JP2008128412A - Vibration absorbing bush manufacturing method and vibration absorbing bush - Google Patents

Vibration absorbing bush manufacturing method and vibration absorbing bush Download PDF

Info

Publication number
JP2008128412A
JP2008128412A JP2006316397A JP2006316397A JP2008128412A JP 2008128412 A JP2008128412 A JP 2008128412A JP 2006316397 A JP2006316397 A JP 2006316397A JP 2006316397 A JP2006316397 A JP 2006316397A JP 2008128412 A JP2008128412 A JP 2008128412A
Authority
JP
Japan
Prior art keywords
cylindrical member
vibration
concave
peripheral surface
bush
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006316397A
Other languages
Japanese (ja)
Other versions
JP4315972B2 (en
Inventor
Katsuyoshi Morota
勝義 諸田
Hitonobu Ito
士信 伊藤
Yoshiyuki Kurita
義行 栗田
Akira Suzuki
顕 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Tire Corp
Original Assignee
Toyo Tire and Rubber Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Tire and Rubber Co Ltd filed Critical Toyo Tire and Rubber Co Ltd
Priority to JP2006316397A priority Critical patent/JP4315972B2/en
Publication of JP2008128412A publication Critical patent/JP2008128412A/en
Application granted granted Critical
Publication of JP4315972B2 publication Critical patent/JP4315972B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Springs (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a vibration absorbing bush manufacturing method for allowing easy drawing work for an outer cylinder after vulcanized and molded while preventing the peeling of an adhered interface with the drawing work, and to provide a vibration absorbing bush. <P>SOLUTION: In a recessed groove forming step, a plurality of recessed grooves 24 extending to an axial direction X are formed dispersedly in an inner peripheral face 22 of the outer cylinder 20 in a peripheral direction C. So, in a drawing step, drawing work is easily applied to the outer cylinder 20 in its diameter shrinking direction even when the outer cylinder 20 is thicker. Even when great drawing work is applied to the outer cylinder 20, the deformation of formed portions of the recessed grooves 24 suppresses the distortion of a vibration absorbing base 30 on its adhesive interface to prevent the destruction of the adhesive interface and prevent the peeling thereof. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、防振ブッシュの製造方法及び防振ブッシュに関し、特に、加硫成形後の外筒の絞り加工を容易にすると共に、絞り加工に伴う接着界面の剥離を防止することができる防振ブッシュの製造方法及び防振ブッシュに関するものである。   The present invention relates to a vibration-proof bushing manufacturing method and a vibration-proof bush, and particularly to a vibration-proof bushing that can facilitate drawing of an outer cylinder after vulcanization and can prevent peeling of an adhesive interface accompanying drawing. The present invention relates to a method for manufacturing a bush and a vibration-proof bush.

従来より、自動車のサスペンション機構においては、車体とサスペンションとの連結部位、例えば、車輪側のサスペンションアームとフレーム等の車体側メンバとの連結部位に、振動減衰や緩衝などを目的として防振ブッシュが使用されている。   2. Description of the Related Art Conventionally, in an automobile suspension mechanism, an anti-vibration bush is provided at a connection portion between a vehicle body and a suspension, for example, at a connection portion between a suspension arm on a wheel side and a vehicle body side member such as a frame for the purpose of vibration damping or buffering. in use.

この防振ブッシュは、一般に、内筒(第1円筒部材)と、その内筒の外周側に間隔を置いて配置される外筒(第2円筒部材)と、それら内筒と外筒との間に介設され両者を弾性的に連結するゴム状弾性体(防振基体)とを備えて構成される(特許文献1)。   In general, the vibration-isolating bushing includes an inner cylinder (first cylindrical member), an outer cylinder (second cylindrical member) disposed at an outer peripheral side of the inner cylinder, and an inner cylinder and an outer cylinder. A rubber-like elastic body (vibration-proof base) that is interposed therebetween and elastically connects the two is configured (Patent Document 1).

また、防振ブッシュの一例として、軸直角方向におけるばね定数を大きくしつつ、こじり方向におけるばね定数を小さくするべく、内筒の軸方向中央部に軸直角方向へ膨出する膨出部を設けた、いわゆるバルジタイプの防振ブッシュも知られている(特許文献2)。   In addition, as an example of the vibration isolating bush, a bulging portion that bulges in the direction perpendicular to the axis is provided in the axial center of the inner cylinder in order to increase the spring constant in the direction perpendicular to the axis and reduce the spring constant in the twisting direction A so-called bulge type vibration-proof bushing is also known (Patent Document 2).

更に、上述のような外筒を備える防振ブッシュにおいては、加硫成形後のゴム状弾性体(防振基体)の収縮を取り除いて耐久性を向上させるべく、加硫成形後に外筒を縮径方向へ絞り加工を行うことが通常行われる(特許文献3)。
特開2002−81479号 特開2004−144150号公報 特開平11−230224号公報
Furthermore, in the vibration-proof bushing having the outer cylinder as described above, the outer cylinder is shrunk after vulcanization molding in order to improve the durability by removing the shrinkage of the rubber-like elastic body (vibration-proof base) after vulcanization molding. Usually, drawing is performed in the radial direction (Patent Document 3).
JP 2002-81479 A JP 2004-144150 A JP-A-11-230224

しかしながら、上述した防振ブッシュでは、加硫成形後、外筒に絞り加工を施す場合において、特に外筒の肉厚が大きいものについては、絞り加工が困難であるという問題点があった。また、上述した防振ブッシュでは、耐久性の向上を十分に図るべく、外筒に大きな絞り加工を施すと、外筒の塑性変形に伴って、防振基体の接着界面の歪みが大きくなり、防振基体と外筒との間に剥離が発生するという問題点があった。   However, the above-described vibration-proof bushing has a problem in that when the outer cylinder is drawn after vulcanization molding, the drawing of the outer cylinder is particularly difficult. Further, in the above-described vibration-proof bushing, when the outer cylinder is subjected to a large drawing process in order to sufficiently improve the durability, the distortion of the adhesion interface of the vibration-proof base increases with the plastic deformation of the outer cylinder, There was a problem that peeling occurred between the vibration-proof base and the outer cylinder.

本発明は上述した問題点を解決するためになされたものであり、加硫成形後の外筒の絞り加工を容易にすると共に、絞り加工に伴う接着界面の剥離を防止することができる防振ブッシュの製造方法及び防振ブッシュを提供することを目的としている。   The present invention has been made in order to solve the above-described problems, and facilitates drawing of the outer cylinder after vulcanization molding, and can prevent peeling of the adhesive interface accompanying drawing. It aims at providing the manufacturing method of a bush, and a vibration proof bush.

この目的を達成するために、請求項1記載の防振ブッシュの製造方法は、第1円筒部材と、前記第1円筒部材の外周側に間隔を隔てて配置される第2円筒部材と、前記第1円筒部材と第2円筒部材との間に介在しゴム状弾性材から構成される防振基体とを備える防振ブッシュの製造方法であって、金属材料から構成される円筒状のパイプ材を所定の長さで切断して前記第1円筒部材及び第2円筒部材を形成する切断工程と、前記切断工程により形成された第2円筒部材の内周面に軸方向へ延びる複数の凹溝を周方向へ分散させてNC加工により形成する凹溝形成工程と、前記凹溝形成工程により複数の凹溝が形成された第2円筒部材を前記第1円筒部材の外周側に同軸状に配置し、前記第2円筒部材の内周面と前記第1円筒部材の外周面との間をゴム状弾性材の加硫成形により加硫接着することで、前記第1円筒部材と第2円筒部材との間に前記防振基体を介在させる加硫工程と、前記加硫工程により防振基体が内周面に加硫接着された前記第2円筒部材に縮径方向への絞り加工を施す絞り工程と、を備える。   In order to achieve this object, the vibration-proof bushing manufacturing method according to claim 1 includes: a first cylindrical member; a second cylindrical member disposed at an outer peripheral side of the first cylindrical member; A method of manufacturing an anti-vibration bush including an anti-vibration base interposed between a first cylindrical member and a second cylindrical member, and a cylindrical pipe member made of a metal material Cutting a predetermined length to form the first cylindrical member and the second cylindrical member, and a plurality of grooves extending in the axial direction on the inner peripheral surface of the second cylindrical member formed by the cutting step A groove forming step for forming the groove by NC machining in a circumferential direction, and a second cylindrical member formed with a plurality of grooves by the groove forming step is coaxially arranged on the outer peripheral side of the first cylindrical member And an inner peripheral surface of the second cylindrical member and an outer peripheral surface of the first cylindrical member. Are vulcanized and bonded by vulcanization molding of a rubber-like elastic material, whereby the vibration isolating base is interposed between the first cylindrical member and the second cylindrical member, and vibration isolation is achieved by the vulcanizing step. And a drawing step of drawing the second cylindrical member having the base body vulcanized and bonded to the inner peripheral surface in the diameter reducing direction.

請求項2記載の防振ブッシュの製造方法は、請求項1記載の防振ブッシュの製造方法において、前記凹溝形成工程は、前記第2円筒部材の内周面において、前記複数の凹溝を周方向へ等間隔に配置して形成するものである。   According to a second aspect of the present invention, there is provided the method for manufacturing a vibration isolating bush according to the first aspect, wherein the step of forming the concave groove includes forming the plurality of concave grooves on an inner peripheral surface of the second cylindrical member. They are arranged at equal intervals in the circumferential direction.

