as a component. However, when the value of the permanent current is increased, the critical value necessary for maintaining the superconducting state of the superconducting coil may be exceeded.
Therefore, conventionally, a technique has been known in which a magnetized member made of a ferromagnetic material is arranged in a magnetic circuit formed by a superconducting electromagnet apparatus and the strength of a static magnetic field in this imaging region is increased (for example, Patent Document 1). -5). However, in these known technologies, when a magnetized member having a large heat capacity is accommodated in a refrigerant container together with a refrigerant (liquefied helium), there is a problem that the amount of refrigerant consumed increases during the initial cooling. In addition, in the case of adopting a structure in which the magnetized member is supported by a vacuum vessel, the magnetized member is also a good thermal conductor, so the amount of heat that enters the inside of the apparatus from the outside increases, and the amount of refrigerant consumed during normal operation There is a problem that increases.

そこで、このような問題を回避するために、磁化部材を冷媒容器に連結する構造をとる公知技術が開示されている(特許文献6)。
米国特許第6570475号明細書 特開2001−224571号公報 特表2003−512872号公報 特開平11−318858号公報 特開平11−283823号公報 特開2006−102060号公報 図7
Therefore, in order to avoid such a problem, a known technique is disclosed that has a structure in which the magnetizing member is connected to the refrigerant container (Patent Document 6).
US Pat. No. 6,570,475 JP 2001-224571 A Special table 2003-512872 gazette JP 11-318858 A Japanese Patent Laid-Open No. 11-283823 JP 2006-102060 A FIG.

しかし、冷媒容器により磁化部材を支持する構造として開示されている従来技術(特許文献6)では、静磁場の強度を高くしようとすると、撮像領域をはさんで対向する一対の磁化部材が互いに引き合う力が増大する。このため、この磁化部材と冷媒容器とを連結する部材の強度を高める必要が生じ、その結果、この部材と磁化部材及び冷媒容器との接触面積が増大し、磁化部材から冷媒容器へ侵入する熱量が増加してしまう。このため、当初目的とした冷媒の消費量を抑制する効果が低減してしまう問題がある。   However, in the conventional technique (Patent Document 6) disclosed as a structure in which a magnetizing member is supported by a refrigerant container, a pair of magnetizing members facing each other across an imaging region attract each other when an attempt is made to increase the strength of a static magnetic field. Power increases. For this reason, it is necessary to increase the strength of the member connecting the magnetized member and the refrigerant container. As a result, the contact area between the member, the magnetized member, and the refrigerant container increases, and the amount of heat entering the refrigerant container from the magnetized member. Will increase. For this reason, there exists a problem that the effect which suppresses the consumption of the refrigerant | coolant made into the initial objective will reduce.

本発明は、前記した問題を解決することを課題とし、対向する一対の静磁場発生部が互いに引き合う力を低減する構成をとりつつ、強度の高い静磁場を発生させることが可能な超電導磁石装置、及び核磁気共鳴イメージング装置を提供することを目的とする。   The present invention aims to solve the above-described problems, and a superconducting magnet device capable of generating a high-strength static magnetic field while adopting a configuration in which a pair of opposing static magnetic field generators reduces the attractive force of each other. It is another object of the present invention to provide a nuclear magnetic resonance imaging apparatus.

前記した課題を解決するため本発明は、一対の静磁場発生部を対向させてなる超電導電磁石装置において、メインコイル及びシールドコイルを冷却する冷媒を収容する冷媒容器と、第1磁化部材及び第2磁化部材を同心状に固定する固定部材と、前記冷媒容器の延出部位及び前記固定部材を連結する連結部材と、を備え、前記第1磁化部材は、前記対向する側の内側端面が前記メインコイルの端面から突出し、前記対向する側とは反対側の外側端面が前記メインコイルの反対側の端面から没入するようにして配置されていることを特徴とする。   In order to solve the above-described problems, the present invention provides a superconducting electromagnet apparatus in which a pair of static magnetic field generators are opposed to each other, a refrigerant container that contains a refrigerant that cools a main coil and a shield coil, a first magnetizing member, and a second magnetizing member. A fixing member that concentrically fixes the magnetizing member, and an extension part of the refrigerant container and a connecting member that connects the fixing member, wherein the inner end face on the opposite side of the first magnetizing member is the main member The outer end face that protrudes from the end face of the coil and that is opposite to the opposite side is arranged so as to be recessed from the end face opposite to the main coil.

本発明によれば、対向する一対の静磁場発生部が互いに引き合う力を低減する構成をとりつつ、強度の高い静磁場を発生させることが可能な超電導磁石装置、及び核磁気共鳴イメージング装置が提供される。   According to the present invention, there are provided a superconducting magnet apparatus and a nuclear magnetic resonance imaging apparatus capable of generating a high-intensity static magnetic field while adopting a configuration that reduces the force with which a pair of opposing static magnetic field generation units attract each other. Is done.

