JP2008128093A - Exhaust emission control device for internal combustion engine - Google Patents

Exhaust emission control device for internal combustion engine Download PDF

Info

Publication number
JP2008128093A
JP2008128093A JP2006314075A JP2006314075A JP2008128093A JP 2008128093 A JP2008128093 A JP 2008128093A JP 2006314075 A JP2006314075 A JP 2006314075A JP 2006314075 A JP2006314075 A JP 2006314075A JP 2008128093 A JP2008128093 A JP 2008128093A
Authority
JP
Japan
Prior art keywords
exhaust gas
exhaust
casing
internal combustion
combustion engine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2006314075A
Other languages
Japanese (ja)
Inventor
Hiroaki Fujita
博昭 藤田
Yoshihisa Takeda
好央 武田
Satoshi Hiranuma
智 平沼
Shinichi Saito
真一 斎藤
Yasuko Suzuki
康子 鈴木
Takeshi Shoji
武志 庄司
Takuya Kitasei
琢也 北清
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Fuso Truck and Bus Corp
Original Assignee
Mitsubishi Fuso Truck and Bus Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Fuso Truck and Bus Corp filed Critical Mitsubishi Fuso Truck and Bus Corp
Priority to JP2006314075A priority Critical patent/JP2008128093A/en
Publication of JP2008128093A publication Critical patent/JP2008128093A/en
Withdrawn legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an exhaust emission control device for an internal combustion engine capable of showing good conversion performance by mixing exhaust gas satisfactorily to eliminate bias of reducer concentration and to equalize air current distribution of exhaust gas on a reduction catalyst, and to make all section of the reduction catalyst effectively function. <P>SOLUTION: SCR catalyst (selective reduction NOx catalyst) 35 for converting NOx is stored in a casing 32, and a fin device 37 forming swirl and an injection nozzle 42 injecting urea water solution are arranged in an upstream side of the SCR catalyst 35. An orifice device 38 having a circulation hole 38a provided to pass through a center part thereof is arranged between the fin device 37 and the SCR catalyst 35. Air current distribution of exhaust gas is equalized by concentrating the swirl on a center part by the orifice device 38 on top of setting the fin device 37 to characteristics forming strong swirl. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は内燃機関(以下、エンジンと称する)の排気浄化装置に係り、詳しくは浄化効率の向上等を目的として排ガスに旋回流を生起させるようにした排気浄化装置に関するものである。   The present invention relates to an exhaust gas purification device for an internal combustion engine (hereinafter referred to as an engine), and more particularly to an exhaust gas purification device that generates a swirling flow in exhaust gas for the purpose of improving purification efficiency.

この種の排気浄化装置では、排気通路に設けたフィン等により排ガスに旋回流を生起させ、この旋回流による撹拌作用や遠心力を利用して排気浄化装置の浄化効率の向上を図ったものがある(例えば、特許文献1,2参照)。
特許文献1の排気浄化装置は、フィルタ容器内にシースタイプの発熱体からなる加熱部を配置すると共に、下流側に所定角度の案内羽根を有する撹拌部を設け、さらにその下流側にパティキュレートを捕集するフィルタを配置して構成されており、フィルタ容器内に導入された排ガスを加熱部により加熱し、その加熱流体を撹拌部により旋回流を生起させて撹拌状態でフィルタに吹き付け、これによりフィルタを昇温させてパティキュレートの焼却除去を図っている。
In this type of exhaust purification device, a swirl flow is generated in the exhaust gas by fins or the like provided in the exhaust passage, and the purification efficiency of the exhaust purification device is improved by utilizing the stirring action and centrifugal force by this swirl flow. (For example, see Patent Documents 1 and 2).
In the exhaust purification device of Patent Document 1, a heating unit made of a sheath type heating element is disposed in a filter container, a stirring unit having a guide blade of a predetermined angle is provided on the downstream side, and a particulate is further provided on the downstream side. The filter to be collected is arranged, and the exhaust gas introduced into the filter container is heated by the heating unit, and the heated fluid is swirled by the stirring unit and sprayed on the filter in the stirring state. The filter is heated to remove particulates by incineration.

また、特許文献2の排気浄化装置は、排気浄化装置のケーシングの入口に旋回流を生起させるための旋回誘導部を設け、ケーシング内に形成した排気旋回室の内周面に沿って電熱部を配設すると共に、ケーシング内の排気旋回室の下流位置にパティキュレートを捕集するフィルタを配置して構成されており、排ガスのケーシングへの導入時に旋回誘導部により旋回流を生起させることで、排ガス中のパティキュレートを外周側の電熱部へと遠心分離して焼却し、これによりフィルタの目詰まりを防止している。   In addition, the exhaust purification device of Patent Document 2 is provided with a swirl guiding portion for generating a swirling flow at the inlet of the casing of the exhaust purifying device, and an electric heating portion is provided along the inner peripheral surface of the exhaust swirl chamber formed in the casing. It is arranged and arranged by arranging a filter for collecting particulates at a downstream position of the exhaust swirl chamber in the casing, and by causing a swirl flow to be generated by the swirl guide when the exhaust gas is introduced into the casing, Particulates in the exhaust gas are centrifuged and incinerated to the electric heating part on the outer peripheral side, thereby preventing clogging of the filter.

一方、エンジンの排気通路にはパティキュレート捕集用のフィルタの他にも種々の排気浄化装置が設けられ、例えば排ガス中のNOxを浄化すべくSCR触媒(選択還元型NOx触媒)が備えられる場合がある。この種のSCR触媒は、排気通路に設けた噴射ノズルから還元剤として尿素水溶液を噴射して排気熱及び排ガス中の水蒸気により加水分解してNHを生成し、生成したNHによりSCR触媒上で排ガス中のNOxを無害なNに還元してNOxの浄化を行っている。 On the other hand, in addition to the particulate collection filter, various exhaust gas purification devices are provided in the exhaust passage of the engine, for example, when an SCR catalyst (selective reduction type NOx catalyst) is provided to purify NOx in the exhaust gas. There is. SCR catalysts of this type, by injecting urea aqueous solution as the reducing agent from the injection nozzle provided in the exhaust passage is hydrolyzed to produce a NH 3 by the exhaust heat and the water vapor in the exhaust gas, generated NH 3 by the SCR catalyst NOx in the exhaust gas is reduced to harmless N 2 to purify NOx.

SCR触媒のNOx浄化作用は尿素水溶液の供給状態の影響を大きく受け、良好な浄化作用を得るには排ガスを十分に撹拌して尿素水溶液を良好に拡散させると共に、SCR触媒上での周方向及び半径方向の排ガスの気流分布を均一化する必要がある。加熱流体によるフィルタ昇温のための特許文献1の旋回流、パティキュレートの遠心分離のための特許文献2の旋回流では、このような要求を満たすことは到底できず、この目的のために好適な旋回流を生起するためのフィン装置が実用化されている。   The NOx purification action of the SCR catalyst is greatly affected by the supply state of the urea aqueous solution, and in order to obtain a good purification action, the exhaust gas is sufficiently stirred to diffuse the urea aqueous solution well, and the circumferential direction on the SCR catalyst and It is necessary to make the air flow distribution of the exhaust gas in the radial direction uniform. The swirl flow of Patent Document 1 for heating the filter by the heated fluid and the swirl flow of Patent Document 2 for centrifugal separation of the particulates cannot satisfy such a requirement, and are suitable for this purpose. Fin devices have been put into practical use to generate a simple swirling flow.