請求項3記載の防振ブッシュの製造方法は、請求項1又は2に記載の防振ブッシュの製造方法において、前記凹溝形成工程は、前記複数の凹溝をその溝幅よりも広い間隔で配置して形成するものである。   According to a third aspect of the present invention, there is provided the vibration isolating bushing manufacturing method according to the first or second aspect, wherein the concave groove forming step is configured such that the plurality of concave grooves are arranged at intervals wider than the groove width. It is arranged and formed.

請求項4記載の防振ブッシュの製造方法は、請求項1から3のいずれかに記載の防振ブッシュの製造方法において、前記切断工程の後であって前記加硫工程の前に、前記第1円筒部材の外周面から軸直角方向へ向けて膨出し凸状球面をなす膨出部を前記第1円筒部材の外周面に形成する膨出部形成工程と、前記切断工程の後であって前記加硫工程の前に、前記第2円筒部材の内周面における窪みであって前記膨出部よりも大径の凹状球面をなす凹設部を前記第2円筒部材の内周面にNC加工により形成する凹設部形成工程と、を備え、前記膨出部形成工程は、中心が軸上に位置する凸状球面として前記膨出部を形成するものであり、前記凹設部形成工程は、中心が軸から所定間隔だけ離れて位置する円弧を前記軸回りに回転させた軌跡がなす凹状球面として前記凹設部を形成するものであり、前記加硫工程は、前記凸状球面をなす膨出部が前記凹状球面をなす凹設部により取り囲まれた状態で、前記第2円筒部材の内周面と前記第1円筒部材の外周面との間をゴム状弾性材の加硫成形により加硫接着するものであり、前記絞り工程は、前記凹設部を形成する前記円弧の中心が前記膨出部の中心と一致する分だけ前記第2円筒部材を縮径させるものである。   A method for manufacturing a vibration isolating bush according to claim 4 is the method for manufacturing a vibration isolating bush according to any one of claims 1 to 3, wherein the first step is after the cutting step and before the vulcanizing step. A bulging part forming step on the outer peripheral surface of the first cylindrical member and a bulging part forming a convex spherical surface from the outer peripheral surface of the one cylindrical member in a direction perpendicular to the axis; Prior to the vulcanization step, a concave portion that is a recess in the inner peripheral surface of the second cylindrical member and forms a concave spherical surface having a larger diameter than the bulging portion is formed on the inner peripheral surface of the second cylindrical member. A recessed portion forming step formed by processing, wherein the bulged portion forming step forms the bulged portion as a convex spherical surface centered on an axis, and the recessed portion forming step Is a trajectory obtained by rotating an arc whose center is located at a predetermined distance from the axis around the axis. The concave portion is formed as a spherical surface, and the vulcanizing step is performed in the state where the bulging portion forming the convex spherical surface is surrounded by the concave portion forming the concave spherical surface. Between the inner peripheral surface of the first cylindrical member and the outer peripheral surface of the first cylindrical member by vulcanization molding of a rubber-like elastic material, and in the drawing step, the center of the arc forming the recessed portion The diameter of the second cylindrical member is reduced by an amount corresponding to the center of the bulging portion.

請求項5記載の防振ブッシュの製造方法は、請求項4記載の防振ブッシュの製造方法において、前記加硫工程は、前記凹状球面としての凹設部によって定められる仮想球面内において、前記第1円筒部材と第2円筒部材との間を前記防振基体が連結するように、前記ゴム状弾性材を加硫成形するものである。   According to a fifth aspect of the present invention, there is provided a method for manufacturing a vibration-isolating bushing according to the fourth aspect, wherein the vulcanization step is performed in a virtual spherical surface defined by a concave portion as the concave spherical surface. The rubber-like elastic material is vulcanized and molded so that the vibration-proof base is connected between the first cylindrical member and the second cylindrical member.

請求項6記載の防振ブッシュは、請求項1から5のいずれかに記載の防振ブッシュの製造方法により製造されたものである。   The vibration isolating bush according to claim 6 is manufactured by the method for manufacturing a vibration isolating bush according to any one of claims 1 to 5.

請求項1記載の防振ブッシュの製造方法によれば、切断工程において、金属材料から構成される円筒状のパイプ材が所定の長さで切断され、第1円筒部材及び第2円筒部材が形成されると共に、加硫工程において、第1円筒部材が第2円筒部材の外周側に同軸状に配置され、第1円筒部材の内周面と第2円筒部材の外周面との間がゴム状弾性材の加硫成形により加硫接着され、更に、加硫工程において、第1円筒部材に縮径方向への絞り加工が施されることで、第1円筒部材と第2円筒部材との間に防振基体が介在された防振ブッシュが製造される。   According to the method for manufacturing an anti-vibration bush according to claim 1, in the cutting step, the cylindrical pipe material made of a metal material is cut at a predetermined length to form the first cylindrical member and the second cylindrical member. In the vulcanization step, the first cylindrical member is coaxially disposed on the outer peripheral side of the second cylindrical member, and the space between the inner peripheral surface of the first cylindrical member and the outer peripheral surface of the second cylindrical member is rubbery. The elastic material is vulcanized and bonded by vulcanization molding, and further, in the vulcanization process, the first cylindrical member is subjected to a drawing process in the diameter reducing direction, so that the first cylindrical member and the second cylindrical member are interposed. An anti-vibration bush having an anti-vibration base interposed therebetween is manufactured.

ここで、本発明の防振ブッシュの製造方法によれば、少なくとも加硫工程の前に、凹溝形成工程を備え、かかる凹溝形成工程において、第2円筒部材の内周面には、軸方向へ延びる複数の凹溝が周方向へ分散された状態で形成されるので、第2円筒部材の肉厚が大きい場合であっても、加硫成形後の絞り工程において、第2円筒部材に縮径方向への絞り加工を容易に施すことができるという効果がある。その結果、絞り工程における作業コスト及び装置コストの削減を図ることができると共に、加硫成形後の防振基体の収縮を十分に取り除いて耐久性の優れた防振ブッシュを製造することができる。   Here, according to the vibration-proof bushing manufacturing method of the present invention, a concave groove forming step is provided at least before the vulcanization step, and in the concave groove forming step, the inner peripheral surface of the second cylindrical member is provided with a shaft. Since the plurality of concave grooves extending in the direction are formed in a state dispersed in the circumferential direction, even in the case where the thickness of the second cylindrical member is large, in the drawing step after vulcanization molding, There is an effect that the drawing process in the diameter reducing direction can be easily performed. As a result, it is possible to reduce the work cost and the apparatus cost in the drawing process, and it is possible to manufacture a vibration-proof bushing having excellent durability by sufficiently removing the shrinkage of the vibration-proof substrate after vulcanization molding.

また、本発明によれば、凹溝形成工程において、第1円筒部材の内周面に軸方向へ延びる複数の凹溝が周方向へ分散された状態で形成されているので、防振基体の耐久性の向上を図るべく、絞り工程において、第2円筒部材に大きな絞り加工を施す場合であっても、各凹溝の形成部が変形することで、防振基体の接着界面における歪みを抑制することができるので、接着界面の破壊を防止して、その分、防振基体と第2円筒部材との間の剥離を防止することができるとい効果がある。   According to the present invention, in the groove forming step, the plurality of grooves extending in the axial direction are formed on the inner peripheral surface of the first cylindrical member in a state dispersed in the circumferential direction. Even when the second cylindrical member is subjected to a large drawing process in the drawing process in order to improve durability, distortion at the bonding interface of the anti-vibration base is suppressed by the deformation of each groove forming portion. Therefore, there is an effect that it is possible to prevent the adhesion interface from being broken and to prevent the peeling between the vibration-proof base and the second cylindrical member.

更に、本発明によれば、切断工程によりパイプ材を切断して形成された第2円筒部材に対し、凹溝形成工程において、複数の凹溝をNC加工により形成するものであるので、例えば、予め凹溝が一面側に形成された平板状の板材に、その凹溝が内周面側となる方向へ巻き加工を施すと共に端部同士を溶接により接続して第2円筒部材を形成する場合と比較して、第2円筒部材自体の強度を確保することができると共に巻き加工に伴う寸法精度の低下を回避することができるという効果がある。その結果、絞り工程において、第2円筒部材により大きな絞り加工を施すことができるので、加硫成形後の防振基体の収縮を十分に取り除いて耐久性の優れた防振ブッシュを製造することができる。   Furthermore, according to the present invention, for the second cylindrical member formed by cutting the pipe material in the cutting step, in the concave groove forming step, a plurality of concave grooves are formed by NC processing. When forming a second cylindrical member by performing winding in a direction in which the concave groove is on the inner peripheral surface side and connecting the end portions by welding to a flat plate material in which the concave groove is formed on one surface side in advance. As compared with the above, there is an effect that it is possible to ensure the strength of the second cylindrical member itself and to avoid a decrease in dimensional accuracy associated with the winding process. As a result, in the drawing step, since the second cylindrical member can be subjected to a large drawing process, it is possible to produce a vibration-proof bushing having excellent durability by sufficiently removing the shrinkage of the vibration-proof substrate after vulcanization molding. it can.