(第1実施形態)
以下、図面を参照して本発明の第1実施形態に係る核磁気共鳴イメージング装置(MRI装置)を説明する。
図1に全体の側面図が示されているように、MRI装置10は、垂直方向を向く中心軸Zが回転対称軸となるように第1静磁場発生部30及び第2静磁場発生部40を対向させて支柱12に固定してなる超電導磁石装置(図2参照)に、撮像領域Rを挟むようにして配置される傾斜磁場発生部13,13と、被検者Pを載置して撮像領域Rに位置させるベッド台Dと、を備えている。
さらに、図示されない構成要素としてMRI装置10は、撮像領域Rに向けてNMR現象を発現せる共鳴周波数の電磁波を照射するRF(Radio Frequency)コイルと、撮像領域Rからの応答信号を受信する受信コイルと、これら構成要素を制御する制御装置、受信した信号を処理して解析を行う解析装置とを備えている。
このように構成されることによりMRI装置10は、撮像領域Rの関心領域(通常1mm厚のスライス面)だけにNMR現象を発現させて、水素原子核スピンから放出される電磁波に基づいて被検者の断層を画像化するものである。
(First embodiment)
Hereinafter, a nuclear magnetic resonance imaging apparatus (MRI apparatus) according to a first embodiment of the present invention will be described with reference to the drawings.
As shown in the overall side view of FIG. 1, the MRI apparatus 10 includes a first static magnetic field generation unit 30 and a second static magnetic field generation unit 40 such that the central axis Z facing the vertical direction is a rotationally symmetric axis. Are placed on a superconducting magnet device (see FIG. 2) which is fixed to the support column 12 and the gradient magnetic field generators 13 and 13 arranged so as to sandwich the imaging region R and the subject P are placed on the imaging region. And a bed table D positioned at R.
Further, as components not shown, the MRI apparatus 10 includes an RF (Radio Frequency) coil that irradiates an electromagnetic wave having a resonance frequency that causes an NMR phenomenon toward the imaging region R, and a receiving coil that receives a response signal from the imaging region R. A control device that controls these components, and an analysis device that processes and analyzes the received signal.
With this configuration, the MRI apparatus 10 causes the NMR phenomenon to appear only in the region of interest (usually a slice surface having a thickness of 1 mm) in the imaging region R, and based on the electromagnetic waves emitted from the hydrogen nuclear spins. The tomogram is imaged.

MRI装置10は、第1静磁場発生部30と第2静磁場発生部40とが天地方向に対になるように配置され、その間隙の中心に静磁場の磁力線密度が均一で垂直方向を向く領域(撮像領域R)を形成する。そして、この撮像領域Rに被検者Pを挿入し、この領域における被検者の断層画像が、核磁気共鳴現象(NMR現象)を利用し撮像される。   The MRI apparatus 10 is arranged so that the first static magnetic field generation unit 30 and the second static magnetic field generation unit 40 are paired in the vertical direction, and the magnetic field density of the static magnetic field is uniform and faces the vertical direction at the center of the gap. A region (imaging region R) is formed. Then, the subject P is inserted into the imaging region R, and a tomographic image of the subject in this region is captured using a nuclear magnetic resonance phenomenon (NMR phenomenon).

傾斜磁場発生部13,13は、図2のX−Z,Y―Zの部分断面図に示されるように、第1磁場発生部30及び第2磁場発生部40が対向する面にそれぞれ設けられた一対の窪みに配置されている。そして、傾斜磁場発生部13,13は、撮像領域Rにおいて、超電導磁石装置11により形成された静磁場に勾配磁場を印加し、NMR現象の位置情報を与えるものである。   The gradient magnetic field generators 13 and 13 are provided on the surfaces where the first magnetic field generator 30 and the second magnetic field generator 40 face each other, as shown in the XZ and YZ partial cross-sectional views of FIG. It is arrange | positioned in a pair of hollows. The gradient magnetic field generators 13 and 13 apply a gradient magnetic field to the static magnetic field formed by the superconducting magnet device 11 in the imaging region R to give position information of the NMR phenomenon.

第1静磁場発生部30は、図2に示されるように、メインコイル31と、シールドコイル32と、冷媒容器35と、真空容器37と、第1磁化部材21と、第2磁化部材22と、固定部材23と、連結部材24とを少なくとも構成要素として備えるものである。なお、図示略とするが、冷媒容器35と真空容器37との間には、真空容器37から冷媒容器35に向かう熱輻射を遮蔽する輻射シールドが設けられている。
第2静磁場発生部40は、第1静磁場発生部30に対して中心軸Zを共有しかつ鏡面対称となるようにその内部が構成されている。
支柱12は、一対の第1静磁場発生部30と第2静磁場発生部40とを天地方向に対向させて支持するものである。そして図示略とするが、支柱12の内部は、冷媒容器35が、第1静磁場発生部30と第2静磁場発生部40とを連通するように構成されている。また真空容器37も同様に、支柱12の内部において、第1静磁場発生部30と第2静磁場発生部40とを連通している。
As shown in FIG. 2, the first static magnetic field generation unit 30 includes a main coil 31, a shield coil 32, a refrigerant container 35, a vacuum container 37, a first magnetization member 21, and a second magnetization member 22. The fixing member 23 and the connecting member 24 are provided as at least constituent elements. Although not shown, a radiation shield that shields heat radiation from the vacuum container 37 toward the refrigerant container 35 is provided between the refrigerant container 35 and the vacuum container 37.
The inside of the second static magnetic field generation unit 40 is configured so as to share the central axis Z with the first static magnetic field generation unit 30 and be mirror-symmetric.
The support column 12 supports the pair of first static magnetic field generation units 30 and second static magnetic field generation units 40 so as to face each other in the vertical direction. Although not shown, the inside of the support column 12 is configured such that the refrigerant container 35 communicates the first static magnetic field generation unit 30 and the second static magnetic field generation unit 40. Similarly, the vacuum vessel 37 communicates the first static magnetic field generation unit 30 and the second static magnetic field generation unit 40 inside the support column 12.