図4はこの従来技術のフィン装置を備えた排気浄化装置を示しており、フィン装置37はケーシング32内でSCR触媒35の上流側に配設され、そのフィン装置37の上流側には尿素供給用の噴射ノズル42が配置されている。フィン装置37は全体として円板状をなして排気流通方向と直交する姿勢でケーシング32内に配設され、その中心部を構成する隔壁部37aはケーシング32内の排気上流側と排気下流側とを区画している。また、隔壁部37aとケーシング32の内周との間には多数のフィン37bが列設され、各フィン37bは周方向に所定角度をなしている。   FIG. 4 shows an exhaust emission control device provided with this conventional fin device. The fin device 37 is disposed upstream of the SCR catalyst 35 in the casing 32, and urea is supplied upstream of the fin device 37. A spray nozzle 42 is disposed. The fin device 37 has a disk shape as a whole and is disposed in the casing 32 in a posture orthogonal to the exhaust flow direction. A partition wall portion 37a that constitutes the central portion of the fin device 37 includes an exhaust upstream side and an exhaust downstream side in the casing 32. Is partitioned. A large number of fins 37b are arranged between the partition wall portion 37a and the inner periphery of the casing 32, and each fin 37b forms a predetermined angle in the circumferential direction.

エンジンの排ガスはケーシング32内に導入されて噴射ノズルから噴射された尿素水溶液と共にフィン装置37に至り、ケーシング32の中心部を流れる排ガスがフィン装置37の隔壁部37aに遮られることで、全ての排ガスはケーシング32内の外周側のフィン37bを流通し、その際にフィン37bにより流路を変更されて旋回流を生起しながらSCR触媒35に到達し、上記のようにSCR触媒35上でNHを利用したNOx浄化が行われる。噴射ノズル42がケーシング32の中心部に位置することに起因して、フィン装置37の上流側での尿素濃度は外周側より中心部の方が高くなるが、このように全ての排ガスを外周側のフィン37bに流通させることで尿素濃度の偏りを軽減している。
特開平10−259709号公報 特開平6−129230号公報
The exhaust gas of the engine is introduced into the casing 32 and reaches the fin device 37 together with the urea aqueous solution injected from the injection nozzle. The exhaust gas flowing through the central portion of the casing 32 is blocked by the partition wall portion 37a of the fin device 37, so that all The exhaust gas flows through the fins 37b on the outer peripheral side in the casing 32. At that time, the flow path is changed by the fins 37b and reaches the SCR catalyst 35 while generating a swirling flow. NOx purification using 3 is performed. Due to the fact that the injection nozzle 42 is located at the center of the casing 32, the urea concentration on the upstream side of the fin device 37 is higher at the center than at the outer periphery. It is possible to reduce the unevenness of the urea concentration by flowing through the fins 37b.
Japanese Patent Laid-Open No. 10-259709 JP-A-6-129230

しかしながら、上記図4の排気浄化装置では尿素濃度の偏りは軽減されるものの依然として発生し、しかも、ケーシング外周側のフィン37bに排ガスを流通させることで、SCR触媒35上での半径方向の排ガスの気流分布は外周側で増加傾向となる。
尿素濃度の偏りの解消と排ガスの気流分布の均一化とはトレードオフの関係にあり、例えばフィン角度やフィン形状の変更等により旋回流を強めて排ガスの撹拌促進により尿素濃度の偏りを解消した場合、強い旋回流の遠心作用により排ガスの気流分布はより外周側が増加傾向となり、逆に旋回流を弱めて排ガスの気流分布を均一化した場合、弱い旋回流により排ガスの撹拌が不十分となって尿素濃度の偏りはより顕著となる。従って、撹拌不良による排ガス中の尿素濃度の偏り、或いはSCR触媒35上での排ガスの気流分布の不均一に起因して、SCR触媒35の全部位を有効に機能させることができずに良好なNOx浄化性能を発揮できないという問題があった。
However, in the exhaust gas purification apparatus of FIG. 4 described above, although the deviation in urea concentration is reduced, it still occurs, and the exhaust gas in the radial direction on the SCR catalyst 35 is generated by circulating the exhaust gas through the fin 37b on the outer peripheral side of the casing. The air flow distribution tends to increase on the outer peripheral side.
There is a trade-off between the elimination of the urea concentration bias and the uniform distribution of the exhaust gas flow. For example, the swirl flow was strengthened by changing the fin angle, fin shape, etc., and the urea concentration bias was eliminated by promoting the stirring of the exhaust gas. In this case, the flow distribution of exhaust gas tends to increase on the outer peripheral side due to the centrifugal action of strong swirl flow, and conversely, when the swirl flow is weakened and the air flow distribution of exhaust gas is made uniform, the stirring of the exhaust gas becomes insufficient due to the weak swirl flow Therefore, the bias of urea concentration becomes more remarkable. Accordingly, due to the uneven concentration of urea in the exhaust gas due to poor agitation, or due to non-uniformity in the air flow distribution of the exhaust gas on the SCR catalyst 35, all parts of the SCR catalyst 35 cannot function effectively and are good. There was a problem that NOx purification performance could not be demonstrated.

本発明はこのような問題点を解決するためになされたもので、その目的とするところは、排ガスを良好に撹拌して還元剤濃度の偏りを解消すると共に、還元触媒上での排ガスの気流分布を均一化し、もって還元触媒の全部位を有効に機能させて良好な浄化性能を発揮させることができる内燃機関の排気浄化装置を提供することにある。   The present invention has been made to solve such problems. The object of the present invention is to thoroughly stir the exhaust gas to eliminate the uneven concentration of the reducing agent and to flow the exhaust gas over the reduction catalyst. It is an object of the present invention to provide an exhaust gas purification apparatus for an internal combustion engine that can make the distribution uniform, thereby effectively functioning all the parts of the reduction catalyst and exhibit good purification performance.

上記目的を達成するため、請求項1の発明は、内燃機関の排気通路の一部を構成し、内部に還元触媒を収容したケーシングと、ケーシング内の還元触媒の上流側に設けられ、内燃機関の排ガスに排気下流側に向けて螺旋状をなす旋回流を生起させる旋回流発生手段と、ケーシング内の旋回流発生手段と還元触媒との間に配設され、旋回流発生手段により旋回流を生起された排ガスをケーシングの略中心部に集約しながら還元触媒側に流通させる絞り手段と、排気通路の少なくとも絞り手段より上流側に設けられて、排気通路内に還元剤を供給する還元剤供給手段とを備えたものである。   In order to achieve the above object, an invention according to claim 1 comprises a casing that constitutes a part of an exhaust passage of an internal combustion engine and contains a reduction catalyst therein, and is provided on the upstream side of the reduction catalyst in the casing. The swirl flow generating means for generating a spiral swirl flow toward the exhaust downstream side of the exhaust gas, and the swirl flow generating means in the casing are disposed between the reduction catalyst and the swirl flow generating means. Reducing agent supply that supplies the reducing agent into the exhaust passage, provided in the exhaust passage at least upstream of the restricting means, and the restricting means for circulating the generated exhaust gas to the substantially central portion of the casing while flowing to the reduction catalyst side. Means.

