JP2008127998A - Exhaust emission control device of internal combustion engine - Google Patents

Exhaust emission control device of internal combustion engine Download PDF

Info

Publication number
JP2008127998A
JP2008127998A JP2006310215A JP2006310215A JP2008127998A JP 2008127998 A JP2008127998 A JP 2008127998A JP 2006310215 A JP2006310215 A JP 2006310215A JP 2006310215 A JP2006310215 A JP 2006310215A JP 2008127998 A JP2008127998 A JP 2008127998A
Authority
JP
Japan
Prior art keywords
exhaust gas
exhaust
internal combustion
combustion engine
flow path
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2006310215A
Other languages
Japanese (ja)
Inventor
Minehiro Murata
峰啓 村田
Yoshihisa Takeda
好央 武田
Hiroaki Fujita
博昭 藤田
Satoshi Hiranuma
智 平沼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Fuso Truck and Bus Corp
Original Assignee
Mitsubishi Fuso Truck and Bus Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Fuso Truck and Bus Corp filed Critical Mitsubishi Fuso Truck and Bus Corp
Priority to JP2006310215A priority Critical patent/JP2008127998A/en
Publication of JP2008127998A publication Critical patent/JP2008127998A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Exhaust Gas After Treatment (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an exhaust emission control device of an internal combustion engine capable of realizing excellent purification performance, by sufficiently promoting diffusion of a reducing agent by agitation of exhaust gas, while preventing trouble by an increase in exhaust pressure regardless of an operation area of an engine, by making both compatible in agitation of the exhaust gas and restraint of an exhaust pressure increase. <P>SOLUTION: A low speed flow passage 35 having a low speed side fin device 43 having high diffusibility of the exhaust gas and a high speed flow passage 36 having a high speed side fin device 44 having low diffusibility, are independently formed on the upstream side of an SCR catalyst of an exhaust passage 11. The exhaust gas can be selectively made to flow by a selector valve, and is switched to the low speed flow passage 35 side in a low speed operation area of the engine 1, and is switched to the high speed flow passage 36 side in a high speed operation area. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は内燃機関(以下、エンジンと称する)の排気浄化装置に係り、詳しくは排気通路に還元剤供給手段を設けて下流側の還元触媒に還元剤を供給する排気浄化装置に関するものである。   The present invention relates to an exhaust gas purification device for an internal combustion engine (hereinafter referred to as an engine), and more particularly to an exhaust gas purification device that provides a reducing agent supply means in an exhaust passage and supplies a reducing agent to a downstream reduction catalyst.

この種の還元剤を利用して排ガス中の有害成分を浄化する排気浄化装置としては、例えばSCR触媒(選択還元型NOx触媒)を備えたものがあり、排気通路のSCR触媒の上流側に噴射ノズルを配置し、噴射ノズルから噴射した尿素水溶液が排気熱及び排ガス中の水蒸気により加水分解されて生成されるNH(アンモニア)を利用して、SCR触媒上で排ガス中のNOxを還元している。この種の排気浄化装置において、排ガス中への尿素水溶液の拡散状況はSCR触媒の浄化性能に対して大きな影響を及ぼすことから、噴射ノズルの近傍に排ガスを撹拌するために撹拌手段を設けた対策が講じられる場合がある(例えば、特許文献1参照)。 As an exhaust gas purification device that uses this type of reducing agent to purify harmful components in exhaust gas, for example, there is one equipped with an SCR catalyst (selective reduction type NOx catalyst), which is injected upstream of the SCR catalyst in the exhaust passage. A nozzle is arranged, and the aqueous urea solution injected from the injection nozzle is hydrolyzed by exhaust heat and water vapor in the exhaust gas, and NH 3 (ammonia) is generated to reduce NOx in the exhaust gas on the SCR catalyst. Yes. In this type of exhaust purification device, the diffusion state of the urea aqueous solution into the exhaust gas has a great influence on the purification performance of the SCR catalyst. Therefore, a countermeasure provided with stirring means in order to stir the exhaust gas in the vicinity of the injection nozzle May be taken (see, for example, Patent Document 1).

特許文献1の技術では、その図1,2に示すように、排気通路の噴射ノズルの上流側に撹拌手段として4つのフィンを備えたフィン装置を設置し、排ガスがフィン装置を流通する際にフィンの作用で旋回流を生起させ、これにより排ガス中への尿素水溶液の拡散促進を図っている。
特開2006−29233号明細書(図1,2)
In the technique of Patent Document 1, as shown in FIGS. 1 and 2, when a fin device including four fins is installed as an agitation means on the upstream side of the injection nozzle in the exhaust passage, and exhaust gas flows through the fin device. The swirling flow is generated by the action of the fins, thereby promoting the diffusion of the urea aqueous solution into the exhaust gas.
JP 2006-29233 A (FIGS. 1 and 2)

上記フィン装置が旋回流を生起させる原理は、排ガスの流通方向をフィンにより変化させることで得られるため、排ガスに強い旋回流を生起すべく、例えばフィン角度を深く設定(排ガスの流通方向に対してフィンを急角度(角度大)に配置)して排ガスの流通方向を急激に変化させるほど、エンジンの排圧は増大してしまい、旋回流の生起と排圧増大の抑制とはトレードオフの関係にある。   The principle by which the fin device generates a swirl flow is obtained by changing the flow direction of the exhaust gas using the fins. Therefore, for example, a fin angle is set deep (with respect to the flow direction of the exhaust gas) in order to generate a strong swirl flow against the exhaust gas. As the fins are arranged at a steep angle (large angle) and the flow direction of the exhaust gas is changed abruptly, the exhaust pressure of the engine increases, and there is a trade-off between the occurrence of swirling flow and the suppression of the increase in exhaust pressure. There is a relationship.

一方、エンジンの運転領域に応じて排気通路を流通する排ガス流量は大幅に変化し、エンジンの高回転・高負荷域ではフィン装置による排圧増大が無視できないものとなる。従って、特許文献1の排気浄化装置では、高回転高負荷域での排圧増大からエンジンを保護する目的で、排ガス流通方向に対してフィン角度を浅く(角度小)設定せざるを得ず、必然的に排ガス流量が低下する中低回転・中低負荷域では旋回流が弱められてしまう。通常エンジンは中低回転・中低負荷域で常用されるため、結果として肝心の常用域で十分な旋回流が得られず、尿素水溶液の拡散不足により良好なNOx浄化性能を達成できないという問題があった。   On the other hand, the flow rate of the exhaust gas flowing through the exhaust passage varies greatly depending on the engine operating region, and the exhaust pressure increase due to the fin device cannot be ignored in the high engine speed / high load region. Therefore, in the exhaust emission control device of Patent Document 1, for the purpose of protecting the engine from an increase in exhaust pressure in a high rotation and high load range, the fin angle must be set shallow (small angle) with respect to the exhaust gas circulation direction. The swirl flow is weakened in the middle / low rotation / medium / low load range where the exhaust gas flow rate inevitably decreases. Normally, the engine is normally used in the middle / low rotation / medium / low load range. As a result, a sufficient swirling flow cannot be obtained in the normal working region, and the problem is that satisfactory NOx purification performance cannot be achieved due to insufficient diffusion of the urea aqueous solution. there were.

本発明はこのような問題点を解決するためになされたもので、その目的とするところは、排ガスの撹拌と排圧増大の抑制とを両立させて、エンジンの運転領域に関わらず排圧の増大によるトラブルを未然に防止した上で、排ガスの撹拌により還元剤の拡散を十分に促進して良好な浄化性能を実現することができる内燃機関の排気浄化装置を提供することにある。   The present invention has been made in order to solve such problems. The object of the present invention is to achieve both the agitation of the exhaust gas and the suppression of the increase in the exhaust pressure so that the exhaust pressure can be reduced regardless of the engine operating region. An object of the present invention is to provide an exhaust emission control device for an internal combustion engine that can prevent a trouble due to an increase and can sufficiently promote diffusion of a reducing agent by stirring exhaust gas to achieve a good purification performance.

上記目的を達成するため、請求項1の発明は、内燃機関の排気通路の一部を構成し、排気通路に設けられた還元触媒の上流側で相互に独立した流路を形成して、それぞれ内燃機関側と還元触媒側とを連通する第1の流路及び第2の流路と、内燃機関の排ガスを第1の流路または第2の流路に選択的に流通させる流路切換手段と、排気通路の還元触媒の上流側に設けられ、排気通路内に還元剤を供給する還元剤供給手段と、第1の流路に設けられて内部を流通する排ガスを撹拌する第1の撹拌手段と、第2の流路に設けられて内部を流通する排ガスを撹拌し、撹拌による排ガスの拡散性が第1の撹拌手段より低く設定された第2の撹拌手段と、内燃機関の運転領域に基づき流路切換手段を切換える制御手段とを備えたものである。   In order to achieve the above object, the invention of claim 1 constitutes a part of the exhaust passage of the internal combustion engine, forms mutually independent flow paths upstream of the reduction catalyst provided in the exhaust passage, A first flow path and a second flow path communicating between the internal combustion engine side and the reduction catalyst side, and a flow path switching means for selectively flowing the exhaust gas of the internal combustion engine to the first flow path or the second flow path A reducing agent supply means for supplying a reducing agent into the exhaust passage and upstream of the reduction catalyst in the exhaust passage, and a first agitator for stirring the exhaust gas that is provided in the first flow path and circulates inside the exhaust passage. Means, a second agitation device provided in the second flow path for agitating the exhaust gas flowing through the interior, wherein the diffusibility of the exhaust gas by agitation is set lower than that of the first agitation device, and an operating region of the internal combustion engine And a control means for switching the flow path switching means based on the above.