メインコイル31は、永久電流が所定の方向(順方向)に循環して撮像領域Rに計測用の静磁場を生成させる超電導コイルであって、中心軸Zを中心として配置されるコイルボビン(図示略)の周りに超電導線材が巻回して形成される。
ここで、超電導コイルとは、冷媒容器35に充填されている冷媒L(例えば、液体ヘリウム)により臨界温度より低温に冷却されると常電導状態から超電導状態に転移して電気抵抗がゼロとなるものであって、環状電流が減衰することなく永久に循環するものである。
The main coil 31 is a superconducting coil in which a permanent current circulates in a predetermined direction (forward direction) to generate a static magnetic field for measurement in the imaging region R, and is a coil bobbin (not shown) arranged around the central axis Z. ) Is formed by winding a superconducting wire.
Here, the superconducting coil is changed from the normal conducting state to the superconducting state when cooled to a temperature lower than the critical temperature by the refrigerant L (for example, liquid helium) filled in the refrigerant container 35, and the electric resistance becomes zero. The annular current circulates forever without being attenuated.

シールドコイル32は、メインコイル31と中心軸Zを共有するようにかつ直径が大きくなるように構成されている。そして、シールドコイル32には、メインコイル31に流れる順方向とは逆方向に環状の永久電流が流れている。このようにして、シールドコイル32は、超電導磁石装置11の外部に漏洩する計測用の磁場を打ち消すものである。   The shield coil 32 is configured to share the central axis Z with the main coil 31 and to have a large diameter. An annular permanent current flows through the shield coil 32 in the direction opposite to the forward direction flowing through the main coil 31. In this way, the shield coil 32 cancels the magnetic field for measurement leaking outside the superconducting magnet device 11.

真空容器37は、真空状態に保たれている内部において止着部材33を介して冷媒容器35を保持するものであって、伝導および対流による熱が冷媒容器35に侵入するのを防止するものである。
冷媒容器35は、メインコイル31及びシールドコイル32を超電導現象が発現する臨界温度以下の温度に保つ冷媒Lを収容するものである。そして、冷媒容器35の内周面には、中心軸Zに交わる方向に延出する延出部位36が設けられている。
The vacuum container 37 holds the refrigerant container 35 via the fastening member 33 inside the vacuum state, and prevents heat from conduction and convection from entering the refrigerant container 35. is there.
The refrigerant container 35 contains the refrigerant L that keeps the main coil 31 and the shield coil 32 at a temperature equal to or lower than the critical temperature at which the superconducting phenomenon occurs. An extending portion 36 that extends in the direction intersecting the central axis Z is provided on the inner peripheral surface of the refrigerant container 35.

以下、図2中、破線で示されるX−Z(Y−Z)断面を拡大した図3を参照して説明を続ける。
第1磁化部材21は、メインコイル31の内径よりも外径が小さく環状に構成されるものであって、真空容器37の内部に、中心軸Zをメインコイル31と共有するようにして配置されている。そして、第1磁化部材21は、メインコイル31との中心軸Zの軸方向における相対的な位置関係は、次のようになっている。
すなわち、第1磁化部材21の撮像領域Rを挟んで対向する側の内側端面21aは、メインコイル31の端面31aから突出し、第1磁化部材21の撮像領域Rを挟んで対向する側とは反対側の外側端面21bはメインコイル31の反対側の端面31bから没入するような位置関係を、第1磁化部材21とメインコイル31とは有している。
このような位置関係を、第1磁化部材21とメインコイル31とが有することにより生じる効果については、後記する。
Hereinafter, the description will be continued with reference to FIG. 3 in which an XZ (YZ) cross section indicated by a broken line in FIG. 2 is enlarged.
The first magnetizing member 21 is formed in an annular shape having an outer diameter smaller than the inner diameter of the main coil 31, and is arranged inside the vacuum vessel 37 so as to share the central axis Z with the main coil 31. ing. The first magnetizing member 21 has a relative positional relationship with the main coil 31 in the axial direction of the central axis Z as follows.
That is, the inner end surface 21a on the opposite side of the imaging region R of the first magnetization member 21 protrudes from the end surface 31a of the main coil 31 and is opposite to the opposite side of the first magnetization member 21 across the imaging region R. The first magnetization member 21 and the main coil 31 have a positional relationship such that the outer end surface 21b on the side is recessed from the end surface 31b on the opposite side of the main coil 31.
The effects produced by the first magnetizing member 21 and the main coil 31 having such a positional relationship will be described later.

