JP2008125310A - Switching power supply - Google Patents

Switching power supply Download PDF

Info

Publication number
JP2008125310A
JP2008125310A JP2006308752A JP2006308752A JP2008125310A JP 2008125310 A JP2008125310 A JP 2008125310A JP 2006308752 A JP2006308752 A JP 2006308752A JP 2006308752 A JP2006308752 A JP 2006308752A JP 2008125310 A JP2008125310 A JP 2008125310A
Authority
JP
Japan
Prior art keywords
power supply
current
series
blocking filter
switch elements
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006308752A
Other languages
Japanese (ja)
Inventor
Sakae Shibazaki
栄 柴崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2006308752A priority Critical patent/JP2008125310A/en
Publication of JP2008125310A publication Critical patent/JP2008125310A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Rectifiers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To reduce the size and the cost of an input filter in a high power factor switching power supply (PFC), and to reduce a total loss of the power supply caused by a current. <P>SOLUTION: The switching power supply controls high frequency components of an AC current on the output side of a high band blocking filter to flow with timing shifted by adding another pair of two series switch elements and a current detection element and a boosting choke to the output of a DC output smoothing capacitor and the high band blocking filter. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は交流電源を入力とする高力率形スイッチング電源装置(以下PFC)の改善に関するものである。   The present invention relates to an improvement of a high power factor type switching power supply (hereinafter referred to as PFC) using an AC power supply as an input.

従来のPFCとして図2、図3に示すような回路方式がある。
図2はスイッチ素子を縦に2つ直列に接続した(以下アーム)もので、図3はスイッチ素子を横に2つ配置したものである。
As a conventional PFC, there are circuit systems as shown in FIGS.
FIG. 2 shows two switch elements connected in series vertically (hereinafter referred to as an arm), and FIG. 3 shows two switch elements arranged horizontally.

図2の回路では、入力電圧が正の時に下側のスイッチ素子Q2がスイッチング動作を行ない、入力電圧が負の時に上側のスイッチ素子Q1がスイッチング動作を行なう。図3の回路では、2つのスイッチ素子Q1,Q2が同じタイミングでスイッチング動作を行なう。   In the circuit of FIG. 2, the lower switch element Q2 performs a switching operation when the input voltage is positive, and the upper switch element Q1 performs a switching operation when the input voltage is negative. In the circuit of FIG. 3, the two switch elements Q1 and Q2 perform the switching operation at the same timing.

図2と図3の回路の動作原理はほとんど同じであるが、図2の回路方式と比較して、図3の回路方式の方が制御回路を簡素化できる。また、図2の回路方式は、アーム上側のスイッチ素子のドライブ回路のためにグランドから絶縁された電源が必要になるが、図3の回路方式は2つのスイッチ素子の片側がグランドで共通にできるためドライブ回路を簡素化できる。そのため、低コスト化が図れる図3の回路方式を採用する場合が多い。   The operation principle of the circuits of FIGS. 2 and 3 is almost the same, but the control circuit can be simplified in the circuit system of FIG. 3 compared to the circuit system of FIG. 2 requires a power supply insulated from the ground for the drive circuit of the switch element on the upper side of the arm, but the circuit system of FIG. 3 can share one side of the two switch elements with the ground. Therefore, the drive circuit can be simplified. For this reason, the circuit system shown in FIG. 3 that can reduce the cost is often employed.

図2、図3の回路方式では、高域阻止フィルタを小型化するため、入力電流の高周波分を低減するには、スイッチング周波数を上げるか、昇圧チョークの大型化をする必要があった。スイッチング周波数を上げる場合はスイッチング損による効率の低下という問題があり、昇圧チョークの大型化は装置の大型化とコストの増大という問題があった。   In the circuit systems of FIGS. 2 and 3, in order to reduce the size of the high-frequency blocking filter, it is necessary to increase the switching frequency or increase the size of the boost choke in order to reduce the high frequency component of the input current. When the switching frequency is increased, there is a problem that efficiency is lowered due to switching loss, and an increase in the size of the boosting choke has a problem that the apparatus is increased in size and cost.

また、採用事例の多い図3の回路方式では、電流の高周波分をタイミングがずれて流れるように制御すること(以下リンターリーブ方式)が難しいという問題もあった。   Further, in the circuit system shown in FIG. 3 in which many examples are adopted, there is a problem that it is difficult to control the high frequency component of the current so that it flows at a shifted timing (hereinafter referred to as a linterleave system).

本発明は上記課題を鑑みて、採用事例の少ない図2の回路方式を発展させたスイッチ電源装置を提供することを目的とするものである。   The present invention has been made in view of the above problems, and an object of the present invention is to provide a switch power supply apparatus in which the circuit system shown in FIG.

