JP7309569B2 - Heat exchanger - Google Patents

Heat exchanger Download PDF

Info

Publication number
JP7309569B2
JP7309569B2 JP2019199811A JP2019199811A JP7309569B2 JP 7309569 B2 JP7309569 B2 JP 7309569B2 JP 2019199811 A JP2019199811 A JP 2019199811A JP 2019199811 A JP2019199811 A JP 2019199811A JP 7309569 B2 JP7309569 B2 JP 7309569B2
Authority
JP
Japan
Prior art keywords
row
pipe portion
main pipe
column
heat exchanger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019199811A
Other languages
Japanese (ja)
Other versions
JP2021071274A (en
Inventor
京平 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takuma Co Ltd
Original Assignee
Takuma Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takuma Co Ltd filed Critical Takuma Co Ltd
Priority to JP2019199811A priority Critical patent/JP7309569B2/en
Publication of JP2021071274A publication Critical patent/JP2021071274A/en
Application granted granted Critical
Publication of JP7309569B2 publication Critical patent/JP7309569B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Description

本発明は、例えば廃棄物焼却施設のボイラに組み込まれる熱交換器に関する。 TECHNICAL FIELD The present invention relates to a heat exchanger incorporated in, for example, a boiler of a waste incineration plant.

この種の熱交換器は、複数の伝熱管を備えている。そして、伝熱管の内側に例えば水を流し、伝熱管の外側に焼却炉からの排ガスを流して、水と排ガスとの間で伝熱管を介して熱交換を行うようにされている。 This type of heat exchanger has a plurality of heat transfer tubes. For example, water is flowed inside the heat transfer tubes, and exhaust gas from the incinerator is flowed outside the heat transfer tubes, so that heat exchange is performed between the water and the exhaust gas through the heat transfer tubes.

図4は、従来の熱交換器の説明図である。図4(a)及び(a´)に示されるように、伝熱管構造が碁盤目配列の熱交換器100において、複数の伝熱管101は、排ガス流れ方向に沿う行方向、及び該行方向と直交する列方向にそれぞれ所定の管ピッチで行列状に配置される複数の直管部102を備えている。行方向に隣り合う直管部102の一端同士は、一側曲管部103によって連結されている。行方向に隣り合う直管部102の他端同士は、他側曲管部104によって連結されている。このような碁盤目配列のものは、構造がシンプルであるというメリットの他に、排ガス中に含まれる付着性物質のダストが、列方向に隣り合う直管部間に詰まり難い等のメリットがあるため、ボイラの伝熱管構造として一般的に採用されている。 FIG. 4 is an explanatory diagram of a conventional heat exchanger. As shown in FIGS. 4(a) and 4(a'), in a heat exchanger 100 having a heat transfer tube structure arranged in a grid pattern, a plurality of heat transfer tubes 101 are arranged in a row direction along the flow direction of the exhaust gas and in the row direction. It has a plurality of straight tube sections 102 arranged in a matrix at a predetermined tube pitch in the orthogonal row direction. One ends of the straight pipe portions 102 adjacent in the row direction are connected by a one-side curved pipe portion 103 . The other ends of the straight tube portions 102 adjacent in the row direction are connected by the other side bent tube portion 104 . In addition to the advantage of having a simple structure, such a grid arrangement has the advantage of preventing dust, which is an adherent substance contained in the exhaust gas, from clogging the straight pipe sections adjacent to each other in the row direction. Therefore, it is commonly used as a heat transfer tube structure for boilers.

伝熱管構造に関して上記の碁盤目配列よりも密にできる配列として、図4(b)及び(b´)、並びに図4(c)及び(c´)に示されるような千鳥配列がある(例えば、特許文献1,2を参照)。千鳥配列の場合において、直管部102の連結方式としては、排ガス流れ方向に位置する直管部102同士を、排ガス流れ方向に沿う曲管部103,104で連結するもの(図4(b)及び(b´)を参照)と、排ガス流れ方向に対し斜めに傾いた曲管部103,104で連結するもの(図4(c)及び(c´)を参照)とがある。 4(b) and 4(b'), and 4(c) and 4(c'), the staggered arrangement (for example, , see Patent Documents 1 and 2). In the case of the staggered arrangement, as a method of connecting the straight pipe portions 102, the straight pipe portions 102 positioned in the exhaust gas flow direction are connected by curved pipe portions 103 and 104 along the exhaust gas flow direction (FIG. 4B). and (b')), and one that is connected by curved pipe portions 103 and 104 obliquely inclined with respect to the exhaust gas flow direction (see FIGS. 4(c) and (c')).

排ガス流れ方向の管ピッチを短縮する手段の一つとして、図4(d)及び(d´)に示されるように、排ガス流れ方向に配置される所定本数の直管部112を、曲率半径が順次に大きくなる複数の曲管部113,114,115でまとめて連結するというものがある(例えば、特許文献3を参照)。 As one means of shortening the pipe pitch in the exhaust gas flow direction, as shown in FIGS. There is a method in which a plurality of curved pipe portions 113, 114, and 115 that increase in size are collectively connected (see, for example, Patent Document 3).

