JP2008128306A - Air-temperature type liquefied-gas vaporizer and method for liquefied-gas vaporization - Google Patents

Air-temperature type liquefied-gas vaporizer and method for liquefied-gas vaporization Download PDF

Info

Publication number
JP2008128306A
JP2008128306A JP2006311898A JP2006311898A JP2008128306A JP 2008128306 A JP2008128306 A JP 2008128306A JP 2006311898 A JP2006311898 A JP 2006311898A JP 2006311898 A JP2006311898 A JP 2006311898A JP 2008128306 A JP2008128306 A JP 2008128306A
Authority
JP
Japan
Prior art keywords
heat transfer
gas
vaporization
transfer pipe
pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006311898A
Other languages
Japanese (ja)
Other versions
JP4904130B2 (en
Inventor
Koji Noisshiki
公二 野一色
Masao Endo
将夫 遠藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2006311898A priority Critical patent/JP4904130B2/en
Publication of JP2008128306A publication Critical patent/JP2008128306A/en
Application granted granted Critical
Publication of JP4904130B2 publication Critical patent/JP4904130B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a reliable air-temperature liquefied-gas vaporizer and method for liquefied-gas vaporization which positively prevent a fracture such as cracks from occurring in a welded part by adopting the structure that a strain caused by temperature change is absorbed in a heat-transfer pipe-line itself as well as a decrease in vaporization performance by suppressing occurrence of unstable flow of gas-liquid two-phase flow in the heat-transfer pipe line for vaporizing the liquefied gas. <P>SOLUTION: The air-temperature type liquefied-gas vaporizer is provided with an up-and down bend heat-transfer pipe-line 2 comprising an up-and-down bend heat-transfer pipe-line 2a for vaporization for forming vaporization gas by vaporizing the liquefied gas through heat-exchange with air, and an up-and-down bend heat-transfer pipe-line 2b for heating through heat-exchange the vaporization gas formed in the up-and-down bend heat-transfer pipe-line 2a for vaporization. In the air-temperature type liquefied-gas vaporizer 1, a twisted-tape members 6 are inserted to be fixed in heat-transfer pipes 3 at least in the up-and-down bend heat-transfer pipe-line 2a for vaporization. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、液化天然ガス(LNG)等の低温液化ガスを、その使用の際に、空気(大気)を熱源として気化させ再ガス化させるための空温式液化ガス気化器及び液化ガスの気化方法に関するものである。   The present invention relates to an air temperature type liquefied gas vaporizer for vaporizing and regasifying a low temperature liquefied gas such as liquefied natural gas (LNG) by using air (atmosphere) as a heat source at the time of use. It is about the method.

従来、この種の空温式液化ガス気化器の一例として、特開2004−44750号公報(特許文献1)に示されたものがあり、これを図11及び図12を用いて説明する。図11は従来の空温式液化ガス気化器を示す正面図、図12は図11のII−II線断面図である。   Conventionally, as an example of this kind of air temperature type liquefied gas vaporizer, there is what was shown by JP, 2004-44750, A (patent documents 1), and this is explained using Drawing 11 and Drawing 12. FIG. 11 is a front view showing a conventional air temperature type liquefied gas vaporizer, and FIG. 12 is a sectional view taken along line II-II in FIG.

図11及び図12において、空温式液化ガス気化器51は、複数の蒸発ユニット(並列伝熱管路)53を前後方向(図11における手前−奥行方向)に間隔をおいて並列状に配置してなる蒸発部52と、複数のフィン付き蛇行管(上下屈曲伝熱管路)55を前後方向に間隔をおいて並列状に配置してなる加温部54とを備えている。蒸発ユニット53は、上下方向に間隔をおいて互いに平行に配されかつ左右方向に延びる1対のマニホールド管56,57と、両マニホールド管56,57間にマニホールド管56,57の長さ方向(図11における左右方向)に間隔をおいて配されかつ上下両端部がそれぞれ両マニホールド管56,57に溶接接続されたフィン付き管(伝熱管)58とよりなる。したがって、蒸発部52は、複数の蒸発ユニット(並列伝熱管路)53を、マニホールド管56,57及びフィン付き管58と直交する方向に並列状に配置することにより構成されている。   11 and 12, the air temperature type liquefied gas vaporizer 51 has a plurality of evaporation units (parallel heat transfer conduits) 53 arranged in parallel at intervals in the front-rear direction (front-depth direction in FIG. 11). And a heating unit 54 in which a plurality of finned meandering pipes (vertical bending heat transfer pipes) 55 are arranged in parallel at intervals in the front-rear direction. The evaporation unit 53 includes a pair of manifold pipes 56 and 57 that are arranged in parallel with each other at an interval in the vertical direction and extend in the left-right direction, and the length direction of the manifold pipes 56 and 57 between the manifold pipes 56 and 57 ( 11 are provided with finned tubes (heat transfer tubes) 58 that are arranged at intervals in the left and right direction and whose upper and lower ends are welded to both manifold tubes 56 and 57, respectively. Therefore, the evaporation section 52 is configured by arranging a plurality of evaporation units (parallel heat transfer conduits) 53 in parallel in a direction orthogonal to the manifold tubes 56 and 57 and the finned tube 58.

蒸発ユニット53の上マニホールド管56の両端は、めくらフランジ59により閉鎖されている。前側の半分の蒸発ユニット53における下マニホールド管57の左端、及び後側の半分の蒸発ユニット53における下マニホールド管57の左端は、各入口ヘッダ管61に接続されている。入口ヘッダ管61には分岐管62が接続されており、分岐管62の中央部に入口フランジ63が接続されている。下マニホールド管57の右端は、めくらフランジ64により閉鎖されている。   Both ends of the upper manifold pipe 56 of the evaporation unit 53 are closed by blind flanges 59. The left end of the lower manifold pipe 57 in the front half evaporation unit 53 and the left end of the lower manifold pipe 57 in the rear half evaporation unit 53 are connected to each inlet header pipe 61. A branch pipe 62 is connected to the inlet header pipe 61, and an inlet flange 63 is connected to the center of the branch pipe 62. The right end of the lower manifold pipe 57 is closed by a blind flange 64.

蒸発ユニット53のフィン付き管58は、例えば、アルミニウム押出形材からなり、外周面に上下方向に伸びる複数のフィン58aが放射状に一体に形成されたものである。各蒸発ユニット53において、左右方向に隣接するフィン付き管58のフィン58aは、上下両端部において連結部材65により連結されている。連結部材65は、熱の影響により上下マニホールド管56,57が長さ方向に伸縮した場合にこれを吸収しうるように、たとえば横断面S字状となされている。   The finned tube 58 of the evaporation unit 53 is made of, for example, an aluminum extruded profile, and a plurality of fins 58a extending in the vertical direction are integrally formed radially on the outer peripheral surface. In each evaporation unit 53, the fins 58a of the finned tubes 58 adjacent in the left-right direction are connected by connecting members 65 at both upper and lower ends. The connecting member 65 has, for example, an S-shaped cross section so that the upper and lower manifold pipes 56 and 57 can be absorbed when they expand and contract in the length direction due to the influence of heat.