第2磁化部材22は、第1磁化部材21の環状の内径よりも、外径が小さく構成されるものであって、真空容器37の内部に、中心軸Zをメインコイル31と共有するようにして配置されている。この第2磁化部材22は、固定部材23により、第1磁化部材21と中心軸Zを共有する同心状に固定されている。
この固定部材23は、中空の円形平板であって、その第1面に第1磁化部材21の外側端面21bが締結部材等により固着され、その第2面に第2磁化部材22の内側端面が締結部材等により固着している。
なお、この第2磁化部材22は、平板であったり、中空の環状であったり、そのような環状の部材が同心状に複数積層して構成されたものであったりする。
The second magnetizing member 22 is configured to have an outer diameter smaller than the annular inner diameter of the first magnetizing member 21, and the central axis Z is shared with the main coil 31 inside the vacuum vessel 37. Are arranged. The second magnetizing member 22 is fixed concentrically by the fixing member 23 and sharing the central axis Z with the first magnetizing member 21.
The fixing member 23 is a hollow circular flat plate. The outer end surface 21b of the first magnetizing member 21 is fixed to the first surface by a fastening member or the like, and the inner end surface of the second magnetizing member 22 is fixed to the second surface. It is fixed by a fastening member or the like.
The second magnetizing member 22 may be a flat plate, a hollow ring, or a structure in which a plurality of such ring members are concentrically stacked.

そして、この固定部材23は、連結部材24を介して、延出部位36において冷媒容器35と連結している。
この連結部材24は、図2に示されるように、棒状体の複数が中心軸Zの軸廻りに間隔をおいて、かつ中心軸Zの軸方向にその長手方向を揃えて配置してなるものである。そして連結部材24は、その一端が固定部材23の水平面に固定され、その他端が冷媒容器35の内周面から張り出している延出部位36に固定されている。
このように連結部材24が構成されることにより、磁化部材21,22は冷媒容器35に連結する構造をとる。また、連結部材24は、磁化部材21,22及び冷媒容器35が相互間で伝達する熱の経路の断面が絞られた形状となっている。このため、磁化部材21,22から冷媒容器35へ侵入する熱量を抑制することができ、通常運転中における冷媒の消費量を低減することができる。
The fixing member 23 is connected to the refrigerant container 35 at the extended portion 36 via the connecting member 24.
As shown in FIG. 2, the connecting member 24 is formed by arranging a plurality of rod-like bodies at intervals around the axis of the central axis Z and aligning the longitudinal direction thereof in the axial direction of the central axis Z. It is. One end of the connecting member 24 is fixed to the horizontal surface of the fixing member 23, and the other end is fixed to an extension portion 36 that projects from the inner peripheral surface of the refrigerant container 35.
By configuring the connecting member 24 as described above, the magnetizing members 21 and 22 are connected to the refrigerant container 35. Further, the connecting member 24 has a shape in which the cross section of the path of heat transmitted between the magnetizing members 21 and 22 and the refrigerant container 35 is narrowed. For this reason, the amount of heat entering the refrigerant container 35 from the magnetized members 21 and 22 can be suppressed, and the amount of refrigerant consumed during normal operation can be reduced.

この連結部材24は、高剛性でかつ熱伝達率の小さな材料で構成されることが好ましく、具体的には繊維強化プラスチック(FRP;Fiber Reinforced Plastics)で構成される。また延出部位36は、冷媒容器35の中心軸Z側の内周面に溶接された非磁性の素材からなるものである。このように、連結部材24の一端を冷媒容器35の延出部位36に固定することとしたのは、仮に真空容器37に固定するとした場合、外気温の変化によるの熱変形により磁化部材21,22の位置が撮像領域Rに対して変化することがあるため、そのような好ましくない現象を回避するためである。   The connecting member 24 is preferably made of a material having high rigidity and a small heat transfer coefficient, and specifically, made of fiber reinforced plastics (FRP). The extending portion 36 is made of a nonmagnetic material welded to the inner peripheral surface of the refrigerant container 35 on the central axis Z side. As described above, the reason why the one end of the connecting member 24 is fixed to the extension part 36 of the refrigerant container 35 is that if the fixing member 24 is fixed to the vacuum container 37, the magnetizing member 21, This is to avoid such an undesirable phenomenon because the position 22 may change with respect to the imaging region R.

次に図3を参照して、第1磁化部材21及び第2磁化部材22の作用効果について説明する。
メインコイル31に環状電流が流れると、磁力線Bが誘導されるとともに閉ループ状の磁気回路が形成され、この磁気回路中に磁化部材21,22(例えば純鉄等の強磁性体)を配置すると、磁気回路における磁気抵抗が下がることからさらに多数の磁力線Bが誘導され、撮像領域Rにおける静磁場の強度が増加することが知られている。
Next, with reference to FIG. 3, the effect of the 1st magnetization member 21 and the 2nd magnetization member 22 is demonstrated.
When an annular current flows through the main coil 31, a magnetic field line B is induced and a closed loop magnetic circuit is formed. When magnetized members 21 and 22 (for example, a ferromagnetic material such as pure iron) are disposed in the magnetic circuit, It is known that since the magnetic resistance in the magnetic circuit is lowered, a larger number of magnetic field lines B are induced, and the strength of the static magnetic field in the imaging region R is increased.

図3に記載されている磁力線B(B1,B2)は、数値解析により計算して導かれたものである。一般に、磁力線Bは、その長さの方向(接線方向)に縮まろうとし、また隣接する磁力線B間において相互に反発する性質を有することが知られている。   Magnetic field lines B (B1, B2) shown in FIG. 3 are derived by calculation by numerical analysis. In general, it is known that the magnetic force lines B tend to contract in the length direction (tangential direction) and repel each other between adjacent magnetic force lines B.