また、排ガス流れ方向の管ピッチを短縮する他の手段として、図4(e)及び(e´)に示されるように、排ガス流れ方向に並ぶ直管部122の端同士を円筒形のヘッダ123で連結するというものがある(例えば、特許文献4を参照)。直管部122とヘッダ123とは、溶接によって接合される。この場合、ヘッダ123に対して排ガス流れ方向に並ぶ2つの直管部122の溶接に必要な隙間の限界まで管ピッチを短縮することが可能である。 As another means for shortening the pipe pitch in the exhaust gas flow direction, as shown in FIGS. (See Patent Document 4, for example). The straight pipe portion 122 and the header 123 are joined by welding. In this case, the pipe pitch can be shortened to the limit of the gap required for welding the two straight pipe portions 122 arranged in the exhaust gas flow direction with respect to the header 123 .

さらに、図4(f)及び(f´)に示されるように、上記の円筒形のヘッダ123に代えてUの字状の鋳物製のヘッダ133を用いるというものもある(例えば、特許文献5を参照)。 Furthermore, as shown in FIGS. 4(f) and 4(f'), there is also a technique in which a U-shaped cast iron header 133 is used in place of the cylindrical header 123 (for example, Patent Document 5: ).

特開2018-80852号公報JP 2018-80852 A 特開平9-26102号公報JP-A-9-26102 特開2001-147093号公報Japanese Patent Application Laid-Open No. 2001-147093 特開2000-18501号公報JP-A-2000-18501 特開2017-9265号公報JP 2017-9265 A

図4(a)及び(a´)に示されるものでは、一側曲管部103、及び他側曲管部104のそれぞれについての製造上の最小曲げ半径の制限により、排ガス流れ方向(行方向)の直管部102の管ピッチに制限が生じる。このため、碁盤目配列の熱交換器では、排ガス流れ方向の直管部102の管ピッチを短縮するのが難しく、コンパクト化を図ることが難しいという欠点がある。 4(a) and 4(a'), due to restrictions on the minimum bending radii for manufacturing each of the one-side curved tube portion 103 and the other-side curved tube portion 104, the exhaust gas flow direction (row direction) ), the pipe pitch of the straight pipe portion 102 is restricted. Therefore, it is difficult to shorten the pipe pitch of the straight pipe portions 102 in the flow direction of the exhaust gas in the heat exchanger with the grid arrangement, and it is difficult to make the heat exchanger compact.

図4(b)及び(b´)、並びに図4(c)及び(c´)に示されるものでは、図4(a)及び(a´)に示されるものよりもコンパクト化が可能であるものの、複数の直管部102を排ガス流れ方向に見たときに、ある行において列方向に隣り合う直管部102の間に、次の行の直管部102が位置している。このため、次の行の直管部102上に排ガス中のダストが付着・堆積し、ある行における列方向に隣り合う直管部102と、次の行の直管部102との間が、成長したダストによって閉塞され、排ガス流れ方向の流路が塞がれてしまって、熱交換率の悪化を招くという問題がある。 4(b) and (b') and FIGS. 4(c) and (c') can be made more compact than those shown in FIGS. 4(a) and (a'). However, when the plurality of straight pipe portions 102 are viewed in the exhaust gas flow direction, the straight pipe portions 102 of the next row are positioned between the straight pipe portions 102 adjacent in the column direction in a certain row. Therefore, the dust in the exhaust gas adheres and accumulates on the straight pipe portions 102 in the next row, and the space between the straight pipe portions 102 adjacent in the column direction in a certain row and the straight pipe portions 102 in the next row becomes There is a problem that the flow path in the flow direction of the exhaust gas is clogged by the grown dust and the heat exchange rate is deteriorated.

図4(d)及び(d´)に示されるものでは、複数の曲管部113,114,115のうち、一番外側の曲管部115の曲げ寸法が極端に大きくなってコンパクト化を図ることが難しくなるとともに、デッドスペースが増え、しかも一番内側の曲管部113の最小曲げ半径の制限により、排ガス流れ方向の直管部112の管ピッチをそれほど短縮することができない。 4(d) and (d'), the bending dimension of the outermost bent pipe portion 115 among the plurality of bent pipe portions 113, 114, and 115 is extremely large to achieve compactness. In addition, the dead space increases, and the minimum bending radius of the innermost bent pipe portion 113 is restricted, so the pipe pitch of the straight pipe portion 112 in the flow direction of the exhaust gas cannot be shortened so much.

図4(e)及び(e´)に示されるものでは、円筒形のヘッダ123を別途加工しなければならない上に、直管部122とヘッダ123とを溶接するのに手間がかかるため、加工や溶接に要する費用増の問題がある。 4(e) and 4(e'), the cylindrical header 123 must be processed separately, and welding the straight pipe portion 122 and the header 123 is time-consuming. Also, there is the problem of increased costs required for welding.

図4(f)及び(f´)に示されるものでは、大量生産であれば、鋳物製のヘッダ133の採用によりある程度のコストダウンが可能であるものの、やはりヘッダ133の加工費や溶接に要する費用増の問題を解消することができない。 4(f) and 4(f'), in the case of mass production, the use of the header 133 made of cast metal can reduce the cost to some extent, but the processing cost and welding of the header 133 are still required. The problem of increased costs cannot be resolved.

本発明は、上記の課題に鑑みてなされたものであり、伝熱管の外側に流す流体に付着性物質が含まれていたとしても、付着性物質に起因して伝熱管の外側に流す流体の流れ方向の流路の閉塞を招くことなく、伝熱管の外側に流す流体の流れ方向の管ピッチを短縮することができる熱交換器を提供することを目的とする。 The present invention has been made in view of the above problems. An object of the present invention is to provide a heat exchanger capable of shortening the tube pitch in the direction of flow of a fluid flowing outside heat transfer tubes without clogging a flow path in the direction of flow.