そして、各蒸発ユニット53の下マニホールド管57の内径をD、フィン付き管58の内径をdとした場合、D≧30mm、d≧24mm、D/d≧1.25という関係を満たすような寸法となされている。   When the inner diameter of the lower manifold pipe 57 of each evaporation unit 53 is D and the inner diameter of the finned pipe 58 is d, the dimensions satisfy the relations D ≧ 30 mm, d ≧ 24 mm, and D / d ≧ 1.25. It has been.

加温部54は、各フィン付き蛇行管(上下屈曲伝熱管路)55を、前後方向に関して蒸発ユニット53と対応する位置に来るように、各蒸発ユニット53の右側に並列状に配置することにより構成されている。各フィン付き蛇行管55は、たとえば複数の直管状フィン付き管(伝熱管)66をUベンド管67で接続することにより形成されている。直管状フィン付き管66は、蒸発ユニット53のフィン付き管58と同様な構成であり、隣接する直管状フィン付き管66のフィン66aの上下両端部同士は、連結部材65により連結されている。各フィン付き蛇行管55の一端は、各蒸発ユニット53の上マニホールド管56における右端のフィン付き管58よりも右方の部分に接続され、同じく他端は、加温部54の下方に配された前後方向に延びる出口ヘッダ管68に接続されている。出口ヘッダ管68の中央部に出口フランジ69が接続されている。70は空温式液化ガス気化器51を支持するための脚部である。   The heating unit 54 arranges the finned meandering pipes (vertical bending heat transfer pipes) 55 in parallel on the right side of each evaporation unit 53 so as to come to a position corresponding to the evaporation unit 53 in the front-rear direction. It is configured. Each finned meandering tube 55 is formed, for example, by connecting a plurality of straight tubular finned tubes (heat transfer tubes) 66 by U-bend tubes 67. The straight tubular finned tube 66 has the same configuration as the finned tube 58 of the evaporation unit 53, and the upper and lower ends of the fins 66 a of the adjacent straight tubular finned tubes 66 are connected by a connecting member 65. One end of each finned meandering tube 55 is connected to the right side of the rightmost finned tube 58 in the upper manifold tube 56 of each evaporation unit 53, and the other end is arranged below the heating unit 54. The outlet header pipe 68 extends in the front-rear direction. An outlet flange 69 is connected to the central portion of the outlet header pipe 68. Reference numeral 70 denotes a leg portion for supporting the air temperature type liquefied gas vaporizer 51.

前記構成の空温式液化ガス気化器51において、貯蔵タンクに貯蔵されていた液化ガスは入口部である入口フランジ63から分岐管62を通して入口ヘッダ管61内に送り込まれ、入口ヘッダ管61を通って各蒸発ユニット(各並列伝熱管路)53の下マニホールド管57内に流入する。下マニホールド管57内に流入した液化ガスは全てのフィン付き管58に分流し、フィン付き管58内を上方に流れる間に、大気(空気)と熱交換して再ガス化する。ガスは、上マニホールド管56を経て加温部54のフィン付き蛇行管(上下屈曲伝熱管路)55に流入し、フィン付き蛇行管55内を流れる間に、大気と熱交換して所定温度、たとえば0℃以上に加温される。加温されたガスは出口ヘッダ管68内に流入し、出口部である出口フランジ69から消費設備へ送り出される。   In the air temperature type liquefied gas vaporizer 51 having the above-described configuration, the liquefied gas stored in the storage tank is fed into the inlet header pipe 61 through the branch pipe 62 from the inlet flange 63 which is an inlet portion, and passes through the inlet header pipe 61. Then, it flows into the lower manifold pipe 57 of each evaporation unit (each parallel heat transfer pipe) 53. The liquefied gas that has flowed into the lower manifold pipe 57 is diverted to all the finned pipes 58 and is regasified by exchanging heat with the atmosphere (air) while flowing upward in the finned pipes 58. The gas flows into the finned meandering pipe (vertical bending heat transfer pipe) 55 of the heating section 54 through the upper manifold pipe 56 and exchanges heat with the atmosphere at a predetermined temperature while flowing in the finned meandering pipe 55. For example, it is heated to 0 ° C. or higher. The heated gas flows into the outlet header pipe 68 and is sent out from the outlet flange 69 serving as the outlet portion to the consuming equipment.

このように、この従来の空温式液化ガス気化器51は、蒸発ユニット(並列伝熱管路)53の下マニホールド管57の内径をD、フィン付き管58の内径をdとした場合、D≧30mm、d≧24mm、D/d≧1.25という関係を満たすような寸法となされている。これにより、各蒸発ユニット53において下マニホールド管57から各フィン付き管58への液化ガスの分流を均一化させることで、各フィン付き管58への着霜量が均一になって蒸発性能が均一化され、気化器全体の性能が向上するようにしている。また、各蒸発ユニット53において下マニホールド管57から各フィン付き管58への液化ガスの分流を均一化させることで、各フィン付き管58内の液面の高さも均一化され、各フィン付き管58の温度差が小さくなる。その結果、各フィン付き管58の熱収縮量が均一化され、上下のマニホールド管56,57におけるフィン付き管58との溶接部において大きな歪みが発生することを防止するようにしている。   Thus, this conventional air temperature type liquefied gas vaporizer 51 has D ≧ when the inner diameter of the lower manifold pipe 57 of the evaporation unit (parallel heat transfer pipe) 53 is D and the inner diameter of the finned pipe 58 is d ≧ D ≧ The dimensions are such that the relationships of 30 mm, d ≧ 24 mm, and D / d ≧ 1.25 are satisfied. Thereby, in each evaporation unit 53, by equalizing the flow of the liquefied gas from the lower manifold pipe 57 to each finned pipe 58, the amount of frost formation on each finned pipe 58 becomes uniform, and the evaporation performance is uniform. To improve the overall performance of the vaporizer. Further, by equalizing the flow of the liquefied gas from the lower manifold tube 57 to each finned tube 58 in each evaporation unit 53, the height of the liquid level in each finned tube 58 is also uniformed, and each finned tube The temperature difference of 58 becomes smaller. As a result, the amount of heat shrinkage of each finned tube 58 is made uniform, and large distortion is prevented from occurring in the welded portion of the upper and lower manifold tubes 56 and 57 with the finned tube 58.