請求項2記載の防振ブッシュの製造方法によれば、請求項1記載の防振ブッシュの製造方法の奏する効果に加え、凹溝形成工程は、第2円筒の内周面において、複数の凹溝を周方向へ等間隔に配置して形成するものであるので、防振基体の接着界面の一部(即ち、複数の凹溝の隣接間部分であってその隣接間隔が広い部分)に、絞り加工に伴う歪みが集中することを防止することができる。その結果、絞り工程において、接着界面の破壊を防止して、その分、防振基体と第2円筒部材との間の剥離を防止することができるとい効果がある。   According to the method for manufacturing a vibration isolating bush according to claim 2, in addition to the effect exhibited by the method for manufacturing the vibration isolating bush according to claim 1, the concave groove forming step includes a plurality of concaves on the inner peripheral surface of the second cylinder. Since the grooves are formed by arranging them at equal intervals in the circumferential direction, a part of the adhesion interface of the vibration isolating substrate (that is, a part between adjacent grooves having a wide adjacent distance), It is possible to prevent the distortion associated with the drawing process from being concentrated. As a result, in the squeezing step, there is an effect that it is possible to prevent the adhesion interface from being broken and to prevent the separation between the vibration-proof base and the second cylindrical member.

請求項3記載の防振ブッシュの製造方法によれば、請求項1又は2に記載の防振ブッシュの製造方法の奏する効果に加え、凹溝形成工程は、複数の凹溝をその溝幅よりも広い間隔で配置して形成するものであるので、絞り加工の容易性の向上や接着界面の破壊の防止を図りつつ、各凹溝の隣接間部分によって、第2円筒部材全体としての強度を確保することができるという効果がある。   According to the method for manufacturing a vibration isolating bush according to claim 3, in addition to the effect exhibited by the method for manufacturing the vibration isolating bush according to claim 1 or 2, the concave groove forming step includes a plurality of concave grooves from the groove width. Are formed at a wide interval, so that the strength of the entire second cylindrical member is increased by the adjacent portions of the respective concave grooves while improving the ease of drawing and preventing the breakage of the adhesive interface. There is an effect that it can be secured.

請求項4記載の防振ブッシュの製造方法によれば、請求項1から3のいずれかに記載の防振ブッシュの製造方法の奏する効果に加え、膨出部形成工程において、第1円筒部材の外周面から軸直角方向へ向けて膨出し凸状球面をなす膨出部が第1円筒部材の外周面に形成されると共に、凹設部形成工程において、第2円筒部材の内周面における窪みであって膨出部よりも大径の凹状球面をなす凹設部が第2円筒部材の内周面に形成され、加硫工程において、凸状球面をなす膨出部が凹状球面をなす凹設部により取り囲まれた状態で、第2円筒部材の内周面と第1円筒部材の外周面との間がゴム状弾性材の加硫成形により加硫接着されるので、こじり方向におけるばね定数の小さな防振ブッシュを製造することができるという効果がある。   According to the method for manufacturing a vibration isolating bush according to claim 4, in addition to the effect exerted by the method for manufacturing a vibration isolating bush according to any of claims 1 to 3, A bulging portion that bulges out from the outer peripheral surface in a direction perpendicular to the axis and forms a convex spherical surface is formed on the outer peripheral surface of the first cylindrical member, and in the concave portion forming step, a depression on the inner peripheral surface of the second cylindrical member is formed. A concave portion having a concave spherical surface having a diameter larger than that of the bulging portion is formed on the inner peripheral surface of the second cylindrical member, and the bulging portion forming the convex spherical surface is formed into a concave spherical surface in the vulcanization process. Since the space between the inner peripheral surface of the second cylindrical member and the outer peripheral surface of the first cylindrical member is vulcanized and bonded by vulcanization molding of a rubber-like elastic material in a state surrounded by the installation portion, the spring constant in the twisting direction There is an effect that it is possible to manufacture a small anti-vibration bush.

即ち、従来のバルジタイプの防振ブッシュでは、第2円筒部材(外筒)の内周面がストレート形状であったため、こじり方向における変位に対しては、防振基体の軸方向端部が第2円筒部材(外筒)と第1円筒部材(内筒)との間で圧縮変形されることとなり、こじり方向のばね定数を十分に低減することができなかった。   That is, in the conventional bulge-type vibration-proof bushing, the inner peripheral surface of the second cylindrical member (outer cylinder) has a straight shape. The two cylindrical members (outer cylinder) and the first cylindrical member (inner cylinder) were compressed and deformed, and the spring constant in the twisting direction could not be sufficiently reduced.

これに対し、本発明によれば、第2円筒部材の内周面に形成された凹状球面(凹設部)が第1円筒部材の外周面に形成された凸状球面(膨出部)を取り囲んだ状態で、ゴム状弾性材(防振基体)を加硫工程により加硫成形するので、こじり方向における変位に対しては、凹状球面と凸状球面との間に介設された防振基体は剪断変形を受けるのみとなり、その結果、こじり方向におけるばね定数の小さな防振ブッシュを製造することができる。   On the other hand, according to the present invention, the concave spherical surface (concave portion) formed on the inner peripheral surface of the second cylindrical member is replaced with the convex spherical surface (bulged portion) formed on the outer peripheral surface of the first cylindrical member. Since the rubber-like elastic material (vibration-proof base) is vulcanized and molded in a surrounding state by a vulcanization process, the vibration-proof is interposed between the concave spherical surface and the convex spherical surface against displacement in the twisting direction. The base body is only subjected to shear deformation, and as a result, a vibration-proof bushing having a small spring constant in the twisting direction can be manufactured.

そして、膨出部形成工程は、中心が軸上に位置する凸状球面として膨出部を形成すると共に、凹設部形成工程は、中心が軸から所定間隔だけ離れて位置する円弧を軸回りに回転させた軌跡がなす凹状球面として凹設部を形成するものであり、絞り工程は、凹設部を形成する円弧の中心が膨出部の中心と一致する分だけ第2円筒部材を縮径させるものであるので、こじり方向における変位に対して、凹状球面と凸状球面との間に介設された防振基体の変形を剪断変形のみとし易くすることができ、その結果、こじり方向におけるばね定数のより小さな防振ブッシュを製造することができるという効果がある。   In the bulging portion forming step, the bulging portion is formed as a convex spherical surface whose center is located on the axis, and in the concave portion forming step, an arc whose center is located at a predetermined distance from the axis is rotated around the axis. The concave portion is formed as a concave spherical surface formed by a trajectory rotated in the direction, and in the drawing step, the second cylindrical member is contracted by an amount in which the center of the arc forming the concave portion coincides with the center of the bulging portion. Since the diameter of the anti-vibration base is set between the concave spherical surface and the convex spherical surface, only the shear deformation can be easily performed with respect to the displacement in the twisting direction. There is an effect that it is possible to manufacture an anti-vibration bush having a smaller spring constant.

また、本発明によれば、少なくとも第2円筒部材の凹設部を、凹設部形成工程において、NC加工により形成するものであるので、例えば、パイプ材に対して軸方向への鍛造加工を施して凹設部を形成する場合と比較して、凹設部の形成コストの削減を図ることができるという効果がある。また、凹設部を高精度に形成することができるので、寸法精度のばらつきに起因して、こじり方向におけるばね定数のばらつきの発生を抑制することができるという効果がある。   Further, according to the present invention, since at least the recessed portion of the second cylindrical member is formed by NC processing in the recessed portion forming step, for example, the pipe material is forged in the axial direction. There is an effect that the formation cost of the recessed portion can be reduced as compared with the case where the recessed portion is formed by applying. Further, since the recessed portion can be formed with high accuracy, there is an effect that it is possible to suppress the occurrence of variation in the spring constant in the twisting direction due to variation in dimensional accuracy.

ここで、第2円筒部材の内周面に凹設部(凹状球面)を形成する場合には、その凹設部の凹設深さ分だけ、第2円筒部材の肉厚を大きくする必要が生じ、絞り工程において、第2円筒部材の絞り加工が困難になるところ、本発明によれば、上述したように、第2円筒部材の内周に、凹溝形成工程により、複数の凹溝が形成されているので、絞り加工において、第2円筒部材に縮径方向への絞り加工を容易に施すことができるという効果がある。その結果、凹設部の深さをより深く設定することができるので、こじり方向におけるばね定数のより小さな防振ブッシュを製造することができる。   Here, when forming a recessed part (concave spherical surface) on the inner peripheral surface of the second cylindrical member, it is necessary to increase the thickness of the second cylindrical member by the depth of the recessed part. In the drawing step, it is difficult to draw the second cylindrical member. According to the present invention, as described above, a plurality of concave grooves are formed on the inner periphery of the second cylindrical member by the concave groove forming step. Since it is formed, there is an effect that in the drawing process, the second cylindrical member can be easily drawn in the reduced diameter direction. As a result, since the depth of the recessed portion can be set deeper, a vibration isolating bush having a smaller spring constant in the twisting direction can be manufactured.

即ち、従来のバルジタイプの防振ブッシュではこじり方向におけるばね定数を十分に低減することができないところ、第2円筒部材(外筒)の内周面に凹設部(凹状球面)を形成するのみの構成では、絞り工程において、第2円筒部材の絞り加工が不可能であり、本発明のように、凹設部形成工程により凹設部を形成すると共に、凹溝形成工程により複数の凹溝を形成することで、初めて達成可能となったものであり、これにより、こじり方向におけるばね定数の低減と絞り加工の容易化とを同時に達成することができる。   That is, the conventional bulge type vibration-proof bushing cannot sufficiently reduce the spring constant in the twisting direction, but only forms a concave portion (concave spherical surface) on the inner peripheral surface of the second cylindrical member (outer cylinder). With this configuration, the drawing process of the second cylindrical member is impossible in the drawing process, and the recessed portion is formed by the recessed portion forming step and a plurality of recessed grooves are formed by the recessed groove forming step as in the present invention. It is possible to achieve for the first time by forming, and thereby it is possible to simultaneously reduce the spring constant in the twisting direction and facilitate the drawing process.