ここで、第1磁化部材21を貫く磁力線B1に着目すると、この磁力線B1は、第1磁化部材21を、中心軸Zに概ね沿って略直線に貫いている。このように磁力線B1の大部分が第1磁化部材21の内側端面21a及び外側端面21bを貫くのは、この内側端面21aがメインコイル31の端面31aから突出し、外側端面21bがメインコイル31の反対側の端面31bから没入して構成されていることによる。
このような構成をとることによって、第1磁化部材21の内側端面21aの側を貫く磁力線B1の束は疎で、外側端面21bの側を貫く磁力線B1の束は密になる。
Here, paying attention to the magnetic force line B1 penetrating the first magnetizing member 21, the magnetic force line B1 penetrates the first magnetizing member 21 substantially along the central axis Z in a substantially straight line. Thus, the majority of the magnetic field lines B1 penetrate the inner end face 21a and the outer end face 21b of the first magnetizing member 21. The inner end face 21a protrudes from the end face 31a of the main coil 31, and the outer end face 21b is opposite to the main coil 31. This is because it is configured to be immersed from the side end surface 31b.
By adopting such a configuration, the bundle of magnetic lines B1 penetrating the inner end face 21a side of the first magnetization member 21 is sparse, and the bundle of magnetic lines B1 penetrating the outer end face 21b side is dense.

これは、外側端面21bの側を貫く磁力線B1は、その側に配置されるシールドコイル32の作用により、狭い隙間に封じ込まれて束を広げることができないのに対し、内側端面21aの側を貫く磁力線B1は、相互反発して広がるためである。この第1磁化部材21の内側端面21aの側を貫く磁力線B1の相互反発により、第1磁化部材21には、撮像領域Rと反対方向(図中上方向)に力が付与されることになる。すなわち、対向して配置される一対の静磁場発生部30,40(図1参照)が相互に反発する方向に力が付与されることになる。   This is because the magnetic field lines B1 penetrating the outer end face 21b cannot be expanded by being sealed in a narrow gap by the action of the shield coil 32 arranged on the outer end face 21b. This is because the magnetic lines B1 that penetrate therethrough are repelled and spread. Due to the mutual repulsion of the magnetic lines B1 that penetrate the inner end face 21a side of the first magnetizing member 21, a force is applied to the first magnetizing member 21 in a direction opposite to the imaging region R (upward in the figure). . That is, a force is applied in a direction in which a pair of static magnetic field generation units 30 and 40 (see FIG. 1) arranged to face each other repel each other.

次に、第2磁化部材22を貫く磁力線B2に着目すると、この磁力線B2は、撮像領域Rの側において中心軸Zに沿うが、第2磁化部材22において略直角に曲げられて第2磁化部材22の側周面を貫いている。このため、磁力線B2の閉ループを縮めようとする性質により、撮像領域Rの方向(図中下方向)に力が付与されることになる。   Next, paying attention to the magnetic force line B2 that penetrates through the second magnetizing member 22, the magnetic force line B2 is along the central axis Z on the imaging region R side, but is bent at a substantially right angle in the second magnetizing member 22, and the second magnetizing member. It penetrates through 22 side peripheral surfaces. For this reason, a force is applied in the direction of the imaging region R (downward in the figure) due to the nature of trying to shrink the closed loop of the magnetic lines of force B2.

このように、対向する一対の第2磁化部材22は互いに引き合うが、対向する一対の第1磁化部材21には互いに反発する力が作用するので、対向する一対の静磁場発生部30が互いに引き合う力が低減される。これにともない、MRI装置10又は超電導磁石装置11の各構成要素を支持する部材の機械剛性の低減を図ることができる。
具体的には連結部材24の断面積を小さくすることができる。これにより第1磁化部材21及び第2磁化部材22から冷媒容器35へ侵入する熱量を低減し、収容されている冷媒が気化する現象を抑制することができる。
In this way, the pair of opposing second magnetizing members 22 attract each other, but since the repulsive forces act on the opposing pair of first magnetizing members 21, the opposing pair of static magnetic field generating units 30 attract each other. Force is reduced. Accordingly, it is possible to reduce the mechanical rigidity of the member that supports each component of the MRI apparatus 10 or the superconducting magnet apparatus 11.
Specifically, the cross-sectional area of the connecting member 24 can be reduced. As a result, the amount of heat entering the refrigerant container 35 from the first magnetizing member 21 and the second magnetizing member 22 can be reduced, and the phenomenon of vaporization of the stored refrigerant can be suppressed.

次に静磁場の外部漏洩を低減する作用について、同じく図3を用いて説明する。
メインコイル31により誘導される磁力線B1は、その閉ループの曲率が大きくなるといえる。これは、メインコイル31の内側に配置される第1磁化部材21が、その内側端面21aをメインコイル31の端面31aから突出させ、その外側端面21bをメインコイル31の反対側の端面31bから没入するようにして、配置されていることによる。
つまり、第1磁化部材21は、メインコイル31に誘導された磁力線B1を、メインコイル31の側に引き寄せるために、磁力線B1の閉ループの外側に膨らむ軌道が縮められるからである。
Next, the effect | action which reduces the external leakage of a static magnetic field is demonstrated using FIG. 3 similarly.
It can be said that the magnetic field line B1 induced by the main coil 31 has a larger curvature of the closed loop. This is because the first magnetizing member 21 disposed inside the main coil 31 has its inner end surface 21 a protruding from the end surface 31 a of the main coil 31, and its outer end surface 21 b is immersed from the end surface 31 b on the opposite side of the main coil 31. Depending on the arrangement.
That is, since the first magnetizing member 21 draws the magnetic force lines B1 induced in the main coil 31 toward the main coil 31, the orbit that swells outside the closed loop of the magnetic force lines B1 is shortened.