従って、内燃機関の排ガスは旋回流発生手段により旋回流を生起され、還元剤供給手段から供給された還元剤と共に絞り手段を経て下流側の還元触媒に到達する。旋回流発生手段により旋回流を生起した時点の排ガスの半径方向の気流分布は、自己の遠心作用により中心部より外周側で増加傾向となるが、排ガスは絞り手段により中心部に向けて集約された後、再び遠心作用により外周側に拡散しながら還元触媒に到達するため、結果として還元触媒に供給される排ガスの気流分布が均一化される。   Accordingly, the exhaust gas of the internal combustion engine is caused to generate a swirling flow by the swirling flow generating means, and reaches the downstream reduction catalyst through the throttle means together with the reducing agent supplied from the reducing agent supply means. The radial flow distribution of the exhaust gas at the time when the swirl flow is generated by the swirl flow generating means tends to increase on the outer peripheral side from the center due to its own centrifugal action, but the exhaust gas is concentrated toward the center by the throttling means. After that, it reaches the reduction catalyst while diffusing again to the outer peripheral side by centrifugal action, and as a result, the air flow distribution of the exhaust gas supplied to the reduction catalyst is made uniform.

また、このように排ガスの気流分布の不均一が矯正されるため、排ガスの撹拌促進を目的として旋回流発生手段による旋回流を強めても上記遠心作用により気流分布が不均一となる弊害は発生しない。還元剤供給手段からの還元剤の供給状態に起因して排ガス中の還元剤濃度には偏りがあるが、旋回流を強めることで排ガスの撹拌が促進されて濃度の偏りが解消される。   In addition, since the non-uniformity of the air flow distribution of the exhaust gas is corrected in this way, even if the swirl flow by the swirl flow generating means is strengthened for the purpose of promoting stirring of the exhaust gas, there is a problem that the air flow distribution becomes non-uniform due to the centrifugal action. do not do. Although the reducing agent concentration in the exhaust gas is uneven due to the supply state of the reducing agent from the reducing agent supply means, the swirling flow is strengthened to promote the stirring of the exhaust gas and the concentration unevenness is eliminated.

請求項2の発明は、請求項1において、旋回流発生手段が、ケーシング内の略中心部において排気上流側と排気下流側とを区画する隔壁部と、隔壁部とケーシング内周との間に設けられて排気流通方向に対して周方向に所定角度をなす複数のフィンとから構成されたものである。
従って、ケーシング中心部を流れる排ガスが旋回流発生手段の隔壁部に遮られることで、排ガスはケーシング内の外周側のフィンを流通して、その際にフィンにより流路を変更されて旋回流を生起する。このとき、ケーシング内の外周側に位置する大径のフィンに全ての排ガスを流通させるため強い旋回流が生起され、その旋回流は、所謂旋回流の角運動量保存則に従って、絞り手段による中心部への集約を経て外周側に拡散した後も衰えることなく高い旋回速度を維持しており、この強い旋回流により還元剤濃度の偏りを一層確実に解消可能となる。
According to a second aspect of the present invention, in the first aspect, the swirl flow generating means includes a partition wall that partitions the exhaust upstream side and the exhaust downstream side at a substantially central portion in the casing, and between the partition wall and the casing inner periphery. The plurality of fins are provided and form a predetermined angle in the circumferential direction with respect to the exhaust circulation direction.
Therefore, the exhaust gas flowing through the central part of the casing is blocked by the partition wall of the swirling flow generating means, so that the exhaust gas flows through the fins on the outer peripheral side in the casing, and the flow path is changed by the fins at that time and the swirling flow is generated. To occur. At this time, a strong swirling flow is generated in order to circulate all the exhaust gas through the large-diameter fin located on the outer peripheral side in the casing, and the swirling flow follows the so-called angular momentum conservation law of the swirling flow. Even after diffusing to the outer peripheral side through concentration, the high swirl speed is maintained without fading, and this strong swirl flow can more reliably eliminate the uneven concentration of the reducing agent.

請求項3の発明は、請求項1または2において、ケーシングが、旋回流発生手段から還元触媒まで略同一の通路断面形状をなし、絞り手段が、ケーシング内の排気上流側と排気下流側とを区画する板状をなし、略中心部に排ガスが流通する流通孔が貫設されたものである。
従って、排ガスはケーシングの外周側で絞り手段により遮られながら略中心部の流通孔に向けて集約され、流通孔を流通した後に下流側の還元触媒に到達する。そして、ケーシングの通路断面形状を部分的に縮小して絞り手段を形成することなく、ケーシングを略同一の通路断面形状のままとした上で、板状の絞り手段をケーシング内に配置した構成のため、ケーシングの内容積が最大限に確保される。ケーシングは排気浄化装置を収容する機能のみならずその内部空間に排ガスを流通させることにより消音作用も奏するが、このようにケーシングの内容積が確保されることで高い消音作用が得られる。
According to a third aspect of the present invention, in the first or second aspect, the casing has substantially the same passage cross-sectional shape from the swirling flow generating means to the reduction catalyst, and the throttle means includes an exhaust upstream side and an exhaust downstream side in the casing. A partition plate is formed, and a circulation hole through which exhaust gas flows is provided substantially at the center.
Accordingly, the exhaust gas is concentrated toward the flow hole in the substantially central portion while being blocked by the throttle means on the outer peripheral side of the casing, and reaches the downstream reduction catalyst after flowing through the flow hole. Then, without reducing the passage cross-sectional shape of the casing partially to form the throttle means, the casing is kept in substantially the same passage cross-sectional shape, and the plate-like throttle means is arranged in the casing. Therefore, the inner volume of the casing is ensured to the maximum. The casing not only has a function of accommodating the exhaust purification device, but also has a silencing effect by circulating the exhaust gas in the internal space, and a high silencing effect is obtained by securing the internal volume of the casing in this way.

以上説明したように請求項1の発明の内燃機関の排気浄化装置によれば、旋回流発生手段により旋回流を生起した排ガスを絞り手段により中心部に集約することで排ガスの気流分布を均一化できると共に、旋回流を強めて排ガスの撹拌促進により排ガス中の還元剤濃度の偏りを解消でき、もって還元触媒の全部位を有効に機能させて良好な浄化性能を発揮させることができる。   As described above, according to the exhaust gas purification apparatus for an internal combustion engine of the first aspect of the present invention, the exhaust gas flow distribution generated by the swirling flow generating means is concentrated in the central portion by the throttling means, thereby making the air flow distribution of the exhaust gas uniform. In addition, the swirl flow can be strengthened to eliminate the uneven concentration of the reducing agent in the exhaust gas by accelerating the stirring of the exhaust gas, so that all the parts of the reduction catalyst can function effectively and exhibit good purification performance.

請求項2の発明の内燃機関の排気浄化装置によれば、請求項1に加えて、旋回流発生手段のフィンをケーシングの外周側に配置することにより強い旋回流を生起して、還元剤濃度の偏りを一層確実に解消することができる。
請求項3の発明の内燃機関の排気浄化装置によれば、請求項1または2に加えて、ケーシングの内容積を最大限に確保して高い消音作用を得ることができる。
According to the exhaust emission control device for an internal combustion engine of the invention of claim 2, in addition to claim 1, a strong swirling flow is generated by arranging fins of the swirling flow generating means on the outer peripheral side of the casing, thereby reducing the concentration of the reducing agent. Can be more reliably eliminated.
According to the exhaust gas purification apparatus for an internal combustion engine of the third aspect of the invention, in addition to the first or second aspect, the inner volume of the casing can be ensured to the maximum and a high silencing effect can be obtained.

以下、本発明をディーゼルエンジンの排気浄化装置に具体化した一実施形態を説明する。
図1は本実施形態のディーゼルエンジンの排気浄化装置を示す全体構成図であり、エンジン1は直列6気筒機関として構成されている。エンジン1の各気筒には燃料噴射弁2が設けられ、各燃料噴射弁2は共通のコモンレール3から加圧燃料を供給され、機関の運転状態に応じたタイミングで開弁して各気筒の筒内に燃料を噴射する。
Hereinafter, an embodiment in which the present invention is embodied in an exhaust emission control device for a diesel engine will be described.
FIG. 1 is an overall configuration diagram showing an exhaust emission control device for a diesel engine according to this embodiment. The engine 1 is configured as an in-line 6-cylinder engine. Each cylinder of the engine 1 is provided with a fuel injection valve 2, and each fuel injection valve 2 is supplied with pressurized fuel from a common common rail 3 and is opened at a timing according to the operating state of the engine. The fuel is injected into the inside.