上記課題を解決するための本発明に係る熱交換器の特徴構成は、
複数の伝熱管を備え、異なる温度の二つの流体のうち、一方の流体を前記伝熱管の内側に流し、他方の流体を前記伝熱管の外側に流して、前記伝熱管を介して前記二つの流体間で熱交換を行うように構成される熱交換器であって、
前記伝熱管は、
前記他方の流体の流れ方向に沿う行方向、及び該行方向と直交する列方向にそれぞれ所定の管ピッチでM行N列(Mは3以上の整数、Nは2以上の整数)の行列状に配置される複数の主管部と、
前記複数の主管部における第m行第n列(m=1,・・・,M、n=1,・・・,N)の主管部と第(m+1)行第(n+1)列の主管部との一端部同士を連結する一側管部と、
前記複数の主管部における前記第(m+1)行第(n+1)列の主管部と第(m+2)行第n列の主管部との他端部同士を連結する他側管部と、
を含むことにある。
The characteristic configuration of the heat exchanger according to the present invention for solving the above problems is
A plurality of heat transfer tubes are provided, and one of the two fluids with different temperatures is caused to flow inside the heat transfer tubes, and the other fluid is allowed to flow outside the heat transfer tubes, so that the two fluids through the heat transfer tubes A heat exchanger configured to exchange heat between fluids,
The heat transfer tube is
A matrix of M rows and N columns (M is an integer of 3 or more and N is an integer of 2 or more) at a predetermined tube pitch in the row direction along the flow direction of the other fluid and in the column direction orthogonal to the row direction. a plurality of main sections arranged in
m-th row n-th column (m=1, . a one-side tube portion that connects one end portions of the
a other side pipe portion connecting the other end portions of the main pipe portion of the (m+1)th row and the (n+1)th column and the main pipe portion of the (m+2)th row and the nth column among the plurality of main pipe portions;
to include

本構成の熱交換器においては、他方の流体の流れ方向に沿う行方向、及び該行方向と直交する列方向にそれぞれ所定の管ピッチでM行N列(Mは3以上の整数、Nは2以上の整数)の行列状に複数の主管部が配置される。このような配置によれば、複数の主管部を他方の流体の流れ方向に見たときに、ある行において列方向に隣り合う主管部の間に、次の行の主管部が位置していないため、伝熱管の外側に流す流体に付着性物質が含まれていたとしても、付着性物質に起因して伝熱管の外側に流す流体の流れ方向の流路が閉塞されることはない。 In the heat exchanger of this configuration, M rows and N columns (M is an integer of 3 or more, N is An integer of 2 or more) is arranged in a matrix. According to this arrangement, when the plurality of main pipe portions are viewed in the other fluid flow direction, the main pipe portions in the next row are not positioned between the main pipe portions adjacent in the column direction in a given row. Therefore, even if the fluid flowing to the outside of the heat transfer tubes contains an adhesive substance, the fluid flowing to the outside of the heat transfer tubes does not clog the flow path due to the adhesive substances.

また、本構成の熱交換器においては、第m行第n列の主管部と、第(m+1)行第(n+1)列の主管部との一端同士が一側管部によって連結される。一側管部は、同じ列で行方向に隣り合う主管部の一端同士を連結するものではないため、同じ列で行方向に隣り合う主管部の管ピッチを、仮に当該隣り合う主管部が接触するまで小さくしたとしても、第m行第n列の主管部と、第(m+1)行第(n+1)列の主管部との一端同士を連結することができる。同様に、本構成の熱交換器においては、第(m+1)行第(n+1)列の主管部と第(m+2)行第n列の主管部との他端部同士が他側管部によって連結される。他側管部は、同じ列で行方向に隣り合う主管部の他端同士を連結するものではないため、同じ列で行方向に隣り合う主管部の管ピッチを、仮に当該隣り合う主管部が接触するまで小さくしたとしても、第(m+1)行第(n+1)列の主管部と第(m+2)行第n列の主管部との他端部同士を連結することができる。従って、伝熱管の外側に流す流体の流れ方向(行方向)の管ピッチを、理論上、行方向に隣り合う主管部が接触するまで短縮することができ、これによって熱交換器のコンパクト化を図ることができる。 In addition, in the heat exchanger of this configuration, one end of the main pipe portion of the m-th row, n-th column and the main pipe portion of the (m+1)-th row, (n+1)-th column are connected to each other by the one side pipe portion. Since one side pipe portion does not connect one ends of the main pipe portions adjacent in the row direction in the same column, the pipe pitch of the main pipe portions adjacent in the row direction in the same column can be changed if the adjacent main pipe portions contact each other. Even if it is made as small as possible, it is possible to connect one ends of the main pipe portion at the m-th row and n-th column with the main pipe portion at the (m+1)-th row and the (n+1)-th column. Similarly, in the heat exchanger of this configuration, the other end portions of the (m+1)th row and (n+1)th column main pipe portion and the (m+2)th row and nth column main pipe portion are connected to each other by the other side pipe portion. be done. Since the other side pipe portion does not connect the other ends of the main pipe portions that are adjacent in the row direction in the same column, the pipe pitch of the main pipe portions that are adjacent in the row direction in the same column is assumed to be Even if they are made small enough to contact each other, the other end portions of the (m+1)th row and (n+1)th column main pipe portion and the (m+2)th row and nth column main pipe portion can be connected to each other. Therefore, theoretically, the tube pitch in the flow direction (row direction) of the fluid flowing outside the heat transfer tubes can be shortened until the main tube portions adjacent to each other in the row direction come into contact with each other, thereby making the heat exchanger more compact. can be planned.