一方、メインコイル31により誘導される磁力線B2は、第2磁化部材22により直角方向に曲げられようとするが、その一部はそのまま中心軸Zの方向に直進しMRI装置10の外部に漏洩する。しかし、前記したように磁力線B1は、その閉ループの曲率が大きいので、この磁力線B1による磁力線B2の押し上げ効果が低減され、外部に漏洩する磁力線B2の本数が減ることになる。   On the other hand, the magnetic field line B2 induced by the main coil 31 tends to be bent in the direction perpendicular to the second magnetizing member 22, but a part of the magnetic force line B2 goes straight in the direction of the central axis Z and leaks to the outside of the MRI apparatus 10. . However, as described above, since the magnetic field lines B1 have a large closed loop curvature, the effect of pushing up the magnetic field lines B2 by the magnetic field lines B1 is reduced, and the number of magnetic field lines B2 leaking to the outside is reduced.

(第2実施形態)
次に図4(a)を参照して、第1磁化部材の第2実施形態について説明する。
本実施形態と第1実施形態との相違点は、第1磁化部材21には外側端面21bの側において穿孔25が設けられている点にある。
この構造によれば、一対の第1磁化部材21に付加される、相互が反発する方向の力を増加させる作用が得られる。これにより、一対の第2磁化部材22に付加される、互いに引き合う方向の力を相殺することになり、連結部材24にかかる力を低減する効果が得られる。
これにより、連結部材24の断面積を低減することができ、冷媒容器35への熱侵入量をさらに低減することができる。さらに、MRI装置10の上下方向の漏洩磁場の広がりも抑制する効果が得られる。
(Second Embodiment)
Next, with reference to Fig.4 (a), 2nd Embodiment of a 1st magnetization member is described.
The difference between the present embodiment and the first embodiment is that the first magnetizing member 21 is provided with perforations 25 on the outer end face 21b side.
According to this structure, the effect | action which increases the force of the direction which mutually repels added to a pair of 1st magnetization member 21 is acquired. As a result, the forces applied to the pair of second magnetizing members 22 in the attracting directions are canceled out, and the effect of reducing the force applied to the connecting member 24 is obtained.
Thereby, the cross-sectional area of the connection member 24 can be reduced, and the amount of heat penetration into the refrigerant container 35 can be further reduced. Furthermore, the effect of suppressing the spread of the leakage magnetic field in the vertical direction of the MRI apparatus 10 can be obtained.

なお、「外側端面21bの側において穿孔25が設けられている」とは、外側端面21b側に穿孔25が開口していることに限定されるものではなく、第1磁化部材21が、外側端面21b側において相対的に素材体積が減じられている態様で設けられていればすべて該当する。このような態様とすることで、実質的に第1磁化部材21の外側端面21bをメインコイル31の端面31bに対して没入させる効果が得られるからである。
よって、このような外側端面21b側において相対的に素材体積が減じられている態様を得るために、第1磁化部材21の周方向に不連続、もしくは連続した切欠を設けても良い。
Note that “the perforation 25 is provided on the outer end surface 21b side” is not limited to the perforation 25 being open on the outer end surface 21b side, and the first magnetization member 21 is formed on the outer end surface 21b. All are applicable as long as the material volume is relatively reduced on the 21b side. This is because by adopting such an aspect, an effect of substantially immersing the outer end face 21 b of the first magnetizing member 21 with respect to the end face 31 b of the main coil 31 is obtained.
Therefore, in order to obtain a mode in which the material volume is relatively reduced on the outer end face 21b side, a discontinuous or continuous notch may be provided in the circumferential direction of the first magnetization member 21.

(第3実施形態)
次に図4(b)を参照して、第1磁化部材の第3実施形態について説明する。
本実施形態と第1実施形態との相違点は、第1磁化部材21には内側端面21aの側において強磁性体の突起26が設けられている点にある。
この構造によれば、第2実施形態においてした前記記載と同様の作用、効果が得られる。
(Third embodiment)
Next, with reference to FIG.4 (b), 3rd Embodiment of a 1st magnetization member is described.
The difference between this embodiment and the first embodiment is that the first magnetizing member 21 is provided with a ferromagnetic protrusion 26 on the inner end face 21a side.
According to this structure, the same operations and effects as those described in the second embodiment can be obtained.

なお、「内側端面21aの側に設けられる強磁性体の突起26」とは、中心軸Zの軸方向に沿って螺入するボルトであったり、非磁性体のボルト又は溶接により締結又は接合された強磁性鉄板であったりする。
これにより、実質的に第1磁化部材21の内側端面21aをメインコイル31の端面31aに対して突出させる効果が得られるからである。
The “ferromagnetic protrusion 26 provided on the inner end face 21 a side” is a bolt that is screwed in along the axial direction of the central axis Z, or is fastened or joined by a non-magnetic bolt or welding. Or a ferromagnetic iron plate.
This is because the effect of causing the inner end face 21a of the first magnetizing member 21 to substantially protrude from the end face 31a of the main coil 31 is obtained.