従って、内燃機関の運転領域に基づき制御手段により流路切換手段が切換えられて、内燃機関の排ガスが第1の流路または第2の流路に選択的に流通して内部の第1の撹拌手段または第2の撹拌手段により撹拌されると共に、還元剤供給手段から供給された還元剤が排ガス中に拡散し、この状態で還元触媒に到達して浄化作用に利用される。
撹拌手段により排ガスを撹拌する原理は、排ガスの流通方向を撹拌手段により変化させることで得られるため、強い撹拌作用(良好な拡散性)を得るには排ガスの流通方向を急激に変化させることになり、必然的に排圧の増大を生じ、排ガスの撹拌と排圧増大の抑制とはトレードオフの関係にある。第1の撹拌手段は排ガスの撹拌を優先して排ガスの拡散性を高めた特性であり、第2の撹拌手段は排圧増大の抑制を優先して排ガスの拡散性を低めた特性である。
Therefore, the flow path switching means is switched by the control means based on the operating region of the internal combustion engine, and the exhaust gas of the internal combustion engine is selectively circulated through the first flow path or the second flow path and the first agitation inside. The reducing agent supplied from the reducing agent supply means diffuses into the exhaust gas, reaches the reduction catalyst in this state, and is used for the purification action.
The principle of stirring the exhaust gas with the stirring means is obtained by changing the flow direction of the exhaust gas with the stirring means. Therefore, in order to obtain a strong stirring action (good diffusibility), the flow direction of the exhaust gas must be changed rapidly. Therefore, the exhaust pressure inevitably increases, and the stirring of the exhaust gas and the suppression of the increase in the exhaust pressure are in a trade-off relationship. The first agitation means has a characteristic in which exhaust gas agitation is prioritized and the exhaust gas diffusivity is enhanced, and the second agitation means has a characteristic in which the exhaust gas diffusibility is reduced by giving priority to suppression of increase in exhaust pressure.

一方、内燃機関の運転領域に応じて排ガス流量は変化し、本発明者は、排ガス流量に応じて排ガスの撹拌と排圧増大の抑制との必要性が変化する現象に着目した。従って、排ガスの拡散性が異なる第1の撹拌手段と第2の撹拌手段とを内燃機関の運転領域に応じて選択的に適用することにより、現在の運転領域に対して最適な撹拌手段が適用されることになり、結果として排ガスの撹拌と排圧増大の抑制とを両立可能となる。   On the other hand, the exhaust gas flow rate changes according to the operating region of the internal combustion engine, and the present inventor has focused on a phenomenon in which the necessity of stirring the exhaust gas and suppressing the increase in exhaust pressure changes depending on the exhaust gas flow rate. Therefore, the first agitation unit and the second agitation unit having different diffusibility of exhaust gas are selectively applied according to the operation region of the internal combustion engine, so that the optimum agitation unit is applied to the current operation region. As a result, it is possible to achieve both agitation of exhaust gas and suppression of increase in exhaust pressure.

請求項2の発明は、請求項1において、制御手段が、内燃機関が所定の低速運転領域のときに排ガスを第1の流路に流通させるように流路切換手段を切換え、内燃機関が所定の高速運転領域のときに排ガスを第2の流路に流通させるように流路切換手段を切換えるものである。
従って、排ガス流量が少ない低速運転領域では、排ガスの流速の低下と相俟って撹拌手段の撹拌により排ガスの拡散性を向上させる要求が高まる反面、排圧が増大する虞は低い。このときには第1の流路への切換により排ガスの拡散性が高い第1の撹拌手段により排ガスの撹拌が行われるため、排ガスは良好に撹拌されて排ガス中への還元剤の拡散が促進されると共に、第1の撹拌手段の撹拌により排圧が増大しても問題は生じない。
According to a second aspect of the present invention, in the first aspect, the control means switches the flow path switching means so that the exhaust gas flows through the first flow path when the internal combustion engine is in a predetermined low speed operation region, and the internal combustion engine is predetermined. The flow path switching means is switched so that the exhaust gas flows through the second flow path in the high-speed operation region.
Therefore, in the low-speed operation region where the exhaust gas flow rate is low, the demand for improving the diffusibility of the exhaust gas by the stirring of the stirring means increases in combination with the decrease in the exhaust gas flow rate, but the risk of increasing the exhaust pressure is low. At this time, since the exhaust gas is stirred by the first stirring means having high diffusibility of the exhaust gas by switching to the first flow path, the exhaust gas is well stirred and the diffusion of the reducing agent into the exhaust gas is promoted. At the same time, there is no problem even if the exhaust pressure is increased by the stirring of the first stirring means.

これに対して排ガス流量が多い高速運転領域では、排ガスの流速の増加と相俟って元々排ガスの拡散性が高くて撹拌手段による撹拌の必要はそれほどない反面、排圧増大を抑制する必要性が高い。このときには第2の流路への切換により排ガスの拡散性が低い第2の撹拌手段により排ガスの撹拌が行われるため、撹拌による排圧の増大が最小限に抑制されると共に、第2の撹拌手段による撹拌でも還元剤の拡散が不足することはない。   On the other hand, in the high-speed operation region where the exhaust gas flow rate is large, the diffusibility of the exhaust gas is originally high due to the increase in the exhaust gas flow rate, and the necessity of stirring by the stirring means is not so much, but the increase in the exhaust pressure needs to be suppressed. Is expensive. At this time, since the exhaust gas is stirred by the second stirring means having low diffusibility of the exhaust gas by switching to the second flow path, an increase in exhaust pressure due to the stirring is suppressed to a minimum, and the second stirring is performed. Even with stirring by means, diffusion of the reducing agent is not insufficient.

請求項3の発明は、内燃機関の排気通路に設けられた還元触媒と、排気通路の還元触媒の上流側に設けられ、排気通路内に還元剤を供給する還元剤供給手段と、排気通路の還元触媒の上流側に設けられて内部を流通する排ガスを撹拌すると共に、撹拌による排ガスの拡散性を可変可能な可変撹拌手段と、内燃機関の運転領域に基づき可変撹拌手段の拡散性を制御する制御手段とを備えたものである。   According to a third aspect of the present invention, there is provided a reduction catalyst provided in the exhaust passage of the internal combustion engine, a reducing agent supply means provided on the upstream side of the reduction catalyst in the exhaust passage, for supplying a reducing agent into the exhaust passage, Exhaust gas that is provided upstream of the reduction catalyst and agitates the exhaust gas and that can change the diffusibility of the exhaust gas by agitation, and controls the diffusibility of the variable agitation means based on the operating region of the internal combustion engine And a control means.

従って、内燃機関の排ガスは排気通路を流通して可変撹拌手段により撹拌されると共に、還元剤供給手段から供給された還元剤が排ガス中に拡散し、この状態で還元触媒に到達して浄化作用に利用され、このときの可変撹拌手段による排ガスの拡散性が制御手段により内燃機関の運転状態に応じて切換えられる。
撹拌手段により排ガスを撹拌する原理は、排ガスの流通方向を撹拌手段により変化させることで得られるため、強い撹拌作用(良好な拡散性)を得るには排ガスの流通方向を急激に変化させることになり、必然的に排圧の増大を生じ、排ガスの撹拌と排圧増大の抑制とはトレードオフの関係にある。可変拡散手段によれば排ガスの拡散性を制御することで、排ガスの撹拌を優先した特性とすることも排圧増大の抑制を優先した特性とすることも可能となる。
Therefore, the exhaust gas of the internal combustion engine flows through the exhaust passage and is stirred by the variable stirring means, and the reducing agent supplied from the reducing agent supply means diffuses into the exhaust gas, and reaches the reduction catalyst in this state and purifies. The diffusibility of the exhaust gas by the variable stirring means at this time is switched by the control means according to the operating state of the internal combustion engine.
The principle of stirring the exhaust gas with the stirring means is obtained by changing the flow direction of the exhaust gas with the stirring means. Therefore, in order to obtain a strong stirring action (good diffusibility), the flow direction of the exhaust gas must be changed rapidly. Therefore, the exhaust pressure inevitably increases, and the stirring of the exhaust gas and the suppression of the increase in the exhaust pressure are in a trade-off relationship. According to the variable diffusing means, by controlling the diffusibility of the exhaust gas, it is possible to give the characteristics giving priority to the stirring of the exhaust gas or to give the characteristics giving priority to the suppression of the increase in exhaust pressure.

一方、内燃機関の運転領域に応じて排ガス流量は変化し、本発明者は、排ガス流量に応じて排ガスの撹拌と排圧増大の抑制との必要性が変化する現象に着目した。従って、可変撹拌手段の拡散性を内燃機関の運転領域に応じて制御することにより、現在の運転領域に対して最適な撹拌手段が適用されることになり、結果として排ガスの撹拌と排圧増大の抑制とを両立可能となる。   On the other hand, the exhaust gas flow rate changes according to the operating region of the internal combustion engine, and the present inventor has focused on a phenomenon in which the necessity of stirring the exhaust gas and suppressing the increase in exhaust pressure changes depending on the exhaust gas flow rate. Therefore, by controlling the diffusibility of the variable agitation means according to the operating range of the internal combustion engine, the optimum agitation means is applied to the current operating range, resulting in exhaust gas agitation and increased exhaust pressure. It is possible to achieve both suppression.