しかしながら、前述した従来の空温式液化ガス気化器では、その蒸発部が、上下のマニホールド管56,57に各伝熱管58の上下両端部をそれぞれ溶接接続して形成された並列伝熱管路を有する構造であることから、下マニホールド管57の内径Dと伝熱管58の内径dとの寸法が前記所定の関係を満たすように規定するようにしても、上下のマニホールド管56,57におけるフィン付き管58との溶接部において発生する歪みを低減することについて、限界があって必ずしも十分ではなかった。   However, in the above-described conventional air temperature type liquefied gas vaporizer, the evaporation portion has parallel heat transfer pipes formed by welding the upper and lower end portions of the heat transfer tubes 58 to the upper and lower manifold tubes 56 and 57, respectively. Even if the dimensions of the inner diameter D of the lower manifold pipe 57 and the inner diameter d of the heat transfer pipe 58 are defined so as to satisfy the predetermined relationship, the upper and lower manifold pipes 56, 57 have fins. There is a limit to reducing the distortion generated in the welded portion with the tube 58, and this is not always sufficient.

特開2004−44750号公報(段落[0005]〜[0009]、図1)JP 2004-44750 A (paragraphs [0005] to [0009], FIG. 1) 特公昭56−48038号公報(全文)Japanese Patent Publication No.56-48038 (full text)

そこで、本発明の課題は、温度変化に起因する歪みを伝熱管路自体で吸収可能な構造を採用することで溶接部における割れ等の破損の発生を確実になくすことができ、さらに、液化ガスを気化させる伝熱管路部での気液二相流の不安定流動の発生を抑制することで蒸発性能の低下を防止することができ、これによって信頼性の高い空温式液化ガス気化器及び液化ガスの気化方法を提供することにある。   Therefore, the problem of the present invention is that it is possible to reliably eliminate the occurrence of breakage such as cracks in the welded portion by adopting a structure that can absorb the distortion caused by the temperature change in the heat transfer pipe itself. By suppressing the occurrence of unstable flow of gas-liquid two-phase flow in the heat transfer pipe line that vaporizes the gas, it is possible to prevent a reduction in evaporation performance, thereby providing a highly reliable air-temperature liquefied gas vaporizer and The object is to provide a method for vaporizing a liquefied gas.

前記の課題を解決するため、本願発明では、次の技術的手段を講じている。   In order to solve the above problems, the present invention takes the following technical means.

請求項1の発明は、液化ガスを空気との熱交換により気化させて気化ガスを生成するための気化用上下屈曲伝熱管路部、及び前記気化用上下屈曲伝熱管路部で生成された気化ガスを空気との熱交換により加温するための加温用上下屈曲伝熱管路部から形成される上下屈曲伝熱管路を備え、少なくとも前記気化用上下屈曲伝熱管路部の(直管状)伝熱管内にツイストテープ部材が挿入、固定されていることを特徴とする空温式液化ガス気化器である。   The invention according to claim 1 is the vaporization generated in the vertical bending heat transfer conduit for vaporization for generating the vaporized gas by vaporizing the liquefied gas by heat exchange with air, and the vaporization generated in the vertical bent heat transfer conduit for vaporization A vertical bending heat transfer pipe formed from a heating vertical bending heat transfer pipe for heating the gas by heat exchange with air is provided, and at least the (straight tubular) transfer of the vaporization vertical bending heat transfer pipe An air temperature type liquefied gas vaporizer characterized in that a twist tape member is inserted and fixed in a heat pipe.

請求項2の発明は、液化ガスを空気との熱交換により気化させて気化ガスを生成するための気化用上下屈曲伝熱管路部、及び前記気化用上下屈曲伝熱管路部で生成された気化ガスを空気との熱交換により加温するための加温用上下屈曲伝熱管路部から形成される上下屈曲伝熱管路を用いる液化ガスの気化方法において、少なくとも前記気化用上下屈曲伝熱管路部の伝熱管内にツイストテープ部材が挿入、固定されていることを特徴とする液化ガスの気化方法である。   Invention of Claim 2 vaporizes the liquefied gas by the heat exchange with air, and produces | generates a vaporization gas, The vaporization produced | generated by the vertical bending heat-transfer conduit part for vaporization, and the said vertical bending heat-transfer conduit part for vaporization In the vaporization method of liquefied gas using a vertically bent heat transfer conduit formed from a vertically bent heat transfer conduit for heating gas by heat exchange with air, at least the above-mentioned vertically bent heat transfer conduit for vaporization In this heat transfer tube, a twisted tape member is inserted and fixed, and this is a method for vaporizing liquefied gas.

本発明の空温式液化ガス気化器又は液化ガスの気化方法は、上下屈曲伝熱管路によって、液化ガスを気化させる気化用上下屈曲伝熱管路部及び気化ガスを加温する加温用上下屈曲伝熱管路部を形成し、温度変化により伸縮して歪み(熱応力)を上下屈曲伝熱管路自体で吸収可能な構造を採用したものであるから、上下のマニホールド管に各伝熱管を溶接接続して形成された並列伝熱管路を有するものとは違って、溶接部における割れ等の破損の発生を確実になくすことができる。また、液化ガスを気化させるための気化用上下屈曲伝熱管路部の伝熱管内にツイストテープ部材が挿入、固定されているので、気化用上下屈曲伝熱管路部を流れる気液二相流に不安定流動が発生することを大幅に抑制することができて、蒸発性能の低下を防止することができる。よって、本発明によると、溶接部における破損の発生がなく、蒸発性能の低下のない、信頼性の高い空温式液化ガス気化器及び液化ガスの気化方法を提供することができる。   The air temperature type liquefied gas vaporizer or the method of vaporizing liquefied gas according to the present invention includes a vertically bent heat transfer conduit that evaporates liquefied gas and a vertically bent heat transfer conduit that heats the vaporized gas. The heat transfer pipe section is formed, and the structure that can be expanded and contracted by the temperature change to absorb the strain (thermal stress) by the vertically bent heat transfer pipe itself, so each heat transfer pipe is welded to the upper and lower manifold pipes. Unlike those having parallel heat transfer pipes formed in this way, the occurrence of breakage such as cracks in the welded portion can be reliably eliminated. In addition, since the twist tape member is inserted and fixed in the heat transfer pipe of the vertical bending heat transfer pipe for vaporizing the liquefied gas, the gas-liquid two-phase flow flowing through the vertical bending heat transfer pipe for vaporization is It is possible to greatly suppress the occurrence of unstable flow, and to prevent a reduction in evaporation performance. Therefore, according to the present invention, it is possible to provide a highly reliable air temperature type liquefied gas vaporizer and a method for vaporizing a liquefied gas, in which there is no occurrence of breakage in the welded portion and no reduction in evaporation performance.

以下、本発明について、さらに詳しく説明する。本発明の空温式液化ガス気化器は、上下屈曲伝熱管路によって、液化ガスを気化させるための気化用上下屈曲伝熱管路部と、気化ガスを加温するための加温用上下屈曲伝熱管路部とが形成されている。この場合、気液二相流が流れる気化用上下屈曲伝熱管路部では、気液二相流の不安定流動ができるだけ発生しないようにする必要がある。   Hereinafter, the present invention will be described in more detail. The air temperature type liquefied gas vaporizer of the present invention includes a vertically bent heat transfer conduit for vaporizing liquefied gas by a vertically bent heat transfer conduit, and a vertically bent heat transfer for heating for heating the vaporized gas. A heat pipe section is formed. In this case, it is necessary to prevent an unstable flow of the gas-liquid two-phase flow as much as possible in the vertical bending heat transfer pipe portion for vaporization through which the gas-liquid two-phase flow flows.

ここで、一般的に、上下屈曲管路における気液二相流の不安定流動を説明する。図10は、上下屈曲管路における気液二相流の不安定流動を説明するための図である。   Here, generally, the unstable flow of the gas-liquid two-phase flow in the vertically bent pipe will be described. FIG. 10 is a diagram for explaining the unstable flow of the gas-liquid two-phase flow in the vertically bent pipeline.

一般に、気液二相流が上下屈曲管路を流れる場合、上昇路中と下降路中の気泡(ガス)の浮力の方向が気液二相流の流動方向と反対であること、屈曲部(ベント部)と下降路中で気泡の停滞現象があること等から、上下屈曲管路を流れる気液二相流の流動様式は非常に複雑となる。そして、気液二相流の不安定流動が発生する流動様式を説明すると、上昇路中はスラグ流であるが、下降路中は落下液膜流とスラグ流が交互に生じる不安定流動である。この場合、図10(a)に示すような下降路の落下液膜の状態から、図10(b)のように気柱の下部に液が蓄積されて液柱が形成されて行き、これによって上昇路と下降路の位置水頭の差圧が減少するので、ある瞬間に前記液柱は一気に上昇路中に押し流される。これにより下降路中に再び気柱が形成されることとなる。このように、図10の(a)と(b)との流動が繰り返され、これにより大きな流動脈動と差圧脈動が生じる。   In general, when a gas-liquid two-phase flow flows through a vertically bent pipeline, the direction of the buoyancy of bubbles (gas) in the ascending path and the descending path is opposite to the flow direction of the gas-liquid two-phase flow, The flow pattern of the gas-liquid two-phase flow that flows through the up and down bent pipes is very complicated due to the stagnation of bubbles in the vent part) and the descending path. Then, the flow mode in which unstable flow of gas-liquid two-phase flow occurs will be explained. Although the slag flow is in the ascending path, the falling liquid film flow and the slag flow are alternately generated in the descending path. . In this case, from the state of the falling liquid film in the descending path as shown in FIG. 10A, the liquid is accumulated in the lower part of the air column as shown in FIG. Since the differential pressure between the head of the ascending path and the descending path decreases, the liquid column is swept into the ascending path at a certain moment. As a result, air columns are formed again in the descending path. In this manner, the flow of (a) and (b) in FIG. 10 is repeated, thereby causing a large flow artery movement and a differential pressure pulsation.

空温式液化ガス気化器における気化用上下屈曲伝熱管路部では、液化ガスの気化が、主に、スラグ流(Slug Flow:流路断面を満たすような大きい気泡(気体スラグ)と、小気泡を含む液体部分(液体スラグ)が交互に存在する流れである)、チャーン流(Churn Flow:気体スラグが長くなり、その海面が脈動している流れで、液体スラグ中に多数の気泡を含んでおり、気体スラグとの境界が不明瞭なものである)という気液二相流の流動様式を伴って行われており、ガス部が偏在することで気化用上下屈曲伝熱管路部を流れる気液二相流に不安定流動が発生することとなる。そのため、本発明の空温式液化ガス気化器では、気化用上下屈曲伝熱管路部の伝熱管内に螺旋状部材であるツイストテープ部材を挿入、固定することにより、気化用上下屈曲伝熱管路部を流れる気液二相流に不安定流動が発生することを抑制するようにしている。   In the vertically bent heat transfer pipe section for vaporization in the air temperature type liquefied gas vaporizer, vaporization of the liquefied gas is mainly performed by slug flow (Slug Flow: large bubbles (gas slag) satisfying the flow path cross section) and small bubbles. Liquid flow containing liquid (liquid slag) alternately, churn flow (churn flow: the flow of gas slag is long and the sea surface is pulsating, and the liquid slag contains many bubbles. And the flow of gas-liquid two-phase flow (the boundary with the gas slag is unclear), and the gas flowing in the vertically bent heat transfer pipe section for vaporization due to the uneven distribution of the gas section An unstable flow will occur in the liquid two-phase flow. Therefore, in the air temperature type liquefied gas vaporizer of the present invention, the vertical bending heat transfer pipe for vaporization is formed by inserting and fixing a twist tape member which is a spiral member in the heat transfer pipe of the vertical bending heat transfer pipe portion for vaporization. The occurrence of unstable flow in the gas-liquid two-phase flow flowing through the section is suppressed.

すなわち、気化用上下屈曲伝熱管路部の伝熱管内にツイストテープ部材を挿入、固定することで、螺旋状部材であるツイストテープ部材による遠心力によって液が伝熱管管壁まで導かれるので、伝熱管管壁部分にガスのみが存在するような状態を回避して安定した気化が可能となる。また、並列伝熱管路に比べてガス流速の速い上下屈曲伝熱管路における伝熱管上部では、ツイストテープ部材のない場合には液滴とガスが一緒に移動する飛沫同伴状態が生じるが、ツイストテープ部材の存在により、液が伝熱管管壁へ導かれ衝突することで伝熱管上部まで吹き上げられることがない。同様に、気化用上下屈曲伝熱管路部の下降路においても液が伝熱管管壁へ導かれ衝突することで伝熱管下部まで一気に流れ込むことがない。このようにして、液化ガスを気化させる気化用上下屈曲伝熱管路部での気液二相流の不安定流動の発生を抑制することができる。   That is, by inserting and fixing the twist tape member in the heat transfer tube of the vertically bent heat transfer tube section for vaporization, the liquid is guided to the heat transfer tube wall by the centrifugal force by the twist tape member which is a spiral member. Stable vaporization is possible by avoiding a state in which only the gas exists in the heat pipe wall portion. In addition, at the top of the heat transfer tube in the vertically bent heat transfer tube where the gas flow rate is faster than that of the parallel heat transfer tube, if there is no twist tape member, a droplet entrainment state occurs in which the droplet and gas move together. Due to the presence of the member, the liquid is not blown up to the upper part of the heat transfer tube by being guided to and collided with the heat transfer tube wall. Similarly, even in the descending path of the vertical bending heat transfer pipe section for vaporization, the liquid is not led to the lower part of the heat transfer pipe by being led to the heat transfer pipe wall and colliding with it. In this way, it is possible to suppress the occurrence of an unstable flow of the gas-liquid two-phase flow in the vertical bending heat transfer pipe portion for vaporization that vaporizes the liquefied gas.

また、上下のマニホールド管に各伝熱管を溶接接続して形成された気化用の並列伝熱管路では、複数本の伝熱管が蛇行しながら直列に接続された上下屈曲伝熱管路とは違って、並列をなす各1本の伝熱管内で液化ガスの気化を行うため流速が遅く、管内の摩擦圧力損失は非常に低い値で数十mmAq(0.0001MPa)程度であった。これに対し、上下屈曲伝熱管路では、前記並列伝熱管路に比べ流速が10倍程度と速くなり、伝熱管での摩擦圧力損失は、数百から数千mmAq(0.001〜0.01MPa)程度発生する。その結果、各伝熱管での摩擦圧力損失が支配的となり、複数(例えば、12列)の上下屈曲伝熱管路間での液化ガス流量分配も均一化でき、このことによっても気化器内の不安定流動を抑制することができる。   In addition, the vaporization parallel heat transfer pipe formed by welding the heat transfer pipes to the upper and lower manifold pipes is different from the vertically bent heat transfer pipe in which a plurality of heat transfer pipes are connected in series while meandering. Since the liquefied gas was vaporized in each of the parallel heat transfer tubes, the flow rate was slow, and the friction pressure loss in the tubes was a very low value of about several tens of mmAq (0.0001 MPa). On the other hand, in the vertically bent heat transfer pipe, the flow velocity is about 10 times faster than the parallel heat transfer pipe, and the friction pressure loss in the heat transfer pipe is several hundred to several thousand mmAq (0.001 to 0.01 MPa). ) To occur. As a result, the friction pressure loss in each heat transfer tube becomes dominant, and the liquefied gas flow distribution among a plurality of (for example, 12 rows) vertical bent heat transfer conduits can be made uniform. Stable flow can be suppressed.

次に、図面を参照しながら本発明の実施形態について説明する。図1は本発明の一実施形態による空温式液化ガス気化器の正面図、図2は図1の側面図、図3は図1,図2における伝熱管の断面図、図4は伝熱管のフィンを省略して空温式液化ガス気化器の要部を示す正面図である。なお、本明細書では、「アルミニウム」という語は、純アルミニウムの他、アルミニウム合金を含むものとする。   Next, embodiments of the present invention will be described with reference to the drawings. 1 is a front view of an air temperature type liquefied gas vaporizer according to an embodiment of the present invention, FIG. 2 is a side view of FIG. 1, FIG. 3 is a cross-sectional view of the heat transfer tube in FIGS. It is a front view which abbreviate | omits this fin and shows the principal part of an air temperature type | mold liquefied gas vaporizer. In this specification, the term “aluminum” includes aluminum alloy in addition to pure aluminum.

図1〜図4において、空温式液化ガス気化器1は、前後方向(図1における手前−奥行方向、図2における左右方向)に間隔をおいて並列状に配置された、複数の、本実施形態では12列の上下屈曲伝熱管路2を備えている。11は液化ガス貯蔵タンクから配管を介して液化ガスが導かれる入口フランジである。この入口フランジ11には、アルミニウム製の分岐管12を介して2本のアルミニウム製の入口ヘッダ管13が接続されるとともに、各入口ヘッダ管13には、それぞれ、6列の各上下屈曲伝熱管路2の先頭の伝熱管3を構成する直管3aが溶接接続されている。   1 to 4, the air temperature type liquefied gas vaporizer 1 includes a plurality of books arranged in parallel in the front-rear direction (front-depth direction in FIG. 1, left-right direction in FIG. 2). In the embodiment, 12 rows of vertically bent heat transfer pipes 2 are provided. Reference numeral 11 denotes an inlet flange through which the liquefied gas is led from the liquefied gas storage tank through a pipe. Two inlet header pipes 13 made of aluminum are connected to the inlet flange 11 via an aluminum branch pipe 12, and each of the inlet header pipes 13 has six rows of vertically bent heat transfer pipes. A straight pipe 3a constituting the heat transfer pipe 3 at the head of the path 2 is connected by welding.

各上下屈曲伝熱管路2は、この実施形態では12本の伝熱管3(直管3a)をU字ベント管4で直列に溶接接続することで蛇行形状(上下屈曲形状)をなして形成されている。そして、本実施形態では、先頭からの7番目までの7本の伝熱管3と6本のU字ベント管4によって、液化ガスを空気との熱交換により気化させて気化ガスを生成するための気化用上下屈曲伝熱管路部2aが形成されている(図4参照)。また、8番目から12番目までの5本の伝熱管3と5本のU字ベント管4によって、気化用上下屈曲伝熱管路部2aで生成された気化ガスを空気との熱交換により加温するための加温用上下屈曲伝熱管路部2bが形成されている(図4参照)。   In this embodiment, each of the vertically bent heat transfer pipes 2 is formed in a meandering shape (vertically bent shape) by welding and connecting 12 heat transfer pipes 3 (straight pipes 3a) in series with a U-shaped vent pipe 4. ing. In this embodiment, the liquefied gas is vaporized by heat exchange with air by the seven heat transfer tubes 3 and the six U-shaped vent tubes 4 from the top to the seventh to generate the vaporized gas. A vertically bent heat transfer pipe portion 2a for vaporization is formed (see FIG. 4). Further, the vaporized gas generated in the vertical bending heat transfer pipe section 2a for vaporization is heated by heat exchange with air by the eighth to twelfth heat transfer pipes 3 and the five U-shaped vent pipes 4. A vertical bending heat transfer pipe section 2b for heating is formed (see FIG. 4).

そして、各上下屈曲伝熱管路2の最後尾の伝熱管3(加温用上下屈曲伝熱管路部2aの最後尾の伝熱管3)は、アルミニウム製の出口ヘッダ管14に溶接接続されている。この出口ヘッダ管14には、アルミニウム製の出口フランジ15が接続されている。気化用上下屈曲伝熱管路部2aによって再ガス化され、加温用上下屈曲伝熱管路部2bによって例えば0℃以上に加温されたガスが、出口フランジ15を通って消費設備へ送り出されるようになっている。16は空温式液化ガス気化器1を支持するための脚部である。17は伝熱管支持用の上枠、18は同じく下枠である。   The rearmost heat transfer pipe 3 of each vertical bent heat transfer pipe 2 (the rearmost heat transfer pipe 3 of the heating vertical bent heat transfer pipe section 2a) is welded to the aluminum outlet header pipe 14. . An aluminum outlet flange 15 is connected to the outlet header pipe 14. Gas that is regasified by the vertical bending heat transfer pipe portion 2a for vaporization and heated to, for example, 0 ° C. or more by the vertical bending heat transfer pipe portion 2b for heating, is sent to the consumption equipment through the outlet flange 15. It has become. Reference numeral 16 denotes legs for supporting the air temperature type liquefied gas vaporizer 1. 17 is an upper frame for supporting a heat transfer tube, and 18 is a lower frame.

次に前記伝熱管3について説明すると、アルミニウム製押出し型材の各伝熱管3は、上下方向(鉛直方向)に延びる直管3aと、この直管3aの外周部に一体的に形成され該直管3aの長手方向に延びる8枚のフィン3bとを備えており、各フィン3b間は、逆S字状のアルミニウム製の継ぎ板5を介して直管3aの上下位置で連結されている。   Next, the heat transfer tube 3 will be described. Each heat transfer tube 3 of the aluminum extrusion mold is integrally formed on a straight tube 3a extending in the vertical direction (vertical direction) and an outer peripheral portion of the straight tube 3a. Eight fins 3b extending in the longitudinal direction of 3a are provided, and the fins 3b are connected to each other at a vertical position of the straight pipe 3a via an inverted S-shaped aluminum joining plate 5.

図5は本発明に係るツイストテープ部材の一例を示す十字ツイストテープ部材の斜視図(長手方向における一部分を示す)、図6は本発明に係る気化用上下屈曲伝熱管路部の伝熱管内に挿入、固定された十字ツイストテープ部材を説明するための断面図である。   FIG. 5 is a perspective view of a cross twist tape member showing an example of the twist tape member according to the present invention (a part of the longitudinal twist tape member is shown in the longitudinal direction), and FIG. 6 is shown in the heat transfer tube of the vertically bent heat transfer conduit for vaporization according to the present invention. It is sectional drawing for demonstrating the cross twist tape member inserted and fixed.

空温式液化ガス気化器1に備えられた前記各上下屈曲伝熱管路2において、少なくとも気化用上下屈曲伝熱管路部2aの伝熱管3(直管3a)内には、螺旋状部材であるツイストテープ部材の一例として、図5と図6に示すような、十字ツイストテープ部材6が挿入、固定されている。この実施形態では、気化用上下屈曲伝熱管路部2aを構成する7本全部の伝熱管3、及び、加温用上下屈曲伝熱管路部2bを構成する5本の伝熱管3のうちの先頭の伝熱管3に、十字ツイストテープ部材6が挿入、固定されている。   In each of the vertically bent heat transfer pipes 2 provided in the air temperature type liquefied gas vaporizer 1, at least the heat transfer pipe 3 (straight pipe 3a) of the vertically bent heat transfer pipe part 2a for vaporization is a spiral member. As an example of the twist tape member, a cross twist tape member 6 as shown in FIGS. 5 and 6 is inserted and fixed. In this embodiment, the top of all seven heat transfer tubes 3 constituting the vertical bending heat transfer tube portion 2a for vaporization and the five heat transfer tubes 3 constituting the vertical bending heat transfer tube portion 2b for heating. A cross twist tape member 6 is inserted into and fixed to the heat transfer tube 3.

十字ツイストテープ部材6は、アルミニウム製の押出し型材であり、伝熱管3(直管3a)内に挿入され、その上端部と下端部とにおいて伝熱管3(直管3a)管壁に溶接されて固定されている。図5と図6から分かるように、伝熱管3(直管3a)内には、十字ツイストテープ部材6により、上下方向に螺旋状に延びる4つの螺旋状空間通路が形成されており、この螺旋状空間通路を気液二相流が流れるようになっている。なお、十字ツイストテープ部材6の固定は、前記溶接による固定に限らず、かしめによる固定など適宜の固定手段が採用可能である。   The cross-twist tape member 6 is an aluminum extrusion mold, inserted into the heat transfer tube 3 (straight tube 3a), and welded to the heat transfer tube 3 (straight tube 3a) tube wall at the upper end and lower end thereof. It is fixed. As can be seen from FIG. 5 and FIG. 6, four spiral space passages that spirally extend in the vertical direction are formed in the heat transfer tube 3 (straight tube 3 a) by the cross twist tape member 6. The gas-liquid two-phase flow flows through the cylindrical space passage. The fixing of the cross twist tape member 6 is not limited to fixing by welding, and appropriate fixing means such as fixing by caulking can be employed.

十字ツイストテープ部材6は、伝熱管3(直管3a)の長手方向のほぼ全長にわたって挿入されている。また、十字ツイストテープ部材6のひねりピッチPは、例えば40mm(180°ひねりピッチ)である(図6参照)。   The cross twist tape member 6 is inserted over almost the entire length of the heat transfer tube 3 (straight tube 3a) in the longitudinal direction. Moreover, the twist pitch P of the cross twist tape member 6 is, for example, 40 mm (180 ° twist pitch) (see FIG. 6).

このように、本実施形態の空温式液化ガス気化器1は、上下屈曲伝熱管路2によって、液化ガスを気化させる気化用上下屈曲伝熱管路部2a及び気化ガスを加温する加温用上下屈曲伝熱管路部2bを形成し、温度変化により伸縮して歪み(熱応力)を上下屈曲伝熱管路2自体で吸収可能な構造を採用したものであるから、上下のマニホールド管に各伝熱管を溶接接続して形成された並列伝熱管路を有するものとは違って、溶接部における割れ等の破損の発生を確実になくすことができる。また、少なくとも気化用上下屈曲伝熱管路部2aの伝熱管3内に十字ツイストテープ部材6が挿入、固定されているので、気化用上下屈曲伝熱管路部2aを流れる気液二相流に不安定流動が発生することを大幅に抑制することができて、蒸発性能の低下を防止することができる。   As described above, the air temperature type liquefied gas vaporizer 1 of the present embodiment is used for heating by heating the vertically bent heat transfer pipe portion 2a for vaporizing the liquefied gas and the vaporized gas by the vertically bent heat transfer pipe 2. Since the vertically bent heat transfer pipe section 2b is formed, and a structure in which the vertical bent heat transfer pipe 2 itself can absorb the strain (thermal stress) by expanding and contracting due to temperature change, the respective heat transfer pipes are transferred to the upper and lower manifold pipes. Unlike those having parallel heat transfer pipes formed by welding the hot tubes, it is possible to reliably eliminate the occurrence of breakage such as cracks in the welded portion. In addition, since the cross twist tape member 6 is inserted and fixed in the heat transfer tube 3 of at least the vertical bending heat transfer pipe portion 2a for vaporization, it is incapable of gas-liquid two-phase flow flowing through the vertical bending heat transfer pipe portion 2a for vaporization. It is possible to greatly suppress the occurrence of stable flow, and to prevent a decrease in evaporation performance.

次に、本発明に係る実験例について説明する。図7は本発明に係る図であって、実験用空温式気化器を説明するための図である。   Next, experimental examples according to the present invention will be described. FIG. 7 is a diagram related to the present invention and is a diagram for explaining an experimental air temperature type vaporizer.