本発明に係る熱交換器において、
前記主管部は、前記他方の流体の流れ方向と交差する方向に直線状に延びる形状であり、前記一側管部、及び前記他側管部は何れも、所定の曲げ半径で湾曲する形状であることが好ましい。
In the heat exchanger according to the present invention,
The main pipe portion has a shape that extends linearly in a direction intersecting the flow direction of the other fluid, and both the one side pipe portion and the other side pipe portion have a shape that curves with a predetermined bending radius. Preferably.

本構成の熱交換器によれば、一本の長尺の管に対して所要の曲げ加工を施すことによって、直線状に延びる形状の主管部と、所定の曲げ半径で湾曲する形状の一側管部、及び他側管部とが継目が無く連続するように伝熱管を構成することができ、ヘッダと直管部とを溶接によって接合して伝熱管を構成する図4(e)及び(e´)、並びに図4(f)及び(f´)に示されるものと比べて、強度の面で有利であるとともに、製造コストを低く抑えることができる。 According to the heat exchanger of this configuration, by performing a required bending process on one long pipe, the main pipe portion has a shape that extends linearly and one side has a shape that curves with a predetermined bending radius. The heat transfer tube can be configured so that the tube portion and the other side tube portion are seamlessly connected, and the heat transfer tube is configured by joining the header and the straight tube portion by welding. e'), and compared to those shown in FIGS.

本発明に係る熱交換器において、
前記複数の主管部における前記行方向の前記管ピッチをPとし、前記複数の主管部の管外径をDとした場合、D≦P≦2.5Dの関係を満足することが好ましい。
In the heat exchanger according to the present invention,
When the pipe pitch in the row direction of the plurality of main pipe portions is P, and the pipe outer diameter of the plurality of main pipe portions is D, it is preferable to satisfy the relationship D≤P≤2.5D.

本構成の熱交換器によれば、複数の主管部における行方向の管ピッチPと、複数の主管部の管外径Dとが、D≦P≦2.5Dの関係を満足するようにされているので、P=3D程度の従来の碁盤目配列の熱交換器100(図4(a)及び(a´)を参照)よりもコンパクト化を図ることができる。また、P=D、すなわち同じ列で行方向に隣り合う主管部が接触するまで行方向の管ピッチを小さくことにより、図4(b)及び(b´)、並びに図4(c)及び(c´)に示される千鳥配列の熱交換器よりも格段にコンパクト化を図ることができる。 According to the heat exchanger of this configuration, the row-direction pipe pitch P in the plurality of main pipe portions and the pipe outer diameter D of the plurality of main pipe portions satisfy the relationship D≦P≦2.5D. Therefore, it is possible to make the heat exchanger more compact than the conventional heat exchanger 100 (see FIGS. 4(a) and 4(a')) having P=3D. 4(b) and 4(b'), 4(c) and c') can be much more compact than the staggered heat exchanger shown in FIG.

図1は、本発明の一実施形態に係る熱交換器を示し、(a)は正面側から見た外観斜視図、(b)は背面側から見た外観斜視図である。FIG. 1 shows a heat exchanger according to one embodiment of the present invention, (a) is an external perspective view seen from the front side, and (b) is an external perspective view seen from the back side. 図2は、本発明の一実施形態に係る熱交換器の正面視の配列を一般化して示す模式図である。FIG. 2 is a schematic diagram showing a generalized front view arrangement of heat exchangers according to an embodiment of the present invention. 図3は、本発明の一実施形態に係る熱交換器を構成する伝熱管の外観斜視図である。FIG. 3 is an external perspective view of a heat transfer tube that constitutes a heat exchanger according to one embodiment of the present invention. 図4は、従来の熱交換器の説明図である。FIG. 4 is an explanatory diagram of a conventional heat exchanger.

以下、本発明について、図1~図3を参照しながら説明する。なお、以下の実施形態では、廃棄物焼却施設のボイラに組み込まれる熱交換器を例に挙げて説明する。ただし、本発明は、以下に説明する実施形態や図面に記載される構成に限定されることは意図しない。 The present invention will be described below with reference to FIGS. 1 to 3. FIG. In the following embodiments, a heat exchanger incorporated in a boiler of a waste incineration facility will be described as an example. However, the present invention is not intended to be limited to the embodiments described below or the configurations described in the drawings.

<全体構成>
図1は、本発明の一実施形態に係る熱交換器を示し、(a)は正面側から見た外観斜視図、(b)は背面側から見た外観斜視図である。図1(a)及び(b)に示される熱交換器1は、複数の伝熱管10と、複数の伝熱管10の一側(正面側)を支持する一側支持部材20と、複数の伝熱管10の他側(背面側)を支持する他側支持部材30とを備えている。そして、伝熱管10の内側に例えば水(本発明の「一方の流体」に相当する。)を流し、伝熱管10の外側に図示されない焼却炉からの排ガス(本発明の「他方の流体」に相当する。)を図1(a)及び(b)において上側から下側に向けて流して、温度の異なる水と排ガスとの間で伝熱管10を介して熱交換を行い、例えば発電用の蒸気を生成する。
<Overall composition>
FIG. 1 shows a heat exchanger according to one embodiment of the present invention, (a) is an external perspective view seen from the front side, and (b) is an external perspective view seen from the back side. A heat exchanger 1 shown in FIGS. and the other side support member 30 that supports the other side (back side) of the heat tube 10 . Then, for example, water (corresponding to "one fluid" of the present invention) is flowed inside the heat transfer tube 10, and exhaust gas from an incinerator (not shown) ("the other fluid" of the present invention) is flowed outside the heat transfer tube 10. ) is flowed from the upper side to the lower side in FIGS. generate steam.

なお、本実施形態では、板状の一側支持部材20、及び他側支持部材30を用いて複数の伝熱管10を支持する支持構造を例示したが、複数の伝熱管10の相互の位置を固定することができればよく、例えば、複数の直管部40を両側から挟み込むように一対の支持板を配し、これら支持板をボルト等の締結手段で締結して複数の伝熱管10の相互の位置を固定する支持構造を採用してもよい。 In this embodiment, the support structure for supporting the plurality of heat transfer tubes 10 using the plate-shaped one-side support member 20 and the other-side support member 30 is illustrated, but the mutual positions of the plurality of heat transfer tubes 10 are For example, a pair of support plates are arranged so as to sandwich the plurality of straight pipe portions 40 from both sides, and these support plates are fastened with fastening means such as bolts to attach the plurality of heat transfer tubes 10 to each other. A support structure that fixes the position may be employed.

複数の伝熱管10は、複数の直管部40(本発明の「主管部」に相当する。)と、複数の一側曲管部50(本発明の「一側管部」に相当する。)と、複数の他側曲管部60(本発明の「他側管部」に相当する。)とを備えている。 The plurality of heat transfer tubes 10 includes a plurality of straight pipe portions 40 (corresponding to the "main pipe portion" of the present invention) and a plurality of one-side curved pipe portions 50 (corresponding to the "one-side pipe portion" of the present invention. ) and a plurality of other-side bent pipe portions 60 (corresponding to the “other-side pipe portion” of the present invention).

<直管部>
図2は、本発明の一実施形態に係る熱交換器の正面視の配列を一般化して示す模式図である。図2の模式図に示されるように、直管部40は、焼却炉において廃棄物を燃焼する伴い発生した排ガスの流れ方向に沿う行方向、及び該行方向と直交する列方向にそれぞれ所定の管ピッチでM行N列(Mは3以上の整数、Nは2以上の整数)の行列状に配置されている。
<Straight pipe part>
FIG. 2 is a schematic diagram showing a generalized front view arrangement of heat exchangers according to an embodiment of the present invention. As shown in the schematic diagram of FIG. 2, the straight pipe portions 40 are arranged in predetermined directions in the row direction along the flow direction of the exhaust gas generated by burning the waste in the incinerator and in the column direction perpendicular to the row direction. They are arranged in a matrix of M rows and N columns (M is an integer of 3 or more and N is an integer of 2 or more) at a tube pitch.

<一側曲管部>
一側曲管部50は、第m行第n列(m=1,・・・,M、n=1,・・・,N)の直管部40と、第(m+1)行第(n+1)列の直管部40との一端部同士を連結している。
<One side bend>
The one-side bent pipe portion 50 includes the straight pipe portion 40 of the m-th row, n-th column (m=1, . . . , M, n=1, . . . , N) and the (m+1)-th row, ) are connected to the straight tube portions 40 of the row.

<他側曲管部>
他側曲管部60は、第(m+1)行第(n+1)列の直管部40と、第(m+2)行第n列の直管部40との他端部同士を連結している。
<Other side bending part>
The other-side bent pipe portion 60 connects the other end portions of the straight pipe portion 40 in the (m+1)th row and the (n+1)th column and the straight pipe portion 40 in the (m+2)th row and the nth column.

<伝熱管の製造>
図3は、本発明の一実施形態に係る熱交換器を構成する伝熱管の外観斜視図である。伝熱管10は、一本の長尺の管を、水平面Wを基準として俯角方向へ所定の鈍角θで傾斜した状態で180°の曲げ加工を行い、その曲げ加工部をU字状としてこれを他側曲管部60とする。こうして、他側曲管部60は、所定の曲げ半径で湾曲する形状に形成される。
<Manufacture of heat transfer tubes>
FIG. 3 is an external perspective view of a heat transfer tube that constitutes a heat exchanger according to one embodiment of the present invention. The heat transfer tube 10 is formed by bending a single long tube 180° in a state inclined at a predetermined obtuse angle θ in the depression direction with respect to the horizontal plane W, and making the bent portion a U shape. It is referred to as the other side bent tube portion 60 . In this way, the other-side curved tube portion 60 is formed into a shape curved with a predetermined bending radius.

次いで、長尺の管を一定距離送り、この送り部分を直管部40とする。こうして、直管部40は、排ガスの流れ方向と交差する方向(直交する方向)に直線状に延びる形状に形成される。 Next, the long pipe is fed by a fixed distance, and this feed portion is defined as the straight pipe portion 40 . Thus, the straight pipe portion 40 is formed in a shape extending linearly in a direction intersecting (perpendicular to) the flow direction of the exhaust gas.

その後、管自体を再び水平面Wを基準として俯角方向へ所定の鈍角θで傾斜した状態で180°の曲げ加工を行い、その曲げ加工部をU字状としてこれを一側曲管部50とする。こうして、一側曲管部50は、所定の曲げ半径で湾曲する形状に形成される。 After that, the pipe itself is again bent at a predetermined obtuse angle θ in the depression direction with respect to the horizontal plane W, and then bent 180°. . In this way, the one-side curved tube portion 50 is formed into a shape curved with a predetermined bending radius.

以上の作業を複数回繰り返すことにより、図3に示されるように、直線状に延びる形状の直管部40と、所定の曲げ半径で湾曲する形状の一側曲管部50、及び他側曲管部60とが継目が無く蛇行状に連続するような形状に形成することができる。ここでの曲げ加工には、捻り加工が伴わないため、曲げ加工部(一側曲管部50、及び他側曲管部60)での応力疲労が軽減されることになり、ヘッダ123,133と直管部122とを溶接によって接合して伝熱管を構成する図4(e)及び(e´)、並びに図4(f)及び(f´)に示されるものと比べて、強度の面で有利であるとともに、製造コストを低く抑えることができる。 By repeating the above operations a plurality of times, as shown in FIG. The pipe portion 60 can be formed into a shape that is seamlessly continuous in a meandering manner. Since the bending here does not involve twisting, stress fatigue in the bent portions (the one-side bent pipe portion 50 and the other-side bent pipe portion 60) is reduced, and the headers 123 and 133 and the straight pipe portion 122 are joined by welding to form a heat transfer tube, compared to those shown in FIGS. , and the manufacturing cost can be kept low.

以上に述べたように構成される熱交換器1においては、図1(a)及び(b)、並びに図2に示されるように、排ガスの流れ方向に沿う行方向、及び該行方向と直交する列方向にそれぞれ所定の管ピッチでM行N列(Mは3以上の整数、Nは2以上の整数)の行列状に複数の直管部40が配置される。このような配置によれば、複数の直管部40を排ガス流れ方向に見たときに、ある行において列方向に隣り合う直管部40の間に、次の行の直管部40が位置していないため、排ガス中に付着性物質であるダストが含まれていたとしても、ダストに起因して排ガス流れ方向の流路が閉塞されることはない。 In the heat exchanger 1 configured as described above, as shown in FIGS. 1(a) and 1(b) and FIG. A plurality of straight pipe portions 40 are arranged in a matrix of M rows and N columns (M is an integer of 3 or more and N is an integer of 2 or more) at a predetermined pipe pitch in the column direction. According to this arrangement, when the plurality of straight pipe portions 40 are viewed in the exhaust gas flow direction, the straight pipe portions 40 in the next row are positioned between the straight pipe portions 40 adjacent in the column direction in a certain row. Therefore, even if the exhaust gas contains dust, which is an adherent substance, the dust does not clog the flow path of the exhaust gas.

また、熱交換器1においては、第m行第n列の直管部40と、第(m+1)行第(n+1)列の直管部40との一端同士が一側曲管部50によって連結される。一側曲管部50は、同じ列で行方向に隣り合う直管部40の一端同士を連結するものではないため、同じ列で行方向に隣り合う直管部40の管ピッチを、仮に当該隣り合う直管部40が接触するまで小さくしたとしても、第m行第n列の直管部40と、第(m+1)行第(n+1)列の直管部40との一端同士を連結することができる。 In the heat exchanger 1 , one end of the straight pipe portion 40 in the m-th row and n-th column and one end of the straight pipe portion 40 in the (m+1)-th row and the (n+1)-th column are connected by the one-side curved pipe portion 50 . be done. Since the one-side curved pipe portion 50 does not connect one ends of the straight pipe portions 40 adjacent in the row direction in the same column, the pipe pitch of the straight pipe portions 40 adjacent in the row direction in the same column Even if the adjacent straight pipe portions 40 are made small enough to contact each other, one ends of the straight pipe portion 40 in the m-th row and the n-th column and the straight pipe portion 40 in the (m+1)-th row and the (n+1)-th column are connected to each other. be able to.

同様に、熱交換器1においては、第(m+1)行第(n+1)列の直管部40と第(m+2)行第n列の直管部40との他端部同士が他側曲管部60によって連結される。他側曲管部60は、同じ列で行方向に隣り合う直管部40の他端同士を連結するものではないため、同じ列で行方向に隣り合う直管部40の管ピッチを、仮に当該隣り合う直管部40が接触するまで小さくしたとしても、第(m+1)行第(n+1)列の直管部40と第(m+2)行第n列の直管部40との他端部同士を連結することができる。 Similarly, in the heat exchanger 1, the straight pipe portion 40 of the (m+1)-th row and the (n+1)-th column and the straight pipe portion 40 of the (m+2)-th row and the n-th column are connected to each other at the other end. connected by a section 60; Since the other-side curved pipe portion 60 does not connect the other ends of the straight pipe portions 40 adjacent in the row direction in the same column, the pipe pitch of the straight pipe portions 40 adjacent in the row direction in the same column is temporarily set to Even if the adjacent straight pipe portions 40 are made small enough to contact each other, the other end portion of the straight pipe portion 40 of the (m+1)th row and the (n+1)th column and the straight pipe portion 40 of the (m+2)th row and the nth column can be linked together.

従って、排ガス流れ方向(行方向)の管ピッチを、理論上、行方向に隣り合う直管部40が接触するまで短縮することができ、これによって熱交換器1のコンパクト化を図ることができる。 Therefore, theoretically, the pipe pitch in the exhaust gas flow direction (row direction) can be shortened until the straight pipe portions 40 adjacent to each other in the row direction come into contact with each other, so that the heat exchanger 1 can be made compact. .

本実施形態の熱交換器1において、図2に示されるように、複数の直管部40における行方向の管ピッチをPとし、複数の直管部の管外径をDとした場合、D≦P≦2.5Dの関係を満足することが好ましい。このようにすれば、P=3D程度の従来の碁盤目配列の熱交換器100(図4(a)及び(a´)を参照)よりもコンパクト化を図ることができる。また、P=D、すなわち同じ列で行方向に隣り合う直管部40が接触するまで行方向の管ピッチを小さくことにより、図4(b)及び(b´)、並びに図4(c)及び(c´)に示される千鳥配列の熱交換器よりも格段にコンパクト化を図ることができる。 In the heat exchanger 1 of the present embodiment, as shown in FIG. 2, when P is the pipe pitch in the row direction of the plurality of straight pipe portions 40 and D is the pipe outer diameter of the plurality of straight pipe portions, D It is preferable to satisfy the relationship ≦P≦2.5D. In this way, it is possible to make the heat exchanger more compact than the conventional grid pattern heat exchanger 100 (see FIGS. 4A and 4A') in which P=3D. 4(b) and 4(b') and FIG. and (c') can be much more compact than the staggered heat exchanger shown in (c').

以上、本発明の熱交換器について、一実施形態に基づいて説明したが、本発明は上記実施形態に記載した構成に限定されるものではなく、その趣旨を逸脱しない範囲において適宜その構成を変更することができるものである。 As described above, the heat exchanger of the present invention has been described based on one embodiment, but the present invention is not limited to the configuration described in the above embodiment, and the configuration can be changed as appropriate without departing from the scope of the invention. It is something that can be done.

(別実施形態)
上記の実施形態では、本発明の主管部として直線状に延びる形状の直管部40を例示したが、必ずしも直線状でなくてもよく、比較的曲率半径の大きい円弧状であっても、螺旋状であってもよい。また、上記の実施形態では、本発明の一側管部、及び他側管部として、所定の曲げ半径で湾曲する形状の一側曲管部50、及び他側曲管部60をそれぞれ例示したが、必ずしも湾曲状でなくてもよく、コの字状に折り曲がった形状であってもよい。
(another embodiment)
In the above embodiment, the straight pipe portion 40 having a shape extending linearly is exemplified as the main pipe portion of the present invention. may be in the form of Further, in the above-described embodiment, the one-side curved tube portion 50 and the other-side curved tube portion 60 having a shape curved with a predetermined bending radius are exemplified as the one-side tube portion and the other-side tube portion of the present invention, respectively. However, it does not necessarily have to be curved, and may be bent in a U-shape.

本発明の熱交換器は、例えば廃棄物焼却施設のボイラに組み込んで、排ガスとの熱交換の用途において利用可能である。 The heat exchanger of the present invention can be used, for example, by incorporating it into a boiler of a waste incineration facility to exchange heat with exhaust gas.

1 熱交換器
10 伝熱管
20 一側支持部材
30 他側支持部材
40 直管部(主管部)
50 一側曲管部(一側管部)
60 他側曲管部(他側管部)
1 heat exchanger 10 heat transfer tube 20 one side support member 30 other side support member 40 straight pipe portion (main pipe portion)
50 One side bent tube (one side tube)
60 Other side bent pipe (other side pipe)

Claims (3)

複数の伝熱管を備え、異なる温度の二つの流体のうち、一方の流体を前記伝熱管の内側に流し、付着性物質が含まれた他方の流体を前記伝熱管の外側に流して、前記伝熱管を介して前記二つの流体間で熱交換を行うように構成される熱交換器であって、
前記伝熱管は、
前記他方の流体の流れ方向に沿う行方向、及び該行方向と直交する列方向にそれぞれ所定の管ピッチでM行N列(Mは3以上の整数、Nは2以上の整数)の行列状に配置される複数の主管部と、
前記複数の主管部における第m行第n列(m=1,・・・,M、n=1,・・・,N)の主管部と第(m+1)行第(n+1)列の主管部との一端部同士を連結する一側管部と、
前記複数の主管部における前記第(m+1)行第(n+1)列の主管部と第(m+2)行第n列の主管部との他端部同士を連結する他側管部と、
を含み、
前記複数の主管部を前記他方の流体の流れ方向に見たとき、前記複数の主管部における前記第m行第n列の主管部と第m行第(n+1)列の主管部との間に前記第(m+1)行第(n+1)列の主管部が位置しないように構成される熱交換器。
A plurality of heat transfer tubes are provided, one of two fluids having different temperatures is caused to flow inside the heat transfer tubes, and the other fluid containing an adhesive substance is caused to flow outside the heat transfer tubes. A heat exchanger configured to exchange heat between the two fluids via heat tubes,
The heat transfer tube is
A matrix of M rows and N columns (M is an integer of 3 or more and N is an integer of 2 or more) at a predetermined tube pitch in the row direction along the flow direction of the other fluid and in the column direction orthogonal to the row direction. a plurality of main sections arranged in
m-th row n-th column (m=1, . a one-side tube portion that connects one end portions of the
a other side pipe portion connecting the other end portions of the main pipe portion of the (m+1)th row and the (n+1)th column and the main pipe portion of the (m+2)th row and the nth column among the plurality of main pipe portions;
including
When the plurality of main pipe portions are viewed in the flow direction of the other fluid, between the main pipe portion of the m-th row, n-th column and the main pipe portion of the m-th row, n-th column in the plurality of main pipe portions. A heat exchanger configured such that the main pipe portion of the (m+1)th row and (n+1)th column is not positioned .
前記主管部は、前記他方の流体の流れ方向と交差する方向に直線状に延びる形状であり、前記一側管部、及び前記他側管部は何れも、所定の曲げ半径で湾曲する形状である請求項1に記載の熱交換器。 The main pipe portion has a shape that extends linearly in a direction intersecting the flow direction of the other fluid, and both the one side pipe portion and the other side pipe portion have a shape that curves with a predetermined bending radius. A heat exchanger according to claim 1. 前記複数の主管部における前記行方向の前記管ピッチをPとし、前記複数の主管部の管外径をDとした場合、D≦P≦2.5Dの関係を満足する請求項1又は2に記載の熱交換器。 3. The set forth in claim 1 or 2, wherein a relationship of D≤P≤2.5D is satisfied, where P is the pipe pitch in the row direction in the plurality of main pipe portions and D is the pipe outer diameter of the plurality of main pipe portions. A heat exchanger as described.
JP2019199811A 2019-11-01 2019-11-01 Heat exchanger Active JP7309569B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019199811A JP7309569B2 (en) 2019-11-01 2019-11-01 Heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019199811A JP7309569B2 (en) 2019-11-01 2019-11-01 Heat exchanger

Publications (2)

Publication Number Publication Date
JP2021071274A JP2021071274A (en) 2021-05-06
JP7309569B2 true JP7309569B2 (en) 2023-07-18

Family

ID=75712800

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019199811A Active JP7309569B2 (en) 2019-11-01 2019-11-01 Heat exchanger

Country Status (1)

Country Link
JP (1) JP7309569B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000304471A (en) 1999-04-21 2000-11-02 Sakae Sangyo Kk Heat exchanger
JP2009103393A (en) 2007-10-25 2009-05-14 Panasonic Corp Heat exchanger
US20120298343A1 (en) 2009-07-15 2012-11-29 Fmc Kongsberg Subsea As Subsea cooler
WO2013138492A1 (en) 2012-03-13 2013-09-19 Blissfield Manufacturing Company Nested heat exchanger

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000304471A (en) 1999-04-21 2000-11-02 Sakae Sangyo Kk Heat exchanger
JP2009103393A (en) 2007-10-25 2009-05-14 Panasonic Corp Heat exchanger
US20120298343A1 (en) 2009-07-15 2012-11-29 Fmc Kongsberg Subsea As Subsea cooler
WO2013138492A1 (en) 2012-03-13 2013-09-19 Blissfield Manufacturing Company Nested heat exchanger

Also Published As

Publication number Publication date
JP2021071274A (en) 2021-05-06

Similar Documents

Publication Publication Date Title
CN100485304C (en) Reduced vibration tube bundle device
US20140299299A1 (en) Heat exchanger
MXPA06001731A (en) Heat exchanger.
KR20050035863A (en) Assembly of crossing elements and method of constructing same
US5472047A (en) Mixed finned tube and bare tube heat exchanger tube bundle
US6997141B2 (en) Anti-vibration support for steam generator heat transfer tubes and method for making same
JP7309569B2 (en) Heat exchanger
US4706614A (en) Device for suspending a bundle of horizontal tubes in a vertical plane and method of fabricating the device
WO2013118527A1 (en) Heat exchanger
US9488419B2 (en) Tube support for vibration mitigation
WO2010122691A1 (en) Pipe arrangement fitting for heat transfer pipes
US20130126141A1 (en) Heat exchanger
US9604193B2 (en) Ethylene cracking furnace
JP4904130B2 (en) Air temperature type liquefied gas vaporizer and method for vaporizing liquefied gas
JP3594606B2 (en) Plate heat exchanger
JP2010534315A (en) Apparatus and method for providing detonation damage resistance in a duct structure
CN112166286B (en) Coaxial heat transfer tube suitable for fluidized bed boiler and manufacturing method thereof
JP2003314980A (en) High-temperature plate fin heat exchanger
EP2818820A1 (en) A shell and tube equipment with a baffle structure for supporting the tubes
JPS6229892A (en) Heat exchanger having finned heat transmission pipes
JP6207833B2 (en) Heat exchanger
US20200049412A1 (en) Shell-and-tube apparatus with baffles
JP2019178843A (en) Vibration control device of heat transfer tube, heat exchanger and boiler
JPH0612326Y2 (en) Multi-tube boiler can structure
JP2006200789A (en) Heater

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220817

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230414

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230418

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230526

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230627

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230705

R150 Certificate of patent or registration of utility model

Ref document number: 7309569

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150