エンジン1の吸気側には吸気マニホールド4が装着され、吸気マニホールド4に接続された吸気通路5には、上流側よりエアクリーナ6、ターボチャージャ7のコンプレッサ7a、インタクーラ8、アクチュエータ9aにより開閉駆動される吸気絞り弁9が設けられている。また、エンジン1の排気側には排気マニホールド10が装着され、排気マニホールド10には上記コンプレッサ7aと同軸上に連結されたターボチャージャ7のタービン7bを介して排気通路11が接続されている。   An intake manifold 4 is mounted on the intake side of the engine 1, and the intake passage 5 connected to the intake manifold 4 is opened and closed by an air cleaner 6, a compressor 7a of the turbocharger 7, an intercooler 8, and an actuator 9a from the upstream side. An intake throttle valve 9 is provided. An exhaust manifold 10 is mounted on the exhaust side of the engine 1, and an exhaust passage 11 is connected to the exhaust manifold 10 via a turbine 7b of a turbocharger 7 connected coaxially with the compressor 7a.

エンジン1の運転中においてエアクリーナ6を経て吸気通路5内に導入された吸気はターボチャージャ7のコンプレッサ7aにより加圧された後にインタクーラ8、吸気絞り弁9、吸気マニホールド4を経て各気筒に分配され、各気筒の吸気行程で筒内に導入される。筒内では所定のタイミングで燃料噴射弁2から燃料が噴射されて圧縮上死点近傍で着火・燃焼し、燃焼後の排ガスは排気マニホールド10を経てタービン7bを回転駆動した後に排気通路11を経て外部に排出される。   During operation of the engine 1, the intake air introduced into the intake passage 5 through the air cleaner 6 is pressurized by the compressor 7 a of the turbocharger 7, and then distributed to each cylinder through the intercooler 8, the intake throttle valve 9, and the intake manifold 4. These are introduced into the cylinder in the intake stroke of each cylinder. In the cylinder, fuel is injected from the fuel injection valve 2 at a predetermined timing and ignited and burned in the vicinity of the compression top dead center, and the exhaust gas after combustion rotates through the exhaust manifold 10 and then rotates the turbine 7b and then passes through the exhaust passage 11. It is discharged outside.

一方、吸気マニホールド4と排気マニホールド10とはEGR通路17により接続され、EGR通路17にはアクチュエータ18aにより開閉駆動されるEGR弁18及びEGRクーラ19が設けられている。エンジン1の運転中にはEGR弁18の開度に応じて排気マニホールド10側から吸気マニホールド4側に排ガスの一部がEGRガスとして還流される。   On the other hand, the intake manifold 4 and the exhaust manifold 10 are connected by an EGR passage 17, and an EGR valve 18 and an EGR cooler 19 that are opened and closed by an actuator 18 a are provided in the EGR passage 17. During operation of the engine 1, part of the exhaust gas is recirculated as EGR gas from the exhaust manifold 10 side to the intake manifold 4 side according to the opening degree of the EGR valve 18.

上記排気通路11は、上流側より第1パイプ31a、ケーシング32、第2パイプ31b、及び図示しない消音器から構成され、消音器の後端は大気に開放されている。ケーシング32は車両の前後方向に延びる略円筒状をなし、このケーシング32内に本発明の排気浄化装置が収容されている。以下、排気浄化装置の構成を上流側より述べると、ケーシング内の上流側には前段酸化触媒33が配置され、その下流側には排ガス中のパティキュレート(以下、PMと称する)捕集用のウォールフロー式のDPF(ディーゼルパティキュレートフィルタ)34が配置されている。DPF34の下流側には所定の間隙をおいて排ガス中のNOx浄化用のSCR触媒35(還元触媒)が配置され、その下流側には後段酸化触媒36が配置されている。   The exhaust passage 11 includes a first pipe 31a, a casing 32, a second pipe 31b, and a silencer (not shown) from the upstream side, and the rear end of the silencer is open to the atmosphere. The casing 32 has a substantially cylindrical shape extending in the front-rear direction of the vehicle, and the exhaust purification device of the present invention is accommodated in the casing 32. Hereinafter, the configuration of the exhaust gas purification apparatus will be described from the upstream side. The upstream oxidation catalyst 33 is disposed on the upstream side in the casing, and on the downstream side for collecting particulates (hereinafter referred to as PM) in the exhaust gas. A wall flow type DPF (diesel particulate filter) 34 is disposed. An SCR catalyst 35 (reduction catalyst) for purifying NOx in the exhaust gas is disposed on the downstream side of the DPF 34 with a predetermined gap, and a post-stage oxidation catalyst 36 is disposed on the downstream side thereof.

DPF34とSCR触媒35との間隙は、フィン装置37(旋回流発生装置)及びオリフィス装置38(絞り手段)により排気流通方向に等間隔Lで3分割され、以下の説明では、分割された各空間を上流側より噴霧室39、集約室40、拡散室41と称する。噴霧室39には噴射ノズル42が配設され、噴射ノズル42は、図示しないタンクから圧送される尿素水溶液を還元剤として噴霧室39内に任意に噴射可能に構成されている。また、噴射ノズル42の下流側には温度センサ43が設置され、温度センサ43により噴霧室39内の温度が検出される。   The gap between the DPF 34 and the SCR catalyst 35 is divided into three at equal intervals L in the exhaust flow direction by the fin device 37 (swirl flow generating device) and the orifice device 38 (throttle means). Are referred to as a spray chamber 39, an aggregation chamber 40, and a diffusion chamber 41 from the upstream side. A spray nozzle 42 is disposed in the spray chamber 39, and the spray nozzle 42 is configured to be able to arbitrarily spray into the spray chamber 39 using a urea aqueous solution pumped from a tank (not shown) as a reducing agent. A temperature sensor 43 is installed on the downstream side of the injection nozzle 42, and the temperature in the spray chamber 39 is detected by the temperature sensor 43.

図2はフィン装置37を示す図1のII−II線断面図であり、図1,2に示すように、上記フィン装置37は全体として円板状をなして噴霧室39と集約室40との間を区画するように配設されている。フィン装置37は、ケーシング32の中心部に位置する隔壁部37aと、隔壁部37aの周囲とケーシング32の内周との間で周方向に列設された多数枚のフィン37bとから構成され、例えば素材のステンレス板をプレス成型して、隔壁部37aと各フィン37bとを一体で形成している。隔壁部37aは平板状をなして排ガスの流通を阻止し、各フィン37bは排気流通方向に対して周方向に同一所定角度をなして、噴霧室39からの排ガスを各フィン37b間に流通させながら流路を変更することにより、集約室40において排気下流側に向けて螺旋状をなす旋回流を生起させる。特に本実施形態では、強い旋回流の生起を優先するようにフィン装置の仕様が設定されており、具体的には、排ガスの流路を急激に変更するようにフィン角度やフィン形状が設定されている。   2 is a cross-sectional view taken along the line II-II of FIG. 1 showing the fin device 37. As shown in FIGS. 1 and 2, the fin device 37 has a disk shape as a whole, and includes a spray chamber 39, an aggregation chamber 40, Between the two. The fin device 37 includes a partition wall portion 37a located at the center of the casing 32, and a plurality of fins 37b arranged in the circumferential direction between the periphery of the partition wall portion 37a and the inner periphery of the casing 32. For example, the material stainless steel plate is press-molded to integrally form the partition walls 37a and the fins 37b. The partition wall portion 37a has a flat plate shape to prevent the exhaust gas from flowing, and the fins 37b form the same predetermined angle in the circumferential direction with respect to the exhaust gas flow direction so that the exhaust gas from the spray chamber 39 flows between the fins 37b. However, by changing the flow path, a swirling flow spiraling toward the exhaust downstream side in the aggregation chamber 40 is generated. In particular, in this embodiment, the specifications of the fin device are set so as to give priority to the generation of a strong swirling flow, and specifically, the fin angle and fin shape are set so as to change the exhaust gas flow path abruptly. ing.

図3はオリフィス装置38を示す図1のIII−III線断面図であり、図1,3に示すように、上記オリフィス装置38は中心部に流通孔38aが貫設された円板状をなして、集約室40と拡散室41との間を区画するように配設されている。オリフィス装置38は、例えば素材のステンレス板の中心部をプレス成型により打ち抜いて製作され、集約室40からの排ガスの流通を阻止しながら流通孔38aの箇所でのみ排ガスを拡散室41側に流通させる。   3 is a cross-sectional view taken along the line III-III in FIG. 1 showing the orifice device 38. As shown in FIGS. 1 and 3, the orifice device 38 has a disk shape with a through hole 38a penetrating therethrough. Thus, the aggregation chamber 40 and the diffusion chamber 41 are disposed so as to be partitioned. The orifice device 38 is manufactured, for example, by punching the center part of a stainless steel plate of the material by press molding, and allows the exhaust gas to flow toward the diffusion chamber 41 only at the location of the flow hole 38a while preventing the flow of the exhaust gas from the aggregation chamber 40. .

一方、上記吸気絞り弁9、排気絞り弁12、EGR弁18、スワール弁20の各アクチュエータ9a,12a,18a,20a、燃料噴射弁2、燃料ノズル42、温度センサ43等はECU51(電子コントロールユニット)に接続され、センサ類からの検出情報に基づいてECU51により駆動制御される。例えばECU51は機関回転速度や負荷等のエンジン1の運転状態に基づいて燃料噴射弁2の噴射量、噴射圧、噴射時期を制御してエンジン1を運転すると共に、アクチュエータ18aによりEGR弁18の開度を制御してEGR還流量を調整する。   On the other hand, the intake throttle valve 9, exhaust throttle valve 12, EGR valve 18, and swirl valve 20 actuators 9a, 12a, 18a, 20a, the fuel injection valve 2, the fuel nozzle 42, the temperature sensor 43, etc. are connected to an ECU 51 (electronic control unit). ) And is driven and controlled by the ECU 51 based on detection information from the sensors. For example, the ECU 51 operates the engine 1 by controlling the injection amount, injection pressure, and injection timing of the fuel injection valve 2 based on the operating state of the engine 1 such as the engine speed and load, and opens the EGR valve 18 by the actuator 18a. The EGR reflux amount is adjusted by controlling the degree.

また、ECU51はDPF34の強制再生のためのポスト噴射、或いはSCR触媒35によるNOx浄化のための噴射ノズル42からの尿素供給等を制御しており、以下、これらのDPF34によるパティキュレートの浄化作用及びSCR触媒35によるNOxの浄化作用について述べる。
DPF34は排ガス中のPMを捕集する作用を奏し、エンジン1の排ガス温度が比較的高い運転状態では、前段酸化触媒33の酸化作用により排ガス中のNOからNO2が生成されて、NO2の酸化反応によりDPF34に捕集されたPMが連続的に焼却除去されることで、DPF34の再生が図られる。一方、このような連続再生作用が得られない運転状態が継続したときには、ECU51によりメイン噴射の後にポスト噴射が適宜実行され、DPF34上に供給された燃料と共にPMが焼却除去されることでDPF34が強制的に再生される。なお、強制再生でのPM燃焼の際に生じるCOは後段酸化触媒41によりCO2に酸化される。
The ECU 51 controls post-injection for forced regeneration of the DPF 34, urea supply from the injection nozzle 42 for NOx purification by the SCR catalyst 35, and so on. The NOx purification action by the SCR catalyst 35 will be described.
The DPF 34 has an action of collecting PM in the exhaust gas. In an operation state where the exhaust gas temperature of the engine 1 is relatively high, NO 2 is generated from NO in the exhaust gas by the oxidation action of the pre-stage oxidation catalyst 33, and the NO 2 The PM collected in the DPF 34 by the oxidation reaction is continuously incinerated and removed, whereby the DPF 34 is regenerated. On the other hand, when such an operation state in which the continuous regeneration action cannot be obtained continues, post injection is appropriately executed after the main injection by the ECU 51, and PM is incinerated and removed together with the fuel supplied onto the DPF 34. Forced playback. Note that CO generated during PM combustion in forced regeneration is oxidized to CO 2 by the post-stage oxidation catalyst 41.

また、SCR触媒35はNOx浄化のためにNH(アンモニア)の供給を要するため、ECU51はエンジン1の運転状態や温度センサ43の検出値等に基づき、噴射ノズル42からの尿素水溶液の噴射量を制御する。噴射された尿素水溶液は排気熱及び排ガス中の水蒸気により加水分解されてNHを生成し、このNHによりSCR触媒35上では排ガス中のNOxが無害なNに還元されてNOxの浄化が行われる一方、このときの余剰NH3が後段酸化触媒36によりNOに酸化される。 In addition, since the SCR catalyst 35 needs to supply NH 3 (ammonia) for NOx purification, the ECU 51 injects the urea aqueous solution injection amount from the injection nozzle 42 based on the operating state of the engine 1, the detection value of the temperature sensor 43, and the like. To control. The injected urea aqueous solution is hydrolyzed by the exhaust heat and the water vapor in the exhaust gas to produce NH 3 , and this NH 3 reduces the NOx in the exhaust gas to harmless N 2 on the SCR catalyst 35, thereby purifying the NOx. On the other hand, surplus NH 3 at this time is oxidized to NO by the post-stage oxidation catalyst 36.

なお、SCR触媒35の上流側に尿素をNHに加水分解する作用を奏する加水分解触媒を配置してもよいし、或いは、噴射ノズル42から尿素水溶液に代えてアンモニア水溶液を噴射するようにしてもよい。
そして、本実施形態ではフィン装置37とSCR触媒35との間にオリフィス装置38を配置し、フィン装置37により旋回流を生起された排ガスをオリフィス装置38に流通させており、これにより以下の作用効果が得られる。
A hydrolysis catalyst that acts to hydrolyze urea into NH 3 may be disposed upstream of the SCR catalyst 35, or an aqueous ammonia solution may be injected from the injection nozzle 42 instead of the aqueous urea solution. Also good.
In this embodiment, an orifice device 38 is disposed between the fin device 37 and the SCR catalyst 35, and the exhaust gas generated by the swirling flow by the fin device 37 is circulated to the orifice device 38, whereby the following operation is performed. An effect is obtained.

前段酸化触媒33及びDPF34を流通した排ガスは噴霧室39に導入され、この噴霧室39内で噴射ノズル42から尿素水溶液を噴射される。尿素水溶液と共に排ガスはフィン装置37の各フィン37bを流通する際に流路を変更されて集約室40内において旋回流を生起し、旋回流を生起したままオリフィス装置38の流通孔38aを流通して拡散室41に導入される。その後、排ガスは尿素水溶液と共に拡散室41内を経てSCR触媒35に到達し、SCR触媒35上でのNHを利用したNOx浄化に利用される。 The exhaust gas flowing through the front-stage oxidation catalyst 33 and the DPF 34 is introduced into the spray chamber 39, and the urea aqueous solution is injected from the injection nozzle 42 in the spray chamber 39. The exhaust gas together with the urea aqueous solution changes the flow path when flowing through the fins 37b of the fin device 37 to generate a swirling flow in the aggregation chamber 40, and flows through the flow holes 38a of the orifice device 38 while the swirling flow is generated. Are introduced into the diffusion chamber 41. Thereafter, the exhaust gas reaches the SCR catalyst 35 together with the urea aqueous solution through the diffusion chamber 41 and is used for NOx purification using NH 3 on the SCR catalyst 35.

ここで、噴霧室39内ではケーシング32の中心部を流れる排ガスがフィン装置37の隔壁部37aに遮られることで、全ての排ガスがケーシング32内の外周側に位置する大径のフィン37bを流通するため強い旋回流が生起され、さらに上記したフィン角度やフィン形状の設定も強い旋回流の生起に貢献する。
その後、集約室40内において排ガスはケーシング32の外周側でオリフィス装置38により遮られながら中心部の流通孔38aに向けて集約され、相互に交錯しながら流通孔38aを流通して拡散室41に導入され、拡散室41内で再び遠心作用により外周側に拡散しながらSCR触媒35に到達する。なお、旋回流はオリフィス装置38による中心部への集約を経て外周側に拡散する過程でその旋回半径が大幅に変化するが、所謂旋回流の角運動量保存則に従って再び外周側に拡散した後にも衰えることなく高い旋回速度を維持している。
Here, in the spray chamber 39, the exhaust gas flowing through the central portion of the casing 32 is blocked by the partition wall portion 37 a of the fin device 37, so that all the exhaust gas flows through the large-diameter fins 37 b located on the outer peripheral side in the casing 32. Therefore, a strong swirl flow is generated, and the setting of the fin angle and fin shape described above contributes to the generation of a strong swirl flow.
Thereafter, in the aggregation chamber 40, the exhaust gas is aggregated toward the central circulation hole 38 a while being blocked by the orifice device 38 on the outer peripheral side of the casing 32, and circulates through the circulation hole 38 a while crossing each other to enter the diffusion chamber 41. It is introduced and reaches the SCR catalyst 35 while diffusing to the outer peripheral side again by centrifugal action in the diffusion chamber 41. Note that the swirl radius changes significantly in the process of diffusing to the outer peripheral side after being concentrated to the central part by the orifice device 38, but even after diffusing again to the outer peripheral side in accordance with the so-called law of conservation of angular momentum of the swirl flow. Maintains a high turning speed without slowing down.

そして、フィン装置37により旋回流を生起した時点の排ガスの半径方向の気流分布は、自己の遠心作用により中心部より外周側で増加傾向となり、上記のように強い旋回流を生起することで不均一の傾向はより顕著になる。しかしながら、集約室40での集約及び拡散室41での拡散を経ることで排ガスの気流分布の不均一は矯正され、気流分布が均一化された状態でSCR触媒35に到達する。   The radial airflow distribution of the exhaust gas at the time when the swirling flow is generated by the fin device 37 tends to increase on the outer peripheral side from the center due to its own centrifugal action, and it is not possible to generate a strong swirling flow as described above. The uniform tendency becomes more prominent. However, the non-uniformity in the air flow distribution of the exhaust gas is corrected through the aggregation in the aggregation chamber 40 and the diffusion in the diffusion chamber 41, and reaches the SCR catalyst 35 with the air flow distribution made uniform.

また、噴射ノズル41がケーシング32の中心部に位置することに起因して排ガス中の尿素濃度には偏りが生じるが、旋回流を強めることで排ガスの撹拌が促進されて濃度の偏りが解消される。しかも、オリフィス装置38の流通孔38aに集約された排ガスは相互に交錯して撹拌されるため、この現象も尿素濃度の偏り解消に貢献する。
従って、本実施形態の排気浄化装置によれば、元々トレードオフの関係にある排ガス中の尿素濃度の偏り解消と排ガスの気流分布の均一化とを高い次元で両立でき、強い旋回流により排ガス中に尿素水溶液を偏りなく分散させた上で、オリフィス装置38を利用した排ガスの集約及び拡散を経ることにより、SCR触媒35に供給される排ガスの気流分布を均一化でき、もって、SCR触媒35の全部位を有効に機能させて良好なNOx浄化性能を発揮させることができる。
Further, the urea concentration in the exhaust gas is biased due to the injection nozzle 41 being positioned at the center of the casing 32. However, the swirling flow is strengthened to promote the stirring of the exhaust gas, and the concentration bias is eliminated. The In addition, since the exhaust gas collected in the flow holes 38a of the orifice device 38 is mixed and stirred, this phenomenon also contributes to the elimination of the urea concentration unevenness.
Therefore, according to the exhaust gas purification apparatus of the present embodiment, it is possible to achieve a high level of both the elimination of the urea concentration unevenness in the exhaust gas, which originally has a trade-off relationship, and the uniform distribution of the air flow of the exhaust gas. After the urea aqueous solution is uniformly distributed, the exhaust gas is concentrated and diffused using the orifice device 38, so that the air flow distribution of the exhaust gas supplied to the SCR catalyst 35 can be made uniform. All sites can be effectively functioned to exhibit good NOx purification performance.

また、ケーシング32は排気浄化装置を収容する機能のみならずその内部空間に排ガスを流通させることにより消音作用も奏するが、図1から明らかなように、ケーシング32を車両前後方向の延びる略円筒状、即ち同一通路断面形状のままとした上で、板状のオリフィス装置38をケーシング32内に配置した構成のため、ケーシング32の内容積が最大限に確保される。従って、ケーシング32を排ガスが流通する際に十分な消音作用が奏され、車両の騒音低減、或いは別に設置した消音器の小型化による車載性の向上等の利点を得ることができる。   Further, the casing 32 not only has a function of accommodating the exhaust purification device but also has a silencing action by circulating exhaust gas in the internal space. As is apparent from FIG. 1, the casing 32 has a substantially cylindrical shape extending in the vehicle front-rear direction. That is, since the plate-shaped orifice device 38 is disposed in the casing 32 while keeping the same passage cross-sectional shape, the internal volume of the casing 32 is ensured to the maximum. Therefore, when the exhaust gas flows through the casing 32, a sufficient silencing effect is achieved, and it is possible to obtain advantages such as reduction in vehicle noise or improvement in vehicle mounting due to downsizing of a silencer installed separately.