以上説明した通り本発明によれば、構成要素の機械剛性を高める必要も無く、冷媒の消費量を増加させることも無く、外部漏洩が増えることも無く、強度の高い静磁場を発生させることが可能な超電導磁石装置および核磁気共鳴イメージング装置が提供される。   As described above, according to the present invention, it is not necessary to increase the mechanical rigidity of the constituent elements, increase the consumption of refrigerant, increase the external leakage, and generate a strong static magnetic field. Possible superconducting magnet devices and nuclear magnetic resonance imaging devices are provided.

本発明の実施形態に係る核磁気共鳴イメージング装置の概観を示す側面図である。1 is a side view showing an overview of a nuclear magnetic resonance imaging apparatus according to an embodiment of the present invention. 本発明の第1実施形態に係る超電導磁石装置の部分断面斜視図である。It is a fragmentary sectional perspective view of the superconducting magnet device concerning a 1st embodiment of the present invention. 第1実施形態に係る超電導磁石装置の部分断面(図2破線部分)の拡大図である。It is an enlarged view of the partial cross section (dashed line part of FIG. 2) of the superconducting magnet apparatus which concerns on 1st Embodiment. (a)は本発明の第2実施形態に係る超電導磁石装置の部分断面拡大図であり、(b)は本発明の第3実施形態に係る超電導磁石装置の部分断面拡大図である。(A) is a partial cross-sectional enlarged view of the superconducting magnet device according to the second embodiment of the present invention, and (b) is a partial cross-sectional enlarged view of the superconducting magnet device according to the third embodiment of the present invention.

符号の説明Explanation of symbols

10 MRI装置
11 超電導磁石装置
13 傾斜磁場発生部
21 第1磁化部材(磁化部材)
21a 第1磁化部材の内側端面
21b 第1磁化部材の外側端面
22 第2磁化部材(磁化部材)
23 固定部材
24 連結部材
25 穿孔
26 突起
30 第1静磁場発生部(静磁場発生部)
31 メインコイル
31a メインコイルの端面
31b メインコイルの反対側の端面
32 シールドコイル
35 冷媒容器
36 冷媒容器の延出部位
37 真空容器
40 第2静磁場発生部
B(B1,B2) 磁力線
L 冷媒
P 被検者
R 撮像領域
Z 中心軸
DESCRIPTION OF SYMBOLS 10 MRI apparatus 11 Superconducting magnet apparatus 13 Gradient magnetic field generation part 21 1st magnetization member (magnetization member)
21a Inner end surface of the first magnetizing member 21b Outer end surface of the first magnetizing member 22 Second magnetizing member (magnetizing member)
23 fixing member 24 connecting member 25 perforation 26 protrusion 30 first static magnetic field generation unit (static magnetic field generation unit)
31 Main coil 31a End face of main coil 31b End face opposite to main coil 32 Shield coil 35 Refrigerant container 36 Extension part of refrigerant container 37 Vacuum container 40 Second static magnetic field generator B (B1, B2) Magnetic field line L Refrigerant P Covered Examiner R Imaging area Z Central axis

Claims (4)

一対の静磁場発生部を対向させてなる超電導電磁石装置において、
前記静磁場発生部は、
順方向に永久電流が循環するメインコイル、逆方向に永久電流が循環するシールドコイル、及びこれらを冷却する冷媒を収容する冷媒容器と、
前記メインコイルの内径よりも外径が小さく環状に構成される第1磁化部材と、
前記第1磁化部材の環状の内径よりも外径が小さく構成される第2磁化部材と、
前記第1磁化部材及び前記第2磁化部材を同心状に固定する固定部材と、
前記冷媒容器の延出部位及び前記固定部材を連結する連結部材と、を備え、
前記第1磁化部材は、
前記対向する側の内側端面が前記メインコイルの端面に対して突出し、
前記対向する側とは反対側の外側端面が前記メインコイルの反対側の端面に対して没入するようにして配置されていることを特徴とする超電導電磁石装置。
In the superconducting electromagnet apparatus formed by facing a pair of static magnetic field generation units,
The static magnetic field generator is
A main coil in which a permanent current circulates in the forward direction, a shield coil in which a permanent current circulates in the reverse direction, and a refrigerant container that contains a refrigerant that cools them,
A first magnetizing member having an outer diameter smaller than the inner diameter of the main coil and configured in an annular shape;
A second magnetizing member configured to have an outer diameter smaller than an annular inner diameter of the first magnetizing member;
A fixing member for concentrically fixing the first magnetizing member and the second magnetizing member;
A connecting member that connects the extension part of the refrigerant container and the fixing member,
The first magnetizing member is
The inner end face on the opposite side protrudes from the end face of the main coil,
A superconducting electromagnet apparatus, wherein an outer end surface opposite to the opposite side is disposed so as to be immersed in an end surface opposite to the main coil.
請求項1に記載の超電導磁石装置において、
前記第1磁化部材には前記外側端面の側において穿孔または切欠が設けられていることを特徴とする超電導磁石装置。
The superconducting magnet device according to claim 1,
The superconducting magnet device according to claim 1, wherein the first magnetizing member is provided with a perforation or a notch on the outer end face side.
請求項1または請求項2に記載の超電導磁石装置において、
前記第1磁化部材の前記内側端面に強磁性体の突起が設けられていることを特徴とする超電導磁石装置。
In the superconducting magnet device according to claim 1 or 2,
A superconducting magnet device, wherein a ferromagnetic protrusion is provided on the inner end face of the first magnetizing member.
前記請求項1から請求項3のいずれか1項に記載の超電導磁石装置を用いた核磁気共鳴イメージング装置。   A nuclear magnetic resonance imaging apparatus using the superconducting magnet apparatus according to any one of claims 1 to 3.
JP2006312410A 2006-11-20 2006-11-20 Superconducting magnet apparatus and nuclear magnetic resonance imaging apparatus Expired - Fee Related JP4866215B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006312410A JP4866215B2 (en) 2006-11-20 2006-11-20 Superconducting magnet apparatus and nuclear magnetic resonance imaging apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006312410A JP4866215B2 (en) 2006-11-20 2006-11-20 Superconducting magnet apparatus and nuclear magnetic resonance imaging apparatus