図7に示すように、外径φ25mm、内径φ20.4mm、長さ4850mmの鉛直方向に延びるフィン付きの伝熱管3’を5本と、4本のU字ベント管4’とにより上下屈曲伝熱管路を構成するとともに、5本の伝熱管3’内に、前記の図5,図6に示す十字ツイストテープ部材を挿入、固定してなる実験用空温式気化器を製作した。この1列の上下屈曲伝熱管路を備えた実験用空温式気化器を用いて液化窒素を気化して加温し、その際に、上下屈曲伝熱管路を流れる気液二相流に不安定流動が発生するか否かについて調査した。この調査は、図7に示すように、上下屈曲伝熱管路における#1〜#21の各部位の温度を測定することで不安定流動の発生の有無を知るようにした。   As shown in FIG. 7, the heat transfer pipe 3 ′ with fins extending in the vertical direction and having an outer diameter of 25 mm, an inner diameter of 20.4 mm, and a length of 4850 mm is vertically bent and transmitted by four U-shaped vent pipes 4 ′. While constructing a heat pipe, an experimental air temperature type vaporizer was manufactured by inserting and fixing the cross twist tape member shown in FIGS. 5 and 6 in the five heat transfer tubes 3 ′. Liquefied nitrogen is vaporized and heated using an experimental air temperature type vaporizer equipped with this one row of vertically bent heat transfer pipes. It was investigated whether or not stable flow occurred. In this investigation, as shown in FIG. 7, the presence or absence of the unstable flow was determined by measuring the temperature of each part # 1 to # 21 in the vertically bent heat transfer pipe.

図8は図7に示す実験用空温式気化器による実験結果の一例を示すグラフ図、図9は同実験結果の一例を示すグラフ図である。   FIG. 8 is a graph showing an example of an experimental result by the experimental air temperature type vaporizer shown in FIG. 7, and FIG. 9 is a graph showing an example of the experimental result.

図8は、液体窒素:流量84kg/hにおいて、運転開始から4時間後の時点での上下屈曲伝熱管路の#1〜#21及び#57の各部位の温度を測定したグラフ図であり、十字ツイストテープ部材有りの場合(実線で示す)と無しの場合(破線で示す)との結果を示すものである。同図から分かるように、十字ツイストテープ部材無しの場合では、部位#5と部位#6において、温度の逆転現象が生じており、この部分において気液二相流の不安定流動が発生したことが認められた。これに対し、十字ツイストテープ部材有りの場合では、上流側部位と下流側部位での温度の逆転現象は認められなかった。   FIG. 8 is a graph showing the temperature of each part of # 1 to # 21 and # 57 of the vertically bent heat transfer pipe at the time of 4 hours after the start of operation at a flow rate of 84 kg / h in liquid nitrogen, The results are shown when there is a cross twist tape member (shown by a solid line) and when there is no cross twist tape member (shown by a broken line). As can be seen from the figure, in the case of no cross-twist tape member, a temperature reversal phenomenon occurred in part # 5 and part # 6, and an unstable flow of gas-liquid two-phase flow occurred in this part. Was recognized. On the other hand, in the case of the presence of the cross twist tape member, the temperature reversal phenomenon at the upstream portion and the downstream portion was not recognized.

図9は、液体窒素:流量84kg/hにおいて、運転開始から240分間にわたって部位#5及び部位#6の温度を測定したグラフ図であり、その(a)は十字ツイストテープ部材有りの場合であり、その(b)は十字ツイストテープ部材無しの場合である。部位#5のグラフは細線で示し、部位#6のグラフは太線で示してある。図9(b)から分かるように、十字ツイストテープ部材無しの場合では、温度の逆転現象が発生しており、気液二相流の不安定流動が発生することが認められた。これに対し、図9(a)から分かるように、十字ツイストテープ部材有りの場合では、逆転現象は認められず、十字ツイストテープ部材によって気液二相流の不安定流動を抑制できるという効果が確認できた。   FIG. 9 is a graph showing the temperature of part # 5 and part # 6 measured over 240 minutes from the start of operation at a flow rate of 84 kg / h in liquid nitrogen, and (a) shows the case with a cross twist tape member. (B) shows the case without the cross-twist tape member. The graph of the part # 5 is indicated by a thin line, and the graph of the part # 6 is indicated by a thick line. As can be seen from FIG. 9 (b), in the case of no cross twist tape member, a temperature reversal phenomenon occurred, and it was recognized that an unstable flow of gas-liquid two-phase flow occurred. On the other hand, as can be seen from FIG. 9A, in the case of the presence of the cross twist tape member, the reverse phenomenon is not recognized, and the cross twist tape member can suppress the unstable flow of the gas-liquid two-phase flow. It could be confirmed.

本発明の一実施形態による空温式液化ガス気化器の正面図である。It is a front view of the air temperature type liquefied gas vaporizer by one embodiment of the present invention. 図1の側面図である。It is a side view of FIG. 図1,図2における伝熱管の断面図である。It is sectional drawing of the heat exchanger tube in FIG. 1, FIG. 伝熱管のフィンを省略して空温式液化ガス気化器の要部を示す正面図である。It is a front view which abbreviate | omits the fin of a heat exchanger tube and shows the principal part of an air temperature type liquefied gas vaporizer. 本発明に係るツイストテープ部材の一例を示す十字ツイストテープ部材の斜視図(長手方向における一部分を示す)である。It is a perspective view (a part is shown in the longitudinal direction) of a cross twist tape member which shows an example of a twist tape member concerning the present invention. 本発明に係る気化用上下屈曲伝熱管路部の伝熱管内に挿入、固定された十字ツイストテープ部材を説明するための断面図である。It is sectional drawing for demonstrating the cross twist tape member inserted and fixed in the heat exchanger tube of the vertical bending heat exchanger tube part for vaporization which concerns on this invention. 本発明に係る図であって、実験用空温式気化器を説明するための図である。It is a figure concerning the present invention, and is a figure for explaining an experimental air temperature type vaporizer. 図7に示す実験用空温式気化器による実験結果の一例を示すグラフ図である。It is a graph which shows an example of the experimental result by the air temperature type | formula carburetor for an experiment shown in FIG. 同実験結果の一例を示すグラフ図である。It is a graph which shows an example of the same experimental result. 気液二相流が上下屈曲管路を流れる場合の不安定流動を説明するための模式的説明図である。It is a typical explanatory view for explaining unstable flow when a gas-liquid two-phase flow flows through a vertically bent pipe. 従来の空温式液化ガス気化器を示す正面図である。It is a front view which shows the conventional air temperature type | mold liquefied gas vaporizer. 図11のII−II線断面図である。It is the II-II sectional view taken on the line of FIG.