請求項5記載の防振ブッシュの製造方法によれば、請求項4記載の防振ブッシュの製造方法の奏する効果に加え、加硫工程は、凹状球面としての凹設部によって定められる仮想球面内において、第1円筒部材と第2円筒部材との間を防振基体が連結するように、ゴム状弾性材を加硫成形するものであるので、絞り工程により、第2円筒部材に縮径方向への絞り加工が施された防振ブッシュは、こじり方向における変位に対して、防振基体の軸方向端部が圧縮変形されないので、こじり方向におけるばね定数のより小さな防振ブッシュを製造することができるという効果がある。   According to the method for manufacturing an anti-vibration bush according to claim 5, in addition to the effect exhibited by the method for manufacturing the anti-vibration bush according to claim 4, the vulcanization step is performed in an imaginary spherical surface defined by a concave portion as a concave spherical surface. In this case, the rubber-like elastic material is vulcanized and molded so that the vibration-proof base is connected between the first cylindrical member and the second cylindrical member. The anti-vibration bush that has been squeezed into is not compressed and deformed in the axial direction of the anti-vibration base against displacement in the twisting direction. There is an effect that can be.

請求項6記載の防振ブッシュによれば、請求項1から5のいずれかに記載の防振ブッシュの製造方法により製造された防振ブッシュと同様の効果を奏する。   According to the anti-vibration bush of Claim 6, there exists an effect similar to the anti-vibration bush manufactured by the manufacturing method of the anti-vibration bush in any one of Claim 1-5.

以下、本発明の好ましい実施の形態について、添付図面を参照して説明する。図1(a)は、本発明の一実施の形態における防振ブッシュ100の上面図であり、図1(b)は、図1(a)のIb−Ib線における防振ブッシュ100の断面図である。また、図2は、防振ブッシュ100の部分拡大断面図であり、図1(b)に示す断面図の一部に対応する。   DESCRIPTION OF EXEMPLARY EMBODIMENTS Hereinafter, preferred embodiments of the invention will be described with reference to the accompanying drawings. FIG. 1A is a top view of an anti-vibration bush 100 according to an embodiment of the present invention, and FIG. 1B is a cross-sectional view of the anti-vibration bush 100 taken along the line Ib-Ib in FIG. It is. FIG. 2 is a partially enlarged cross-sectional view of the vibration isolating bush 100 and corresponds to a part of the cross-sectional view shown in FIG.

なお、図1中の矢印Xは軸Oに平行な方向(軸方向X)を、矢印Yは軸Oに直角な方向(軸直角方向Y)を、矢印Zは位置P1を中心とする回転方向(こじり方向Z)を、それぞれ図示している。   In FIG. 1, an arrow X indicates a direction parallel to the axis O (axial direction X), an arrow Y indicates a direction perpendicular to the axis O (axial perpendicular direction Y), and an arrow Z indicates a rotational direction about the position P1. (The twisting direction Z) is shown respectively.

防振ブッシュ10は、自動車のサスペンションアームに取り付けられる部品であり、図1に示すように、内筒10と、その内筒10の外周側に間隔を隔てて配置される外筒20と、これら内筒10と外筒20との間に介在しゴム状弾性材から構成される防振基体30とを備えて構成される。   The anti-vibration bush 10 is a component attached to a suspension arm of an automobile. As shown in FIG. 1, the inner cylinder 10, an outer cylinder 20 arranged at an interval on the outer peripheral side of the inner cylinder 10, and these An anti-vibration base 30 is provided that is interposed between the inner cylinder 10 and the outer cylinder 20 and is made of a rubber-like elastic material.

ここで、図3を参照して、内筒10の詳細構成について説明する。図3(a)は、内筒10の上面図であり、図3(b)は、図3(a)のIIIb−IIIb線における内筒10の断面図である。なお、図3中の矢印X,Yは、図1で説明した通りであるので、その説明は省略する。以降の各図においても同様である。   Here, with reference to FIG. 3, the detailed structure of the inner cylinder 10 is demonstrated. Fig.3 (a) is a top view of the inner cylinder 10, FIG.3 (b) is sectional drawing of the inner cylinder 10 in the IIIb-IIIb line | wire of Fig.3 (a). Note that the arrows X and Y in FIG. 3 are as described in FIG. The same applies to the subsequent drawings.

内筒10は、鉄鋼材料又はアルミ合金などから軸Oを有する円筒状に構成される部材であり、図3に示すように、軸方向X(図3(b)左右方向)中央部に、軸直角方向Yへ向けて全周にわたって膨出する膨出部11を備える。即ち、内筒10は、軸O回りに対称な形状とされている。   The inner cylinder 10 is a member formed in a cylindrical shape having an axis O from a steel material or an aluminum alloy. As shown in FIG. 3, the inner cylinder 10 has a shaft at the center in the axial direction X (left and right direction in FIG. 3B). A bulging portion 11 that bulges around the entire circumference in the right-angle direction Y is provided. That is, the inner cylinder 10 has a symmetrical shape around the axis O.

図3に示すように、膨出部11は、凸状球面をなしており、この凸状球面は、軸O上に中心P1を有する球面(図3(b)においては2点鎖線で示す)の軸方向X中央部を構成する球帯状に形成されており、内筒10の軸方向両端部を構成する筒部の外周面12になだらかに接続されている。   As shown in FIG. 3, the bulging portion 11 forms a convex spherical surface, and this convex spherical surface has a spherical surface having a center P1 on the axis O (indicated by a two-dot chain line in FIG. 3B). Are formed in the shape of a sphere that constitutes the central portion in the axial direction X of the inner cylinder 10 and are gently connected to the outer peripheral surface 12 of the cylindrical portion that constitutes both axial ends of the inner cylinder 10.

次いで、図4を参照して、外筒20の詳細構成について説明する。図4(a)は、外筒20の上面図であり、図4(b)は、図4(a)のIVb−IVb線における外筒20の断面図である。なお、図4中の矢印Cは軸Oを中心とする回転方向(周方向C)を図示している。   Next, the detailed configuration of the outer cylinder 20 will be described with reference to FIG. 4A is a top view of the outer cylinder 20, and FIG. 4B is a cross-sectional view of the outer cylinder 20 taken along the line IVb-IVb in FIG. 4A. Note that an arrow C in FIG. 4 illustrates a rotation direction (circumferential direction C) about the axis O.

外筒20は、鉄鋼材料又はアルミ合金などから軸Oを有する円筒状に構成される部材であり、図4に示すように、軸方向Xに沿って外形が一定となる円柱面状(ストレート形状)の外周面を有して構成されている。また、外筒20は、軸方向X(図4(b)左右方向)中央部に、軸直角方向Yへ向けて全周にわたって窪む凹設部21を備える。即ち、外筒20は、軸O回りに対称な形状とされている。   The outer cylinder 20 is a member configured in a cylindrical shape having an axis O from a steel material, an aluminum alloy, or the like. As illustrated in FIG. 4, a cylindrical surface shape (straight shape) whose outer shape is constant along the axial direction X. ). In addition, the outer cylinder 20 includes a recessed portion 21 that is recessed over the entire circumference in the direction perpendicular to the axis Y at the center in the axis direction X (the left-right direction in FIG. 4B). That is, the outer cylinder 20 has a symmetrical shape around the axis O.

図4に示すように、凹設部21は、凹状球面をなしており、この凹状球面は、中心P2を有する球面(図4(b)においては2点鎖線で示す)の軸方向X中央部を構成する球帯状に形成されており、外筒20の軸方向両端部を構成する筒部の内周面22になだらかに接続されている。外筒20は、凹設部21が形成されることで、軸方向X中央部が両端部に対して薄肉状に形成されている。   As shown in FIG. 4, the recessed portion 21 forms a concave spherical surface, and this concave spherical surface is a central portion in the axial direction X of a spherical surface having a center P2 (indicated by a two-dot chain line in FIG. 4B). And is gently connected to the inner peripheral surface 22 of the cylindrical portion constituting both axial end portions of the outer cylinder 20. The outer cylinder 20 is formed with a recessed portion 21 so that the central portion in the axial direction X is thin with respect to both end portions.

なお、外筒20は、後述するように、絞り加工が施される部位である。そのため、絞り加工前の状態では、外筒20の内周面22における軸方向X中央部(凹設部21)は厳密な凹状球面ではなく、図4(b)に示すように、中心P2が外筒20の軸Oから軸直角方向Yにずれた位置にあり、外筒20に縮径方向への絞り加工が施されることで、凹設部21は中心P2が中心P1に一致する球帯体に形成される(図1参照)。   In addition, the outer cylinder 20 is a site | part to which drawing processing is given so that it may mention later. Therefore, in the state before drawing, the central portion (concave portion 21) in the axial direction X of the inner peripheral surface 22 of the outer cylinder 20 is not a strict concave spherical surface, and as shown in FIG. The concave portion 21 is a sphere whose center P2 coincides with the center P1 because the outer cylinder 20 is located in a position shifted from the axis O of the outer cylinder 20 in the direction perpendicular to the axis Y. It is formed in a band (see FIG. 1).