請求項4の発明は、請求項3において、制御手段が、内燃機関が所定の低速運転領域のときに可変撹拌手段の拡散性を増加側に制御し、内燃機関が所定の高速運転領域のときに可変撹拌手段の拡散性を低下側に制御するものである。
従って、排ガス流量が少ない低速運転領域では、排ガスの流速の低下と相俟って撹拌手段の撹拌により排ガスの拡散性を向上させる要求が高まる反面、排圧が増大する虞は低い。このときには可変撹拌手段の拡散性が増加側に制御されるため、排ガスは良好に撹拌されて排ガス中への還元剤の拡散が促進されると共に、排ガスの拡散性の増加により排圧が増大しても問題は生じない。
According to a fourth aspect of the present invention, in the third aspect, the control means controls the diffusibility of the variable agitating means to increase when the internal combustion engine is in a predetermined low speed operation region, and when the internal combustion engine is in a predetermined high speed operation region. In addition, the diffusibility of the variable stirring means is controlled to the lower side.
Therefore, in the low-speed operation region where the exhaust gas flow rate is low, the demand for improving the diffusibility of the exhaust gas by the stirring of the stirring means increases in combination with the decrease in the exhaust gas flow rate, but the risk of increasing the exhaust pressure is low. At this time, since the diffusivity of the variable stirring means is controlled to increase, the exhaust gas is well stirred to promote the diffusion of the reducing agent into the exhaust gas, and the exhaust pressure increases due to the increase in the exhaust gas diffusivity. However, there is no problem.

これに対して排ガス流量が多い高速運転領域では、排ガスの流速の増加と相俟って元々排ガスの拡散性が高くて撹拌手段による撹拌の必要はそれほどない反面、排圧増大を抑制する必要性が高い。このときには可変撹拌手段の拡散性が低下側に制御されるため、撹拌による排圧の増大が最小限に抑制されると共に、排ガスの拡散性が低下しても還元剤の拡散が不足することはない。   On the other hand, in the high-speed operation region where the exhaust gas flow rate is large, the diffusibility of the exhaust gas is originally high due to the increase in the exhaust gas flow rate, and the necessity of stirring by the stirring means is not so much, but the increase in the exhaust pressure needs to be suppressed. Is expensive. At this time, since the diffusibility of the variable agitation means is controlled to the lower side, an increase in exhaust pressure due to agitation is suppressed to a minimum, and even if the diffusibility of the exhaust gas is reduced, the diffusion of the reducing agent is insufficient Absent.

以上説明したように請求項1,2の発明の内燃機関の排気浄化装置によれば、内燃機関の運転領域に応じた最適な撹拌手段を排ガスの撹拌に適用することにより、排ガスの撹拌と排圧増大の抑制とを両立させ、もって、内燃機関の運転領域に関わらず排圧の増大によるトラブルを未然に防止した上で、排ガスの撹拌により還元剤の拡散を十分に促進して良好な浄化性能を実現することができる。   As described above, according to the exhaust gas purification apparatus for an internal combustion engine of the first and second aspects of the present invention, exhaust gas agitation and exhaust gas can be obtained by applying the optimum agitation means corresponding to the operating region of the internal combustion engine to the exhaust gas agitation. Concomitant with suppression of pressure increase, preventing troubles due to increased exhaust pressure regardless of the operating range of the internal combustion engine, and sufficiently purifying the diffusion of reducing agent by stirring exhaust gas Performance can be realized.

請求項3,4の発明の内燃機関の排気浄化装置によれば、内燃機関の運転領域に応じて可変撹拌手段の拡散性を制御することにより、排ガスの撹拌と排圧増大の抑制とを両立させ、もって、内燃機関の運転領域に関わらず排圧の増大によるトラブルを未然に防止した上で、排ガスの撹拌により還元剤の拡散を十分に促進して良好な浄化性能を実現することができる。   According to the exhaust gas purification apparatus for an internal combustion engine of the third and fourth aspects of the invention, both the stirring of the exhaust gas and the suppression of the increase in the exhaust pressure are achieved by controlling the diffusibility of the variable stirring means according to the operating region of the internal combustion engine. Therefore, regardless of the operating region of the internal combustion engine, it is possible to prevent a trouble caused by an increase in exhaust pressure, and sufficiently promote the diffusion of the reducing agent by stirring the exhaust gas, thereby realizing a good purification performance. .

[第1実施形態]
以下、本発明をディーゼルエンジンの排気浄化装置に具体化した第1実施形態を説明する。
図1は本実施形態のディーゼルエンジンの排気浄化装置を示す全体構成図であり、エンジン1は直列6気筒機関として構成されている。エンジン1の各気筒には燃料噴射弁2が設けられ、各燃料噴射弁2は共通のコモンレール3から加圧燃料を供給され、機関の運転状態に応じたタイミングで開弁して各気筒の筒内に燃料を噴射する。
[First Embodiment]
Hereinafter, a first embodiment in which the present invention is embodied in an exhaust emission control device for a diesel engine will be described.
FIG. 1 is an overall configuration diagram showing an exhaust emission control device for a diesel engine according to this embodiment. The engine 1 is configured as an in-line 6-cylinder engine. Each cylinder of the engine 1 is provided with a fuel injection valve 2, and each fuel injection valve 2 is supplied with pressurized fuel from a common common rail 3 and is opened at a timing according to the operating state of the engine. The fuel is injected into the inside.

エンジン1の吸気側には吸気マニホールド4が装着され、吸気マニホールド4に接続された吸気通路5には、上流側よりエアクリーナ6、ターボチャージャ7のコンプレッサ7a、インタクーラ8、アクチュエータ9aにより開閉駆動される吸気絞り弁9が設けられている。また、エンジン1の排気側には排気マニホールド10が装着され、排気マニホールド10には上記コンプレッサ7aと同軸上に連結されたターボチャージャ7のタービン7bを介して排気通路11が接続されている。   An intake manifold 4 is mounted on the intake side of the engine 1, and the intake passage 5 connected to the intake manifold 4 is opened and closed by an air cleaner 6, a compressor 7a of the turbocharger 7, an intercooler 8, and an actuator 9a from the upstream side. An intake throttle valve 9 is provided. An exhaust manifold 10 is mounted on the exhaust side of the engine 1, and an exhaust passage 11 is connected to the exhaust manifold 10 via a turbine 7b of a turbocharger 7 connected coaxially with the compressor 7a.

エンジン1の運転中においてエアクリーナ6を経て吸気通路5内に導入された吸気はターボチャージャ7のコンプレッサ7aにより加圧された後にインタクーラ8、吸気絞り弁9、吸気マニホールド4を経て各気筒に分配され、各気筒の吸気行程で筒内に導入される。筒内では所定のタイミングで燃料噴射弁2から燃料が噴射されて圧縮上死点近傍で着火・燃焼し、燃焼後の排ガスは排気マニホールド10を経てタービン7bを回転駆動した後に排気通路11を経て外部に排出される。   During operation of the engine 1, the intake air introduced into the intake passage 5 through the air cleaner 6 is pressurized by the compressor 7 a of the turbocharger 7, and then distributed to each cylinder through the intercooler 8, the intake throttle valve 9, and the intake manifold 4. These are introduced into the cylinder in the intake stroke of each cylinder. In the cylinder, fuel is injected from the fuel injection valve 2 at a predetermined timing and ignited and burned in the vicinity of the compression top dead center, and the exhaust gas after combustion rotates through the exhaust manifold 10 and then rotates the turbine 7b and then passes through the exhaust passage 11. It is discharged outside.

一方、吸気マニホールド4と排気マニホールド10とはEGR通路17により接続され、EGR通路17にはアクチュエータ18aにより開閉駆動されるEGR弁18及びEGRクーラ19が設けられている。エンジン1の運転中にはEGR弁18の開度に応じて排気マニホールド10側から吸気マニホールド4側に排ガスの一部がEGRガスとして還流される。   On the other hand, the intake manifold 4 and the exhaust manifold 10 are connected by an EGR passage 17, and an EGR valve 18 and an EGR cooler 19 that are opened and closed by an actuator 18 a are provided in the EGR passage 17. During operation of the engine 1, part of the exhaust gas is recirculated as EGR gas from the exhaust manifold 10 side to the intake manifold 4 side according to the opening degree of the EGR valve 18.

吸気マニホールド4にはアクチュエータ20aにより開閉駆動されるスワール弁20が各気筒の吸気ポートに対応して設けられ、各スワール弁20の閉弁時には筒内にスワール流が生起される。
上記排気通路11には本発明の排気浄化装置が設けられている。上記ターボチャージャ7のタービン7bには第1パイプ31aを介して上流側ケーシング32が接続され、上流側ケーシング32内の上流側には前段酸化触媒33が収容され、下流側にはウォールフロー式のDPF(ディーゼルパティキュレートフィルタ)34が収容されている。後述するようにDPF34は排ガス中のパティキュレート(以下、PMと称する)を捕集する作用を奏する。
The intake manifold 4 is provided with a swirl valve 20 that is driven to open and close by an actuator 20a corresponding to the intake port of each cylinder. When each swirl valve 20 is closed, a swirl flow is generated in the cylinder.
The exhaust passage 11 is provided with the exhaust purification device of the present invention. An upstream casing 32 is connected to the turbine 7b of the turbocharger 7 via a first pipe 31a. A upstream oxidation catalyst 33 is accommodated in the upstream side of the upstream casing 32, and a wall flow type is connected to the downstream side. A DPF (diesel particulate filter) 34 is accommodated. As will be described later, the DPF 34 acts to collect particulates (hereinafter referred to as PM) in the exhaust gas.

上流側ケーシング33の下流側の排気通路11は低速流路35(第1の流路)と高速流路36(第2の流路)とに分岐し、この分岐箇所には切換弁37(流路切換手段)が配設され、切換弁37の切換に応じて上流側ケーシング32が低速流路35側或いは高速流路36側と選択的に接続される。低速流路35及び高速流路36は相互に独立した流路を形成しながら車両後方に向けて所定距離だけ延設された後に相互に合流し、合流箇所には第2パイプ31bを介して下流側ケーシング39が接続されている。下流側ケーシング39内の上流側にはSCR触媒40(還元触媒)が収容され、下流側には後段酸化触媒41が収容され、後述するようにSCR触媒40は排ガス中のNOxを浄化する作用を奏する。   The exhaust passage 11 on the downstream side of the upstream casing 33 branches into a low speed flow path 35 (first flow path) and a high speed flow path 36 (second flow path). Path switching means) is provided, and the upstream casing 32 is selectively connected to the low-speed flow path 35 side or the high-speed flow path 36 side according to switching of the switching valve 37. The low-speed flow path 35 and the high-speed flow path 36 form a mutually independent flow path and extend to the rear of the vehicle by a predetermined distance and then merge with each other, and the merge point is downstream via the second pipe 31b. A side casing 39 is connected. An SCR catalyst 40 (reduction catalyst) is accommodated on the upstream side in the downstream casing 39, and a post-stage oxidation catalyst 41 is accommodated on the downstream side. As will be described later, the SCR catalyst 40 acts to purify NOx in the exhaust gas. Play.

本実施形態では、低速流路35及び高速流路36の通路断面積を同一に設定しているが、後述するようにエンジン1の低速運転領域で使用される低速流路35に比較して高速運転領域で使用される高速流路36の方が大量の排ガスを流通させる必要があることから、低速流路35に対して高速流路36の通路断面積を大きく設定してもよい。
下流側ケーシング39の下流側は第3パイプ31cを介して図示しない消音器が接続され、消音器の後端は大気に開放されている。上記第2パイプ31bには噴射ノズル42(還元剤供給手段)が設置され、噴射ノズル42は、図示しないタンクから圧送される尿素水溶液を還元剤として第2パイプ31b内に任意に噴射可能に構成されている。
In the present embodiment, the passage cross-sectional areas of the low-speed flow path 35 and the high-speed flow path 36 are set to be the same. Since the high-speed flow path 36 used in the operation region needs to circulate a larger amount of exhaust gas, the passage cross-sectional area of the high-speed flow path 36 may be set larger than the low-speed flow path 35.
A silencer (not shown) is connected to the downstream side of the downstream casing 39 via a third pipe 31c, and the rear end of the silencer is open to the atmosphere. The second pipe 31b is provided with an injection nozzle 42 (reducing agent supply means), and the injection nozzle 42 can be arbitrarily injected into the second pipe 31b using a urea aqueous solution pumped from a tank (not shown) as a reducing agent. Has been.

上記低速流路35内及び高速流路36内には、排ガスに旋回流を生起させるためのフィン装置43,44(撹拌手段)がそれぞれ設置されている。以下、低速流路35内のものを低速側フィン装置43(第1の撹拌手段)と称し、高速流路36内のものを高速側フィン装置44(第2の撹拌手段)と称するが、これらのフィン装置43,44は排ガスに対する拡散性(フィン装置による排ガスの撹拌の度合を意味する)を相互に相違させており、以下、その構成を詳述する。   In the low-speed flow path 35 and the high-speed flow path 36, fin devices 43 and 44 (stirring means) for generating a swirling flow in the exhaust gas are respectively installed. Hereinafter, the thing in the low speed flow path 35 is called the low speed side fin apparatus 43 (1st stirring means), and the thing in the high speed flow path 36 is called the high speed side fin apparatus 44 (2nd stirring means). The fin devices 43 and 44 have different diffusibility to exhaust gas (meaning the degree of stirring of exhaust gas by the fin device), and the configuration thereof will be described in detail below.

図2は低速側フィン装置43を示す斜視図であり、全体として円盤状をなすように鋼板をプレス成型して製作され、低速流路35を閉鎖する姿勢で配置・固定されている。低速側フィン装置43上を4等分に区画した扇状の領域は、それぞれ扇状の1辺を起点として他の2辺をプレス成型により打ち抜かれて排気下流側に向けて折曲されている。これにより低速側フィン装置43には、上流側と下流側とを連通させる4つの流通孔43aが形成されると共に、各流通路に対応して4枚のフィン43bが立設されている。排ガスの流通方向に対して各フィン43bは同一方向に所定角度をなし、この低速側フィン装置43ではフィン角度がαに設定されている。   FIG. 2 is a perspective view showing the low-speed fin device 43, which is manufactured by press-molding a steel plate so as to form a disk shape as a whole, and is arranged and fixed in a posture in which the low-speed flow path 35 is closed. The fan-shaped regions divided into four equal parts on the low-speed fin device 43 are each punched out by press molding from the one side of the fan shape and bent toward the exhaust downstream side. As a result, the low-speed fin device 43 is formed with four flow holes 43a that allow the upstream side and the downstream side to communicate with each other, and four fins 43b are erected corresponding to the respective flow paths. The fins 43b form a predetermined angle in the same direction with respect to the flow direction of the exhaust gas, and the fin angle is set to α in the low speed side fin device 43.

また、図3は高速側フィン装置44を示す斜視図であり、基本的な形状は低速側フィン装置43と相違することなく、4つの流通孔44a及びフィン44bを備え、フィン角度のみが異なっている。即ち、高速側フィン装置44のフィン角度は、低速側フィン装置43のフィン角度αに比較して小さな角度β(<α)に設定されている。
一方、上記吸気絞り弁9、排気絞り弁12、EGR弁18、スワール弁20の各アクチュエータ9a,12a,18a,20a、燃料噴射弁2、燃料ノズル14、噴射ノズル42、エンジン1の吸入空気量Qaを検出するエアフローセンサ52はECU51(電子コントロールユニット)に接続され、センサ類からの検出情報に基づいてECU51により駆動制御される。例えばECU51は機関回転速度や負荷等のエンジン1の運転状態に基づいて燃料噴射弁2の噴射量、噴射圧、噴射時期を制御してエンジン1を運転すると共に、アクチュエータ18aによりEGR弁18の開度を制御してEGR還流量を調整し、アクチュエータ20aによりスワール弁20の開度を制御してスワール流を調整する。
FIG. 3 is a perspective view showing the high speed side fin device 44. The basic shape is not different from that of the low speed side fin device 43, but includes four flow holes 44a and fins 44b, and only the fin angle is different. Yes. That is, the fin angle of the high speed side fin device 44 is set to an angle β (<α) that is smaller than the fin angle α of the low speed side fin device 43.
On the other hand, the intake throttle valve 9, exhaust throttle valve 12, EGR valve 18, and swirl valve 20 actuators 9a, 12a, 18a, 20a, fuel injection valve 2, fuel nozzle 14, injection nozzle 42, intake air amount of the engine 1 The air flow sensor 52 that detects Qa is connected to an ECU 51 (electronic control unit), and is driven and controlled by the ECU 51 based on detection information from sensors. For example, the ECU 51 operates the engine 1 by controlling the injection amount, injection pressure, and injection timing of the fuel injection valve 2 based on the operating state of the engine 1 such as the engine speed and load, and opens the EGR valve 18 by the actuator 18a. The EGR recirculation amount is adjusted by controlling the degree, and the opening of the swirl valve 20 is controlled by the actuator 20a to adjust the swirl flow.

また、ECU51はDPF34の強制再生のためのポスト噴射、或いはSCR触媒40によるNOx浄化のための噴射ノズル38からの尿素供給等を制御しており、以下、これらのDPF34によるパティキュレートの浄化作用及びSCR触媒40によるNOxの浄化作用について述べる。
DPF34は排ガス中のPMを捕集する作用を奏し、エンジン1の排ガス温度が比較的高い運転状態では、前段酸化触媒33の酸化作用により排ガス中のNOからNO2が生成されて、NO2の酸化反応によりDPF34に捕集されたPMが連続的に焼却除去されることで、DPF34の再生が図られる。一方、このような連続再生作用が得られない運転状態が継続したときには、ECU51によりメイン噴射の後にポスト噴射が適宜実行され、前段酸化触媒32での酸化反応でDPF34を昇温してPMが焼却除去されることでDPF34が強制的に再生される。なお、強制再生でのPM燃焼の際に生じるCOは後段酸化触媒41によりCO2に酸化される。
The ECU 51 controls post-injection for forced regeneration of the DPF 34, urea supply from the injection nozzle 38 for NOx purification by the SCR catalyst 40, and the like. The NOx purification action by the SCR catalyst 40 will be described.
The DPF 34 has an action of collecting PM in the exhaust gas. In an operation state where the exhaust gas temperature of the engine 1 is relatively high, NO 2 is generated from NO in the exhaust gas by the oxidation action of the pre-stage oxidation catalyst 33, and the NO 2 The PM collected in the DPF 34 by the oxidation reaction is continuously incinerated and removed, whereby the DPF 34 is regenerated. On the other hand, when such an operation state in which the continuous regeneration action cannot be obtained continues, post injection is appropriately executed after the main injection by the ECU 51, and the DPF 34 is heated by the oxidation reaction in the pre-stage oxidation catalyst 32 to incinerate PM. As a result, the DPF 34 is forcibly regenerated. Note that CO generated during PM combustion in forced regeneration is oxidized to CO 2 by the post-stage oxidation catalyst 41.

また、SCR触媒40はNOx浄化のためにNH(アンモニア)の供給を要するため、ECU51はエンジン1の運転状態や図示しない温度センサにより検出される噴射ノズル42近傍の温度等に基づき、噴射ノズル42からの尿素水溶液の噴射量を制御する。噴射された尿素水溶液は排気熱及び排ガス中の水蒸気により加水分解されてNHを生成し、このNHによりSCR触媒40上では排ガス中のNOxが無害なNに還元されてNOxの浄化が行われる一方、このときの余剰NH3が後段酸化触媒41によりNOに酸化される。 Further, since the SCR catalyst 40 requires supply of NH 3 (ammonia) for NOx purification, the ECU 51 determines the injection nozzle based on the operating state of the engine 1 and the temperature in the vicinity of the injection nozzle 42 detected by a temperature sensor (not shown). The injection amount of the urea aqueous solution from 42 is controlled. The injected urea aqueous solution is hydrolyzed by exhaust heat and water vapor in the exhaust gas to generate NH 3 , and this NH 3 reduces NOx in the exhaust gas to harmless N 2 on the SCR catalyst 40 to purify NOx. On the other hand, surplus NH 3 at this time is oxidized to NO by the post-stage oxidation catalyst 41.

なお、SCR触媒40の上流側に尿素をNHに加水分解する作用を奏する加水分解触媒を配置してもよいし、或いは、噴射ノズル42から尿素水溶液に代えてアンモニア水溶液を噴射するようにしてもよい。
また、尿素水溶液の噴射制御と並行して、ECU51は切換弁37により排ガスの流路を低速流路35と高速流路36との間で切換え、これによりエンジン1の運転領域に応じた適切なフィン装置43,44により排ガスに旋回流を生起させており、以下、このECU51の流路の切換制御について説明する。
A hydrolysis catalyst that acts to hydrolyze urea into NH 3 may be disposed upstream of the SCR catalyst 40, or an aqueous ammonia solution may be injected from the injection nozzle 42 instead of the aqueous urea solution. Also good.
In parallel with the urea aqueous solution injection control, the ECU 51 switches the flow path of the exhaust gas between the low-speed flow path 35 and the high-speed flow path 36 by the switching valve 37, so that an appropriate one corresponding to the operating region of the engine 1 is obtained. The swirling flow is generated in the exhaust gas by the fin devices 43 and 44, and the flow path switching control of the ECU 51 will be described below.

ECU51はエアフローセンサ52により検出されるエンジン1の吸入空気量Qaを予め設定された判定値Qa0と比較し、吸入空気量Qaが判定値Qa0未満のとき、即ち、エンジン1が低速運転領域にあるときには、切換弁37を駆動制御して上流側ケーシング32を低速流路35側と接続させる。その結果、上流側ケーシング32の前段酸化触媒33及びDPF34を流通後の排ガスが低速流路35側に案内されて、低速側フィン装置43により排ガスに旋回流が生起される。図2に示すように低速側フィン装置43のフィン角度αは大きな値(フィン角度が深い)に設定されていることから、排ガスは流通方向を急激に変化されて比較的強い旋回流を生起する。この旋回流は低速流路35から第2パイプ31bに到達した時点でも維持されており、旋回流中に噴射ノズル42から尿素水溶液が噴射されて霧化・拡散され、上記のようにSCR触媒40上でNHを利用したNOxの浄化が行われる。 The ECU 51 compares the intake air amount Qa of the engine 1 detected by the air flow sensor 52 with a predetermined determination value Qa0, and when the intake air amount Qa is less than the determination value Qa0, that is, the engine 1 is in the low speed operation region. In some cases, the switching valve 37 is driven to connect the upstream casing 32 to the low-speed flow path 35 side. As a result, the exhaust gas after flowing through the upstream oxidation catalyst 33 and the DPF 34 in the upstream casing 32 is guided to the low-speed channel 35 side, and a swirling flow is generated in the exhaust gas by the low-speed fin device 43. As shown in FIG. 2, since the fin angle α of the low speed side fin device 43 is set to a large value (fin angle is deep), the exhaust gas is abruptly changed in the flow direction to generate a relatively strong swirling flow. . This swirl flow is maintained even when it reaches the second pipe 31b from the low-speed flow path 35, and during the swirl flow, an aqueous urea solution is sprayed from the injection nozzle 42 to be atomized and diffused, and as described above, the SCR catalyst 40. Above, purification of NOx using NH 3 is performed.

また、吸入空気量Qaが判定値Qa0以上のとき、即ち、エンジン1が高速運転領域にあるときには、ECU51は切換弁37を駆動制御して上流側ケーシング32を高速流路36側と接続させる。その結果、上流側ケーシング32の前段酸化触媒33及びDPF34を流通後の排ガスが高速流路36側に案内されて、高速側フィン装置44により排ガスに旋回流が生起される。図3に示すように高速側フィン装置44のフィン角度αは小さな値(フィン角度が浅い)に設定されていることから、排ガスは流通方向を緩やかに変化されて比較的弱い旋回流を生起し、この旋回流中に噴射ノズル42から尿素水溶液が噴射されて霧化・拡散されてSCR触媒40上でのNOx浄化に利用される。   When the intake air amount Qa is greater than or equal to the determination value Qa0, that is, when the engine 1 is in the high speed operation region, the ECU 51 controls the switching valve 37 to connect the upstream casing 32 to the high speed flow path 36 side. As a result, the exhaust gas after flowing through the upstream oxidation catalyst 33 and the DPF 34 in the upstream casing 32 is guided to the high-speed flow path 36 side, and a swirling flow is generated in the exhaust gas by the high-speed fin device 44. As shown in FIG. 3, since the fin angle α of the high speed side fin device 44 is set to a small value (the fin angle is shallow), the flow direction of the exhaust gas is gradually changed to generate a relatively weak swirling flow. The urea aqueous solution is injected from the injection nozzle 42 during the swirling flow, atomized and diffused, and used for NOx purification on the SCR catalyst 40.

以上のエンジン運転領域に応じたフィン装置43,44の選択は、以下に述べる知見に基づくものである。
エンジン1の低速運転領域では排ガス流量が少なく、このとき排ガスの流速の低下と相俟ってフィン装置43,44の旋回流により排ガスの拡散性を向上させる要求が高まる一方、排ガス流量が少ない状況ではエンジン1の排圧が増大する虞は低い。これに対して、エンジン1の高速運転領域では排ガス流量が多く、排ガスの流速の増加と相俟って元々排ガスの拡散性が高いため、フィン装置43,44の旋回流により排ガスの拡散性を向上させる必要はそれほどない一方、排ガス流量が多い状況ではエンジン1の排圧が増大して許容値を上回る虞が生じる。このように旋回流の生起と排圧増大の抑制との双方の必要性はトレードオフの関係にあってエンジン1の運転領域に応じて変化し、エンジン1の運転領域は排ガス流量と相関する吸入空気量Qaに基づいて判別可能である。
The selection of the fin devices 43 and 44 in accordance with the above engine operating region is based on the knowledge described below.
In the low-speed operation region of the engine 1, the exhaust gas flow rate is small. At this time, coupled with a decrease in the exhaust gas flow rate, the demand for improving the diffusibility of the exhaust gas by the swirling flow of the fin devices 43 and 44 increases, but the exhaust gas flow rate is low. Then, the possibility that the exhaust pressure of the engine 1 increases is low. On the other hand, since the exhaust gas flow rate is large in the high-speed operation region of the engine 1 and the diffusibility of the exhaust gas is originally high due to the increase in the flow rate of the exhaust gas, the diffusibility of the exhaust gas is reduced by the swirling flow of the fin devices 43 and 44. While there is not much need for improvement, in a situation where the exhaust gas flow rate is large, the exhaust pressure of the engine 1 may increase and exceed the allowable value. Thus, the necessity of both the generation of the swirl flow and the suppression of the increase in the exhaust pressure is in a trade-off relationship and varies depending on the operation region of the engine 1, and the operation region of the engine 1 is a suction that correlates with the exhaust gas flow rate. It can be determined based on the air amount Qa.

以上の知見に基づき本実施形態では、独立して形成した低速流路35と高速流路36とに低速側フィン装置43及び高速側フィン装置44を設けて、切換弁37の切換に応じて何れか一方のフィン装置43,44を選択可能に構成した上で、吸入空気量Qaに基づくエンジン1の運転領域(低速運転領域か高速運転領域か)に応じて切換弁37を駆動制御し、運転領域から要求される要件(旋回流の生起を重視するか排圧増大の抑制を重視するか)に適合するフィン装置43,44を選択するように構成した。   Based on the above knowledge, in this embodiment, the low-speed side fin device 43 and the high-speed side fin device 44 are provided in the low-speed flow path 35 and the high-speed flow path 36 that are independently formed, The one of the fin devices 43 and 44 is configured to be selectable, and the switching valve 37 is driven and controlled according to the operating region (low speed operating region or high speed operating region) of the engine 1 based on the intake air amount Qa. The fin devices 43 and 44 that meet the requirements required from the region (whether emphasizing the occurrence of swirling flow or emphasizing suppression of increase in exhaust pressure) are selected.

従って、低速運転領域では図2に示す低速側フィン装置43により比較的強い旋回流が生起されるため、排ガスの拡散性が低下傾向となるこの低速運転領域でも拡散性を向上して尿素水溶液を排ガス中に十分に拡散できる。また、大きなフィン角度αが設定された低速側フィン装置43では排圧が増大し易いが、元々排ガス流量が少ない低速運転領域では排圧がエンジン1の許容値を越える虞は全くない。   Therefore, since a relatively strong swirl flow is generated by the low-speed fin device 43 shown in FIG. 2 in the low-speed operation region, the diffusibility is improved in the low-speed operation region in which the diffusibility of the exhaust gas tends to decrease, and the urea aqueous solution is supplied. It can diffuse sufficiently into the exhaust gas. Further, although the exhaust pressure tends to increase in the low speed fin device 43 in which the large fin angle α is set, there is no possibility that the exhaust pressure exceeds the allowable value of the engine 1 in the low speed operation region where the exhaust gas flow rate is originally low.

一方、高速運転領域では図3に示す小さなフィン角度βが設定された高速側フィン装置44が適用されるため、旋回流の生起に伴う排圧の増大は最小限に抑制されてエンジン1の許容値を越える事態を未然に防止できる。また、高速側フィン装置44により生起される旋回流は比較的弱いものであるが、元々高速運転領域では排ガスの拡散性が高いため、排ガス中への尿素水溶液の拡散不足が生じる虞は一切ない。   On the other hand, in the high-speed operation region, the high-speed side fin device 44 having a small fin angle β shown in FIG. 3 is applied, so that an increase in exhaust pressure due to the occurrence of the swirling flow is suppressed to a minimum and the engine 1 is allowed. The situation where the value is exceeded can be prevented beforehand. In addition, the swirl flow generated by the high speed side fin device 44 is relatively weak, but since the exhaust gas diffusibility is originally high in the high speed operation region, there is no possibility of insufficient diffusion of the urea aqueous solution into the exhaust gas. .

従って、本実施形態のエンジン1の排気浄化装置によれば、旋回流の生起と排圧増大の抑制とを両立させて、エンジン1の運転領域に関わらず排圧の増大によるトラブルを未然に防止した上で、排ガスの撹拌により尿素水溶液の拡散を十分に促進して良好なNOx浄化性能を実現することができる。
なお、エンジン1の排気流量は吸入空気量Qaから判定する他に、エンジン1の回転速度Ne及び燃料噴射量Qから推定することもできる。よって、予め設定されたマップに基づき回転速度Ne及び燃料噴射量Qからエンジン1の運転領域を判定し、判定した運転領域に対応するフィン装置43,44を選択するようにしてもよい。
Therefore, according to the exhaust gas purification apparatus for the engine 1 of the present embodiment, both the generation of the swirling flow and the suppression of the increase in the exhaust pressure can be achieved, and the trouble due to the increase in the exhaust pressure can be prevented in advance regardless of the operating region of the engine 1. In addition, good NOx purification performance can be achieved by sufficiently accelerating the diffusion of the urea aqueous solution by stirring the exhaust gas.
The exhaust flow rate of the engine 1 can be estimated from the rotational speed Ne of the engine 1 and the fuel injection amount Q, in addition to determining from the intake air amount Qa. Therefore, the operating region of the engine 1 may be determined from the rotational speed Ne and the fuel injection amount Q based on a preset map, and the fin devices 43 and 44 corresponding to the determined operating region may be selected.

また、本実施形態では低速流路35と高速流路36との分岐部に切換弁37を設けたが、これに代えて両流路35,36の合流部に切換弁37を設けてもよい。
また、本実施形態では第2パイプ31bに単一の噴射ノズル42を設けたが、これに限ることはなく、例えば低速流路35と高速流路36とに個別に噴射ノズル42を設けて切換弁37の切換に応じて何れか一方の噴射ノズル42を選択的に作動させてもよい。さらに、このように両流路35,36の個別に噴射ノズル42を設ける場合、それぞれの噴射ノズル42の位置はフィン装置43,44の下流側に限定されず上流側に配置してもよい。
[第2実施形態]
次に、本発明を別のディーゼルエンジン1の排気浄化装置に具体化した第2実施形態を説明する。
In the present embodiment, the switching valve 37 is provided at the branch portion between the low-speed flow path 35 and the high-speed flow path 36. However, instead of this, the switching valve 37 may be provided at the junction of both flow paths 35 and 36. .
In the present embodiment, the single injection nozzle 42 is provided in the second pipe 31b. However, the present invention is not limited to this. For example, the injection nozzle 42 is provided separately for the low-speed flow path 35 and the high-speed flow path 36 for switching. Any one of the injection nozzles 42 may be selectively operated in accordance with the switching of the valve 37. Further, when the injection nozzles 42 are individually provided in the flow paths 35 and 36 as described above, the positions of the respective injection nozzles 42 are not limited to the downstream side of the fin devices 43 and 44 and may be arranged on the upstream side.
[Second Embodiment]
Next, a second embodiment in which the present invention is embodied in another exhaust gas purification device for a diesel engine 1 will be described.

本実施形態の排気浄化装置は、第1実施形態で述べたものに比較して全体的な構成が共通であり、相違点はフィン装置及びその周辺の排気通路の構成にある。従って、構成が共通の箇所は同一部材番号を付して説明を省略し、相違点を重点的に述べる。
図4は本実施形態の排気浄化装置を示す部分的な構成図であり、図示しない箇所は第1実施形態のものと同様である。本実施形態では第1実施形態のように排気通路11を低速流路35と高速流路36とに分岐させずに1本の流路とし、単一のフィン装置を設けている。即ち、上流側ケーシング32と下流側ケーシング39とは第2パイプ31bにより直接的に接続され、この第2パイプ31bに上記噴射ノズル42と共に可変フィン装置61(可変撹拌手段)が配置されている。勿論、可変フィン装置61と噴射ノズル42との位置関係は図示に限定されるものではなく、双方の位置を逆転させてもよい。
The exhaust emission control device of this embodiment has a common overall configuration as compared with that described in the first embodiment, and the difference is in the configuration of the fin device and the surrounding exhaust passage. Accordingly, parts having the same configuration are denoted by the same member numbers, description thereof is omitted, and differences are mainly described.
FIG. 4 is a partial configuration diagram showing the exhaust emission control device of the present embodiment, and the portions not shown are the same as those of the first embodiment. In the present embodiment, as in the first embodiment, the exhaust passage 11 is formed as one flow path without branching into the low speed flow path 35 and the high speed flow path 36, and a single fin device is provided. That is, the upstream casing 32 and the downstream casing 39 are directly connected by the second pipe 31b, and the variable fin device 61 (variable stirring means) is disposed along with the injection nozzle 42 on the second pipe 31b. Of course, the positional relationship between the variable fin device 61 and the injection nozzle 42 is not limited to that shown in the drawing, and both positions may be reversed.

図5は可変フィン装置61を示す斜視図であり、本実施形態の可変フィン装置61はフィン角度を変更可能に構成されている。詳述すると、第2パイプ31b内には一対の支軸62が90度交差した状態で配設され、両支軸62は中央の交差点を相互に溶接されると共に、両支軸62の両端はそれぞれ第2パイプ31bの内周壁に溶接されている。各支軸62により第2パイプ31b内は4等分に区画され、これにより形成された扇状の各流路63を排ガスが流通する。交差点を中心として支軸62の4箇所にはそれぞれフィン64の基端側が軸支され、各フィン64は四角板状をなして基端側から排気下流側に向けて延設され、支軸62を中心として先端側を揺動し得る。   FIG. 5 is a perspective view showing the variable fin device 61, and the variable fin device 61 of the present embodiment is configured so that the fin angle can be changed. More specifically, a pair of support shafts 62 are arranged in the second pipe 31b so as to cross each other by 90 degrees, and both support shafts 62 are welded to each other at the central intersection. Each is welded to the inner peripheral wall of the second pipe 31b. The inside of the second pipe 31b is divided into four equal parts by the respective support shafts 62, and the exhaust gas flows through the respective fan-shaped flow paths 63 formed thereby. The base end side of the fin 64 is pivotally supported at four locations of the support shaft 62 around the intersection, and each fin 64 is formed in a square plate shape extending from the base end side toward the exhaust downstream side. The tip side can be swung around the center.

全てのフィン64を内包するように第2パイプ31b内には円環状をなす操作リング65が配設され、操作リング65は各フィン64の先端側に対してピン66により相対回動可能に軸支されている。操作リング65の一側には操作ロッド67の一端が連結され、操作ロッド67の他端は、第2パイプ31bの内周壁を貫通して外部に配置されたアクチュエータ68に連結されている。   An annular operation ring 65 is disposed in the second pipe 31 b so as to enclose all the fins 64, and the operation ring 65 is pivotable relative to the tip side of each fin 64 by a pin 66. It is supported. One end of an operation rod 67 is connected to one side of the operation ring 65, and the other end of the operation rod 67 is connected to an actuator 68 that is disposed outside through the inner peripheral wall of the second pipe 31b.

アクチュエータ68により操作ロッド67が軸方向に操作されると、矢印で示すように操作リング65が周方向に操作されて、各フィン64が支軸62を中心として一斉に同一方向に揺動操作される。アクチュエータ68によるフィン64の可動範囲は、第1実施形態で述べた低速側フィン装置43のフィン角度αと高速側フィン装置44のフィン角度βとの間に相当するように設定され、各フィン64はアクチュエータ68の一方のストロークエンドで角度αに調整され、他方のストロークエンドで角度βに調整される。なお、必ずしも第1実施形態と同一のフィン角度に設定する必要はなく、異なるフィン角度に設定してもよい。   When the operating rod 67 is operated in the axial direction by the actuator 68, the operating ring 65 is operated in the circumferential direction as indicated by an arrow, and the fins 64 are simultaneously swung in the same direction around the support shaft 62. The The movable range of the fin 64 by the actuator 68 is set so as to correspond to the fin angle α of the low-speed fin device 43 and the fin angle β of the high-speed fin device 44 described in the first embodiment. Is adjusted to an angle α at one stroke end of the actuator 68 and adjusted to an angle β at the other stroke end. It is not always necessary to set the same fin angle as in the first embodiment, but a different fin angle may be set.

このアクチュエータ68によるフィン角度の制御は、ECU51により以下の手順で実行される。
フィン角度の制御は第1実施形態と同じくエンジン1の吸入空気量Qaに基づいて実行されるが、無段階でフィン角度を調整可能な本実施形態の可変フィン装置61の特徴を活かして、吸入空気量Qaに対応するフィン角度(実際はアクチュエータ68の作動量)を算出して、その算出値に基づいてアクチュエータ68を駆動制御している。具体的には、低速運転領域に相当する吸入空気量Qaでは各フィンは大きな角度αに制御され、これにより排ガスの流通方向が急激に変化されて強い旋回流を生起する。この運転領域から吸入空気量Qaが増大するに従って次第にフィン角度が縮小され、それに伴ってフィンによる排ガスの流通方向の変化が次第に緩やかなものとなり、高速運転領域に相当する吸入空気量Qaでは小さな角度βに制御されて、生起される旋回流は弱いものとなると共に、排圧の増大は抑制される。
The control of the fin angle by the actuator 68 is executed by the ECU 51 in the following procedure.
The control of the fin angle is executed based on the intake air amount Qa of the engine 1 as in the first embodiment. However, by taking advantage of the variable fin device 61 of this embodiment that can adjust the fin angle steplessly, the intake angle is controlled. The fin angle (actually, the operating amount of the actuator 68) corresponding to the air amount Qa is calculated, and the actuator 68 is driven and controlled based on the calculated value. Specifically, in the intake air amount Qa corresponding to the low-speed operation region, each fin is controlled to a large angle α, whereby the flow direction of the exhaust gas is rapidly changed to generate a strong swirling flow. As the intake air amount Qa increases from this operating region, the fin angle is gradually reduced, and the change in the flow direction of the exhaust gas by the fins gradually decreases accordingly, and the intake air amount Qa corresponding to the high speed operation region has a small angle. The swirling flow generated by the control of β becomes weak and the increase in exhaust pressure is suppressed.

以上のECU51のフィン角度の制御によれば、第1実施形態と同様の作用効果が得られ、重複する説明はしないが、旋回流の生起と排圧増大の抑制とを両立させて、エンジン1の運転領域に関わらず排圧の増大によるトラブルを未然に防止した上で、排ガスの撹拌により尿素水溶液の拡散を十分に促進して良好なNOx浄化性能を実現することができる。   According to the control of the fin angle of the ECU 51 described above, the same effects as those of the first embodiment can be obtained. Although not redundantly described, the generation of the swirling flow and the suppression of the increase in the exhaust pressure are made compatible with each other. Regardless of the operation region, it is possible to prevent a trouble caused by an increase in exhaust pressure, and sufficiently promote the diffusion of the urea aqueous solution by stirring the exhaust gas to achieve a good NOx purification performance.

しかも、フィン角度を無段階で制御しているため、常にエンジン1の運転領域に対して最適なフィン角度をもって旋回流を生起でき、もって、旋回流の生起と排圧増大の抑制とを第1実施形態より一層高次元で両立させることができる。
なお、本実施形態の構成を採った場合、必ずしもフィン角度を無段階で制御する必要はなく、例えば第1実施形態と同様に角度αと角度βとの2位置間で切換制御してもよい。
In addition, since the fin angle is controlled in a stepless manner, the swirling flow can always be generated with the optimum fin angle with respect to the operating region of the engine 1, so that the first generation of the swirling flow and the suppression of the increase in exhaust pressure can be achieved. It is possible to achieve both higher dimensions than in the embodiment.
When the configuration of the present embodiment is adopted, it is not always necessary to control the fin angle steplessly. For example, switching control between two positions of the angle α and the angle β may be performed as in the first embodiment. .

以上で実施形態の説明を終えるが、本発明の態様はこの実施形態に限定されるものではない。例えば上記各実施形態では、NOx浄化用にSCR触媒40を備えたディーゼルエンジン1の排気浄化装置に具体化したが、還元剤の供給を要する還元触媒を備えたエンジンであればこれに限ることはない。例えば排ガス中のNOxを吸蔵する吸蔵型NOx触媒を排気通路に備え、吸蔵したNOxをNOx触媒から放出還元するために、還元剤として燃料を排気通路内に噴射するNOxパージを定期的に実行する必要があるエンジンに適用してもよい。この場合には図1においてSCR触媒40を吸蔵型NOx触媒に置換した構成となるが、第1実施形態或いは第2実施形態のフィン装置43,44,61等の構成を採ることにより、各実施形態と同様に、旋回流の生起による排ガス中への燃料の拡散促進と排圧増大の抑制とを両立できる作用効果が得られる。   This is the end of the description of the embodiment, but the aspect of the present invention is not limited to this embodiment. For example, in each of the above-described embodiments, the exhaust gas purification device of the diesel engine 1 provided with the SCR catalyst 40 for NOx purification is embodied. However, the present invention is not limited to this as long as the engine is provided with a reduction catalyst that requires supply of a reducing agent. Absent. For example, a storage-type NOx catalyst that stores NOx in exhaust gas is provided in the exhaust passage, and in order to release and reduce the stored NOx from the NOx catalyst, NOx purge is periodically performed to inject fuel into the exhaust passage as a reducing agent. It may be applied to the engine that needs it. In this case, the SCR catalyst 40 in FIG. 1 is replaced with an occlusion type NOx catalyst. However, by adopting the configuration of the fin devices 43, 44, 61, etc. of the first embodiment or the second embodiment, each implementation is performed. Similar to the mode, the effect of achieving both the promotion of the diffusion of fuel into the exhaust gas by the occurrence of the swirling flow and the suppression of the increase in the exhaust pressure can be obtained.

また、上記各実施形態では、撹拌手段として排ガスに旋回流を生起させるフィン装置43,44,61を設けたが、撹拌手段の構成はこれに限定されるものではない。例えば排ガスを撹拌する作用は、排ガス流通方向に対して所定角度に邪魔板を配置することでも得られ、邪魔板の角度に応じて排ガスの撹拌作用と排圧の発生状況とが変化する。従って、第1実施形態のように低速運転領域用の深い角度の邪魔板と高速運転領域用の浅い角度の邪魔板とを個別の流路に設けて、吸入空気量Qaなどに応じて切換えるようにしてもよいし、第2実施形態のように邪魔板の角度を吸入空気量Qaなどに応じて制御するようにしてもよい。   Moreover, in each said embodiment, although the fin apparatus 43,44,61 which produces a swirl flow in exhaust gas as a stirring means was provided, the structure of a stirring means is not limited to this. For example, the action of stirring the exhaust gas can be obtained by arranging the baffle plate at a predetermined angle with respect to the exhaust gas circulation direction, and the stirring action of the exhaust gas and the generation state of the exhaust pressure change according to the angle of the baffle plate. Therefore, as in the first embodiment, a baffle plate having a deep angle for the low speed operation region and a baffle plate having a shallow angle for the high speed operation region are provided in separate flow paths, and are switched according to the intake air amount Qa and the like. Alternatively, as in the second embodiment, the angle of the baffle plate may be controlled according to the intake air amount Qa and the like.

第1実施形態のディーゼルエンジンの排気浄化装置を示す全体構成図である。1 is an overall configuration diagram illustrating an exhaust emission control device for a diesel engine according to a first embodiment. 第1実施形態の低速側フィン装置を示す斜視図である。It is a perspective view which shows the low speed side fin apparatus of 1st Embodiment. 第1実施形態の高速側フィン装置を示す斜視図である。It is a perspective view which shows the high speed side fin apparatus of 1st Embodiment. 第2実施形態のディーゼルエンジンの排気浄化装置を示す部分的な構成図である。It is a partial block diagram which shows the exhaust gas purification apparatus of the diesel engine of 2nd Embodiment. 第2実施形態の可変フィン装置を示す斜視図である。It is a perspective view which shows the variable fin apparatus of 2nd Embodiment.

符号の説明Explanation of symbols

1 エンジン(内燃機関)
11 排気通路
35 低速流路(第1の流路)
36 高速流路(第2の流路)
37 切換弁(流路切換手段)
40 SCR触媒(還元触媒)
42 噴射ノズル(還元剤供給手段)
43 低速側フィン装置(第1の撹拌手段)
44 高速側フィン装置(第2の撹拌手段)
51 ECU(制御手段)
61 可変フィン装置(可変撹拌手段)
1 engine (internal combustion engine)
11 Exhaust passage 35 Low speed flow path (first flow path)
36 High-speed channel (second channel)
37 Switching valve (flow path switching means)
40 SCR catalyst (reduction catalyst)
42 Injection nozzle (reducing agent supply means)
43 Low speed side fin device (first stirring means)
44 High-speed fin device (second stirring means)
51 ECU (control means)
61 Variable fin device (variable stirring means)

Claims (4)

内燃機関の排気通路の一部を構成し、該排気通路に設けられた還元触媒の上流側で相互に独立した流路を形成して、それぞれ上記内燃機関側と上記還元触媒側とを連通する第1の流路及び第2の流路と、
上記内燃機関の排ガスを上記第1の流路または第2の流路に選択的に流通させる流路切換手段と、
上記排気通路の上記還元触媒の上流側に設けられ、該排気通路内に還元剤を供給する還元剤供給手段と、
上記第1の流路に設けられて内部を流通する排ガスを撹拌する第1の撹拌手段と、
上記第2の流路に設けられて内部を流通する排ガスを撹拌し、該撹拌による排ガスの拡散性が上記第1の撹拌手段より低く設定された第2の撹拌手段と、
上記内燃機関の運転領域に基づき上記流路切換手段を切換える制御手段と
を備えたことを特徴とする内燃機関の排気浄化装置。
A part of the exhaust passage of the internal combustion engine is formed, and an independent flow path is formed on the upstream side of the reduction catalyst provided in the exhaust passage, and the internal combustion engine side and the reduction catalyst side are communicated with each other. A first channel and a second channel;
Channel switching means for selectively circulating the exhaust gas of the internal combustion engine through the first channel or the second channel;
A reducing agent supply means provided on the upstream side of the reduction catalyst in the exhaust passage and for supplying a reducing agent into the exhaust passage;
First agitation means for agitating the exhaust gas provided in the first flow path and flowing through the interior;
Agitating the exhaust gas that is provided in the second flow path and circulates in the interior;
An exhaust purification device for an internal combustion engine, comprising: control means for switching the flow path switching means based on an operating region of the internal combustion engine.
上記制御手段は、上記内燃機関が所定の低速運転領域のときに排ガスを上記第1の流路に流通させるように上記流路切換手段を切換え、上記内燃機関が所定の高速運転領域のときに排ガスを上記第2の流路に流通させるように上記流路切換手段を切換えることを特徴とする請求項1記載の内燃機関の排気浄化装置。   The control means switches the flow path switching means so that the exhaust gas flows through the first flow path when the internal combustion engine is in a predetermined low speed operation region, and when the internal combustion engine is in a predetermined high speed operation region. 2. The exhaust gas purification apparatus for an internal combustion engine according to claim 1, wherein the flow path switching means is switched so that the exhaust gas flows through the second flow path. 内燃機関の排気通路に設けられた還元触媒と、
上記排気通路の上記還元触媒の上流側に設けられ、該排気通路内に還元剤を供給する還元剤供給手段と、
上記排気通路の上記還元触媒の上流側に設けられて内部を流通する排ガスを撹拌すると共に、該撹拌による排ガスの拡散性を可変可能な可変撹拌手段と、
上記内燃機関の運転領域に基づき上記可変撹拌手段の拡散性を制御する制御手段と
を備えたことを特徴とする内燃機関の排気浄化装置。
A reduction catalyst provided in the exhaust passage of the internal combustion engine;
A reducing agent supply means provided on the upstream side of the reduction catalyst in the exhaust passage and for supplying a reducing agent into the exhaust passage;
Variable agitation means that is provided upstream of the reduction catalyst in the exhaust passage and that agitates the exhaust gas that circulates in the interior, and is capable of varying the diffusibility of the exhaust gas by the agitation;
An exhaust purification device for an internal combustion engine, comprising: control means for controlling the diffusibility of the variable stirring means based on an operating region of the internal combustion engine.
上記制御手段は、上記内燃機関が所定の低速運転領域のときに上記可変撹拌手段の拡散性を増加側に制御し、上記内燃機関が所定の高速運転領域のときに上記可変撹拌手段の拡散性を低下側に制御することを特徴とする請求項3記載の内燃機関の排気浄化装置。   The control means controls the diffusibility of the variable stirring means to an increase side when the internal combustion engine is in a predetermined low speed operation region, and the diffusibility of the variable stirring means when the internal combustion engine is in a predetermined high speed operation region. 4. The exhaust gas purification apparatus for an internal combustion engine according to claim 3, wherein the exhaust gas is controlled to a lower side.
JP2006310215A 2006-11-16 2006-11-16 Exhaust emission control device of internal combustion engine Withdrawn JP2008127998A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006310215A JP2008127998A (en) 2006-11-16 2006-11-16 Exhaust emission control device of internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006310215A JP2008127998A (en) 2006-11-16 2006-11-16 Exhaust emission control device of internal combustion engine

Publications (1)

Publication Number Publication Date
JP2008127998A true JP2008127998A (en) 2008-06-05

Family

ID=39554119

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006310215A Withdrawn JP2008127998A (en) 2006-11-16 2006-11-16 Exhaust emission control device of internal combustion engine

Country Status (1)

Country Link
JP (1) JP2008127998A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010019082A (en) * 2008-07-08 2010-01-28 Mitsubishi Fuso Truck & Bus Corp Exhaust emission control system for internal combustion engine
JP2012047119A (en) * 2010-08-27 2012-03-08 Mitsubishi Motors Corp Exhaust emission control device of internal combustion engine
GB2533353A (en) * 2014-12-17 2016-06-22 Gm Global Tech Operations Inc Mixer for an exhaust after-treatment system of an internal combustion engine
CN105917088A (en) * 2013-12-17 2016-08-31 臼井国际产业株式会社 Exhaust gas purification device for marine diesel engine that uses low-quality fuel such as heavy oil containing high concentration of sulfur component
CN106170610A (en) * 2014-04-08 2016-11-30 臼井国际产业株式会社 Use the exhaust gas treatment device of the marine diesel engine of the low-grade fuel containing high concentration sulfur composition
KR101992102B1 (en) * 2018-01-31 2019-09-30 공주대학교 산학협력단 Exhaust System applied in a variable mixer
JP2020056370A (en) * 2018-10-03 2020-04-09 トヨタ自動車株式会社 Internal combustion engine control device
KR102220487B1 (en) * 2019-09-18 2021-02-25 삼성중공업 주식회사 Exhaust gas treatment system
KR20210071604A (en) * 2019-12-06 2021-06-16 삼성중공업 주식회사 Exhaust gas treatment system

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010019082A (en) * 2008-07-08 2010-01-28 Mitsubishi Fuso Truck & Bus Corp Exhaust emission control system for internal combustion engine
JP2012047119A (en) * 2010-08-27 2012-03-08 Mitsubishi Motors Corp Exhaust emission control device of internal combustion engine
CN105917088A (en) * 2013-12-17 2016-08-31 臼井国际产业株式会社 Exhaust gas purification device for marine diesel engine that uses low-quality fuel such as heavy oil containing high concentration of sulfur component
CN106170610A (en) * 2014-04-08 2016-11-30 臼井国际产业株式会社 Use the exhaust gas treatment device of the marine diesel engine of the low-grade fuel containing high concentration sulfur composition
GB2533353A (en) * 2014-12-17 2016-06-22 Gm Global Tech Operations Inc Mixer for an exhaust after-treatment system of an internal combustion engine
KR101992102B1 (en) * 2018-01-31 2019-09-30 공주대학교 산학협력단 Exhaust System applied in a variable mixer
JP2020056370A (en) * 2018-10-03 2020-04-09 トヨタ自動車株式会社 Internal combustion engine control device
JP7206764B2 (en) 2018-10-03 2023-01-18 トヨタ自動車株式会社 Control device for internal combustion engine
KR102220487B1 (en) * 2019-09-18 2021-02-25 삼성중공업 주식회사 Exhaust gas treatment system
KR20210071604A (en) * 2019-12-06 2021-06-16 삼성중공업 주식회사 Exhaust gas treatment system
KR102538614B1 (en) 2019-12-06 2023-05-31 삼성중공업 주식회사 Exhaust gas treatment system

Similar Documents

Publication Publication Date Title
JP2008127998A (en) Exhaust emission control device of internal combustion engine
JP4869161B2 (en) Exhaust gas purification device for internal combustion engine
JP5090890B2 (en) Engine exhaust purification system
US7640731B2 (en) Method for controlling exhaust gas flow and temperature through regenerable exhaust gas treatment devices
JP5244334B2 (en) Exhaust gas purification device for internal combustion engine
JP5299572B2 (en) Internal combustion engine
WO2007066835A1 (en) Exhaust gas purification system for internal combustion engine
JP4485400B2 (en) Exhaust gas purification device for internal combustion engine
JP2008128093A (en) Exhaust emission control device for internal combustion engine
WO2011108024A1 (en) Exhaust emission control device for internal combustion engine
JP2007162545A (en) Supercharger system of engine
JP2006200473A (en) Control device for engine with exhaust gas after-treating device
JP4502800B2 (en) Exhaust gas stirrer for internal combustion engine
JP5716687B2 (en) Exhaust gas purification device for internal combustion engine
JP2008127997A (en) Exhaust emission control device of internal combustion engine
CN112424459B (en) Exhaust structure of vehicle-mounted engine
JP2014005741A (en) Exhaust cleaning device of internal combustion engine
JP5823842B2 (en) Exhaust gas recirculation device for multi-cylinder internal combustion engine with turbocharger
JP4727472B2 (en) Exhaust purification device
JP4500765B2 (en) Exhaust gas purification device for internal combustion engine
JP2010127187A (en) Diesel engine
JP2008038622A (en) Exhaust emission control device and method of internal combustion engine
JP7080679B2 (en) Internal combustion engine additive dispersion system
JP3714732B2 (en) Diesel engine exhaust purification system
JP2018178956A (en) Exhaust emission control device

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20100202