以上で実施形態の説明を終えるが、本発明の態様はこの実施形態に限定されるものではない。例えば上記実施形態では、NOx浄化用にSCR触媒35を備えたディーゼルエンジン1の排気浄化装置に具体化したが、還元剤の供給を要する還元触媒を備えたエンジンであればこれに限ることはない。例えば排ガス中のNOxを吸蔵する吸蔵型NOx触媒を排気通路に備え、吸蔵したNOxをNOx触媒から放出還元するために、還元剤として燃料を排気通路内に噴射するNOxパージを定期的に実行する必要があるエンジンに適用してもよい。この場合には図1においてSCR触媒35を吸蔵型NOx触媒に置換した構成となるが、フィン装置37とNOx触媒との間にオリフィス装置38を配置することにより、上記実施形態と同様に排ガス中の燃料濃度の偏り解消と排ガスの気流分布の均一化とを高い次元で両立して、NOx浄化性能を向上できる作用効果が得られる。   This is the end of the description of the embodiment, but the aspect of the present invention is not limited to this embodiment. For example, in the above embodiment, the exhaust gas purification device of the diesel engine 1 provided with the SCR catalyst 35 for NOx purification is embodied. However, the present invention is not limited to this as long as the engine is provided with a reduction catalyst that requires supply of a reducing agent. . For example, a storage-type NOx catalyst that stores NOx in exhaust gas is provided in the exhaust passage, and in order to release and reduce the stored NOx from the NOx catalyst, NOx purge is periodically performed to inject fuel into the exhaust passage as a reducing agent. It may be applied to the engine that needs it. In this case, the SCR catalyst 35 in FIG. 1 is replaced with an occlusion type NOx catalyst. However, by arranging an orifice device 38 between the fin device 37 and the NOx catalyst, the exhaust gas is contained in the exhaust gas as in the above embodiment. The effect of improving the NOx purification performance can be obtained by resolving the uneven fuel concentration and uniforming the air flow distribution of the exhaust gas at a high level.

また、上記実施形態では、噴射ノズル42をフィン装置37の上流側(噴霧室39内)に設けたが、オリフィス装置38より上流側であれば同様の作用効果が得られるため、その設置位置は任意に変更可能であり、例えばフィン装置37とオリフィス装置38との間(集約室40内)に噴射ノズル42を配置してもよい。
また、上記実施形態では、中心部の隔壁部37aとその周囲の多数枚のフィン37bとからなるフィン装置37を適用したが、フィン装置37の構成はこれに限定されるものではなく、旋回流を生起させるものであれば任意に変更可能である。
Moreover, in the said embodiment, although the injection nozzle 42 was provided in the upstream (inside the spray chamber 39) of the fin apparatus 37, since the same effect is obtained if it is upstream from the orifice apparatus 38, the installation position is For example, the injection nozzle 42 may be disposed between the fin device 37 and the orifice device 38 (in the aggregation chamber 40).
Moreover, in the said embodiment, although the fin apparatus 37 which consists of the partition part 37a of the center part and the many fins 37b of the circumference | surroundings was applied, the structure of the fin apparatus 37 is not limited to this, A swirl flow Any change can be made as long as it causes the problem.

また、上記実施形態では、排気浄化装置の全ての構成部材を単一のケーシング32に収容したが、車両への搭載性等を考慮して、例えば前段酸化触媒33及びDPF34を別のケーシングに収容してもよい。   Further, in the above embodiment, all the components of the exhaust purification device are accommodated in the single casing 32. However, considering the mounting property on the vehicle, for example, the pre-oxidation catalyst 33 and the DPF 34 are accommodated in separate casings. May be.

実施形態のディーゼルエンジンの排気浄化装置を示す全体構成図である。1 is an overall configuration diagram illustrating an exhaust emission control device for a diesel engine according to an embodiment. フィン装置を示す図1のII−II線断面図である。It is the II-II sectional view taken on the line of FIG. 1 which shows a fin apparatus. オリフィス装置を示す図1のIII−III線断面図である。It is the III-III sectional view taken on the line of FIG. 1 which shows an orifice apparatus. 従来技術のディーゼルエンジンの排気浄化装置を示す構成図である。It is a block diagram which shows the exhaust gas purification apparatus of the diesel engine of a prior art.

符号の説明Explanation of symbols

1 エンジン(内燃機関)
11 排気通路
32 ケーシング
35 SCR触媒(還元触媒)
37 フィン装置(旋回流発生手段)
37a 隔壁部
37b フィン
38 オリフィス装置(絞り手段)
38a 流通孔
42 噴射ノズル(還元剤供給手段)
1 engine (internal combustion engine)
11 Exhaust passage 32 Casing 35 SCR catalyst (reduction catalyst)
37 Fin device (swirl flow generating means)
37a Partition part 37b Fin 38 Orifice device (throttle means)
38a Flow hole 42 Injection nozzle (reducing agent supply means)

Claims (3)

内燃機関の排気通路の一部を構成し、内部に還元触媒を収容したケーシングと、
上記ケーシング内の上記還元触媒の上流側に設けられ、上記内燃機関の排ガスに排気下流側に向けて螺旋状をなす旋回流を生起させる旋回流発生手段と、
上記ケーシング内の上記旋回流発生手段と上記還元触媒との間に配設され、該旋回流発生手段により旋回流を生起された排ガスを上記ケーシングの略中心部に集約しながら上記還元触媒側に流通させる絞り手段と、
上記排気通路の少なくとも上記絞り手段より上流側に設けられて、該排気通路内に還元剤を供給する還元剤供給手段と
を備えたことを特徴とする内燃機関の排気浄化装置。
A casing that constitutes a part of the exhaust passage of the internal combustion engine and contains a reduction catalyst therein;
A swirl flow generating means provided on the upstream side of the reduction catalyst in the casing and generating a swirl flow spiraling toward the exhaust downstream side of the exhaust gas of the internal combustion engine;
The exhaust gas that is disposed between the swirling flow generating means and the reduction catalyst in the casing and that generates the swirling flow by the swirling flow generating means is concentrated on the substantially central portion of the casing toward the reducing catalyst side. Squeezing means for circulation;
An exhaust gas purification apparatus for an internal combustion engine, comprising: a reducing agent supply means provided at least upstream of the throttle means in the exhaust passage and supplying a reducing agent into the exhaust passage.
上記旋回流発生手段は、上記ケーシング内の略中心部において排気上流側と排気下流側とを区画する隔壁部と、該隔壁部と上記ケーシング内周との間に設けられて排気流通方向に対して周方向に所定角度をなす複数のフィンとから構成されたことを特徴とする請求項1記載の内燃機関の排気浄化装置。   The swirling flow generating means is provided between a partition wall partitioning the exhaust upstream side and the exhaust downstream side at a substantially central part in the casing, and between the partition wall part and the casing inner periphery, and is disposed in the exhaust circulation direction. The exhaust emission control device for an internal combustion engine according to claim 1, further comprising a plurality of fins having a predetermined angle in the circumferential direction. 上記ケーシングは、上記旋回流発生手段から上記還元触媒まで略同一の通路断面形状をなし、
上記絞り手段は、上記ケーシング内の排気上流側と排気下流側とを区画する板状をなし、略中心部に排ガスが流通する流通孔が貫設されたことを特徴とする請求項1または2記載の内燃機関の排気浄化装置。
The casing has substantially the same passage cross-sectional shape from the swirl flow generating means to the reduction catalyst,
3. The throttle means according to claim 1, wherein the throttle means has a plate shape that divides the exhaust upstream side and the exhaust downstream side in the casing, and a flow hole through which exhaust gas flows is provided substantially at the center. An exhaust gas purification apparatus for an internal combustion engine as described.
JP2006314075A 2006-11-21 2006-11-21 Exhaust emission control device for internal combustion engine Withdrawn JP2008128093A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006314075A JP2008128093A (en) 2006-11-21 2006-11-21 Exhaust emission control device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006314075A JP2008128093A (en) 2006-11-21 2006-11-21 Exhaust emission control device for internal combustion engine

Publications (1)

Publication Number Publication Date
JP2008128093A true JP2008128093A (en) 2008-06-05

Family

ID=39554196

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006314075A Withdrawn JP2008128093A (en) 2006-11-21 2006-11-21 Exhaust emission control device for internal combustion engine

Country Status (1)