即ち、外筒20の内周面15における軸方向X中央部は、後述するように、外筒20に縮径方向への絞り加工が施されることで、上述した内筒10の膨出部11(凸状球面)を取り囲む部位(凹設部21)が、内筒10の膨出部11と同心状の(即ち、共通の中心P2を持つ)凹状球面をなす。これにより、外筒20の凹設部21は、内筒20の膨出部11に対し、一定の間隔を隔てて沿う形状に形成される(図1参照)。   That is, the central portion of the inner peripheral surface 15 of the outer cylinder 20 in the axial direction X is swelled in the above-described inner cylinder 10 by drawing the outer cylinder 20 in the diameter reducing direction, as will be described later. A portion (concave portion 21) surrounding 11 (convex spherical surface) forms a concave spherical surface that is concentric with the bulging portion 11 of the inner cylinder 10 (that is, has a common center P2). Thereby, the recessed part 21 of the outer cylinder 20 is formed in the shape which follows a certain space | interval with respect to the bulging part 11 of the inner cylinder 20 (refer FIG. 1).

図4に示すように、外筒20の内周面22には、軸方向Xに延設される複数の凹溝24が周方向Cに等間隔に分散して配置されている。これにより、外筒20は、凹溝24が配置された周方向位置で薄肉に形成されている。   As shown in FIG. 4, a plurality of concave grooves 24 extending in the axial direction X are arranged on the inner peripheral surface 22 of the outer cylinder 20 at regular intervals in the circumferential direction C. Thereby, the outer cylinder 20 is formed thin at the circumferential position where the concave groove 24 is disposed.

ここで、本実施の形態では、凹溝24は、周方向Cに対して30°毎の等間隔に合計12個が配置されると共に、これら複数の凹溝24間の隣接間隔Dは、溝幅Wよりも広く(具体的には、約2.5倍)に設定されている。なお、凹溝24は15°〜45°毎の範囲内で等間隔に配置することが好ましく、隣接間隔Dは溝幅Wの2倍〜3倍の範囲内に設定することが好ましい。   Here, in the present embodiment, a total of twelve concave grooves 24 are arranged at equal intervals of 30 ° with respect to the circumferential direction C, and the adjacent interval D between the plurality of concave grooves 24 is defined as a groove. It is set wider than the width W (specifically, about 2.5 times). The concave grooves 24 are preferably arranged at equal intervals within a range of 15 ° to 45 °, and the adjacent interval D is preferably set within a range of 2 to 3 times the groove width W.

凹溝24は、絞り加工前の形状として、断面円弧状に窪む形状に形成されている(図1参照)。また、上述の通り、外筒20の内周面22には、軸方向X中央部に凹設部21が設けられているので、凹溝24は、図4に示すように、凹設部21を除くその他の軸方向X部分の全体にわたって形成されている。なお、本実施の形態では、凹溝24の凹設深さは、凹設部21の凹設深さよりも浅く(具体的には、2/3倍)に設定されている。   The concave groove 24 is formed in a shape that is recessed in a circular arc shape as a shape before drawing (see FIG. 1). Further, as described above, since the inner peripheral surface 22 of the outer cylinder 20 is provided with the concave portion 21 at the central portion in the axial direction X, the concave groove 24 is formed in the concave portion 21 as shown in FIG. It is formed over the entire other portion in the axial direction X except for. In the present embodiment, the recessed depth of the recessed groove 24 is set to be shallower (specifically, 2/3 times) than the recessed depth of the recessed portion 21.

図1及び図2に戻って説明する。防振基体30は、内筒10の外周面12と外筒20の内周面22との間をゴム状弾性材の加硫成形により加硫接着することで、内筒10の膨出部11と外筒20の凹設部21との間に介設される部位であり、図1又は図2に示すように、絞り加工が施された形状においては、略一定の肉厚を持つ球帯体の形状に形成されている。   Returning to FIG. 1 and FIG. The vibration isolating base 30 is vulcanized and bonded between the outer peripheral surface 12 of the inner cylinder 10 and the inner peripheral surface 22 of the outer cylinder 20 by vulcanization molding of a rubber-like elastic material, whereby the bulging portion 11 of the inner cylinder 10 is obtained. Is a portion interposed between the concave portion 21 of the outer cylinder 20 and, as shown in FIG. 1 or FIG. 2, a spherical band having a substantially constant thickness in the drawn shape. It is formed in the shape of the body.

ここで、図2に示すように、防振基体30は、外筒20の凹設部21(凹状球面)によって定められる仮想球面26内において、内筒10と外筒20との間を連結する。即ち、仮想球面26の軸方向外方側X1では、内筒10と外筒20との間に防振基体30が充填されないように構成されている。なお、軸方向外方側X1においては、防振基体30に連なるゴム膜31が内筒10の外周面12及び外筒20の内周面22に形成されている。   Here, as shown in FIG. 2, the vibration isolating base 30 connects the inner cylinder 10 and the outer cylinder 20 within a virtual spherical surface 26 defined by the recessed portion 21 (concave spherical surface) of the outer cylinder 20. . That is, the antivibration base 30 is not filled between the inner cylinder 10 and the outer cylinder 20 on the axially outer side X1 of the virtual spherical surface 26. Note that, on the axially outer side X <b> 1, a rubber film 31 connected to the vibration isolation base 30 is formed on the outer peripheral surface 12 of the inner cylinder 10 and the inner peripheral surface 22 of the outer cylinder 20.

次いで、以上のように構成される防振ブッシュ100の製造方法について説明する。図5は、防振ブッシュ100の製造工程を示すフローチャートである。   Next, a method for manufacturing the anti-vibration bush 100 configured as described above will be described. FIG. 5 is a flowchart showing the manufacturing process of the vibration-proof bush 100.

防振ブッシュ100を製造するに際しては、まず、図5に示すように、切断工程(S1)を行い、金属材料から構成される円筒状のパイプ材を所定の長さで切断した後、その切断工程により切断されたパイプ材15,25から内筒10及び外筒20を形成する(刻設工程、S2)。   When manufacturing the anti-vibration bush 100, first, as shown in FIG. 5, a cutting step (S1) is performed, and a cylindrical pipe member made of a metal material is cut to a predetermined length and then cut. The inner cylinder 10 and the outer cylinder 20 are formed from the pipe materials 15 and 25 cut by the process (engraving process, S2).

ここで、図6及び図7を参照して、刻設工程(S2)について説明する。図6及び図7は、内筒10及び外筒20の製造工程を模式的に図示する模式図であり、図6(a)は、パイプ材15の上面図であり、図6(b)は、図6(a)のVIb−VIbにおけるパイプ材15の断面図である。また、図7(a)は、パイプ材25の上面図であり、図7(b)は、図7(a)のVIIb−VIIbにおけるパイプ材25の断面図である。   Here, the engraving step (S2) will be described with reference to FIGS. 6 and 7 are schematic views schematically illustrating the manufacturing process of the inner cylinder 10 and the outer cylinder 20, FIG. 6 (a) is a top view of the pipe material 15, and FIG. FIG. 7 is a cross-sectional view of the pipe member 15 along VIb-VIb in FIG. 7A is a top view of the pipe member 25, and FIG. 7B is a cross-sectional view of the pipe member 25 taken along VIIb-VIIb of FIG. 7A.

内筒10の製造に際しては、図6に示すように、切断工程(S1、図5参照)により切り出された円筒状のパイプ材15に対し、NC加工を施すことで(刻設工程S2、図5参照)、軸方向X(図6(b)左右方向)中央部において軸直角方向Yへ向けて全周にわたって膨出する膨出部11と、その膨出部になだらかに接続されると共に内筒10の軸方向両端部を構成する筒部の外周面12を形成する(図3参照)。なお、刻設工程(S2)では、内筒10の軸方向端面を面取りする工程も行われる。   When the inner cylinder 10 is manufactured, as shown in FIG. 6, NC processing is performed on the cylindrical pipe material 15 cut out in the cutting step (S1, see FIG. 5) (the engraving step S2, FIG. 5). 5), a bulging portion 11 bulging over the entire circumference in the central direction in the axial direction X (left and right direction in FIG. 6B) in the direction perpendicular to the axis Y, and the bulging portion 11 The outer peripheral surface 12 of the cylinder part which comprises the axial direction both ends of the cylinder 10 is formed (refer FIG. 3). In the engraving step (S2), a step of chamfering the axial end surface of the inner cylinder 10 is also performed.

一方、外筒20の製造に際しては、図7に示すように、切断工程(S1、図5参照)により切り出された円筒状のパイプ材25に対し、NC加工を施すことで(刻設工程S2、図5参照)、凹溝24を形成すると共に、凹設部21を形成する。即ち、外筒20を製造する際の刻設工程(S2)には、凹溝形成工程と、凹設部形成工程との2工程が含まれている。   On the other hand, when the outer cylinder 20 is manufactured, as shown in FIG. 7, NC processing is performed on the cylindrical pipe member 25 cut out by the cutting step (S1, see FIG. 5) (cutting step S2). 5), the concave groove 24 is formed, and the concave portion 21 is formed. In other words, the engraving step (S2) when manufacturing the outer cylinder 20 includes two steps of a concave groove forming step and a concave portion forming step.

凹溝形成工程は、図7に示すように、パイプ材25の内周面22に複数の凹溝24をNC加工により形成する工程であり、これにより、外筒20の内周面22には、軸方向Xに延びる複数の凹溝24が周方向Cに等間隔に分散して配置される(図4参照)。   As shown in FIG. 7, the concave groove forming step is a step of forming a plurality of concave grooves 24 on the inner peripheral surface 22 of the pipe material 25 by NC machining, whereby the inner peripheral surface 22 of the outer cylinder 20 is formed on the inner peripheral surface 22. The plurality of concave grooves 24 extending in the axial direction X are arranged at equal intervals in the circumferential direction C (see FIG. 4).

また、凹設部形成工程は、図7に示すように、パイプ材25の内周面22に凹設部21をNC加工により形成する工程であり、これにより、外筒20の内周面22には、軸方向X中央部に、軸直角方向Yへ向けて全周にわたって窪む凹設部21が形成される(図4参照)。   Moreover, a recessed part formation process is a process of forming the recessed part 21 in the inner peripheral surface 22 of the pipe material 25 by NC processing, as shown in FIG. In the central portion of the axial direction X, a recessed portion 21 that is recessed over the entire circumference in the direction perpendicular to the axial direction Y is formed (see FIG. 4).

なお、外筒20は、上述したように、絞り加工前の状態では、外筒20の内周面22における軸方向X中央部(図7(b)に2点鎖線で示す凹設部21)が厳密な凹状球面にはなっておらず、図7(b)に示すように、中心P2が外筒20の軸Oから軸直角方向Yにずれた位置にある。   Note that, as described above, the outer cylinder 20 has a central portion in the axial direction X on the inner peripheral surface 22 of the outer cylinder 20 (the recessed portion 21 indicated by a two-dot chain line in FIG. 7B) before drawing. Is not a strict concave spherical surface, and the center P2 is at a position shifted in the axis-perpendicular direction Y from the axis O of the outer cylinder 20, as shown in FIG.

即ち、凹設部形成工程におけるNC加工は、図7(b)に示すように、中心P2が軸Oからずれた位置にある円弧(図7(b)2点鎖線)を、前記ずれ量(中心P2と軸Oとの距離)が維持された状態で軸O回りに回転させた際の軌跡により、パイプ材25の内周面22を切削する加工である。   That is, the NC machining in the recessed portion forming step is performed by using the arc (the two-dot chain line in FIG. 7 (b)) where the center P2 is displaced from the axis O as shown in FIG. 7 (b). This is a process of cutting the inner peripheral surface 22 of the pipe material 25 by a locus when rotated around the axis O in a state where the distance between the center P2 and the axis O is maintained.

そして、後述する絞り工程(S4)において、外筒20に縮径方向への絞り加工を施すことで、凹設部21は中心P2が中心P1に一致する球帯体に形成される(図1参照)。なお、刻設工程(S2)では、凹溝形成工程及び凹設部形成工程と共に、外筒20の軸方向端面を面取りする加工も行われる(図4参照)。   Then, in the drawing step (S4) to be described later, the outer cylinder 20 is drawn in the diameter reducing direction so that the recessed portion 21 is formed into a spherical band whose center P2 coincides with the center P1 (FIG. 1). reference). In the engraving step (S2), the chamfering of the axial end surface of the outer cylinder 20 is performed together with the concave groove forming step and the concave portion forming step (see FIG. 4).

図5に戻って説明する。図5に示すように、刻設工程(S2)により、内筒10及び外筒20を製造した後は、次いで、加硫工程(S3)に移行する。ここで、図8を参照して、加硫工程(S3)について説明する。図8は、絞り加工前における加硫成形体の断面図である。   Returning to FIG. As shown in FIG. 5, after the inner cylinder 10 and the outer cylinder 20 are manufactured by the engraving process (S2), the process proceeds to the vulcanization process (S3). Here, the vulcanization step (S3) will be described with reference to FIG. FIG. 8 is a cross-sectional view of the vulcanized molded body before drawing.

加硫工程(S3)では、上述した刻設工程(S2)により製造された内筒10及び外筒20を図示しない加硫金型内に配置すると共に、この加硫金型内へゴム状弾性材を注入し、内筒10の外周面12と外筒20の内周面22との間をゴム状弾性材の加硫成形により加硫接着することで、内筒10と外筒20との間に防振基体30を介在させる。これにより、図8に示す絞り加工前の加硫成形体(防振ブッシュ100)が得られる。   In the vulcanization step (S3), the inner cylinder 10 and the outer cylinder 20 manufactured by the above-described engraving step (S2) are placed in a vulcanization mold (not shown), and rubber-like elasticity is introduced into the vulcanization mold. By injecting a material and vulcanizing and bonding the outer peripheral surface 12 of the inner cylinder 10 and the inner peripheral surface 22 of the outer cylinder 20 by vulcanization molding of a rubber-like elastic material, the inner cylinder 10 and the outer cylinder 20 An anti-vibration substrate 30 is interposed therebetween. As a result, the vulcanized molded body (anti-vibration bush 100) before drawing shown in FIG. 8 is obtained.

図5に戻って説明する。図5に示すように、加硫工程(S3)により、加硫成形体を製造した後は、次いで、絞り工程(S4)に移行する。ここで、図9を参照して、絞り工程(S4)について説明する。図9は、絞りダイス52及び加硫成形体の断面図であり、絞り工程(S4)を説明する図である。   Returning to FIG. As shown in FIG. 5, after the vulcanized molded body is manufactured by the vulcanization step (S3), the process proceeds to the drawing step (S4). Here, with reference to FIG. 9, the drawing step (S4) will be described. FIG. 9 is a cross-sectional view of the drawing die 52 and the vulcanized molded body, and is a view for explaining the drawing step (S4).

絞り工程(S4)は、加硫工程(S3)により成形された加硫成形体の外筒20に縮径方向への絞り加工を施す工程であり、図9に示すように、放射状に分割された複数のダイス片50を持つダイス52を用いて行われる。   The drawing step (S4) is a step of drawing the outer cylinder 20 of the vulcanized molded body formed in the vulcanizing step (S3) in the direction of diameter reduction, and is divided radially as shown in FIG. This is done using a die 52 having a plurality of die pieces 50.

ダイス52は、本実施の形態では、図9に示すように、外筒20の凹溝24と同数の12個に分割されており、各ダイス片50の周方向中央に凹溝24が位置するように加硫成形体を設置し、各ダイス片50を径方向内方(加硫成形体側)へ向けて移動させることで、外筒20に縮径方向への絞り加工が施される。   In the present embodiment, as shown in FIG. 9, the dice 52 is divided into twelve grooves of the same number as the concave grooves 24 of the outer cylinder 20, and the concave grooves 24 are located at the center in the circumferential direction of each die piece 50. Thus, the vulcanized molded body is installed, and each die piece 50 is moved toward the radially inner side (vulcanized molded body side), whereby the outer cylinder 20 is drawn in the reduced diameter direction.

これにより、防振ブッシュ100が製造される(図1又は図2参照)。なお、凹溝24は、絞り加工後も完全につぶれることはなく、凹溝24内に防振基体30(ゴム状弾性材)が充填された状態で残存する。   Thereby, the anti-vibration bush 100 is manufactured (refer FIG. 1 or FIG. 2). The concave groove 24 is not completely crushed after the drawing process, and remains in a state in which the anti-vibration base 30 (rubber-like elastic material) is filled in the concave groove 24.

次いで、図10を参照して、防振ブッシュ100の車両への組み付け状態について説明する。図10は、防振ブッシュ100の車両への組み付け状態を示す断面図である。   Next, with reference to FIG. 10, the assembled state of the vibration isolating bush 100 to the vehicle will be described. FIG. 10 is a cross-sectional view showing a state where the vibration isolating bush 100 is assembled to the vehicle.

図10に示すように、防振ブッシュ100の内筒10は、その両端面が車体側のブラケット1に挟まれた状態で、ボルトなどの図示しない締結部材で締め付けることにより、ブラケット1に固定されると共に、外筒20は、サスペンションアーム2の筒状のホルダ3に圧入固定され、これにより、防振ブッシュ100は、サスペンションアーム2と車体側のブラケット1とを防振的に連結する。   As shown in FIG. 10, the inner cylinder 10 of the vibration isolating bush 100 is fixed to the bracket 1 by tightening with a fastening member (not shown) such as a bolt in a state where both end faces are sandwiched between the brackets 1 on the vehicle body side. At the same time, the outer cylinder 20 is press-fitted and fixed to the cylindrical holder 3 of the suspension arm 2, whereby the anti-vibration bush 100 connects the suspension arm 2 and the bracket 1 on the vehicle body in an anti-vibration manner.

以上のように構成された防振ブッシュ100によれば、外筒20の内周面22に、内筒10の膨出部11の凸状球面と同心状の凹状球面(凹設部21)を設けたことで(図1参照)、こじり方向Zへの変位時には、膨出部11と凹設部21との間に介設された防振基体30の受ける力の大部分がせん断変形となるので、こじり方向Zにおけるばね定数を効果的に低減することができる。   According to the vibration isolating bush 100 configured as described above, the concave spherical surface (concave portion 21) concentric with the convex spherical surface of the bulging portion 11 of the inner cylinder 10 is formed on the inner peripheral surface 22 of the outer cylinder 20. By providing (see FIG. 1), most of the force received by the anti-vibration base 30 interposed between the bulging portion 11 and the recessed portion 21 is sheared when displaced in the twisting direction Z. Therefore, the spring constant in the twisting direction Z can be effectively reduced.

一方、軸方向Xについては、膨出部11と凹設部21との間で防振基体30がせん断変形だけでなく、圧縮変形も受けることとなるので(図2参照)、ばね定数の増加を図ることができる。   On the other hand, in the axial direction X, the vibration isolating base 30 is subjected not only to shear deformation but also to compression deformation between the bulging portion 11 and the recessed portion 21 (see FIG. 2), so that the spring constant increases. Can be achieved.

そのため、図10に示すように、防振ブッシュ100をサスペンションアーム2に取り付けた場合には、こじり方向Zでのばね定数を低減して乗り心地性の向上を図りつつ、軸方向Xでのばね定数を高くして、操縦安定性の向上を図ることができ、その結果、乗り心地性と操縦安定性の両立を図ることができる。   Therefore, as shown in FIG. 10, when the vibration isolating bush 100 is attached to the suspension arm 2, the spring constant in the axial direction X is improved while reducing the spring constant in the twisting direction Z and improving riding comfort. By increasing the constant, it is possible to improve the handling stability, and as a result, it is possible to achieve both riding comfort and handling stability.

以上、実施の形態に基づき本発明を説明したが、本発明は上記実施の形態に何ら限定されるものではなく、本発明の趣旨を逸脱しない範囲内で種々の改良変形が可能であることは容易に推察できるものである。   The present invention has been described above based on the embodiments. However, the present invention is not limited to the above embodiments, and various improvements and modifications can be made without departing from the spirit of the present invention. It can be easily guessed.

上記実施の形態で挙げた数値(例えば、各構成の数量や寸法・角度など)は一例であり、他の数値を採用することは当然可能である。   The numerical values (for example, the number, size, angle, etc. of each component) given in the above embodiment are examples, and other numerical values can naturally be adopted.

上記実施の形態では、内筒10に設ける膨出部11を金属材料から筒部と一体に構成する場合を説明したが、必ずしもこれに限られるものではなく、例えば、筒部の外周面に樹脂材料からなる環状被覆体を取着することで、膨出部11を構成するようにしても良い。   In the above-described embodiment, the case where the bulging portion 11 provided in the inner cylinder 10 is configured integrally with the cylinder portion from a metal material has been described. However, the present invention is not necessarily limited to this. For example, a resin is provided on the outer peripheral surface of the cylinder portion. You may make it comprise the bulging part 11 by attaching the cyclic | annular covering body which consists of material.

(a)は本発明の一実施の形態における防振ブッシュの上面図であり、(b)は図1(a)のIb−Ib線における防振ブッシュの断面図である。(A) is a top view of the anti-vibration bush in one embodiment of the present invention, (b) is a cross-sectional view of the anti-vibration bush along the Ib-Ib line in FIG. 1 (a). 防振ブッシュの部分拡大断面図である。It is a partial expanded sectional view of a vibration proof bush. (a)は内筒の上面図であり、(b)は図3(a)のIIIb−IIIb線における内筒の断面図である。(A) is a top view of an inner cylinder, (b) is sectional drawing of the inner cylinder in the IIIb-IIIb line | wire of Fig.3 (a). (a)は外筒の上面図であり、(b)は図4(a)のIVb−IVb線における外筒の断面図である。(A) is a top view of an outer cylinder, (b) is sectional drawing of the outer cylinder in the IVb-IVb line | wire of Fig.4 (a). 防振ブッシュの製造工程を示すフローチャートである。It is a flowchart which shows the manufacturing process of an anti-vibration bush. (a)はパイプ材の上面図であり、(b)は図6(a)のVIb−VIbにおけるパイプ材の断面図である。(A) is a top view of a pipe material, (b) is sectional drawing of the pipe material in VIb-VIb of Fig.6 (a). (a)はパイプ材の上面図であり、(b)は図7(a)のVIIb−VIIbにおけるパイプ材の断面図である。(A) is a top view of a pipe material, (b) is sectional drawing of the pipe material in VIIb-VIIb of Fig.7 (a). 絞り加工前における加硫成形体の断面図である。It is sectional drawing of the vulcanization molded object before a drawing process. 絞りダイス及び加硫成形体の断面図である。It is sectional drawing of a drawing die and a vulcanization molding. 防振ブッシュの車両への組み付け状態を示す断面図である。It is sectional drawing which shows the assembly | attachment state to the vehicle of a vibration proof bush.

符号の説明Explanation of symbols

100 防振ブッシュ
10 内筒(第1円筒部材)
11 膨出部
12 外周面
15 パイプ材
20 外筒(第2円筒部材)
21 凹設部
22 内周面
24 凹溝
25 パイプ材
26 仮想球面
30 防振基体
S1 切断工程
S3 加硫工程
S4 絞り工程
X 軸方向
Z こじり方向
C 周方向
O 軸
W 溝幅
D 隣接間隔(凹溝の配置間隔)
P1 中心(凸状球面の中心)
P2 中心(凹状球面の中心)
100 Anti-vibration bush 10 Inner cylinder (first cylindrical member)
11 bulging portion 12 outer peripheral surface 15 pipe material 20 outer cylinder (second cylindrical member)
21 concave portion 22 inner peripheral surface 24 concave groove 25 pipe material 26 virtual spherical surface 30 anti-vibration base S1 cutting step S3 vulcanization step S4 drawing step X axial direction Z twisting direction C circumferential direction O axis W groove width D adjacent interval (concave) Groove spacing)
P1 center (center of convex spherical surface)
P2 center (center of concave spherical surface)

Claims (6)

第1円筒部材と、前記第1円筒部材の外周側に間隔を隔てて配置される第2円筒部材と、前記第1円筒部材と第2円筒部材との間に介在しゴム状弾性材から構成される防振基体とを備える防振ブッシュの製造方法において、
金属材料から構成される円筒状のパイプ材を所定の長さで切断して前記第1円筒部材及び第2円筒部材を形成する切断工程と、
前記切断工程により形成された第2円筒部材の内周面に軸方向へ延びる複数の凹溝を周方向へ分散させてNC加工により形成する凹溝形成工程と、
前記凹溝形成工程により複数の凹溝が形成された第2円筒部材を前記第1円筒部材の外周側に同軸状に配置し、前記第2円筒部材の内周面と前記第1円筒部材の外周面との間をゴム状弾性材の加硫成形により加硫接着することで、前記第1円筒部材と第2円筒部材との間に前記防振基体を介在させる加硫工程と、
前記加硫工程により防振基体が内周面に加硫接着された前記第2円筒部材に縮径方向への絞り加工を施す絞り工程と、を備えることを特徴とする防振ブッシュの製造方法。
A first cylindrical member, a second cylindrical member disposed on the outer peripheral side of the first cylindrical member with a space therebetween, and a rubber-like elastic material interposed between the first cylindrical member and the second cylindrical member. In the manufacturing method of the vibration isolating bush provided with the anti-vibration base,
A cutting step of cutting a cylindrical pipe member made of a metal material with a predetermined length to form the first cylindrical member and the second cylindrical member;
A groove forming step of forming a plurality of grooves extending in the axial direction on the inner peripheral surface of the second cylindrical member formed by the cutting step and forming the groove by NC machining;
A second cylindrical member having a plurality of concave grooves formed by the concave groove forming step is arranged coaxially on the outer peripheral side of the first cylindrical member, and the inner peripheral surface of the second cylindrical member and the first cylindrical member A vulcanization step of interposing the vibration-proof base between the first cylindrical member and the second cylindrical member by vulcanizing and bonding between the outer peripheral surface by vulcanization molding of a rubber-like elastic material;
And a drawing step of drawing the second cylindrical member, in which the vibration-proof base is vulcanized and bonded to the inner peripheral surface by the vulcanization step, in the diameter reducing direction. .
前記凹溝形成工程は、前記第2円筒部材の内周面において、前記複数の凹溝を周方向へ等間隔に配置して形成するものであることを特徴とする請求項1記載の防振ブッシュの製造方法。   2. The anti-vibration method according to claim 1, wherein the concave groove forming step forms the plurality of concave grooves at equal intervals in the circumferential direction on the inner peripheral surface of the second cylindrical member. Bush manufacturing method. 前記凹溝形成工程は、前記複数の凹溝をその溝幅よりも広い間隔で配置して形成するものであることを特徴とする請求項1又は2に記載の防振ブッシュの製造方法。   3. The method for manufacturing a vibration-proof bushing according to claim 1, wherein in the step of forming the concave groove, the plurality of concave grooves are formed with an interval wider than the groove width. 前記切断工程の後であって前記加硫工程の前に、前記第1円筒部材の外周面から軸直角方向へ向けて膨出し凸状球面をなす膨出部を前記第1円筒部材の外周面に形成する膨出部形成工程と、
前記切断工程の後であって前記加硫工程の前に、前記第2円筒部材の内周面における窪みであって前記膨出部よりも大径の凹状球面をなす凹設部を前記第2円筒部材の内周面にNC加工により形成する凹設部形成工程と、を備え、
前記膨出部形成工程は、中心が軸上に位置する凸状球面として前記膨出部を形成するものであり、
前記凹設部形成工程は、中心が軸から所定間隔だけ離れて位置する円弧を前記軸回りに回転させた軌跡がなす凹状球面として前記凹設部を形成するものであり、
前記加硫工程は、前記凸状球面をなす膨出部が前記凹状球面をなす凹設部により取り囲まれた状態で、前記第2円筒部材の内周面と前記第1円筒部材の外周面との間をゴム状弾性材の加硫成形により加硫接着するものであり、
前記絞り工程は、前記凹設部を形成する前記円弧の中心が前記膨出部の中心と一致する分だけ前記第2円筒部材を縮径させるものであることを特徴とする請求項1から3のいずれかに記載の防振ブッシュの製造方法。
After the cutting step and before the vulcanization step, a bulging portion that bulges from the outer peripheral surface of the first cylindrical member in the direction perpendicular to the axis and forms a convex spherical surface is provided on the outer peripheral surface of the first cylindrical member. A bulging part forming step to be formed on,
After the cutting step and before the vulcanization step, a concave portion that is a recess in the inner peripheral surface of the second cylindrical member and has a concave spherical surface that is larger in diameter than the bulging portion is provided in the second portion. A recessed portion forming step formed by NC processing on the inner peripheral surface of the cylindrical member,
The bulging portion forming step is to form the bulging portion as a convex spherical surface whose center is located on the axis,
The concave portion forming step is to form the concave portion as a concave spherical surface formed by a trajectory obtained by rotating an arc whose center is located apart from the axis by a predetermined interval around the axis,
In the vulcanization step, the bulging portion forming the convex spherical surface is surrounded by the concave portion forming the concave spherical surface, and the inner peripheral surface of the second cylindrical member and the outer peripheral surface of the first cylindrical member are Is vulcanized and bonded by vulcanization molding of rubber-like elastic material,
4. The squeezing step is to reduce the diameter of the second cylindrical member by an amount in which the center of the arc forming the recessed portion coincides with the center of the bulging portion. A method for producing a vibration-proof bush according to any one of the above.
前記加硫工程は、前記凹状球面としての凹設部によって定められる仮想球面内において、前記第1円筒部材と第2円筒部材との間を前記防振基体が連結するように、前記ゴム状弾性材を加硫成形するものであることを特徴とする請求項4記載の防振ブッシュの製造方法。   In the vulcanization step, the rubber-like elasticity is formed so that the vibration-proof base is connected between the first cylindrical member and the second cylindrical member within a virtual spherical surface defined by the concave portion as the concave spherical surface. The method for manufacturing a vibration-proof bushing according to claim 4, wherein the material is vulcanized. 請求項1から5のいずれかに記載の防振ブッシュの製造方法により製造されたものであることを特徴とする防振ブッシュ。   An anti-vibration bush produced by the method for producing an anti-vibration bush according to claim 1.
JP2006316397A 2006-11-23 2006-11-23 Anti-vibration bush manufacturing method and anti-vibration bush Active JP4315972B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006316397A JP4315972B2 (en) 2006-11-23 2006-11-23 Anti-vibration bush manufacturing method and anti-vibration bush