Publications (2)

Publication Number Publication Date
JP2008130707A true JP2008130707A (en) 2008-06-05
JP4866215B2 JP4866215B2 (en) 2012-02-01

Family

ID=39556259

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006312410A Expired - Fee Related JP4866215B2 (en) 2006-11-20 2006-11-20 Superconducting magnet apparatus and nuclear magnetic resonance imaging apparatus

Country Status (1)

Country Link
JP (1) JP4866215B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010088629A (en) * 2008-10-07 2010-04-22 Hitachi Ltd Magnetic resonance imaging apparatus

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1097917A (en) * 1996-09-20 1998-04-14 Hitachi Ltd Superconductor magnet device
JP2002102205A (en) * 2000-10-02 2002-04-09 Hitachi Medical Corp Magnetic resonace imaging apparatus
WO2002049513A1 (en) * 2000-12-05 2002-06-27 Hitachi, Ltd. Low-leakage magnetic-field magnet and shield coil assembly
JP2005143853A (en) * 2003-11-17 2005-06-09 Hitachi Ltd Superconductive magnet device and magnetic resonance imaging device using the same
JP2005144132A (en) * 2004-04-09 2005-06-09 Hitachi Ltd Superconductive magnet device and magnetic resonance imaging device using the same
JP2006102060A (en) * 2004-10-04 2006-04-20 Hitachi Ltd Superconducting electromagnetic device for magnetic resonance imaging apparatus

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1097917A (en) * 1996-09-20 1998-04-14 Hitachi Ltd Superconductor magnet device
JP2002102205A (en) * 2000-10-02 2002-04-09 Hitachi Medical Corp Magnetic resonace imaging apparatus
WO2002049513A1 (en) * 2000-12-05 2002-06-27 Hitachi, Ltd. Low-leakage magnetic-field magnet and shield coil assembly
JP2005143853A (en) * 2003-11-17 2005-06-09 Hitachi Ltd Superconductive magnet device and magnetic resonance imaging device using the same
JP2005144132A (en) * 2004-04-09 2005-06-09 Hitachi Ltd Superconductive magnet device and magnetic resonance imaging device using the same
JP2006102060A (en) * 2004-10-04 2006-04-20 Hitachi Ltd Superconducting electromagnetic device for magnetic resonance imaging apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010088629A (en) * 2008-10-07 2010-04-22 Hitachi Ltd Magnetic resonance imaging apparatus

Also Published As

Publication number Publication date
JP4866215B2 (en) 2012-02-01

Similar Documents

Publication Publication Date Title
CA2960194C (en) Ferromagnetic augmentation for magnetic resonance imaging
US7714574B2 (en) Superconducting magnet with refrigerator and magnetic resonance imaging apparatus using the same
US7928730B2 (en) Electromagnet apparatus generating a homogeneous magnetic field with ferromagnetic members arranged inside cryogenic vessels
JP2011087904A (en) Magnetic resonance imaging apparatus
JP4247948B2 (en) Magnet apparatus and MRI apparatus
JP2008012118A (en) Magnetic resonance imaging system
US7112966B2 (en) Magnetic resonance imaging apparatus
JP3939489B2 (en) Magnet apparatus and magnetic resonance imaging apparatus using the same
JP4886482B2 (en) Superconducting magnet apparatus and nuclear magnetic resonance imaging apparatus
JP4866215B2 (en) Superconducting magnet apparatus and nuclear magnetic resonance imaging apparatus
JP4921935B2 (en) Electromagnet apparatus and magnetic resonance imaging apparatus
JP2000037366A (en) Superconductive magnet device
JP6296631B2 (en) Magnetic resonance imaging system
JP2008130947A (en) Superconducting magnet device and magnetic resonance imaging device using the same
JP4814765B2 (en) Magnetic resonance imaging system
CN111973187A (en) Magnetic resonance imaging apparatus and superconducting magnet
JP2006141613A (en) Magnet system and magnetic resonance image diagnostic apparatus
JPH10135027A (en) Superconducting magnet device
JP5145451B2 (en) Electromagnet apparatus and magnetic resonance imaging apparatus
JP2005288044A (en) Magnetic resonance imaging device
JP2006141614A (en) Magnet system, method of installing magnet system, and magnetic resonance image diagnostic apparatus
JP4503405B2 (en) Superconducting magnet apparatus and magnetic resonance imaging apparatus using the same
JP2006326177A (en) Superconductive magnet device for mri
JP5298056B2 (en) Superconducting magnet apparatus and magnetic resonance imaging apparatus
JP2002017709A (en) Magnetic resonance imaging device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081008

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110829

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111108

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141118

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4866215

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees