JP2012211604A - Vibration-isolating device - Google Patents

Vibration-isolating device Download PDF

Info

Publication number
JP2012211604A
JP2012211604A JP2011076282A JP2011076282A JP2012211604A JP 2012211604 A JP2012211604 A JP 2012211604A JP 2011076282 A JP2011076282 A JP 2011076282A JP 2011076282 A JP2011076282 A JP 2011076282A JP 2012211604 A JP2012211604 A JP 2012211604A
Authority
JP
Japan
Prior art keywords
bush
rubber
elastic body
shaft member
outer cylinder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011076282A
Other languages
Japanese (ja)
Inventor
Takahiro Oguchi
貴広 大口
Hiroki Funo
宏樹 布野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Tire Corp
Original Assignee
Toyo Tire and Rubber Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Tire and Rubber Co Ltd filed Critical Toyo Tire and Rubber Co Ltd
Priority to JP2011076282A priority Critical patent/JP2012211604A/en
Publication of JP2012211604A publication Critical patent/JP2012211604A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a vibration-isolating device capable of reducing the spring constant in the prying direction and improving the durability while ensuring the spring constant in the direction orthogonal to the axis.SOLUTION: A concave part 33 of an outer cylinder 30 in a first bush 10 and a second bush 70 is formed in a continuously spherical shape, and opposite to a convex part 24 of a shaft member 20. Thus, the wall thickness of a rubber-like elastic body 40 interposed between the concave part 33 and the convex part 24 can be substantially constant in the axial direction. As a result, exertion of any non-uniform stress in the rubber-like elastic body 40 can be controlled during the displacement in the prying direction or in the direction orthogonal to the axis, and the durability of a vibration-isolating device 1 can be enhanced. During the displacement in the direction orthogonal to the axis, any movement in the axial direction of the rubber-like elastic body 40 is prevented, and the spring constant in the direction orthogonal to the axis can be ensured. Further, during the displacement in the prying direction, the rubber-like elastic body 40 is mainly subjected to the shear deformation, and the spring constant in the prying direction can be reduced.

Description

本発明は、振動発生側と振動受け側とを相互に防振連結する防振装置に関し、特に、軸直角方向におけるばね定数を確保しつつ、こじり方向におけるばね定数を小さくできると共に、耐久性を向上できる防振装置に関するものである。   The present invention relates to an anti-vibration device in which the vibration generating side and the vibration receiving side are anti-vibrated and connected to each other, and in particular, while ensuring the spring constant in the direction perpendicular to the axis, the spring constant in the twisting direction can be reduced and the durability can be reduced. The present invention relates to a vibration isolator that can be improved.

従来より、振動発生側と振動受け側とを相互に防振連結するトルクロッドやサスペンションアーム等の防振装置が広く用いられている。かかる防振装置は、一般に、内筒等の軸部材と、その軸部材と弾性的に結合される外筒とを備える防振ブッシュを連結部材により相互に連結して構成される。   Conventionally, vibration isolators such as torque rods and suspension arms that mutually connect the vibration generation side and the vibration receiving side with vibration isolation have been widely used. Such an anti-vibration device is generally configured by connecting anti-vibration bushes including a shaft member such as an inner cylinder and an outer cylinder elastically coupled to the shaft member to each other by a connecting member.

このような防振装置として特許文献1に開示されるものは、大径の防振ブッシュ(大ブッシュ)と小径の防振ブッシュ(小ブッシュ)とを連結部材により連結するものである。以下、図8を参照して、特許文献1に開示される従来の防振装置200を説明する。図8は従来の防振装置200における小ブッシュ210の軸方向断面図である。防振装置200における小ブッシュ210は、軸直角方向(矢印P1方向)におけるばね定数を大きくしつつ、こじり方向(矢印P2方向)におけるばね定数を小さくするためのものである。   As such an anti-vibration device, a device disclosed in Patent Document 1 connects a large-diameter anti-vibration bush (large bush) and a small-diameter anti-vibration bush (small bush) by a connecting member. Hereinafter, a conventional vibration isolator 200 disclosed in Patent Document 1 will be described with reference to FIG. FIG. 8 is a sectional view in the axial direction of a small bush 210 in the conventional vibration isolator 200. The small bush 210 in the vibration isolator 200 is for increasing the spring constant in the direction perpendicular to the axis (arrow P1 direction) and reducing the spring constant in the twisting direction (arrow P2 direction).

図8に示すように、防振装置200の小ブッシュ210は、軸部材211の軸方向の中央部を軸直角方向外側に膨出させて凸曲面212としている。外筒213は、軸方向の中央部で軸方向に2分割された一対の半体213a,213bにより構成される。また、小ブッシュ210と大ブッシュ(図示せず)とを連結する連結部材214は、一対の板体214a,214bを重ね合わせて構成される。それら半体213a,213bと板体214a,214bとをそれぞれ一体に形成し、一対の半体213a,213b及び板体214a,214bと軸部材211とがゴム状弾性体215により加硫接着されている。   As shown in FIG. 8, the small bushing 210 of the vibration isolator 200 is formed as a convex curved surface 212 by bulging the axial center portion of the shaft member 211 outward in the direction perpendicular to the axis. The outer cylinder 213 includes a pair of half bodies 213a and 213b that are divided into two in the axial direction at the central portion in the axial direction. Further, the connecting member 214 that connects the small bush 210 and the large bush (not shown) is configured by overlapping a pair of plate bodies 214a and 214b. The half bodies 213a and 213b and the plate bodies 214a and 214b are integrally formed, and the pair of half bodies 213a and 213b, the plate bodies 214a and 214b, and the shaft member 211 are vulcanized and bonded by a rubber-like elastic body 215. Yes.

外筒213は、一対の半体213a,213bにより軸方向の中央部を軸直角方向外側に湾曲する凹曲面とし、凸曲面212と対向させ、軸部材211と外筒213との間がゴム状弾性体で結合されている。なお、防振装置200の大ブッシュは、軸部材および外筒は円筒状に形成されており、小ブッシュ210のような凸曲面212及び凹曲面は形成されていないので、図示を省略している。   The outer cylinder 213 has a concave curved surface that curves outward in the direction perpendicular to the axis by a pair of halves 213a and 213b, is opposed to the convex curved surface 212, and the space between the shaft member 211 and the outer cylinder 213 is rubbery. It is connected with an elastic body. Note that the large bush of the vibration isolator 200 has a shaft member and an outer cylinder that are formed in a cylindrical shape, and the convex curved surface 212 and the concave curved surface are not formed as in the small bush 210, so that illustration is omitted. .

特開2005−344764号公報JP 2005-344664 A

しかしながら特許文献1に開示される技術では、大ブッシュ(図示せず)は小ブッシュとは形状が異なり、小ブッシュ210のような凸曲面212及び凹曲面が形成されていない。そのため、防振装置200の使用時には、大ブッシュ又は小ブッシュ210のいずれか一方(特に大ブッシュ)のゴム状弾性体のひずみが大きくなる。その結果、ひずみの大きな側のゴム状弾性体に寿命が著しく早く到来するため、防振装置200の耐久性を向上させることが困難であった。   However, in the technique disclosed in Patent Document 1, the large bush (not shown) has a different shape from the small bush, and the convex curved surface 212 and the concave curved surface are not formed like the small bush 210. Therefore, when the vibration isolator 200 is used, the strain of the rubber-like elastic body of either the large bush or the small bush 210 (particularly the large bush) increases. As a result, the lifetime of the rubber-like elastic body on the larger strain side comes to be extremely early, and it is difficult to improve the durability of the vibration isolator 200.

また、小ブッシュ210における外筒213が軸方向の中央部で軸方向に2分割されているので、外筒213の凹曲面は軸方向の中央部で分断される。そのため、外筒213の凹曲面を軸方向に連続した面にすることができない。そのため、凹曲面と凸曲面212との間に介設されたゴム状弾性体215は軸方向で肉厚が不均一となる。その結果、こじり方向(矢印P2方向)や軸直角方向(矢印P1方向)における変位時に、凸曲面212と凹曲面との間に介設されたゴム状弾性体215に不均一な応力が作用し、防振装置200の耐久性が低下するという問題点があった。   Moreover, since the outer cylinder 213 in the small bush 210 is divided into two in the axial direction at the central part in the axial direction, the concave curved surface of the outer cylinder 213 is divided at the central part in the axial direction. Therefore, the concave curved surface of the outer cylinder 213 cannot be a continuous surface in the axial direction. Therefore, the rubber-like elastic body 215 interposed between the concave curved surface and the convex curved surface 212 has a non-uniform thickness in the axial direction. As a result, non-uniform stress acts on the rubber-like elastic body 215 interposed between the convex curved surface 212 and the concave curved surface during displacement in the twisting direction (arrow P2 direction) or the axis perpendicular direction (arrow P1 direction). There is a problem that the durability of the vibration isolator 200 is lowered.

また、分断された外筒213と凸曲面212との間に存在するゴム状弾性体215は、連結部材214の板体214a,214b間に介設されるゴム状弾性体215と一体化されている。そのため、外筒213と凸曲面212との間に介設されたゴム状弾性体215の肉厚は、外筒213が分断された連結部材214の板体214a,214b間(内筒211の軸方向の中央部)で厚くなる。外筒213が分断された部位でゴム状弾性体215の肉厚が厚くなると、軸直角方向(矢印P1方向)におけるばね定数が低下するという問題点があった。   Further, the rubber-like elastic body 215 existing between the divided outer cylinder 213 and the convex curved surface 212 is integrated with the rubber-like elastic body 215 interposed between the plate bodies 214 a and 214 b of the connecting member 214. Yes. Therefore, the thickness of the rubber-like elastic body 215 interposed between the outer cylinder 213 and the convex curved surface 212 is set between the plates 214a and 214b of the connecting member 214 from which the outer cylinder 213 is divided (the axis of the inner cylinder 211). Thicker in the middle). When the thickness of the rubber-like elastic body 215 is increased at the portion where the outer cylinder 213 is divided, there is a problem that the spring constant in the direction perpendicular to the axis (the direction of the arrow P1) decreases.

また、軸直角方向(矢印P1方向)におけるばね定数が低下することを防止するため、剛性の大きなゴム状弾性体215を採用する場合には、軸直角方向におけるばね定数は改善されるものの、こじり方向(矢印P2方向)におけるばね定数が増加するという問題点があった。   Further, in order to prevent the spring constant in the direction perpendicular to the axis (the direction of the arrow P1) from being lowered, when the rubber-like elastic body 215 having a large rigidity is employed, the spring constant in the direction perpendicular to the axis is improved. There is a problem in that the spring constant in the direction (arrow P2 direction) increases.

本発明は上述した問題点を解決するためになされたものであり、軸直角方向におけるばね定数を確保しつつ、こじり方向におけるばね定数を小さくできると共に耐久性を向上できる防振装置を提供することを目的としている。   The present invention has been made to solve the above-described problems, and provides a vibration isolator capable of reducing the spring constant in the twisting direction and improving the durability while securing the spring constant in the direction perpendicular to the axis. It is an object.

課題を解決するための手段および発明の効果Means for Solving the Problems and Effects of the Invention

この目的を達成するために、請求項1記載の防振装置によれば、振動発生側に取着される第1ブッシュと、振動受け側に取着される第2ブッシュと、第1ブッシュ及び第2ブッシュを互いに連結する連結部材とを備えるものであり、第1ブッシュ及び第2ブッシュは、筒状に形成されると共に、軸方向の中央部が軸直角方向外側に膨出し外周面が球面状に形成される凸面部を有する軸部材と、軸部材の外周側に軸部材と軸平行に位置し連結部材に連結されると共に、軸方向の中央部が凸面部に相対して軸直角方向外側に陥没しつつ内周面が連続した球面状に形成される凹面部を有する外筒とを備えているので、第1ブッシュ及び第2ブッシュにおける軸部材および外筒に凸面部および凹面部が形成される。外筒の凹面部が連続した球面状に形成され、軸部材の凸面部と相対するので、凹面部と凸面部との間に介設されたゴム状弾性体は、軸方向で肉厚を略一定にできる。その結果、こじり方向や軸直角方向における変位時に、凹面部と凸面部との間に介設されたゴム状弾性体に不均一な応力が作用することを抑制できる。これにより、防振装置の耐久性を向上できる効果がある。   In order to achieve this object, according to the vibration isolator of claim 1, the first bush attached to the vibration generating side, the second bush attached to the vibration receiving side, the first bush, The first bush and the second bush are formed in a cylindrical shape, the central portion in the axial direction bulges outward in the direction perpendicular to the axis, and the outer peripheral surface is a spherical surface. A shaft member having a convex portion formed in a shape, and being connected to the connecting member on the outer peripheral side of the shaft member in parallel with the shaft member, and having a central portion in the axial direction perpendicular to the convex portion. And an outer cylinder having a concave surface portion that is formed in a spherical shape having a continuous inner peripheral surface while being depressed outward, and the convex portion and the concave surface portion are provided on the shaft member and the outer cylinder in the first bush and the second bush. It is formed. Since the concave surface portion of the outer cylinder is formed in a continuous spherical shape and faces the convex surface portion of the shaft member, the rubber-like elastic body interposed between the concave surface portion and the convex surface portion is substantially thin in the axial direction. Can be constant. As a result, it is possible to suppress non-uniform stress from acting on the rubber-like elastic body interposed between the concave surface portion and the convex surface portion during displacement in the twisting direction or the direction perpendicular to the axis. Thereby, there exists an effect which can improve the durability of a vibration isolator.

また、防振装置の使用時に、第1ブッシュ及び第2ブッシュにおけるゴム状弾性体のひずみが著しく異なることを抑制できる。その結果、第1ブッシュ又は第2ブッシュのいずれか一方のゴム状弾性体に寿命が著しく早く到来することを抑制でき、防振装置の耐久性を向上できる効果がある。   Further, when the vibration isolator is used, it is possible to suppress the distortion of the rubber-like elastic body in the first bush and the second bush from being significantly different. As a result, it is possible to suppress the life of the rubber-like elastic body of one of the first bush and the second bush from reaching extremely early and to improve the durability of the vibration isolator.

また、軸直角方向における変位時には、凹面部と凸面部との間に介設されたゴム状弾性体の軸方向の移動が凹面部および凸面部で妨げられるので、軸直角方向におけるばね定数を確保できる効果がある。なお、軸方向における変位時には、凸面部と凹面部との間のゴム状弾性体がせん断変形および圧縮変形することにより、軸方向におけるばね定数を確保できる。   Also, during displacement in the direction perpendicular to the axis, the axial movement of the rubber-like elastic body interposed between the concave and convex portions is hindered by the concave and convex portions, so a spring constant in the direction perpendicular to the axis is ensured. There is an effect that can be done. At the time of displacement in the axial direction, the rubber-like elastic body between the convex surface portion and the concave surface portion undergoes shear deformation and compression deformation, thereby ensuring a spring constant in the axial direction.

また、こじり方向における変位時には、凸面部と凹面部との間に介設されたゴム状弾性体を主にせん断変形させ、軸部材と外筒との間でゴム状弾性体の軸方向端部が圧縮変形することを抑制できる。その結果、こじり方向におけるばね定数を低減できる効果がある。   Further, at the time of displacement in the twisting direction, the rubber-like elastic body interposed between the convex surface portion and the concave surface portion is mainly subjected to shear deformation, so that the axial end portion of the rubber-like elastic body is between the shaft member and the outer cylinder. Can be suppressed from being compressed and deformed. As a result, the spring constant in the twisting direction can be reduced.

第1ブッシュ及び第2ブッシュのこじり方向におけるばね定数を低減できれば、振動発生側と振動受け側との吸収可能な変位の角度を増大できる。吸収可能な変位の角度を増大させることで、変位の大きさ(距離)が同じ場合、第1ブッシュ及び第2ブッシュを連結する連結部材を短くできる。連結部材を短くできれば連結部材の質量(第1ブッシュ及び第2ブッシュの外筒の質量も含む)を小さくでき、ばね定数を変えない条件下で、連結部材の共振周波数を上昇させることができる。以上のように第1ブッシュ及び第2ブッシュのこじり方向におけるばね定数を低減することで、防振装置の振動減衰特性をコントロールできる効果がある。   If the spring constant in the twisting direction of the first bush and the second bush can be reduced, the angle of the displaceable displacement between the vibration generating side and the vibration receiving side can be increased. By increasing the angle of displacement that can be absorbed, the connecting member that connects the first bush and the second bush can be shortened when the magnitude (distance) of the displacement is the same. If the connecting member can be shortened, the mass of the connecting member (including the masses of the outer cylinders of the first bush and the second bush) can be reduced, and the resonance frequency of the connecting member can be increased under the condition that the spring constant is not changed. As described above, there is an effect that the vibration damping characteristics of the vibration isolator can be controlled by reducing the spring constant in the twisting direction of the first bush and the second bush.

請求項2記載の防振装置によれば、連結部材は、筒状に形成されると共に第1ブッシュ及び第2ブッシュの外筒がそれぞれ圧入される第1筒状ホルダ及び第2筒状ホルダを両端に備え、第2ブッシュは、第1ブッシュと同一形状かつ同一寸法の部材により構成されると共に同一のばね定数に設定されているので、第2ブッシュと第1ブッシュとを共通化でき、請求項1の効果に加え、部品点数を削減できる効果がある。また、第2ブッシュと第1ブッシュとを共通化できることで、第1ブッシュ及び第2ブッシュの圧入作業の手順や方法等を簡素化することができ、防振装置の生産性を向上できる効果がある。   According to the vibration isolator of claim 2, the connecting member is formed in a cylindrical shape, and the first cylindrical holder and the second cylindrical holder into which the outer cylinders of the first bush and the second bush are respectively press-fitted. The second bushing is provided at both ends, and the second bushing is configured by a member having the same shape and the same size as the first bushing and is set to the same spring constant, so that the second bushing and the first bushing can be shared, In addition to the effect of item 1, the number of parts can be reduced. Further, since the second bush and the first bush can be used in common, the procedure and method of press-fitting work of the first bush and the second bush can be simplified, and the effect of improving the productivity of the vibration isolator can be achieved. is there.

また、第1ブッシュ及び第2ブッシュが同一形状かつ同一寸法の部材により構成され、同一のばね定数に設定されているので、防振装置の耐久性を向上できる。即ち、第1ブッシュ及び第2ブッシュのばね定数が異なる設定の場合、ばね定数の小さなゴム状弾性体が大きくひずむため、ばね定数の小さなゴム状弾性体に寿命が早く到来し、防振装置の耐久性を向上させることが困難であった。これに対し、第1ブッシュ及び第2ブッシュのばね定数を同一の設定にすることで、一方のゴム状弾性体の負荷が大きくなることを抑制することができ、防振装置の耐久性を向上できる効果がある。   In addition, since the first bush and the second bush are made of members having the same shape and the same dimensions and are set to the same spring constant, the durability of the vibration isolator can be improved. That is, when the spring constants of the first bush and the second bush are set differently, the rubber-like elastic body having a small spring constant is greatly distorted. It was difficult to improve durability. On the other hand, by setting the spring constants of the first bush and the second bush to the same setting, it is possible to suppress an increase in the load of one rubber-like elastic body and improve the durability of the vibration isolator. There is an effect that can be done.

請求項3記載の防振装置によれば、ゴム状弾性体は、第1ブッシュ及び第2ブッシュの軸方向端面の一部に凹設される凹陥部を備えているので、第1ブッシュ及び第2ブッシュの一部の軸直角方向におけるゴム状弾性体のばね定数を、それ以外の軸直角方向におけるゴム状弾性体のばね定数より小さくすることができる。その結果、請求項1又は2の効果に加え、防振装置の第1ブッシュ及び第2ブッシュの一部の方向に高周波かつ小振幅の振動が入力されたときに、振動受け側への振動伝達を抑制できる効果がある。   According to the vibration isolator of the third aspect, since the rubber-like elastic body includes the recessed portion that is recessed in part of the axial end surfaces of the first bush and the second bush, The spring constant of the rubber-like elastic body in the direction perpendicular to the axis of a part of the two bushes can be made smaller than the spring constant of the rubber-like elastic body in the other direction perpendicular to the axis. As a result, in addition to the effect of claim 1 or 2, when high-frequency and small-amplitude vibration is input in the direction of a part of the first bush and the second bush of the vibration isolator, vibration transmission to the vibration receiving side is performed. There is an effect that can be suppressed.

請求項4記載の防振装置によれば、凹陥部は、軸方向断面が円弧状に形成される円弧部を備え、凹面部により定められる仮想球面が凹陥部と交差すると共に、円弧部は、仮想球面の内側に位置しているので、こじり方向における変位時に、軸部材と外筒との間でゴム状弾性体の軸方向端部が圧縮変形することを確実に回避できる。これにより、請求項3の効果に加え、こじり方向におけるばね定数をより低減できる効果がある。   According to the vibration isolator of claim 4, the concave portion includes an arc portion whose axial cross section is formed in an arc shape, and a virtual spherical surface defined by the concave surface portion intersects the concave portion, and the arc portion is Since it is located inside the phantom spherical surface, it is possible to reliably avoid the axial end portion of the rubber-like elastic body from being compressed and deformed between the shaft member and the outer cylinder at the time of displacement in the twisting direction. Thereby, in addition to the effect of Claim 3, there is an effect that the spring constant in the twisting direction can be further reduced.

第1実施の形態における防振装置の平面図である。It is a top view of the vibration isolator in 1st Embodiment. (a)は第1ブッシュの平面図であり、(b)は図2(a)のIIb−IIb線における第1ブッシュの断面図である。(A) is a top view of a 1st bush, (b) is sectional drawing of the 1st bush in the IIb-IIb line | wire of Fig.2 (a). 図2(b)のIIIで示す部分を拡大して示した第1ブッシュの部分拡大断面図である。It is the elements on larger scale of the 1st bush which expanded and showed the portion shown by III of Drawing 2 (b). 第1ブッシュ及び第2ブッシュのこじり方向における変位の角度および大きさと連結部材との長さとの関係を示す模式図である。It is a schematic diagram which shows the relationship between the angle and magnitude | size of the displacement in the prying direction of a 1st bush and a 2nd bush, and the length of a connection member. 第2実施の形態における防振装置の平面図である。It is a top view of the vibration isolator in 2nd Embodiment. (a)は第1ブッシュの平面図であり、(b)は図6(a)のVIb−VIb線における第1ブッシュの断面図である。(A) is a top view of a 1st bush, (b) is sectional drawing of the 1st bush in the VIb-VIb line | wire of Fig.6 (a). 図6(b)のVIIで示す部分を拡大して示した第1ブッシュの部分拡大断面図である。It is the elements on larger scale of the 1st bush which expanded and showed the part shown by VII of FIG.6 (b). 従来の防振装置における小ブッシュの軸方向断面図である。It is an axial sectional view of a small bush in a conventional vibration isolator.

以下、本発明の好ましい実施の形態について、添付図面を参照して説明する。図1は本発明の第1実施の形態における防振装置1の平面図である。なお、図1においては自動車用のトルクロッドを図示している。   DESCRIPTION OF EXEMPLARY EMBODIMENTS Hereinafter, preferred embodiments of the invention will be described with reference to the accompanying drawings. FIG. 1 is a plan view of a vibration isolator 1 according to the first embodiment of the present invention. In FIG. 1, a torque rod for an automobile is shown.

図1に示すように防振装置1は、図示しないエンジン等のパワープラント側(振動発生側)に取着される第1ブッシュ10と、図示しない車体側(振動受け側)に取着される第2ブッシュ70と、これら第1ブッシュ10及び第2ブッシュ70を互いに連結する連結部材80とを備え、加速時におけるパワープラントのロール方向への変位や前後方向の変位を規制し得るように構成されている。   As shown in FIG. 1, the vibration isolator 1 is attached to a first bush 10 attached to a power plant side (vibration generating side) such as an engine (not shown) and a vehicle body side (vibration receiving side) not shown. The second bushing 70 and a connecting member 80 for connecting the first bushing 10 and the second bushing 70 to each other are provided, and are configured to be able to regulate displacement in the roll direction of the power plant and displacement in the front-rear direction during acceleration. Has been.

図1に示すように第1ブッシュ10は、パワープラント側に取着される軸部材20と、その軸部材20の外周側に軸部材20と同軸状に配置される外筒30と、軸部材20及び外筒30の間に介設される筒状のゴム状弾性体40とを備えている。なお、第2ブッシュ70は、第1ブッシュ10と同一形状かつ同一寸法の部材により構成されると共に、同一のばね定数に設定されている。そこで、第1ブッシュ10について説明し、第2ブッシュ70の説明は省略する。   As shown in FIG. 1, the first bush 10 includes a shaft member 20 attached to the power plant side, an outer cylinder 30 arranged coaxially with the shaft member 20 on the outer peripheral side of the shaft member 20, and a shaft member. 20 and a cylindrical rubber-like elastic body 40 interposed between the outer cylinder 30 and the outer cylinder 30. The second bush 70 is composed of members having the same shape and the same dimensions as the first bush 10 and is set to the same spring constant. Therefore, the first bush 10 will be described, and the description of the second bush 70 will be omitted.

軸部材20は金属製の円筒状の部材であり、中央に形成された挿通孔21にボルト等の締結部材が挿通されパワープラント側へ締結固定される。外筒30は金属製の円筒状の部材であり、軸部材20と軸平行に配置されている。軸部材20と外筒30とは全周に亘ってゴム状弾性体40により連結されている。   The shaft member 20 is a metal cylindrical member, and a fastening member such as a bolt is inserted into an insertion hole 21 formed in the center, and is fastened and fixed to the power plant side. The outer cylinder 30 is a metal cylindrical member, and is arranged in parallel with the shaft member 20. The shaft member 20 and the outer cylinder 30 are connected by a rubber-like elastic body 40 over the entire circumference.

ゴム状弾性体40は、ゴム状弾性材により構成される円筒状の部材であり、軸方向端面の周方向に環状のすぐり部41(図2(b)参照)が凹設されている。ゴム状弾性体40は、軸部材20を挟む位置に、すぐり部41の軸方向内側に連設される凹陥部42が形成されている。   The rubber-like elastic body 40 is a cylindrical member made of a rubber-like elastic material, and an annular straight portion 41 (see FIG. 2B) is recessed in the circumferential direction of the axial end face. The rubber-like elastic body 40 is formed with a recessed portion 42 that is connected to the inner side in the axial direction of the straight portion 41 at a position sandwiching the shaft member 20.

連結部材80は、第1ブッシュ10及び第2ブッシュ70を連結するための部材であり、筒状に形成される第1筒状ホルダ81及び第2筒状ホルダ82が、ロッド状に形成されるロッド部83の両端に連結されている。第1筒状ホルダ81及び第2筒状ホルダ82に第1ブッシュ10及び第2ブッシュ70の外筒30が圧入されることにより、第1ブッシュ10及び第2ブッシュ70が互いに連結される。本実施の形態では、第1筒状ホルダ81及び第2筒状ホルダ82とロッド部83とは溶接により接合され、第1筒状ホルダ81及び第2筒状ホルダ82は軸平行に配置されている。なお、第1筒状ホルダ81及び第2筒状ホルダ82とロッド部83とを溶接により接合するものに限るものではなく、第1筒状ホルダ81及び第2筒状ホルダ82とロッド部83とが一体に形成されたものを採用することは当然可能である。   The connecting member 80 is a member for connecting the first bush 10 and the second bush 70, and the first cylindrical holder 81 and the second cylindrical holder 82 formed in a cylindrical shape are formed in a rod shape. The rod part 83 is connected to both ends. When the outer cylinder 30 of the first bush 10 and the second bush 70 is press-fitted into the first cylindrical holder 81 and the second cylindrical holder 82, the first bush 10 and the second bush 70 are connected to each other. In the present embodiment, the first cylindrical holder 81 and the second cylindrical holder 82 and the rod portion 83 are joined by welding, and the first cylindrical holder 81 and the second cylindrical holder 82 are arranged in parallel to the axis. Yes. In addition, it is not restricted to what joins the 1st cylindrical holder 81 and the 2nd cylindrical holder 82, and the rod part 83 by welding, The 1st cylindrical holder 81, the 2nd cylindrical holder 82, the rod part 83, and Of course, it is possible to adopt a structure in which is integrally formed.