Country Link
JP (1) JP2008128093A (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010116859A (en) * 2008-11-13 2010-05-27 Mitsubishi Fuso Truck & Bus Corp Exhaust emission control device
JP2011528088A (en) * 2009-09-18 2011-11-10 クワン ソン カンパニー リミテッド SCR system with bypass system
JP2012127232A (en) * 2010-12-14 2012-07-05 Ud Trucks Corp Exhaust pipe structure for exhaust emission control device
WO2012164722A1 (en) * 2011-06-02 2012-12-06 トヨタ自動車株式会社 Exhaust purification device for internal combustion engine
CN102933810A (en) * 2010-04-05 2013-02-13 卡特彼勒公司 Ring reductant mixer
US8499548B2 (en) 2008-12-17 2013-08-06 Donaldson Company, Inc. Flow device for an exhaust system
US8539761B2 (en) 2010-01-12 2013-09-24 Donaldson Company, Inc. Flow device for exhaust treatment system
US8915064B2 (en) 2007-05-15 2014-12-23 Donaldson Company, Inc. Exhaust gas flow device
US8938954B2 (en) 2012-04-19 2015-01-27 Donaldson Company, Inc. Integrated exhaust treatment device having compact configuration
KR101669008B1 (en) 2015-06-03 2016-10-25 주식회사 덱코 Apparatus for mixing gas of engine device
US9670811B2 (en) 2010-06-22 2017-06-06 Donaldson Company, Inc. Dosing and mixing arrangement for use in exhaust aftertreatment
US9707525B2 (en) 2013-02-15 2017-07-18 Donaldson Company, Inc. Dosing and mixing arrangement for use in exhaust aftertreatment
KR20200071532A (en) * 2018-12-11 2020-06-19 (유)태신 An apparatus for reducing nitrogen oxide
CN112324540A (en) * 2020-09-28 2021-02-05 秦克红 Cylinder SCR catalytic converter

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8915064B2 (en) 2007-05-15 2014-12-23 Donaldson Company, Inc. Exhaust gas flow device
JP2010116859A (en) * 2008-11-13 2010-05-27 Mitsubishi Fuso Truck & Bus Corp Exhaust emission control device
US9180407B2 (en) 2008-12-17 2015-11-10 Donaldson Company, Inc. Flow device for an exhaust system
US9925502B2 (en) 2008-12-17 2018-03-27 Donaldson Company, Inc. Flow device for an exhaust system
US8499548B2 (en) 2008-12-17 2013-08-06 Donaldson Company, Inc. Flow device for an exhaust system
JP2011528088A (en) * 2009-09-18 2011-11-10 クワン ソン カンパニー リミテッド SCR system with bypass system
JP2013189979A (en) * 2009-09-18 2013-09-26 Kwang Sung Co Ltd Scr system having bypass system
US8539761B2 (en) 2010-01-12 2013-09-24 Donaldson Company, Inc. Flow device for exhaust treatment system
US9810126B2 (en) 2010-01-12 2017-11-07 Donaldson Company, Inc. Flow device for exhaust treatment system
CN102933810A (en) * 2010-04-05 2013-02-13 卡特彼勒公司 Ring reductant mixer
US10968800B2 (en) 2010-06-22 2021-04-06 Donaldson Company, Inc. Dosing and mixing arrangement for use in exhaust aftertreatment
US11608764B2 (en) 2010-06-22 2023-03-21 Donaldson Company, Inc. Dosing and mixing arrangement for use in exhaust aftertreatment
US10294841B2 (en) 2010-06-22 2019-05-21 Donaldson Company, Inc. Dosing and mixing arrangement for use in exhaust aftertreatment
US9670811B2 (en) 2010-06-22 2017-06-06 Donaldson Company, Inc. Dosing and mixing arrangement for use in exhaust aftertreatment
JP2012127232A (en) * 2010-12-14 2012-07-05 Ud Trucks Corp Exhaust pipe structure for exhaust emission control device
JPWO2012164722A1 (en) * 2011-06-02 2014-07-31 トヨタ自動車株式会社 Exhaust gas purification device for internal combustion engine
WO2012164722A1 (en) * 2011-06-02 2012-12-06 トヨタ自動車株式会社 Exhaust purification device for internal combustion engine
US9598999B2 (en) 2012-04-19 2017-03-21 Donaldson Company, Inc. Integrated exhaust treatment device having compact configuration
US10533477B2 (en) 2012-04-19 2020-01-14 Donaldson Company, Inc. Integrated exhaust treatment device having compact configuration
US9458750B2 (en) 2012-04-19 2016-10-04 Donaldson Company, Inc. Integrated exhaust treatment device having compact configuration
US8938954B2 (en) 2012-04-19 2015-01-27 Donaldson Company, Inc. Integrated exhaust treatment device having compact configuration
US9707525B2 (en) 2013-02-15 2017-07-18 Donaldson Company, Inc. Dosing and mixing arrangement for use in exhaust aftertreatment
US10245564B2 (en) 2013-02-15 2019-04-02 Donaldson Company, Inc. Dosing and mixing arrangement for use in exhaust aftertreatment
US10603642B2 (en) 2013-02-15 2020-03-31 Donaldson Company, Inc. Dosing and mixing arrangement for use in exhaust aftertreatment
US11110406B2 (en) 2013-02-15 2021-09-07 Donaldson Company, Inc. Dosing and mixing arrangement for use in exhaust aftertreatment
KR101669008B1 (en) 2015-06-03 2016-10-25 주식회사 덱코 Apparatus for mixing gas of engine device
KR20200071532A (en) * 2018-12-11 2020-06-19 (유)태신 An apparatus for reducing nitrogen oxide
KR102232267B1 (en) 2018-12-11 2021-03-24 (유)태신 An apparatus for reducing nitrogen oxide
CN112324540A (en) * 2020-09-28 2021-02-05 秦克红 Cylinder SCR catalytic converter

Similar Documents

Publication Publication Date Title
JP2008128093A (en) Exhaust emission control device for internal combustion engine
JP4869161B2 (en) Exhaust gas purification device for internal combustion engine
JP5244334B2 (en) Exhaust gas purification device for internal combustion engine
JP4949152B2 (en) Exhaust gas purification device for internal combustion engine
US7992379B2 (en) Exhaust purification device for engine
JP5090890B2 (en) Engine exhaust purification system
JP5602495B2 (en) Exhaust gas purification device
JP5610120B2 (en) Engine exhaust purification system
JP2011099390A (en) Exhaust emission control device of engine
US8505277B2 (en) System and methods for controlling selective catalytic reduction systems
JP4450257B2 (en) Exhaust purification device
JP2009236013A (en) Exhaust purification device for internal combustion engine
EP3047123B1 (en) Exhaust treatment apparatus and vehicle comprising the same
JP2008127998A (en) Exhaust emission control device of internal combustion engine
WO2011108024A1 (en) Exhaust emission control device for internal combustion engine
GB2512896A (en) A mixer module and an emissions cleaning module
US20190120110A1 (en) Exhaust purification system
JP2009068424A (en) Internal combustion engine with nox reduction catalyst
EP3354873B1 (en) System for reducing harmful emissions of an internal combustion engine
US20110203270A1 (en) Internal combustion engine system and particulate filter unit for such an internal combustion engine system
US8215294B2 (en) Method and system for controlling an engine during diesel particulate filter regeneration warm-up
JP2009097436A (en) Exhaust emission control device of internal combustion engine
JP2011099416A (en) Exhaust emission control device for engine
JP2008127997A (en) Exhaust emission control device of internal combustion engine
WO2014125870A1 (en) Engine exhaust-gas purification device

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20100202