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006316397A JP4315972B2 (en) 2006-11-23 2006-11-23 Anti-vibration bush manufacturing method and anti-vibration bush

Publications (2)

Publication Number Publication Date
JP2008128412A true JP2008128412A (en) 2008-06-05
JP4315972B2 JP4315972B2 (en) 2009-08-19

Family

ID=39554435

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006316397A Active JP4315972B2 (en) 2006-11-23 2006-11-23 Anti-vibration bush manufacturing method and anti-vibration bush

Country Status (1)

Country Link
JP (1) JP4315972B2 (en)

Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5660818U (en) * 1979-10-17 1981-05-23
JPS5968833U (en) * 1982-10-30 1984-05-10 マツダ株式会社 Suspension rubber bushing
JPH01166146U (en) * 1988-04-26 1989-11-21
JPH02138240U (en) * 1989-04-24 1990-11-19
JPH05215167A (en) * 1991-08-30 1993-08-24 Neway Corp Adjustable elastomer bush
JPH0654938U (en) * 1992-12-28 1994-07-26 豊生ブレーキ工業株式会社 Cylindrical rubber bush
JPH0671930U (en) * 1993-03-12 1994-10-07 東洋ゴム工業株式会社 Cylindrical elastic bush
JPH07167209A (en) * 1993-12-15 1995-07-04 Bridgestone Corp Vibration-proof device
JPH08200443A (en) * 1995-01-20 1996-08-06 Yamakawa Ind Co Ltd Manufacture of aluminum-made bracket for vibration isolating material
JPH09217772A (en) * 1996-02-07 1997-08-19 Ookita Kk Spring cover and manufacture thereof
JPH11230224A (en) * 1998-02-19 1999-08-27 Toyo Tire & Rubber Co Ltd Rubber bush having outer cylinder, and restriction method for the outer cylinder
JPH11280813A (en) * 1998-03-30 1999-10-15 Tokai Rubber Ind Ltd Attaching structure for vibration-proof bushing and manufacture of inner cylindrical fitting for vibration-proof bushing
JP2002081479A (en) * 2000-09-08 2002-03-22 Toyo Tire & Rubber Co Ltd Vibration-proof bush
JP2003226239A (en) * 2002-02-05 2003-08-12 Tokai Rubber Ind Ltd Vibration controlling rubber bush for rolling stock and its manufacturing and assembling method
JP2004144150A (en) * 2002-10-22 2004-05-20 Toyo Tire & Rubber Co Ltd Vibration control bush
JP2005257023A (en) * 2004-03-15 2005-09-22 Toyo Tire & Rubber Co Ltd Method for manufacturing laminated rubber structure

Patent Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5660818U (en) * 1979-10-17 1981-05-23
JPS5968833U (en) * 1982-10-30 1984-05-10 マツダ株式会社 Suspension rubber bushing
JPH01166146U (en) * 1988-04-26 1989-11-21
JPH02138240U (en) * 1989-04-24 1990-11-19
JPH05215167A (en) * 1991-08-30 1993-08-24 Neway Corp Adjustable elastomer bush
JPH0654938U (en) * 1992-12-28 1994-07-26 豊生ブレーキ工業株式会社 Cylindrical rubber bush
JPH0671930U (en) * 1993-03-12 1994-10-07 東洋ゴム工業株式会社 Cylindrical elastic bush
JPH07167209A (en) * 1993-12-15 1995-07-04 Bridgestone Corp Vibration-proof device
JPH08200443A (en) * 1995-01-20 1996-08-06 Yamakawa Ind Co Ltd Manufacture of aluminum-made bracket for vibration isolating material
JPH09217772A (en) * 1996-02-07 1997-08-19 Ookita Kk Spring cover and manufacture thereof
JPH11230224A (en) * 1998-02-19 1999-08-27 Toyo Tire & Rubber Co Ltd Rubber bush having outer cylinder, and restriction method for the outer cylinder
JPH11280813A (en) * 1998-03-30 1999-10-15 Tokai Rubber Ind Ltd Attaching structure for vibration-proof bushing and manufacture of inner cylindrical fitting for vibration-proof bushing
JP2002081479A (en) * 2000-09-08 2002-03-22 Toyo Tire & Rubber Co Ltd Vibration-proof bush
JP2003226239A (en) * 2002-02-05 2003-08-12 Tokai Rubber Ind Ltd Vibration controlling rubber bush for rolling stock and its manufacturing and assembling method
JP2004144150A (en) * 2002-10-22 2004-05-20 Toyo Tire & Rubber Co Ltd Vibration control bush
JP2005257023A (en) * 2004-03-15 2005-09-22 Toyo Tire & Rubber Co Ltd Method for manufacturing laminated rubber structure

Also Published As

Publication number Publication date
JP4315972B2 (en) 2009-08-19

Similar Documents

Publication Publication Date Title
JP6867138B2 (en) Anti-vibration bush
JP3951274B1 (en) Anti-vibration bushing manufacturing method
JP2005315315A (en) Torque rod
JP2012211604A (en) Vibration-isolating device
JP4832344B2 (en) Anti-vibration bush manufacturing method and anti-vibration bush
JP3924729B1 (en) Anti-vibration bush
JP4315972B2 (en) Anti-vibration bush manufacturing method and anti-vibration bush
JP5913821B2 (en) Anti-vibration device manufacturing method
JP6872316B2 (en) Dynamic damper for propeller shaft
JP4282712B2 (en) Anti-vibration bush manufacturing method and anti-vibration bush
JP2008057792A (en) Cylindrical dynamic damper and its manufacturing process
JP2008169914A (en) Vibration isolation device
JP2017219055A (en) Gear Damper
JP5003882B2 (en) Torsional damper
JP2005344764A (en) Vibration control bush
JP2007263148A (en) Member mount and its manufacturing method
JP2012196705A (en) Method of manufacturing rubber vibration isolator of cylindrical shape with flange head
JP2010060023A (en) Vibration damping bushing
JP2012042041A (en) Method for manufacturing antivibration rubber
JP2008256101A (en) Anti-vibration bushing
JP2018091467A (en) Dynamic damper
JP2014066297A (en) Cylindrical type vibration control device
JP5290933B2 (en) Anti-vibration bush manufacturing method and intermediate cylinder drawing apparatus
JP2008111537A (en) Manufacturing method of vibration control bush
JP4303297B2 (en) Anti-vibration bush

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080904

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080924

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081117

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090519

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090519

R150 Certificate of patent or registration of utility model

Ref document number: 4315972

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120529

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150529

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250