第1ブッシュ10及び第2ブッシュ70を第1筒状ホルダ81及び第2筒状ホルダ82に圧入する向き(軸心C回りの角度)は、ゴム状弾性体40の軸方向端面に形成される凹陥部42が、第1ブッシュ10及び第2ブッシュ70の連結方向に沿う仮想直線Aと交差する位置にくるように設定される。   The direction in which the first bush 10 and the second bush 70 are press-fitted into the first cylindrical holder 81 and the second cylindrical holder 82 (angle around the axis C) is formed on the axial end surface of the rubber elastic body 40. The recessed portion 42 is set so as to come to a position that intersects the virtual straight line A along the connecting direction of the first bush 10 and the second bush 70.

次に図2及び図3を参照して、第1ブッシュ10について説明する。図2(a)は第1ブッシュ10の平面図であり、図2(b)は図2(a)のIIb−IIb線における第1ブッシュ10の断面図であり、図3は図2(b)のIIIで示す部分を拡大して示した第1ブッシュ10の部分拡大断面図である。なお、図2(b)及び図3において、矢印Xは軸方向を示し、矢印Yは軸直角方向を示し、矢印Zはこじり方向を示し、矢印Nはねじり方向を示している。   Next, the first bush 10 will be described with reference to FIGS. 2 and 3. 2A is a plan view of the first bush 10, FIG. 2B is a cross-sectional view of the first bush 10 taken along the line IIb-IIb of FIG. 2A, and FIG. It is the elements on larger scale of the 1st bush 10 which expanded and showed the part shown by III. 2B and 3, the arrow X indicates the axial direction, the arrow Y indicates the direction perpendicular to the axis, the arrow Z indicates the twisting direction, and the arrow N indicates the twisting direction.

図2(a)に示すように第1ブッシュ10は、軸部材20と、その軸部材20の外周側に軸部材20と同軸状に配置される外筒30と、軸部材20及び外筒30の間に介設される筒状のゴム状弾性体40とを備えている。   As shown in FIG. 2A, the first bush 10 includes a shaft member 20, an outer cylinder 30 arranged coaxially with the shaft member 20 on the outer peripheral side of the shaft member 20, and the shaft member 20 and the outer cylinder 30. And a cylindrical rubber-like elastic body 40 interposed therebetween.

図2(b)に示すように、軸部材20は、軸方向端面に亘って貫通形成される挿通孔21が中央に形成され、外周面22に軸方向端部から軸方向内側に向かうにつれ軸直角方向内側に傾斜する傾斜部22aが全周に亘って形成されている。縮径部23は、傾斜部22aの軸方向内側に連設される部位であり、外周面22の外径に対し傾斜部22aの分だけ軸直角方向内側に縮径して形成される円筒面である。軸部材20は、軸方向Xの中央部に軸直角方向Yに向けて全周に亘って膨出し外周面が球面状に形成される凸面部24を備える。凸面部24は凸状球面(仮想球面E、図3参照)をなし、軸心C上に中心Pをもつ球帯状に形成されており、縮径部23からなだらかに連続して形成されている。   As shown in FIG. 2 (b), the shaft member 20 has an insertion hole 21 formed through the end surface in the axial direction at the center, and the outer peripheral surface 22 is pivoted from the axial end to the inner side in the axial direction. An inclined portion 22a that is inclined inward in the perpendicular direction is formed over the entire circumference. The reduced diameter portion 23 is a portion continuously provided on the inner side in the axial direction of the inclined portion 22a, and is a cylindrical surface formed by reducing the diameter inward in the direction perpendicular to the axis by the amount of the inclined portion 22a with respect to the outer diameter of the outer peripheral surface 22. It is. The shaft member 20 includes a convex surface portion 24 that bulges over the entire circumference in the center portion of the axial direction X in the direction perpendicular to the axial direction Y and has a spherical outer peripheral surface. The convex surface portion 24 forms a convex spherical surface (virtual spherical surface E, see FIG. 3), is formed in a spherical shape having a center P on the axis C, and is formed continuously continuously from the reduced diameter portion 23. .

外筒30は、外形が断面円形状をなし、外周面31の径が軸方向Xで一定の円筒状に形成されている。また、外筒30の内周面32に、軸方向端部から軸方向内側に向かうにつれ軸直角方向外側に湾曲し陥没する凹面部33が形成されている。凹面部33は、凸面部24に相対して形成され、軸方向Xの中央部が、凸面部24と同心状(即ち、共通の中心Pをもつ)の連続する凹状球面(仮想球面F、図3参照)をなしている。より詳細には、後述する絞り加工後の形状において、軸部材20の凸面部24に一定の間隔をおいて沿うように、軸直角方向Yの外方側に凹んだ凹状球面として外筒30の軸方向Xの中央部に凹面部33が形成される。凹面部33は、軸心C上に中心Pをもつ球帯状に形成されており、外筒30の軸方向端部における円筒状の内周面32からなだらかに連続して形成されている。   The outer cylinder 30 is formed in a cylindrical shape whose outer shape has a circular cross section and whose outer peripheral surface 31 has a constant diameter in the axial direction X. In addition, a concave surface portion 33 is formed on the inner peripheral surface 32 of the outer cylinder 30 so as to bend and bend outward in the direction perpendicular to the axis from the axial end to the inner side in the axial direction. The concave surface portion 33 is formed so as to be opposed to the convex surface portion 24, and the central portion in the axial direction X is concentric with the convex surface portion 24 (that is, has a common center P). 3). More specifically, in the shape after drawing, which will be described later, the outer cylinder 30 is formed as a concave spherical surface that is recessed outwardly in the direction perpendicular to the axis Y so as to follow the convex portion 24 of the shaft member 20 with a certain interval. A concave surface portion 33 is formed at the central portion in the axial direction X. The concave surface portion 33 is formed in a spherical band shape having a center P on the axis C, and is formed continuously continuously from the cylindrical inner peripheral surface 32 at the axial end portion of the outer cylinder 30.

なお、外筒30の絞り加工前の状態では、凹面部33は厳密な凹状球面ではなく、中心Pが外筒の軸心C上から軸直角方向Yの外側にずれた位置にあり、縮径方向の絞り加工により中心Pが軸心C上に位置する球帯状に形成される。   In the state before the drawing of the outer cylinder 30, the concave surface portion 33 is not a strict concave spherical surface, and the center P is located at a position shifted from the axis C of the outer cylinder to the outside in the direction perpendicular to the axis Y. The center P is formed into a spherical band located on the axis C by drawing in the direction.

外筒30は、内周面32の軸方向Xの中央部に凹面部33が凹設されたことで、軸方向Xの中央部における肉厚が軸方向Xの両端部における肉厚よりも薄く形成される。これにより、外筒30の外周面31の径を軸方向Xに亘って一定にできる。その結果、第1筒状ホルダ81及び第2筒状ホルダ82(図1参照)との間で圧入のための十分な軸方向寸法を確保することができ、第1筒状ホルダ81及び第2筒状ホルダ82からの抜け力を向上することができる。   In the outer cylinder 30, the concave portion 33 is provided in the central portion in the axial direction X of the inner peripheral surface 32, so that the thickness at the central portion in the axial direction X is thinner than the thickness at both end portions in the axial direction X. It is formed. Thereby, the diameter of the outer peripheral surface 31 of the outer cylinder 30 can be made constant over the axial direction X. As a result, a sufficient axial dimension for press-fitting can be ensured between the first cylindrical holder 81 and the second cylindrical holder 82 (see FIG. 1). The removal force from the cylindrical holder 82 can be improved.

また、外筒30の内周面32には、軸方向Xに延びる複数の凹溝(図示せず)が周方向に等間隔に形成されている。これにより、凹溝が形成された位置における外筒30の肉厚を、凹溝間の外筒30の肉厚に比べて薄くすることができる。凹溝が外筒30の周方向に形成されるので、軸部材20と外筒30との間にゴム状弾性体40を介設し外筒30に絞り加工を行う際に、外筒30を縮径させ易くできる。これにより、絞り加工の作業性を向上できる。さらに、外筒30に絞りが付与され縮径されることでゴム状弾性体40に圧縮応力を付与することができ、ゴム状弾性体40の寿命を向上できる。   A plurality of concave grooves (not shown) extending in the axial direction X are formed at equal intervals in the circumferential direction on the inner peripheral surface 32 of the outer cylinder 30. Thereby, the thickness of the outer cylinder 30 in the position in which the ditch | groove was formed can be made thin compared with the thickness of the outer cylinder 30 between ditch | grooves. Since the concave groove is formed in the circumferential direction of the outer cylinder 30, when the outer cylinder 30 is drawn by inserting the rubber-like elastic body 40 between the shaft member 20 and the outer cylinder 30, the outer cylinder 30 is The diameter can be easily reduced. Thereby, the workability of drawing can be improved. Furthermore, a compressive stress can be applied to the rubber-like elastic body 40 by applying a restriction to the outer cylinder 30 and reducing the diameter, and the life of the rubber-like elastic body 40 can be improved.

ゴム状弾性体40は、軸部材20の凸面部24と外筒30の凹面部33との間に介設される部材であり、外筒30と軸部材20とに一体に加硫接着されている。ゴム状弾性体40は、外筒30の絞り加工後の形状において、凸面部24と凹面部33との間が略一定の肉厚をもつ球帯状に形成されている。また、ゴム状弾性体40は、軸方向端面の周方向に、軸方向内側に向かって陥没する環状のすぐり部41が凹設されている。すぐり部41は、軸部材20と外筒30との間にゴム状弾性体40が充填されないようにするための部位であり、軸方向断面が円弧状に形成されている。すぐり部41の周方向の2箇所に、軸方向内側に延設されると共に軸方向断面が円弧状の凹陥部42が形成されている。   The rubber-like elastic body 40 is a member interposed between the convex surface portion 24 of the shaft member 20 and the concave surface portion 33 of the outer cylinder 30, and is integrally vulcanized and bonded to the outer cylinder 30 and the shaft member 20. Yes. The rubber-like elastic body 40 is formed in a spherical band shape having a substantially constant thickness between the convex surface portion 24 and the concave surface portion 33 in the shape after the drawing of the outer cylinder 30. In addition, the rubber-like elastic body 40 has an annular straight portion 41 that is recessed inward in the axial direction in the circumferential direction of the axial end face. The straight portion 41 is a part for preventing the rubber-like elastic body 40 from being filled between the shaft member 20 and the outer cylinder 30 and has an axial cross section formed in an arc shape. At two locations in the circumferential direction of the straight portion 41, concave portions 42 that extend inward in the axial direction and have an arc-shaped cross section in the axial direction are formed.

軸部材20の凸面部24の最外径(凸面部24の頂点における外径)は、外筒30の内周面32の内径よりも小さく設定されており、また、凸面部24と凹面部33との間のゴム状弾性体40の厚さは、縮径部23に対する凸面部24の最大膨出高さよりも大に設定されている。これにより、軸方向Xにおけるばね定数が過大になることを回避しながら、軸直角方向Y、こじり方向Z及びねじり方向Nにおけるばね定数を最適に設定できる。   The outermost diameter of the convex surface portion 24 of the shaft member 20 (the outer diameter at the apex of the convex surface portion 24) is set smaller than the inner diameter of the inner peripheral surface 32 of the outer cylinder 30, and the convex surface portion 24 and the concave surface portion 33. The thickness of the rubber-like elastic body 40 therebetween is set to be larger than the maximum bulging height of the convex surface portion 24 with respect to the reduced diameter portion 23. Accordingly, the spring constants in the direction perpendicular to the axis Y, the twisting direction Z, and the torsional direction N can be optimally set while avoiding an excessive spring constant in the axial direction X.

図3に示すように、すぐり部41及び凹陥部42と軸部材20との間にはゴム状弾性体40から連なるゴム膜43が形成されている。ゴム膜43は傾斜部22a及び縮径部23の表面に全周に亘って形成され、ゴム膜43の外周面は軸部材20の外周面22と同一面上に位置する。ゴム膜43は傾斜部22a及び縮径部23の表面に形成されているので、ゴム状弾性体40と軸部材20との接着面積を大きくすることができ、接着強度を向上できる。   As shown in FIG. 3, a rubber film 43 that continues from the rubber-like elastic body 40 is formed between the straight portion 41 and the recessed portion 42 and the shaft member 20. The rubber film 43 is formed over the entire surface of the inclined portion 22 a and the reduced diameter portion 23, and the outer peripheral surface of the rubber film 43 is located on the same plane as the outer peripheral surface 22 of the shaft member 20. Since the rubber film 43 is formed on the surfaces of the inclined portion 22a and the reduced diameter portion 23, the bonding area between the rubber-like elastic body 40 and the shaft member 20 can be increased, and the bonding strength can be improved.

一方、すぐり部41及び凹陥部42と外筒30との間にはゴム状弾性体40から連なるゴム膜44が形成されている。軸部材20及び外筒30にゴム膜43,44が形成されているので、こじり方向Zの大振動が入力されたときに、ゴム膜43,44同士が当接して軸部材20及び外筒30の相対変位を規制できると共に、当接したときの衝突音を抑制できる。また、傾斜部22a及び縮径部23の表面にゴム膜43を形成することによりゴム膜43の肉厚を大きくできるので、衝突音の抑制効果を増大できると共に、ゴム膜43の強度を向上できる。   On the other hand, a rubber film 44 continuous from the rubber-like elastic body 40 is formed between the straight portion 41 and the recessed portion 42 and the outer cylinder 30. Since the rubber films 43 and 44 are formed on the shaft member 20 and the outer cylinder 30, the rubber films 43 and 44 come into contact with each other when a large vibration in the twisting direction Z is input, and the shaft member 20 and the outer cylinder 30. The relative displacement can be restricted, and the collision sound when abutting can be suppressed. Moreover, since the thickness of the rubber film 43 can be increased by forming the rubber film 43 on the surfaces of the inclined portion 22a and the reduced diameter portion 23, the impact noise suppression effect can be increased and the strength of the rubber film 43 can be improved. .

ゴム状弾性体40の軸方向断面において、凹面部33によって定められる仮想球面Fが凹陥部42と交点Gにて交差し、すぐり部41と交点Hにて交差する。交点Hは、すぐり部41における最も軸方向内側の点J(即ち、すぐり部41の最深部(底)に相当する点)よりも外筒30側に位置している。これにより、こじり方向Zにおける変位時に、軸部材20と外筒30との間でゴム状弾性体40の軸方向端部が圧縮変形することを回避できる。これにより、こじり方向Zにおけるばね定数を低減できる。   In the axial cross section of the rubber-like elastic body 40, the phantom spherical surface F defined by the concave surface portion 33 intersects the concave portion 42 at the intersection point G and intersects the straight portion 41 at the intersection point H. The intersection H is located closer to the outer cylinder 30 than the innermost point J in the straight portion 41 (that is, the point corresponding to the deepest portion (bottom) of the straight portion 41). Thereby, at the time of displacement in the twisting direction Z, it can be avoided that the axial end portion of the rubber-like elastic body 40 is compressed and deformed between the shaft member 20 and the outer cylinder 30. Thereby, the spring constant in the twisting direction Z can be reduced.

また、凹陥部42は、ゴム膜44に連設されると共に軸方向断面が円弧状に形成される円弧部42aを備えている。凹面部33によって定められる仮想球面Fと凹陥部42との交点Gは、円弧部42aのゴム膜44の付根に位置し、円弧部42aは仮想球面Fの内側(中心P側、図2(b)参照)に位置している。   The recessed portion 42 includes an arc portion 42a that is connected to the rubber film 44 and has an axial section formed in an arc shape. The intersection point G between the phantom spherical surface F and the recessed portion 42 defined by the concave surface portion 33 is located at the root of the rubber film 44 of the circular arc portion 42a, and the circular arc portion 42a is located inside the virtual spherical surface F (center P side, FIG. ))).

以上のようにゴム状弾性体40はすぐり部41の軸方向内側に連設される凹陥部42を備えているので、凹陥部42が形成された軸直角方向Y(図2(a)左右方向)におけるゴム状弾性体40のばね定数を、それ以外の軸直角方向Y(図2(a)上下方向)におけるばね定数より小さくすることができる。その結果、この方向に高周波かつ小振幅の振動が入力されたときの振動伝達を抑制できる。   As described above, the rubber-like elastic body 40 is provided with the recessed portion 42 that is continuously provided on the inner side in the axial direction of the straight portion 41. Therefore, the direction perpendicular to the axis Y in which the recessed portion 42 is formed (FIG. 2 (a) left-right direction). The spring constant of the rubber-like elastic body 40 in () can be made smaller than the spring constant in the other direction perpendicular to the axis Y (vertical direction in FIG. 2 (a)). As a result, vibration transmission when high-frequency and small-amplitude vibration is input in this direction can be suppressed.

また、凹面部33により定められる仮想球面Fが凹陥部42と交点Gで交差すると共に、凹陥部42の円弧部42aは仮想球面Fの内側に位置しているので、凹陥部42が形成された軸方向断面のこじり方向Zの変位時に、軸部材20と外筒30との間でゴム状弾性体40の軸方向端部が圧縮変形することを確実に回避できる。これにより、凹陥部42が形成された面内において、こじり方向Zにおけるばね定数をより低減できる。   Moreover, since the virtual spherical surface F defined by the concave surface portion 33 intersects the concave portion 42 at the intersection point G, and the arc portion 42a of the concave portion 42 is located inside the virtual spherical surface F, the concave portion 42 is formed. When the axial cross section is displaced in the twisting direction Z, it is possible to reliably avoid compressive deformation of the axial end portion of the rubber-like elastic body 40 between the shaft member 20 and the outer cylinder 30. Thereby, the spring constant in the twisting direction Z can be further reduced in the plane in which the recessed portion 42 is formed.

ここで、第1ブッシュ10を製造するには、まず、軸部材20と外筒30とをそれぞれ形成した上で成形型(図示せず)に配置する。次に、成形型内にゴム材料等の成形材料を注入することでゴム状弾性体40を加硫成形すると共に、軸部材20と外筒30との間にゴム状弾性体40を一体に加硫接着させ、絞り加工前の加硫成形体を得る。次いで、この加硫成形体の外筒30を縮径方向に絞り加工することにより、第1ブッシュ10を得ることができる。この第1ブッシュ10を、軸心C回りの角度を揃えて連結部材80(図1参照)の第1筒状ホルダ81及び第2筒状ホルダ82に圧入することにより、防振装置1を得ることができる。   Here, in order to manufacture the first bush 10, first, the shaft member 20 and the outer cylinder 30 are respectively formed and then placed in a molding die (not shown). Next, the rubber-like elastic body 40 is vulcanized and molded by injecting a molding material such as a rubber material into the mold, and the rubber-like elastic body 40 is integrally added between the shaft member 20 and the outer cylinder 30. By vulcanization bonding, a vulcanized molded body before drawing is obtained. Next, the first bush 10 can be obtained by drawing the outer cylinder 30 of the vulcanized molded body in the diameter reducing direction. The vibration isolator 1 is obtained by press-fitting the first bush 10 into the first cylindrical holder 81 and the second cylindrical holder 82 of the connecting member 80 (see FIG. 1) with the angle around the axis C aligned. be able to.

なお、軸部材20と外筒30とにゴム状弾性体40を加硫接着すると、ゴム状弾性体40の架橋収縮に伴い接着界面に引張ひずみが残留するが、外筒30に絞り加工を施すことにより接着界面の引張ひずみを抑制できる。これにより防振装置1の耐久性を向上できる。また、軸部材20と外筒30との間でゴム状弾性体40を加硫成形するものであるので、成形型が過大となることもなく加工性に優れる。   When the rubber-like elastic body 40 is vulcanized and bonded to the shaft member 20 and the outer cylinder 30, tensile strain remains at the bonding interface due to the crosslinking shrinkage of the rubber-like elastic body 40, but the outer cylinder 30 is drawn. As a result, the tensile strain at the adhesive interface can be suppressed. Thereby, durability of the vibration isolator 1 can be improved. Moreover, since the rubber-like elastic body 40 is vulcanized and molded between the shaft member 20 and the outer cylinder 30, the mold is not excessive and the processability is excellent.

以上のように構成される防振装置1によれば、第1ブッシュ10及び第2ブッシュ70における軸部材20及び外筒30に同心状の凸面部24及び凹面部33が形成され、外筒30の凹面部33が連続した球面状に形成される。凹面部33は軸部材20の凸面部24と相対し、凹面部33と凸面部24との間に介設されたゴム状弾性体40は軸方向Xで肉厚を略一定にできる。その結果、こじり方向Zや軸直角方向Yにおける変位時に、凹面部33と凸面部24との間に介設されたゴム状弾性体40に不均一な応力が作用することを抑制できる。これにより、防振装置1の耐久性を向上できる。   According to the vibration isolator 1 configured as described above, the concentric convex surface portion 24 and the concave surface portion 33 are formed on the shaft member 20 and the outer cylinder 30 in the first bush 10 and the second bush 70, and the outer cylinder 30. The concave surface portion 33 is formed in a continuous spherical shape. The concave surface portion 33 faces the convex surface portion 24 of the shaft member 20, and the rubber-like elastic body 40 interposed between the concave surface portion 33 and the convex surface portion 24 can have a substantially constant thickness in the axial direction X. As a result, it is possible to suppress the non-uniform stress from acting on the rubber-like elastic body 40 interposed between the concave surface portion 33 and the convex surface portion 24 at the time of displacement in the twisting direction Z or the direction perpendicular to the axis Y. Thereby, durability of the vibration isolator 1 can be improved.

また、防振装置1の使用時に、第1ブッシュ10及び第2ブッシュ70における軸部材20及び外筒30に同心状の凸面部24及び凹面部33が形成されるので、第1ブッシュ10と第2ブッシュ70とでゴム状弾性体40のひずみが著しく異なることを回避できる。その結果、第1ブッシュ10又は第2ブッシュ70のいずれか一方のゴム状弾性体40に寿命が著しく早く到来することを抑制でき、防振装置1の耐久性を向上できる。   Further, when the vibration isolator 1 is used, the concentric convex surface portion 24 and the concave surface portion 33 are formed on the shaft member 20 and the outer cylinder 30 in the first bush 10 and the second bush 70, so that the first bush 10 and the first bush It can be avoided that the strain of the rubber-like elastic body 40 differs significantly between the two bushes 70. As a result, it is possible to suppress the life of the rubber-like elastic body 40 of either the first bush 10 or the second bush 70 from reaching an extremely early time and improve the durability of the vibration isolator 1.

また、第2ブッシュ70は、第1ブッシュ10と同一形状かつ同一寸法の部材により構成されると共に同一のばね定数に設定されているので、第2ブッシュ70と第1ブッシュ10とを共通化でき、部品点数を削減できる。さらに、第2ブッシュ70と第1ブッシュ10とを共通化できることで、第1ブッシュ10及び第2ブッシュ70の圧入作業の手順や方法等を簡素化することができ、防振装置1の生産性を向上できる。   Further, since the second bush 70 is composed of members having the same shape and the same dimensions as the first bush 10 and is set to have the same spring constant, the second bush 70 and the first bush 10 can be shared. The number of parts can be reduced. Further, since the second bush 70 and the first bush 10 can be made common, the procedure and method of press-fitting work of the first bush 10 and the second bush 70 can be simplified, and the productivity of the vibration isolator 1 can be simplified. Can be improved.

また、第1ブッシュ10及び第2ブッシュ70が同一形状かつ同一寸法の部材により構成され、同一のばね定数に設定されているので、防振装置1の耐久性を向上できる。即ち、第1ブッシュ10及び第2ブッシュ70のばね定数が異なる設定の場合、ばね定数の小さなブッシュのゴム状弾性体40が大きくひずむため、ばね定数の小さなゴム状弾性体40に寿命が早く到来し、防振装置1の耐久性を向上させることが困難であった。これに対し、第1ブッシュ10及び第2ブッシュ70のばね定数を同一の設定にすることで、一方のゴム状弾性体40の負荷が大きくなることを抑制することができ、防振装置1の耐久性を向上できる。   Moreover, since the 1st bush 10 and the 2nd bush 70 are comprised by the member of the same shape and the same dimension, and are set to the same spring constant, durability of the vibration isolator 1 can be improved. That is, when the spring constants of the first bush 10 and the second bush 70 are different from each other, the rubber-like elastic body 40 of the bush having a small spring constant is greatly distorted. However, it has been difficult to improve the durability of the vibration isolator 1. On the other hand, by setting the spring constants of the first bush 10 and the second bush 70 to the same setting, it is possible to suppress an increase in the load of one rubber-like elastic body 40, and the vibration isolator 1 Durability can be improved.

また、防振装置1によれば、凹面部33と凸面部24との間に介設されたゴム状弾性体40を軸方向Xで略一定の肉厚にでき、軸直角方向Yにおける変位時には、凹面部33により軸方向Xへのゴムの逃げが規制されて軸直角方向Yにおけるばね定数を確保することができる。なお、軸方向Xにおける変位時には、凸面部24と凹面部33との間のゴム状弾性体40がせん断変形および圧縮変形することにより、軸方向Xにおけるばね定数を確保できる。   Further, according to the vibration isolator 1, the rubber-like elastic body 40 interposed between the concave surface portion 33 and the convex surface portion 24 can be made to have a substantially constant thickness in the axial direction X. The concave portion 33 restricts the escape of the rubber in the axial direction X, and the spring constant in the direction perpendicular to the axis Y can be secured. At the time of displacement in the axial direction X, the rubber-like elastic body 40 between the convex surface portion 24 and the concave surface portion 33 undergoes shear deformation and compression deformation, thereby ensuring a spring constant in the axial direction X.

また、こじり方向Zにおける変位時には、凸面部24と凹面部33との間に介設されたゴム状弾性体40を主にせん断変形させ、軸部材20と外筒30との間でゴム状弾性体40の軸方向端部が圧縮変形することを抑制できる。その結果、こじり方向Zにおけるばね定数を低減できる。   Further, at the time of displacement in the twisting direction Z, the rubber-like elastic body 40 interposed between the convex surface portion 24 and the concave surface portion 33 is mainly subjected to shear deformation, so that the rubber-like elasticity between the shaft member 20 and the outer cylinder 30 is obtained. It can suppress that the axial direction edge part of the body 40 is compressively deformed. As a result, the spring constant in the twisting direction Z can be reduced.

さらに、ゴム状弾性体40は環状のすぐり部41が軸方向内側に向かって軸方向端面の周方向に凹設されているので、こじり方向Zにおける変位時には、凸面部24と凹面部33との間に介設されたゴム状弾性体40を実質的にせん断変形させ、軸部材20と外筒30との間でゴム状弾性体40の軸方向端部が圧縮変形することを極力回避できる。その結果、こじり方向Zにおけるばね定数を効果的に低減できる。   Further, since the rubber-like elastic body 40 has the annular straight portion 41 recessed in the circumferential direction of the axial end surface toward the inner side in the axial direction, the displacement between the convex surface portion 24 and the concave surface portion 33 at the time of displacement in the twisting direction Z. The rubber-like elastic body 40 interposed therebetween is substantially sheared and deformed so that the axial end portion of the rubber-like elastic body 40 is compressed and deformed between the shaft member 20 and the outer cylinder 30 as much as possible. As a result, the spring constant in the twisting direction Z can be effectively reduced.

次に図4を参照して、第1ブッシュ10及び第2ブッシュ70のこじり方向におけるばね定数を低減させたときの効果を説明する。図4は、第1ブッシュ10及び第2ブッシュ70のこじり方向Zにおける変位の角度および大きさと連結部材80との長さとの関係を示す模式図である。   Next, with reference to FIG. 4, the effect when the spring constant in the twisting direction of the first bush 10 and the second bush 70 is reduced will be described. FIG. 4 is a schematic diagram showing the relationship between the angle and magnitude of displacement in the twisting direction Z of the first bush 10 and the second bush 70 and the length of the connecting member 80.

図4に示すように、防振装置1の第1ブッシュ10はパワープラント等の振動発生側の部材Iに取着され、第2ブッシュ70は車体等の振動受け側の部材Oに取着される。第1ブッシュ10及び第2ブッシュ70は連結部材80により相互に連結されている。連結部材80の長さをL1とする。振動受け側の部材Oに対して振動発生側の部材Iが大きさ(距離)Dだけ変位したとすると、第1ブッシュ10に対して連結部材80は角度θ1だけ変位する。防振装置1は、第1ブッシュ10及び第2ブッシュ70のこじり方向におけるばね定数を低減できるので、振動発生側と振動受け側との吸収可能な変位の角度θ1を増大できる。   As shown in FIG. 4, the first bush 10 of the vibration isolator 1 is attached to a vibration generating member I such as a power plant, and the second bush 70 is attached to a vibration receiving member O such as a vehicle body. The The first bush 10 and the second bush 70 are connected to each other by a connecting member 80. The length of the connecting member 80 is L1. If the vibration generating member I is displaced by a size (distance) D with respect to the vibration receiving member O, the connecting member 80 is displaced by an angle θ1 with respect to the first bush 10. Since the vibration isolator 1 can reduce the spring constant in the twisting direction of the first bush 10 and the second bush 70, the angle θ1 of the displacement that can be absorbed between the vibration generating side and the vibration receiving side can be increased.

これに対して、こじり方向Zにおけるばね定数が防振装置1より大きい場合、本発明の防振装置1と比較して、振動発生側と振動受け側との吸収可能な変位の角度は小さくなる。この角度をθ2(θ2<θ1)とすると、変位の角度が小さい分、連結部材の長さはL2(L2>L1)となる。従って、本発明の防振装置1のように第1ブッシュ10及び第2ブッシュ70のこじり方向におけるばね定数を低減できれば、振動発生側と振動受け側との吸収可能な変位の角度を増大させることができ、第1ブッシュ10及び第2ブッシュ70を連結する連結部材80を短くできる(L1<L2)。連結部材80を短くできれば連結部材80の質量(第1ブッシュ10及び第2ブッシュ70の外筒30の質量も含む)を小さくでき、ばね定数を変えない条件下で、連結部材80の共振周波数を上昇させることができる。これにより、防振装置1の振動減衰特性をコントロールできる。   On the other hand, when the spring constant in the twisting direction Z is larger than the vibration isolator 1, the angle of the absorbable displacement between the vibration generating side and the vibration receiving side is smaller than that of the vibration isolator 1 of the present invention. . When this angle is θ2 (θ2 <θ1), the length of the connecting member is L2 (L2> L1) as the displacement angle is small. Therefore, if the spring constant in the twisting direction of the first bush 10 and the second bush 70 can be reduced as in the vibration isolator 1 of the present invention, the angle of the absorbable displacement between the vibration generating side and the vibration receiving side is increased. The connecting member 80 that connects the first bush 10 and the second bush 70 can be shortened (L1 <L2). If the connecting member 80 can be shortened, the mass of the connecting member 80 (including the mass of the outer cylinder 30 of the first bush 10 and the second bush 70) can be reduced, and the resonance frequency of the connecting member 80 can be set under the condition that the spring constant is not changed. Can be raised. Thereby, the vibration damping characteristic of the vibration isolator 1 can be controlled.

従来より、連結部材80の共振周波数を上昇させるために、連結部材にダイナミックダンパを取着する方法がある。この方法によればダイナミックダンパの取着により質量が増加すると共に、部品点数の増加や取着工数の増加により生産コストが上昇するという問題がある。これに対し、本発明の防振装置1によれば、ダイナミックダンパを取着することなく連結部材80の共振周波数を上昇させることができるので、質量が増加するという問題や、部品点数や取着工数が増加するという問題を解決しつつ、振動減衰特性をコントロールできる。   Conventionally, in order to increase the resonance frequency of the connecting member 80, there is a method of attaching a dynamic damper to the connecting member. According to this method, there is a problem that the mass increases due to the attachment of the dynamic damper, and the production cost increases due to an increase in the number of parts and an increase in the number of attachment steps. On the other hand, according to the vibration isolator 1 of the present invention, since the resonance frequency of the connecting member 80 can be increased without attaching a dynamic damper, there is a problem that the mass increases, the number of parts, and the installation work. The vibration damping characteristics can be controlled while solving the problem of increasing the number.

さらに、図1に示すようにゴム状弾性体40は第1ブッシュ10及び第2ブッシュ70の連結方向に沿う仮想直線Aと交差する位置に形成される凹陥部42を備えているので、第1ブッシュ10及び第2ブッシュ70の連結方向に沿う軸直角方向(図1左右方向)におけるゴム状弾性体のばね定数を、それ以外の軸直角方向(図1上下方向)におけるゴム状弾性体40のばね定数より小さくすることができる。その結果、防振装置1の第1ブッシュ10及び第2ブッシュ70の連結方向に沿う方向に、アイドリング等の高周波かつ小振幅の振動が入力されたときに、振動受け側への振動伝達を抑制できる。   Further, as shown in FIG. 1, the rubber-like elastic body 40 includes a recessed portion 42 formed at a position intersecting with an imaginary straight line A along the connecting direction of the first bush 10 and the second bush 70. The spring constant of the rubber-like elastic body in the direction perpendicular to the axis (the left-right direction in FIG. 1) along the connecting direction of the bush 10 and the second bush 70 is defined as It can be made smaller than the spring constant. As a result, vibration transmission to the vibration receiving side is suppressed when high-frequency and small-amplitude vibration such as idling is input in the direction along the connecting direction of the first bush 10 and the second bush 70 of the vibration isolator 1. it can.

次に図5から図7を参照して、第2実施の形態について説明する。第1実施の形態では、第1ブッシュ10及び第2ブッシュ70が連結部材80により軸平行に連結される場合について説明した。これに対し第2実施の形態では、第1ブッシュ110及び第2ブッシュ170が連結部材180により軸方向を直交させて連結される場合について説明する。   Next, a second embodiment will be described with reference to FIGS. In 1st Embodiment, the case where the 1st bush 10 and the 2nd bush 70 were connected by the connection member 80 in the axial parallel was demonstrated. In contrast, in the second embodiment, a case will be described in which the first bush 110 and the second bush 170 are connected by the connecting member 180 so that the axial directions thereof are orthogonal to each other.

また、第1実施の形態では、単一の部材により軸部材20が構成される場合について説明した。これに対し第2実施の形態では、内筒120と中間筒140とをゴム状弾性材により構成される内側弾性部150で一体に加硫接着したものを軸部材として用いる場合について説明する。なお、第1実施の形態と同一の部分は、同一の符号を付して以下の説明を省略する。まず、図5を参照して防振装置101の概略構成について説明する。図5は第2実施の形態における防振装置101の平面図である。   Moreover, 1st Embodiment demonstrated the case where the shaft member 20 was comprised by the single member. On the other hand, in the second embodiment, a case will be described in which an inner cylinder 120 and an intermediate cylinder 140 are integrally vulcanized and bonded with an inner elastic portion 150 formed of a rubber-like elastic material as a shaft member. In addition, the same part as 1st Embodiment attaches | subjects the same code | symbol, and abbreviate | omits the following description. First, a schematic configuration of the image stabilizer 101 will be described with reference to FIG. FIG. 5 is a plan view of the vibration isolator 101 according to the second embodiment.

図5に示すように防振装置1は、図示しないパワープラント側(振動発生側)に取着される第1ブッシュ110と、図示しない車体側(振動受け側)に取着される第2ブッシュ170と、これら第1ブッシュ110及び第2ブッシュ170を互いに連結する連結部材180とを備えている。連結部材180は、ロッド部183の両端に、筒状に形成された第1筒状ホルダ181及び第2筒状ホルダ182を備え、第1筒状ホルダ181及び第2筒状ホルダ182は互いに軸方向が直交する位置に配設されている。第1ブッシュ110及び第2ブッシュ170は、第1筒状ホルダ181及び第2筒状ホルダ182に圧入されることにより、互いに軸方向が直交するように連結される。なお、本実施の形態では、第2ブッシュ170は、第1ブッシュ110と同一形状かつ同一寸法の部材により構成されると共に、同一のばね定数に設定されている。そこで、第1ブッシュ110について説明し、第2ブッシュ170の説明は省略する。   As shown in FIG. 5, the vibration isolator 1 includes a first bush 110 attached to a power plant side (vibration generating side) (not shown) and a second bush attached to a vehicle body side (vibration receiving side) (not shown). 170 and a connecting member 180 that connects the first bush 110 and the second bush 170 to each other. The connecting member 180 includes a first cylindrical holder 181 and a second cylindrical holder 182 formed in a cylindrical shape at both ends of the rod portion 183, and the first cylindrical holder 181 and the second cylindrical holder 182 are axially connected to each other. It is disposed at a position where the directions are orthogonal. The first bush 110 and the second bush 170 are press-fitted into the first cylindrical holder 181 and the second cylindrical holder 182 so that the axial directions are orthogonal to each other. In the present embodiment, the second bush 170 is configured by a member having the same shape and the same dimensions as the first bush 110, and is set to the same spring constant. Therefore, the first bush 110 will be described, and the description of the second bush 170 will be omitted.

図5に示すように第1ブッシュ110は、筒状に形成された内筒120と、その内筒120の外周側に内筒120と同軸状に配置される外筒130と、内筒120の外周側かつ外筒130の内周側に配設される筒状の中間筒140と、内筒120と中間筒140との間に介設されると共に筒状のゴム状弾性材から構成される内側弾性部150と、中間筒140と外筒130との間に介設されると共に筒状のゴム状弾性材から構成される外側弾性部160とを備えている。   As shown in FIG. 5, the first bush 110 includes a cylindrical inner cylinder 120, an outer cylinder 130 arranged coaxially with the inner cylinder 120 on the outer peripheral side of the inner cylinder 120, and the inner cylinder 120. A cylindrical intermediate cylinder 140 disposed on the outer peripheral side and the inner peripheral side of the outer cylinder 130, and interposed between the inner cylinder 120 and the intermediate cylinder 140 and configured by a cylindrical rubber-like elastic material. It includes an inner elastic portion 150 and an outer elastic portion 160 that is interposed between the intermediate cylinder 140 and the outer cylinder 130 and is made of a cylindrical rubber-like elastic material.

内筒120は金属製の円筒状の部材であり、中央に形成された挿通孔121にボルト等の締結部材が挿通されパワープラント側へ締結固定される。外筒130は金属製の円筒状の部材であり、内筒120と軸平行に配置されている。中間筒140は金属製の円筒状の部材であり、内筒120及び外筒130の間に同心状に配設されている。内筒120と中間筒140とは全周に亘って内側弾性部150により連結され、中間筒140と外筒130とは全周に亘って外側弾性部160により連結されている。   The inner cylinder 120 is a metal cylindrical member, and a fastening member such as a bolt is inserted into an insertion hole 121 formed in the center, and is fastened and fixed to the power plant side. The outer cylinder 130 is a metal cylindrical member, and is arranged in parallel with the inner cylinder 120. The intermediate cylinder 140 is a metal cylindrical member, and is disposed concentrically between the inner cylinder 120 and the outer cylinder 130. The inner cylinder 120 and the intermediate cylinder 140 are connected by the inner elastic portion 150 over the entire circumference, and the intermediate cylinder 140 and the outer cylinder 130 are connected by the outer elastic portion 160 over the entire circumference.

内側弾性部150及び外側弾性部160は、ゴム状弾性材により構成される円筒状の部材であり、軸方向端面の周方向に環状のすぐり部151,161(図6(b)参照)が凹設されている。内側弾性部150及び外側弾性部160は、内筒120を挟む位置に、すぐり部151,161の軸方向内側に連設される凹陥部152,162が形成されている。凹陥部152,162は、第1ブッシュ110及び第2ブッシュ170の連結方向に沿う仮想直線Aと交差するように位置される。   The inner elastic portion 150 and the outer elastic portion 160 are cylindrical members made of a rubber-like elastic material, and annular straight portions 151 and 161 (see FIG. 6B) are recessed in the circumferential direction of the axial end surface. It is installed. The inner elastic portion 150 and the outer elastic portion 160 are formed with recessed portions 152 and 162 that are provided on the inner side in the axial direction of the straight portions 151 and 161 at positions sandwiching the inner cylinder 120. The recessed portions 152 and 162 are positioned so as to intersect the virtual straight line A along the connecting direction of the first bush 110 and the second bush 170.

次に図6及び図7を参照して、第1ブッシュ110について説明する。図6(a)は第1ブッシュ110の平面図であり、図6(b)は図6(a)のVIb−VIb線における第1ブッシュ110の断面図であり、図7は図6(b)のVIIで示す部分を拡大して示した第1ブッシュ110の部分拡大断面図である。なお、図6(b)及び図7において、矢印Xは軸方向を示し、矢印Yは軸直角方向を示し、矢印Zはこじり方向を示し、矢印Nはねじり方向を示している。   Next, the first bush 110 will be described with reference to FIGS. 6 and 7. 6A is a plan view of the first bush 110, FIG. 6B is a cross-sectional view of the first bush 110 taken along the line VIb-VIb of FIG. 6A, and FIG. It is the elements on larger scale of the 1st bush 110 which expanded and showed the part shown by VII. 6B and 7, arrow X indicates the axial direction, arrow Y indicates the direction perpendicular to the axis, arrow Z indicates the twisting direction, and arrow N indicates the twisting direction.

図6(a)に示すように第1ブッシュ110は、内筒120と、これを軸平行かつ同軸状に取り囲む外筒130と、内筒120と外筒130の中間位置において内筒120を軸平行かつ同軸状に取り囲む中間筒140と、内筒120と中間筒140との間に介設された内側弾性部150と、中間筒140と外筒130の間に介設された外側弾性部160とを備えている。   As shown in FIG. 6A, the first bush 110 includes an inner cylinder 120, an outer cylinder 130 that surrounds the inner cylinder 120 coaxially and coaxially, and the inner cylinder 120 that pivots between the inner cylinder 120 and the outer cylinder 130. An intermediate cylinder 140 that is surrounded in parallel and coaxially, an inner elastic part 150 that is interposed between the inner cylinder 120 and the intermediate cylinder 140, and an outer elastic part 160 that is interposed between the intermediate cylinder 140 and the outer cylinder 130. And.

図6(b)及び図7に示すように、内筒120は、軸方向端面に亘って貫通形成される挿通孔121が中央に形成され、外周面122に軸方向端部から軸方向内側に向かうにつれ軸直角方向内側に傾斜する傾斜部122aが全周に亘って形成されている。縮径部123は、傾斜部122aの軸方向内側に連設される部位であり、外周面122の外径に対し傾斜部122aの分だけ軸直角方向内側に縮径して形成される円筒面である。内筒120は、軸方向Xの中央部に軸直角方向Yに向けて全周に亘って膨出し外周面が球面状に形成される膨出部124を備える。膨出部124は凸状球面(仮想球面K、図7参照)を構成し、軸心C上に中心Pをもつ球帯状に形成されており、縮径部123からなだらかに連続して形成されている。   As shown in FIG. 6B and FIG. 7, the inner cylinder 120 has an insertion hole 121 formed through the end surface in the axial direction in the center, and the outer peripheral surface 122 is axially inward from the axial end portion. An inclined portion 122a that is inclined inward in the direction perpendicular to the axis as it goes is formed over the entire circumference. The reduced diameter portion 123 is a portion continuously provided on the inner side in the axial direction of the inclined portion 122a, and is a cylindrical surface formed by reducing the diameter inward in the direction perpendicular to the axis by the amount of the inclined portion 122a with respect to the outer diameter of the outer peripheral surface 122. It is. The inner cylinder 120 includes a bulging portion 124 that bulges around the entire circumference in the central portion in the axial direction X in the direction Y perpendicular to the axis and has a spherical outer peripheral surface. The bulging portion 124 forms a convex spherical surface (virtual spherical surface K, see FIG. 7), is formed in a spherical shape having a center P on the axis C, and is formed continuously from the reduced diameter portion 123. ing.

中間筒140は、薄肉の金属製の円筒状部材であり、膨出部124を取り囲む軸方向Xの中央部が屈曲され、軸直角方向外側に向けて全周にわたって湾曲状に膨出し、外周面が球面状に形成される凸面部141を備えている。凸面部141は球帯状に形成されており、凸面部141の内周面(裏面)の湾曲部142は、膨出部124と同心状(即ち、共通の中心Pをもつ)の仮想球面L(図7参照)を構成する。また、凸面部141は膨出部124と同心状の凸状球面(仮想球面M、図7参照)を構成している。なお、凸面部141及び湾曲部142は、中間筒140の軸方向端部における円筒面からなだらかに連続して形成されている。   The intermediate cylinder 140 is a thin-walled cylindrical member made of metal, and a central portion in the axial direction X surrounding the bulging portion 124 is bent and bulges in a curved shape over the entire circumference toward the outer side perpendicular to the axis. Is provided with a convex surface portion 141 formed in a spherical shape. The convex surface portion 141 is formed in a spherical belt shape, and the curved portion 142 on the inner peripheral surface (back surface) of the convex surface portion 141 is concentric with the bulging portion 124 (that is, has a common center P). (See FIG. 7). Further, the convex surface portion 141 constitutes a convex spherical surface (virtual spherical surface M, see FIG. 7) concentric with the bulging portion 124. In addition, the convex surface part 141 and the curved part 142 are formed smoothly continuously from the cylindrical surface at the axial end of the intermediate cylinder 140.

外筒130は、外形が断面円形状をなし、外周面131の径が軸方向Xで一定の円筒状に形成されている。また、外筒130の内周面132に、軸方向端部から軸方向内側に向かうにつれ軸直角方向外側に湾曲し陥没する凹面部133が形成されている。凹面部133は、凸面部141に相対して形成され、軸方向Xの中央部が、凸面部141と同心状(即ち、共通の中心Pをもつ)の連続する凹状球面(仮想球面Q、図7参照)をなしている。   The outer cylinder 130 is formed in a cylindrical shape whose outer shape has a circular cross section and whose outer peripheral surface 131 has a constant diameter in the axial direction X. In addition, a concave surface portion 133 is formed on the inner peripheral surface 132 of the outer cylinder 130. The concave surface portion 133 is curved and recessed outward in the direction perpendicular to the axis as it goes inward in the axial direction from the axial end. The concave surface portion 133 is formed so as to be opposed to the convex surface portion 141, and the central portion in the axial direction X is concentric with the convex surface portion 141 (that is, has a common center P). 7).

より詳細には、後述する絞り加工後の形状において、中間筒140の凸面部141に一定の間隔をおいて沿うように、軸直角方向Yの外方側に凹んだ凹状球面として外筒130の軸方向Xの中央部に凹面部133が形成される。凹面部133は、軸心C上に中心Pをもつ球帯状に形成されており、外筒130の軸方向端部における円筒状の内周面132からなだらかに連続して形成されている。なお、外筒130の絞り加工前の状態では、凹面部133は厳密な凹状球面ではなく、中心Pが外筒の軸心C上から軸直角方向Yの外側にずれた位置にあり、縮径方向の絞り加工により中心Pが軸心C上に位置する球帯状に形成される。   More specifically, in the shape after drawing, which will be described later, the outer cylinder 130 is formed as a concave spherical surface that is recessed outward in the direction perpendicular to the axis Y so as to follow the convex surface portion 141 of the intermediate cylinder 140 at a certain interval. A concave surface 133 is formed at the center in the axial direction X. The concave surface portion 133 is formed in a spherical band shape having the center P on the axis C, and is formed continuously continuously from the cylindrical inner peripheral surface 132 at the axial end portion of the outer cylinder 130. In the state before the drawing of the outer cylinder 130, the concave surface portion 133 is not a strict concave spherical surface, and the center P is at a position shifted from the axis C of the outer cylinder to the outside in the direction perpendicular to the axis Y. The center P is formed into a spherical band located on the axis C by drawing in the direction.

外筒130は、内周面132の軸方向Xの中央部に凹面部133が凹設されたことで、軸方向Xの中央部における肉厚が軸方向Xの両端部における肉厚よりも薄く形成される。これにより、外筒130の外周面131の径を軸方向Xに亘って一定にできる。その結果、第1筒状ホルダ181及び第2筒状ホルダ182(図5参照)との間で圧入のための十分な軸方向寸法を確保することができ、第1筒状ホルダ181及び第2筒状ホルダ182からの抜け力を向上することができる。   In the outer cylinder 130, the concave surface portion 133 is recessed at the central portion in the axial direction X of the inner peripheral surface 132, so that the thickness at the central portion in the axial direction X is thinner than the thickness at both end portions in the axial direction X. It is formed. Thereby, the diameter of the outer peripheral surface 131 of the outer cylinder 130 can be made constant over the axial direction X. As a result, a sufficient axial dimension for press-fitting between the first cylindrical holder 181 and the second cylindrical holder 182 (see FIG. 5) can be ensured, and the first cylindrical holder 181 and the second cylindrical holder 181 The removal force from the cylindrical holder 182 can be improved.

内側弾性部150は、内筒120と中間筒140とを連結する筒状のゴム部材であり、膨出部124を含む内筒120の外周面と湾曲部142を含む中間筒140の内周面とにそれぞれ加硫接着されている。外側弾性部160は、中間筒140と外筒130とを連結する筒状のゴム部材であり、凸面部141を含む中間筒140の外周面と凹面部133を含む外筒130の内周面とにそれぞれ加硫接着されている。内側弾性部150及び外側弾性部160は、同一のゴム材料により形成されている。   The inner elastic portion 150 is a cylindrical rubber member that connects the inner cylinder 120 and the intermediate cylinder 140, and includes an outer peripheral surface of the inner cylinder 120 including the bulging portion 124 and an inner peripheral surface of the intermediate cylinder 140 including the curved portion 142. And vulcanized and bonded to each other. The outer elastic portion 160 is a cylindrical rubber member that connects the intermediate tube 140 and the outer tube 130, and includes an outer peripheral surface of the intermediate tube 140 including the convex surface portion 141 and an inner peripheral surface of the outer tube 130 including the concave surface portion 133. Each is vulcanized and bonded. The inner elastic part 150 and the outer elastic part 160 are formed of the same rubber material.

こじり方向Zにおける変位時には、膨出部124と湾曲部142との間に介設された内側弾性部150及び凸面部141と凹面部140との間に介設された外側弾性部160を主にせん断変形させ、内側弾性部150及び外側弾性部160が圧縮変形することを抑制できる。このように内側弾性部150及び外側弾性部160を主にせん断変形させることで、こじり方向Zにおけるばね定数を低減できる。   At the time of displacement in the twisting direction Z, the inner elastic portion 150 interposed between the bulging portion 124 and the curved portion 142 and the outer elastic portion 160 interposed between the convex surface portion 141 and the concave surface portion 140 are mainly used. It is possible to suppress the inner elastic part 150 and the outer elastic part 160 from being compressively deformed by shear deformation. Thus, the spring constant in the twisting direction Z can be reduced by mainly shearing and deforming the inner elastic portion 150 and the outer elastic portion 160.

内側弾性部150は、膨出部124と湾曲部142との間に充填されているだけでなく、内側弾性部150に連なるゴム膜153が縮径部123及び傾斜部122aに延設されると共に、ゴム膜154が湾曲部142より軸方向外側の円筒面に延設されている。これにより内側弾性部150の接着面積を大きくすることができる。外側弾性部160についても同様に、凸面部141と凹面部133との間に充填されているだけでなく、ゴム膜163が凸面部141よりも軸方向外側の円筒面に延設されると共に、ゴム膜164が凹面部133より軸方向外側の内周面132に延設されている。これにより外側弾性部160についても接着面積を大きくすることができる。   The inner elastic portion 150 is not only filled between the bulging portion 124 and the curved portion 142, but also has a rubber film 153 connected to the inner elastic portion 150 extending to the reduced diameter portion 123 and the inclined portion 122a. The rubber film 154 is extended on the cylindrical surface outside the curved portion 142 in the axial direction. Thereby, the adhesion area of the inner side elastic part 150 can be enlarged. Similarly, the outer elastic portion 160 is not only filled between the convex surface portion 141 and the concave surface portion 133, but the rubber film 163 extends to the cylindrical surface outside the convex surface portion 141 in the axial direction. A rubber film 164 extends on the inner peripheral surface 132 on the axially outer side from the concave surface portion 133. Thereby, also about the outer side elastic part 160, an adhesion area can be enlarged.

さらに内側弾性部150及び外側弾性部160は、軸方向端面の周方向に、軸方向内側に向かって陥没する環状のすぐり部151,161が凹設されている。すぐり部151,161は軸方向断面が円弧状に形成されており、すぐり部151,161の周方向の2箇所に、軸方向内側に延設されると共に軸方向断面が円弧状の凹陥部152,162が形成されている。内側弾性部150及び外側弾性部160にすぐり部151,161が形成されているので、こじり方向Zにおける変位時に、中間筒140と外筒130との間で内側弾性部150及び外側弾性部160の軸方向端部が圧縮変形することを極力回避できる。内側弾性部150及び外側弾性部160を実質的にせん断変形させることで、こじり方向Zにおけるばね定数を効果的に低減できる。   Further, the inner elastic portion 150 and the outer elastic portion 160 are provided with recessed annular straight portions 151 and 161 that are recessed inward in the axial direction in the circumferential direction of the axial end surface. The straight portions 151 and 161 have an axial cross section formed in an arc shape, and extend inward in the axial direction at two locations in the circumferential direction of the straight portions 151 and 161 and have a concave portion 152 having an arc cross section in the axial direction. , 162 are formed. Since the straight portions 151 and 161 are formed on the inner elastic portion 150 and the outer elastic portion 160, the inner elastic portion 150 and the outer elastic portion 160 are displaced between the intermediate cylinder 140 and the outer cylinder 130 when displaced in the twisting direction Z. It can avoid as much as possible that an axial direction edge part compresses and deforms. By substantially shearing and deforming the inner elastic portion 150 and the outer elastic portion 160, the spring constant in the twisting direction Z can be effectively reduced.

外側弾性部160の軸方向断面において、凹面部133によって定められる仮想球面Qが凹陥部162と交点Sにて交差する。また、凹陥部162は、ゴム膜164に連設されると共に軸方向断面が円弧状に形成される円弧部162aを備えている。交点Sは、円弧部162aのゴム膜164の付根に位置し、円弧部162aは仮想球面Qの内側(中心P側、図6(b)参照)に位置している。   In the axial cross section of the outer elastic portion 160, the phantom spherical surface Q defined by the concave surface portion 133 intersects the concave portion 162 at the intersection S. The recessed portion 162 includes an arc portion 162a that is connected to the rubber film 164 and has an axial cross section formed in an arc shape. The intersection point S is located at the root of the rubber film 164 of the arc portion 162a, and the arc portion 162a is located inside the phantom spherical surface Q (center P side, see FIG. 6B).

また、内側弾性部150の軸方向断面において、凸面部141によって定められる仮想球面Mが凹陥部152と交点Rにて交差する。また、凹陥部152は、ゴム膜154に連設されると共に軸方向断面が円弧状に形成される円弧部152aを備えている。交点Rは、円弧部152aのゴム膜154の付根に位置し、円弧部152aは仮想球面Mの内側(中心P側、図6(b)参照)に位置している。   In addition, in the axial cross section of the inner elastic portion 150, the phantom spherical surface M defined by the convex surface portion 141 intersects the concave portion 152 at the intersection point R. The recessed portion 152 includes an arc portion 152a that is connected to the rubber film 154 and has an axial cross section formed in an arc shape. The intersection R is located at the root of the rubber film 154 of the arc portion 152a, and the arc portion 152a is located inside the phantom spherical surface M (center P side, see FIG. 6B).

以上のように内側弾性部150及び外側弾性部160はすぐり部151,161の軸方向内側に連設される凹陥部152,162を備えているので、凹陥部152,162が形成された軸直角方向Y(図6(a)左右方向)における内側弾性部150及び外側弾性部160のばね定数を、それ以外の軸直角方向Y(図6(a)上下方向)におけるばね定数より小さくすることができる。その結果、この方向に高周波かつ小振幅の振動が入力されたときの振動伝達を抑制できる。   As described above, the inner elastic portion 150 and the outer elastic portion 160 are provided with the concave portions 152 and 162 that are continuously provided on the inner sides in the axial direction of the straight portions 151 and 161, so that the axis perpendicular to which the concave portions 152 and 162 are formed. The spring constants of the inner elastic portion 150 and the outer elastic portion 160 in the direction Y (FIG. 6 (a) left-right direction) may be made smaller than the spring constants in the other axis perpendicular direction Y (FIG. 6 (a) vertical direction). it can. As a result, vibration transmission when high-frequency and small-amplitude vibration is input in this direction can be suppressed.

また、凹陥部152,162の円弧部152a,162aは仮想球面M,Qの内側に位置しているので、凹陥部152,162が形成された軸方向断面のこじり方向Zの変位時に、内筒120と外筒130との間で内側弾性部150及び外側弾性部160の軸方向端部が圧縮変形することを確実に回避できる。これにより、凹陥部152,162が形成された面内において、こじり方向Zにおけるばね定数をより低減できる。   Further, since the arc portions 152a, 162a of the recessed portions 152, 162 are located inside the virtual spherical surfaces M, Q, the inner cylinder is displaced when the axial cross section in which the recessed portions 152, 162 are formed is displaced in the twisting direction Z. It is possible to reliably avoid compressive deformation of the axial ends of the inner elastic portion 150 and the outer elastic portion 160 between the 120 and the outer cylinder 130. As a result, the spring constant in the twisting direction Z can be further reduced in the plane in which the recessed portions 152 and 162 are formed.

ここで、図6(b)及び図7に示すように、中間筒140には、凸面部141よりも軸方向外側の円筒面に、その円筒面を厚さ方向に貫通する円形の貫通孔143が形成されている。貫通孔143は、凸面部141の軸方向Xの外側(両側)の円筒面にそれぞれ設けられており、凸面部141には設けられていない。そして、貫通孔143を介して内側弾性部150と外側弾性部160とが連結されている。なお、貫通孔143は中間筒140の周方向に等間隔に複数形成されている。   Here, as shown in FIGS. 6B and 7, the intermediate cylinder 140 has a circular through hole 143 that penetrates the cylindrical surface in the thickness direction on the cylindrical surface outside the convex portion 141 in the axial direction. Is formed. The through holes 143 are respectively provided on the cylindrical surfaces on the outer side (both sides) of the convex surface portion 141 in the axial direction X, and are not provided on the convex surface portion 141. The inner elastic portion 150 and the outer elastic portion 160 are connected through the through hole 143. A plurality of through holes 143 are formed at equal intervals in the circumferential direction of the intermediate cylinder 140.

第1ブッシュ110を製造するには、まず、内筒120、外筒130及び中間筒140をそれぞれ形成した上で成形型(図示せず)に配置する。次に、成形型内にゴム材料等の成形材料を注入することで内筒120と外筒130との間に内側弾性部150及び外側弾性部160を加硫成形する。その際、ゴム材料は、外側弾性部160を成形するためのキャビティ(図示せず)に注入孔から注入される。注入されたゴム材料は、中間筒140に形成された貫通孔143を通過して内側のキャビティに流れ込み、内側弾性部150が形成される。内筒120、中間筒140及び外筒130と内側弾性部150及び外側弾性部160とを一体に加硫接着させ、絞り加工前の加硫成形体を得る。次いで、この加硫成形体の外筒130を縮径方向に絞り加工することにより、第1ブッシュ110を得ることができる。この第1ブッシュ110を、軸心C回りの角度を揃えて連結部材180(図5参照)の第1筒状ホルダ181及び第2筒状ホルダ182に圧入することにより、防振装置101を得ることができる。   In order to manufacture the first bush 110, first, the inner cylinder 120, the outer cylinder 130, and the intermediate cylinder 140 are formed and then placed in a mold (not shown). Next, the inner elastic portion 150 and the outer elastic portion 160 are vulcanized and molded between the inner cylinder 120 and the outer cylinder 130 by injecting a molding material such as a rubber material into the molding die. At that time, the rubber material is injected from the injection hole into a cavity (not shown) for molding the outer elastic portion 160. The injected rubber material passes through the through-hole 143 formed in the intermediate cylinder 140 and flows into the inner cavity, so that the inner elastic portion 150 is formed. The inner cylinder 120, the intermediate cylinder 140, the outer cylinder 130, the inner elastic portion 150, and the outer elastic portion 160 are integrally vulcanized and bonded to obtain a vulcanized molded body before drawing. Next, the first bushing 110 can be obtained by drawing the outer tube 130 of the vulcanized molded body in the direction of diameter reduction. The first bush 110 is press-fitted into the first cylindrical holder 181 and the second cylindrical holder 182 of the connecting member 180 (see FIG. 5) with the angle around the axis C aligned, thereby obtaining the vibration isolator 101. be able to.

以上のように構成される防振装置101の第1ブッシュ110によれば、こじり方向Zにおける変位時には、内筒120の膨出部124と中間筒140の湾曲面142との間の内側弾性部150及び中間筒140の凸面部141と外筒130の凹面部133との間の外側弾性部160が、主にせん断変形を受ける。そのため、こじり方向Zにおけるばね定数を効果的に低減できる。   According to the first bushing 110 of the vibration isolator 101 configured as described above, the inner elastic portion between the bulging portion 124 of the inner cylinder 120 and the curved surface 142 of the intermediate cylinder 140 when displaced in the twisting direction Z. 150 and the outer elastic portion 160 between the convex surface portion 141 of the intermediate tube 140 and the concave surface portion 133 of the outer tube 130 are mainly subjected to shear deformation. Therefore, the spring constant in the twisting direction Z can be effectively reduced.

また、軸方向Xにおける変位に対しては、内筒120の膨出部124と中間筒140の湾曲面142との間の内側弾性部150及び中間筒140の凸面部141と外筒130の凹面部133との間の外側弾性部160は、せん断変形だけでなく圧縮変形も受けるようになる。そのため、軸方向Xにおけるばね定数を上げることができる。しかも、中間筒140を設けたことで、軸直角方向Yにおけるばね定数が大きくなる。そのため、軸直角方向Yにおけるばね定数を、中間筒140を設けない場合(第1実施の形態)と同等に設定する場合、ゴム状弾性体としてより軟らかいものを用いることができる。これにより、ねじり方向Nのばね定数を下げることができる。以上より、軸方向Xと軸直角方向Yにおけるばね定数を確保しながら、こじり方向Zとねじり方向Nにおけるばね定数を効果的に小さくすることができる。   Further, with respect to the displacement in the axial direction X, the inner elastic portion 150 between the bulging portion 124 of the inner cylinder 120 and the curved surface 142 of the intermediate cylinder 140 and the convex surface portion 141 of the intermediate cylinder 140 and the concave surface of the outer cylinder 130. The outer elastic part 160 between the part 133 receives not only shear deformation but also compression deformation. Therefore, the spring constant in the axial direction X can be increased. Moreover, the provision of the intermediate cylinder 140 increases the spring constant in the direction perpendicular to the axis Y. Therefore, when the spring constant in the direction perpendicular to the axis Y is set to be equivalent to the case where the intermediate tube 140 is not provided (first embodiment), a softer elastic material can be used. Thereby, the spring constant of the twist direction N can be lowered. As described above, the spring constants in the twisting direction Z and the torsional direction N can be effectively reduced while securing the spring constants in the axial direction X and the axially perpendicular direction Y.

さらに、こじり方向Zにおける変位時に圧縮される外側弾性部160の軸方向端部が、中間筒140に設けられた貫通孔143を介して内側弾性部150と連結されている。そのため、外側弾性部160の軸方向端部の圧縮されるゴム部分を、貫通孔143を通して内側弾性部150側に逃がすことができるので、こじり方向Zにおけるばね定数を効果的に低減することができる。また、この貫通孔143自体は、軸方向X、軸直角方向Y及びねじり方向Nにおけるばね定数にほとんど影響を与えないので、他のばね特性を保持しつつ、こじり方向Zにおけるばね定数を低減することができる。   Further, the axial end portion of the outer elastic portion 160 that is compressed when displaced in the twisting direction Z is connected to the inner elastic portion 150 through a through hole 143 provided in the intermediate cylinder 140. Therefore, the rubber portion to be compressed at the axial end of the outer elastic portion 160 can be released to the inner elastic portion 150 side through the through hole 143, so that the spring constant in the twisting direction Z can be effectively reduced. . Further, the through-hole 143 itself hardly affects the spring constant in the axial direction X, the axis perpendicular direction Y, and the torsional direction N, so that the spring constant in the twisting direction Z is reduced while maintaining other spring characteristics. be able to.

以上、実施の形態に基づき本発明を説明したが、本発明は上記実施の形態に何ら限定されるものではなく、本発明の趣旨を逸脱しない範囲内で種々の改良変形が可能であることは容易に推察できるものである。例えば、上記実施の形態で挙げた数値(例えば、各構成の数量や寸法等)は一例であり、他の数値を採用することは当然可能である。   The present invention has been described above based on the embodiments. However, the present invention is not limited to the above embodiments, and various improvements and modifications can be made without departing from the spirit of the present invention. It can be easily guessed. For example, the numerical values (for example, the number and size of each component) given in the above embodiment are merely examples, and other numerical values can naturally be adopted.

上記各実施の形態では、第1ブッシュ10,110及び第2ブッシュ70,170が第1筒状ホルダ81,181及び第2筒状ホルダ82,182にそれぞれ圧入される場合について説明したが、必ずしもこれに限られるものではない。例えば、ロッド部83,183の両端に外筒30,130が連結された連結部材を作成した後、その連結部材と軸部材20や内筒120、中間筒140とを加硫金型にセットし、外筒30,130にゴム状弾性材を加硫成形すると共に一体に加硫接着して、防振装置1,101を製造することは可能である。これにより防振装置1,101の生産性を向上できる。   In each of the above embodiments, the case where the first bushes 10 and 110 and the second bushes 70 and 170 are press-fitted into the first cylindrical holders 81 and 181 and the second cylindrical holders 82 and 182 has been described. It is not limited to this. For example, after creating a connecting member in which the outer cylinders 30 and 130 are connected to both ends of the rod portions 83 and 183, the connecting member and the shaft member 20, the inner cylinder 120, and the intermediate cylinder 140 are set in a vulcanization mold. It is possible to manufacture the vibration isolator 1 and 101 by vulcanizing and molding the rubber-like elastic material to the outer cylinders 30 and 130 and integrally vulcanizing and bonding them. Thereby, productivity of the vibration isolator 1 and 101 can be improved.

上記第1実施の形態では、第1ブッシュ10及び第2ブッシュ70において、軸部材20とゴム状弾性体40とが加硫接着された場合について説明したが、必ずしもこれに限られるものではなく、円筒状のゴム状弾性体40に軸部材20を圧入して、軸部材20と外筒30との間にゴム状弾性体40を介設することは当然可能である。これにより、ゴム状弾性体40の接着界面に引張ひずみが残留することを抑制でき、ゴム状弾性材40の破壊寿命を向上できる。同様に、外筒30に円筒状のゴム状弾性体40を圧入することは可能である。また、第2実施の形態で説明した第1ブッシュ110及び第2ブッシュ170においても同様に、内側弾性部150及び外側弾性部160を加硫接着するのではなく、圧入することは当然可能である。   In the first embodiment, the case where the shaft member 20 and the rubber-like elastic body 40 are vulcanized and bonded in the first bush 10 and the second bush 70 has been described. However, the present invention is not necessarily limited thereto. Of course, it is possible to press-fit the shaft member 20 into the cylindrical rubber-like elastic body 40 and to interpose the rubber-like elastic body 40 between the shaft member 20 and the outer cylinder 30. Thereby, it can suppress that a tensile strain remains in the adhesion interface of the rubber-like elastic body 40, and the fracture life of the rubber-like elastic material 40 can be improved. Similarly, it is possible to press-fit a cylindrical rubber-like elastic body 40 into the outer cylinder 30. Similarly, in the first bush 110 and the second bush 170 described in the second embodiment, it is naturally possible to press-fit the inner elastic portion 150 and the outer elastic portion 160 instead of vulcanizing and bonding them. .

上記各実施の形態では、第1ブッシュ10,110及び第2ブッシュ70,170の軸方向端面の一部に凹陥部42,152,162が形成された場合について説明したが、必ずしもこれに限られるものではなく、凹陥部42,152,162を設けないようにすることも可能である。これにより、振動の入力方向に関らず振動の絶縁効果や減衰効果を得ることができる。   In each of the above embodiments, the case where the recessed portions 42, 152, 162 are formed in part of the axial end surfaces of the first bushes 10, 110 and the second bushes 70, 170 has been described. It is also possible not to provide the concave portions 42, 152, 162. Accordingly, it is possible to obtain a vibration insulating effect and a damping effect regardless of the vibration input direction.

また、凹陥部42,152,162が、第1ブッシュ10,110及び第2ブッシュ70,170の連結方向に沿う仮想直線と交差する位置に形成される場合について説明したが、必ずしもこれに限られるものではなく、ばね定数を小さくする必要のある任意の位置に形成することは当然可能である。   Moreover, although the case where the recessed part 42,152,162 was formed in the position which cross | intersects the virtual straight line along the connection direction of the 1st bush 10,110 and the 2nd bush 70,170 was demonstrated, it is not necessarily restricted to this. Of course, it is possible to form at any position where the spring constant needs to be reduced.

また、上記各実施の形態では、第1ブッシュ10,110及び第2ブッシュ70,170の軸方向端面の全周にすぐり部41,151,161が形成された場合について説明したが、必ずしもこれに限られるものではなく、ばね定数を大きくするような要求がある場合には、すぐり部41,151,161を設けないようにすることは当然可能である。   In each of the above embodiments, the case where the straight portions 41, 151, 161 are formed on the entire circumference of the axial end surfaces of the first bushes 10, 110 and the second bushes 70, 170 has been described. If there is a demand to increase the spring constant, it is naturally possible not to provide the straight portions 41, 151, 161.

上記各実施の形態においては、連結部材80,180がロッド状に形成される場合について説明したが、必ずしもこれに限られるものではなく、平板状に構成されるものやフランジ部を備えるもの等、軽量化等の要求に応じて、他の連結部材を採用することは可能である。   In each of the above-described embodiments, the case where the connecting members 80 and 180 are formed in a rod shape has been described. However, the present invention is not necessarily limited to this, and the plate member or the flange portion is provided. It is possible to employ other connecting members according to demands such as weight reduction.

上記第1実施の形態で説明した第1ブッシュ10及び第2ブッシュ70を第2実施の形態で説明した第1ブッシュ110及び第2ブッシュ170に置き換えて、連結部材180の第1筒状ホルダ181及び第2筒状ホルダ182に第1ブッシュ10及び第2ブッシュ70を圧入することは可能である。   The first cylindrical holder 181 of the connecting member 180 is replaced by replacing the first bush 10 and the second bush 70 described in the first embodiment with the first bush 110 and the second bush 170 described in the second embodiment. It is possible to press-fit the first bush 10 and the second bush 70 into the second cylindrical holder 182.

上記第1実施の形態では、軸部材20に凸面部24を一体に形成する場合について説明したが、必ずしもこれに限られるものではなく、合成樹脂製や金属製の環状被覆体を別部材として用意し、これを軸部材20の外周面に設けることにより凸面部24を形成することは当然可能である。第2実施の形態で説明した中間筒140においても同様に、凸面部141を一体に形成するのではなく、別部材として設けることは当然可能である。   In the first embodiment, the case where the convex portion 24 is formed integrally with the shaft member 20 has been described. However, the present invention is not limited to this, and a synthetic resin or metal annular covering is prepared as a separate member. However, it is naturally possible to form the convex surface portion 24 by providing this on the outer peripheral surface of the shaft member 20. Similarly, in the intermediate tube 140 described in the second embodiment, the convex surface portion 141 can be provided as a separate member instead of being formed integrally.

上記第2実施の形態では、内筒120に膨出部124を設けた場合について説明したが、中間筒140の外周面に凸面部141を有していれば、内筒120が膨出部124を有していない場合にも、同様の効果を実現できる。   In the second embodiment, the case where the bulging portion 124 is provided in the inner cylinder 120 has been described. However, if the outer peripheral surface of the intermediate cylinder 140 has the convex surface portion 141, the inner cylinder 120 has the bulging portion 124. The same effect can be realized even when it does not have.

上記実施の形態においては、防振装置1として自動車用のトルクロッドを例示したが、トルクロッドのみに適用されるものではなく、例えば、サスペンションアーム等にも好適に採用される。また、自動車用に限定されるものではなく、列車用やその他各種の連結ロッドとして適用できる。   In the above-described embodiment, an automobile torque rod is exemplified as the vibration isolator 1. However, the present invention is not only applied to the torque rod but also suitably used for, for example, a suspension arm. Moreover, it is not limited to the object for motor vehicles, It can apply as an object for trains or other various connection rods.

1,101 防振装置
10,110 第1ブッシュ
20 軸部材
120 内筒(軸部材の一部)
140 中間筒(軸部材の一部)
150 内側弾性部(軸部材の一部)
24,141 凸面部
30,130 外筒
33,133 凹面部
40 ゴム状弾性体
160 外側弾性部(ゴム状弾性体)
42,152,162 凹陥部
42a,162a 円弧部
70,170 第2ブッシュ
80,180 連結部材
81,181 第1筒状ホルダ
82,182 第2筒状ホルダ
F,Q 仮想球面
1,101 Vibration isolator 10,110 First bush 20 Shaft member 120 Inner tube (part of shaft member)
140 Intermediate tube (part of shaft member)
150 Inner elastic part (part of shaft member)
24,141 Convex part 30,130 Outer cylinder 33,133 Concave part 40 Rubber elastic body 160 Outer elastic part (rubber elastic body)
42, 152, 162 Recessed part 42a, 162a Arc part 70, 170 Second bush 80, 180 Connecting member 81, 181 First cylindrical holder 82, 182 Second cylindrical holder F, Q Virtual spherical surface

Claims (4)

振動発生側に取着される第1ブッシュと、振動受け側に取着される第2ブッシュと、前記第1ブッシュ及び前記第2ブッシュを互いに連結する連結部材とを備える防振装置において、
前記第1ブッシュ及び前記第2ブッシュは、
筒状に形成されると共に、軸方向の中央部が軸直角方向外側に膨出し外周面が球面状に形成される凸面部を有する軸部材と、
前記軸部材の外周側に前記軸部材と軸平行に位置し前記連結部材に連結されると共に、軸方向の中央部が前記凸面部に相対して軸直角方向外側に陥没しつつ内周面が連続した球面状に形成される凹面部を有する外筒と、
前記軸部材の外周面および前記外筒の内周面との間に介設されるゴム状弾性体とを備えていることを特徴とする防振装置。
In a vibration isolator comprising a first bush attached to the vibration generating side, a second bush attached to the vibration receiving side, and a connecting member for connecting the first bush and the second bush to each other.
The first bush and the second bush are:
A shaft member having a convex surface portion that is formed in a cylindrical shape and has a central portion in the axial direction bulging outward in a direction perpendicular to the axis and having an outer peripheral surface formed in a spherical shape;
The inner peripheral surface of the shaft member is located on the outer peripheral side of the shaft member in parallel with the shaft member and connected to the connecting member, and the central portion in the axial direction is recessed outward in the direction perpendicular to the axis relative to the convex surface portion. An outer cylinder having a concave surface formed in a continuous spherical shape;
A vibration isolator comprising a rubber-like elastic body interposed between an outer peripheral surface of the shaft member and an inner peripheral surface of the outer cylinder.
前記連結部材は、筒状に形成されると共に前記第1ブッシュ及び前記第2ブッシュの前記外筒がそれぞれ圧入される第1筒状ホルダ及び第2筒状ホルダを両端に備え、
前記第2ブッシュは、前記第1ブッシュと同一形状かつ同一寸法の部材により構成されると共に同一のばね定数に設定されていることを特徴とする請求項1記載の防振装置。
The connecting member is formed in a cylindrical shape and includes a first cylindrical holder and a second cylindrical holder at both ends into which the outer cylinders of the first bush and the second bush are press-fitted, respectively.
2. The vibration isolator according to claim 1, wherein the second bush is configured by a member having the same shape and the same size as the first bush and is set to have the same spring constant.
前記ゴム状弾性体は、前記第1ブッシュ及び前記第2ブッシュの軸方向端面の一部に凹設される凹陥部を備えていることを特徴とする請求項1又は2に記載の防振装置。   The vibration isolator according to claim 1 or 2, wherein the rubber-like elastic body includes a recessed portion that is recessed in a part of an axial end surface of the first bush and the second bush. . 前記凹陥部は、軸方向断面が円弧状に形成される円弧部を備え、
前記凹面部により定められる仮想球面が前記凹陥部と交差すると共に、前記円弧部は、前記仮想球面の内側に位置していることを特徴とする請求項3記載の防振装置。
The recessed portion includes an arc portion whose axial cross section is formed in an arc shape,
The vibration isolator according to claim 3, wherein a virtual spherical surface defined by the concave surface portion intersects with the concave concave portion, and the arc portion is located inside the virtual spherical surface.
JP2011076282A 2011-03-30 2011-03-30 Vibration-isolating device Pending JP2012211604A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011076282A JP2012211604A (en) 2011-03-30 2011-03-30 Vibration-isolating device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011076282A JP2012211604A (en) 2011-03-30 2011-03-30 Vibration-isolating device

Publications (1)

Publication Number Publication Date
JP2012211604A true JP2012211604A (en) 2012-11-01

Family

ID=47265736

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011076282A Pending JP2012211604A (en) 2011-03-30 2011-03-30 Vibration-isolating device

Country Status (1)

Country Link
JP (1) JP2012211604A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104061264A (en) * 2014-06-20 2014-09-24 宁国市瑞普密封件有限公司 Shock absorbing bushing applied to suspension of motor car
JP2014214836A (en) * 2013-04-26 2014-11-17 東海ゴム工業株式会社 Stabilizer bushing
CN104589990A (en) * 2014-12-31 2015-05-06 宁波拓普集团股份有限公司 Automobile power assembly suspension
CN105134850A (en) * 2015-07-01 2015-12-09 宁国市瑞普密封件有限公司 Rail transit rubber bushing
JP2020165478A (en) * 2019-03-29 2020-10-08 住友理工株式会社 Vibration damping bushing
CN114251397A (en) * 2020-09-23 2022-03-29 山下橡胶株式会社 Torque rod
US11383591B2 (en) 2019-06-10 2022-07-12 Hyundai Motor Company Roll mount device for vehicle

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005344764A (en) * 2004-05-31 2005-12-15 Tokai Rubber Ind Ltd Vibration control bush
JP2008001166A (en) * 2006-06-21 2008-01-10 Toyo Tire & Rubber Co Ltd Multi-link type suspension device
JP2008095861A (en) * 2006-10-12 2008-04-24 Toyo Tire & Rubber Co Ltd Vibration control bush and link member
JP2008095860A (en) * 2006-10-12 2008-04-24 Toyo Tire & Rubber Co Ltd Link member
JP2008267535A (en) * 2007-04-23 2008-11-06 Toyo Tire & Rubber Co Ltd Vibration absorbing bush

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005344764A (en) * 2004-05-31 2005-12-15 Tokai Rubber Ind Ltd Vibration control bush
JP2008001166A (en) * 2006-06-21 2008-01-10 Toyo Tire & Rubber Co Ltd Multi-link type suspension device
JP2008095861A (en) * 2006-10-12 2008-04-24 Toyo Tire & Rubber Co Ltd Vibration control bush and link member
JP2008095860A (en) * 2006-10-12 2008-04-24 Toyo Tire & Rubber Co Ltd Link member
JP2008267535A (en) * 2007-04-23 2008-11-06 Toyo Tire & Rubber Co Ltd Vibration absorbing bush

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014214836A (en) * 2013-04-26 2014-11-17 東海ゴム工業株式会社 Stabilizer bushing
CN104061264A (en) * 2014-06-20 2014-09-24 宁国市瑞普密封件有限公司 Shock absorbing bushing applied to suspension of motor car
CN104589990A (en) * 2014-12-31 2015-05-06 宁波拓普集团股份有限公司 Automobile power assembly suspension
CN105134850A (en) * 2015-07-01 2015-12-09 宁国市瑞普密封件有限公司 Rail transit rubber bushing
JP2020165478A (en) * 2019-03-29 2020-10-08 住友理工株式会社 Vibration damping bushing
JP7165091B2 (en) 2019-03-29 2022-11-02 住友理工株式会社 anti-vibration bush
US11383591B2 (en) 2019-06-10 2022-07-12 Hyundai Motor Company Roll mount device for vehicle
CN114251397A (en) * 2020-09-23 2022-03-29 山下橡胶株式会社 Torque rod
US11820232B2 (en) 2020-09-23 2023-11-21 Yamashita Rubber Co., Ltd. Torque rod
CN114251397B (en) * 2020-09-23 2024-04-16 山下橡胶株式会社 Torque rod

Similar Documents

Publication Publication Date Title
JP2012211604A (en) Vibration-isolating device
WO2018079244A1 (en) Anti-vibration bushing
JP6190638B2 (en) Anti-vibration bush and method for manufacturing anti-vibration bush
JP2002295560A (en) Cylindrical rubber mount
JP2012097878A (en) Vibration control connecting rod
WO2016047395A1 (en) Tubular antivibration device
WO2013046628A1 (en) Antivibration apparatus
WO2017056546A1 (en) Bracketed cylindrical vibration isolator
JP3951274B1 (en) Anti-vibration bushing manufacturing method
JP4716387B2 (en) Anti-vibration bush
JP2007333029A (en) Torque rod
JP4624494B2 (en) Cylindrical dynamic damper and manufacturing method thereof
JP5806877B2 (en) Anti-vibration bush
JP6257389B2 (en) Cylindrical vibration isolator and manufacturing method thereof
JP2020067157A (en) Vibration control bush
JP2010159860A (en) Vibration absorbing bush
JP4833908B2 (en) Anti-vibration bush
JP2011241931A (en) Vibration control device
JP3932025B2 (en) Anti-vibration bush
JP4358874B2 (en) Anti-vibration bush
WO2019131510A1 (en) Arrangement structure of electric automobile vibration isolating device
JP4699294B2 (en) Vibration isolator
JP4303297B2 (en) Anti-vibration bush
JP2014066297A (en) Cylindrical type vibration control device
JP4157060B2 (en) Cylindrical dynamic damper

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140130

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141010

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20150317