符号の説明Explanation of symbols

1…空温式液化ガス気化器
2…上下屈曲伝熱管路
2a…気化用上下屈曲伝熱管路部
2b…加温用上下屈曲伝熱管路部
3,3’…伝熱管 3a…直管 3b…フィン
4,4’…U字ベント管
5…継ぎ板、
6…十字ツイストテープ部材、
11…入口フランジ
12…分岐管
13…入口ヘッダ管
14…出口ヘッダ管
15…出口フランジ
DESCRIPTION OF SYMBOLS 1 ... Air-temperature type liquefied gas vaporizer 2 ... Vertical bending heat-transfer pipe line 2a ... Vertical bending heat-transfer pipe part 2b for vaporization 2b ... Vertical bending heat-transfer pipe part for heating 3, 3 '... Heat-transfer pipe 3a ... Straight pipe 3b ... Fin 4, 4 '... U-shaped vent pipe 5 ... Joint plate,
6 ... Cross twist tape member,
DESCRIPTION OF SYMBOLS 11 ... Inlet flange 12 ... Branch pipe 13 ... Inlet header pipe 14 ... Outlet header pipe 15 ... Outlet flange

Claims (2)

液化ガスを空気との熱交換により気化させて気化ガスを生成するための気化用上下屈曲伝熱管路部、及び前記気化用上下屈曲伝熱管路部で生成された気化ガスを空気との熱交換により加温するための加温用上下屈曲伝熱管路部から形成される上下屈曲伝熱管路を備え、少なくとも前記気化用上下屈曲伝熱管路部の伝熱管内にツイストテープ部材が挿入、固定されていることを特徴とする空温式液化ガス気化器。   Vaporization vertical bending heat transfer pipe section for generating vaporized gas by vaporizing liquefied gas by heat exchange with air, and heat exchange of vaporized gas generated in the vaporization vertical bending heat transfer pipe section with air A vertical bending heat transfer pipe formed from a heating vertical bending heat transfer pipe for heating by a twist tape member is inserted and fixed in at least the heat transfer pipe of the vertical bending heat transfer pipe for vaporization. An air-temperature liquefied gas vaporizer characterized by 液化ガスを空気との熱交換により気化させて気化ガスを生成するための気化用上下屈曲伝熱管路部、及び前記気化用上下屈曲伝熱管路部で生成された気化ガスを空気との熱交換により加温するための加温用上下屈曲伝熱管路部から形成される上下屈曲伝熱管路を用いる液化ガスの気化方法において、少なくとも前記気化用上下屈曲伝熱管路部の伝熱管内にツイストテープ部材が挿入、固定されていることを特徴とする液化ガスの気化方法。   Vaporization vertical bending heat transfer pipe section for generating vaporized gas by vaporizing liquefied gas by heat exchange with air, and heat exchange of vaporized gas generated in the vaporization vertical bending heat transfer pipe section with air In the method of vaporizing liquefied gas using a vertically bent heat transfer conduit formed from a vertically bent heat transfer conduit for heating by heating, at least a twist tape in the heat transfer tube of the vertically bent heat transfer conduit for vaporization A method for vaporizing a liquefied gas, wherein a member is inserted and fixed.
JP2006311898A 2006-11-17 2006-11-17 Air temperature type liquefied gas vaporizer and method for vaporizing liquefied gas Active JP4904130B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006311898A JP4904130B2 (en) 2006-11-17 2006-11-17 Air temperature type liquefied gas vaporizer and method for vaporizing liquefied gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006311898A JP4904130B2 (en) 2006-11-17 2006-11-17 Air temperature type liquefied gas vaporizer and method for vaporizing liquefied gas

Publications (2)

Publication Number Publication Date
JP2008128306A true JP2008128306A (en) 2008-06-05
JP4904130B2 JP4904130B2 (en) 2012-03-28

Family

ID=39554343

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006311898A Active JP4904130B2 (en) 2006-11-17 2006-11-17 Air temperature type liquefied gas vaporizer and method for vaporizing liquefied gas

Country Status (1)

Country Link
JP (1) JP4904130B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010038211A (en) * 2008-08-01 2010-02-18 Kobe Steel Ltd Vaporizer of low temperature liquefied gas
KR101905258B1 (en) * 2016-08-05 2018-12-06 강희자 Liquefied natural gas open rack vaporizer

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102706180A (en) * 2012-05-25 2012-10-03 南京白云化工环境监测有限公司 Immersive coil type heat-exchanger
CN109424849A (en) * 2017-08-22 2019-03-05 天津市科瑞燃气设备有限公司 A kind of gas-fired equipment that occupied area is small

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5648038B2 (en) * 1978-07-07 1981-11-13
JPH0735297A (en) * 1993-07-20 1995-02-07 Kobe Steel Ltd Open rack type vapourization device for liquiefied low temperature gas
JP2001304494A (en) * 2000-04-26 2001-10-31 Osaka Gas Co Ltd Low-temperature liquefied gas carburettor and heat exchanger
JP2005003347A (en) * 2003-05-19 2005-01-06 Showa Denko Kk Meandering pipe with fin and air heating-type liquefied gas vaporizer using this pipe

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5648038B2 (en) * 1978-07-07 1981-11-13
JPH0735297A (en) * 1993-07-20 1995-02-07 Kobe Steel Ltd Open rack type vapourization device for liquiefied low temperature gas
JP2001304494A (en) * 2000-04-26 2001-10-31 Osaka Gas Co Ltd Low-temperature liquefied gas carburettor and heat exchanger
JP2005003347A (en) * 2003-05-19 2005-01-06 Showa Denko Kk Meandering pipe with fin and air heating-type liquefied gas vaporizer using this pipe

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010038211A (en) * 2008-08-01 2010-02-18 Kobe Steel Ltd Vaporizer of low temperature liquefied gas
KR101905258B1 (en) * 2016-08-05 2018-12-06 강희자 Liquefied natural gas open rack vaporizer

Also Published As

Publication number Publication date
JP4904130B2 (en) 2012-03-28

Similar Documents

Publication Publication Date Title
JP2007333343A (en) Heat exchanger, hot water device provided with same, and water pipe for heat exchanger
US20130299132A1 (en) Heat exchanger assembly and method of manufacturing therefor
EP3306254B1 (en) Heat exchanger with a heat exchanger tank structure and production method therefor
WO2011043779A4 (en) Dual enhanced tube for vapor generator
US20050082047A1 (en) Heat exchanger
JP4904130B2 (en) Air temperature type liquefied gas vaporizer and method for vaporizing liquefied gas
WO2013138492A1 (en) Nested heat exchanger
JP2016008767A (en) Heat exchanger
JP2018009762A (en) Heat exchanger and boiler
US8347826B2 (en) Heat exchanger, water heater and water tube
JP2007085723A (en) Heat exchanger comprising supercritical carbon-dioxide circuit
JP4857987B2 (en) Heat exchanger and water heater
CN110765645B (en) Design method of built-in coil type compressed air heat exchange system
CN100573023C (en) Novel short circuit-proof spiral baffle plate shell type heat exchanger
JP2007218461A (en) Double tube type heat exchanger
JP2019219079A (en) Water heat exchanger and gas cooler
JP2012132574A (en) Device for vaporizing low temperature liquid
JP2000266484A (en) Heat exchanger
JP2004044750A (en) Room temperature type liquefied gas vaporizer and evaporating unit
JP2005233597A (en) Heat storage heat exchanger
JP7134908B2 (en) Vaporizer and heat transfer tube assembly method
CN105222617A (en) A kind of low flow resistance heat exchanger for natural cycle system
JP2754148B2 (en) Double tube open rack type vaporizer
US20110000650A1 (en) Indirect heat exchange device and method of exchanging heat
JP7309569B2 (en) Heat exchanger

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080926

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110201

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20110407

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20110407

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20110408

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111004

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111031

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111227

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120106

R150 Certificate of patent or registration of utility model

Ref document number: 4904130

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150113

Year of fee payment: 3