上記した目的を達成するため、本発明は、交流電源を入力とし、直流電圧を出力するコンバータであり、高域阻止フィルタを介して交流電源に電流検出素子と昇圧チョークを直列接続し、上記直流電圧出力の正負極に平滑用コンデンサを接続し、上記平滑用コンデンサに2つ直列のスイッチ素子を並列接続し、上記平滑用コンデンサに2つ直列のダイオードを並列接続し、上記高域阻止フィルタを介して交流電源と電流検出素子と昇圧チョークを直列接続したものを、上記2つ直列のスイッチ素子の間と上記2つ直列のダイオードの間に接続し、上記高域阻止フィルタを介して交流電源の電流波形が正弦波状になるように上記2つのスイッチ素子が制御されるスイッチング電源装置において、上記直流出力の平滑用コンデンサと上記高域阻止フィルタの出力に、もう一対の2つ直列のスイッチ素子と電流検出素子と昇圧チョークを追加することによって、上記高域阻止フィルタの出力側の交流電流の高周波分をタイミングがずれて流れるように制御することを特徴とする。   In order to achieve the above-described object, the present invention is a converter that takes an AC power supply as an input and outputs a DC voltage. A current detection element and a boost choke are connected in series to the AC power supply via a high-frequency blocking filter, and A smoothing capacitor is connected to the positive and negative electrodes of the voltage output, two series switch elements are connected in parallel to the smoothing capacitor, two series diodes are connected in parallel to the smoothing capacitor, and the high-frequency blocking filter is connected to the smoothing capacitor. An AC power source, a current detection element, and a boost choke connected in series are connected between the two series switch elements and between the two series diodes, and the AC power source via the high-frequency blocking filter. In the switching power supply apparatus in which the two switch elements are controlled so that the current waveform of the DC current is sinusoidal, the DC output smoothing capacitor and the high-frequency blocking By adding another pair of two series switch elements, a current detection element, and a boost choke to the output of the filter, control is performed so that the high-frequency component of the AC current on the output side of the high-frequency blocking filter flows at a time offset. It is characterized by doing.

本発明によれば、高域阻止フィルタの小型化・低コスト化を達成し、且つ、スイッチ素子と昇圧チョークに流れる電流によって発生する損失を低減できる。   According to the present invention, it is possible to reduce the size and cost of the high-frequency blocking filter, and to reduce the loss caused by the current flowing through the switch element and the boost choke.

図1に本発明を実施するための回路図を示す。
交流電源1は高域阻止フィルタ2を介し、一端は、2対の電流検出素子3と昇圧チョーク4に接続される。昇圧チョーク4は、2対のアームの中間点に接続され、2対のアームは直流出力に接続された平滑用コンデンサ7に並列接続される。
FIG. 1 shows a circuit diagram for carrying out the present invention.
The AC power source 1 is connected to two pairs of current detection elements 3 and a boost choke 4 through a high-frequency blocking filter 2. The step-up choke 4 is connected to an intermediate point between two pairs of arms, and the two pairs of arms are connected in parallel to a smoothing capacitor 7 connected to a DC output.

上記高域阻止フィルタ2のもう一端は、2つ直列接続された整流ダイオード6の中間点に接続される。2つ直列接続された整流ダイオード6は上記平滑用コンデンサ7に並列接続される。上記直流出力に接続された平滑用コンデンサ7には電気的負荷8が接続される。   The other end of the high-pass blocking filter 2 is connected to the midpoint of two rectifier diodes 6 connected in series. Two rectifier diodes 6 connected in series are connected in parallel to the smoothing capacitor 7. An electrical load 8 is connected to the smoothing capacitor 7 connected to the DC output.

直流出力電圧を誤差増幅器9によって基準電圧Vref18との電圧の誤差分を増幅・積分し、乗算器10によって入力電圧の全波整流信号との乗算を行ない電流基準信号Irefを出力する。上記電流基準信号Irefは2つのアームの共通の信号となり、このIrefに追従するように2つの昇圧チョーク4の電流を制御する。   The DC output voltage is amplified and integrated by the error amplifier 9 with respect to the voltage error from the reference voltage Vref18, and the multiplier 10 multiplies the input voltage by the full-wave rectified signal to output a current reference signal Iref. The current reference signal Iref is a signal common to the two arms, and the currents of the two boost chokes 4 are controlled so as to follow the Iref.

そのため、以降の制御はアームごとに、電流検出素子3によって検出された入力電流Iin1・Iin2の全波整流信号と上記電流基準信号Irefを誤差増幅器9によって電流の誤差分を増幅・積分し、2つの電流の誤差増幅器9の信号を作る。のこぎり波発振器14と、位相を180°ずらしたのこぎり波発振器15により、上記2つの電流の誤差増幅器9の信号をコンパレータ12によってPWM変調を行なう。   Therefore, in the subsequent control, the full-wave rectified signal of the input currents Iin1 and Iin2 detected by the current detection element 3 and the current reference signal Iref are amplified and integrated by the error amplifier 9 for each arm. The signal of the error amplifier 9 of two currents is made. The signal of the two current error amplifiers 9 is PWM-modulated by the comparator 12 by the sawtooth wave oscillator 14 and the sawtooth wave oscillator 15 whose phase is shifted by 180 °.

入力電圧が正の期間はアームの下側のスイッチ素子5をスイッチング動作し、入力電圧が負の期間はアームの上側のスイッチ素子5をスイッチング動作させる。   When the input voltage is positive, the switching element 5 on the lower side of the arm is switched, and when the input voltage is negative, the switching element 5 on the upper side of the arm is switched.

また、のこぎり波発振器の波形形状は3角波でも問題無く動作する。   In addition, even if the waveform shape of the sawtooth wave oscillator is a triangular wave, it operates without any problem.

本発明において整流ダイオード6をスイッチ素子5に置きかえる場合の回路図を図4に示す。入力電圧が正の期間はアームの下側のスイッチ素子5をオンし、入力電圧が負の期間はアームの上側のスイッチ素子5をオンさせる。計6つのスイッチ素子5は3相フルブリッジの接続と同じ構成になっているため、3相ブリッジのモジュールをそのまま使用できる利点がある。   FIG. 4 shows a circuit diagram when the rectifier diode 6 is replaced with the switch element 5 in the present invention. When the input voltage is positive, the switch element 5 on the lower side of the arm is turned on, and when the input voltage is negative, the switch element 5 on the upper side of the arm is turned on. Since a total of six switch elements 5 have the same configuration as the connection of a three-phase full bridge, there is an advantage that a three-phase bridge module can be used as it is.

本発明の実施の形態に係るスイッチング電源装置を示す回路図である。It is a circuit diagram which shows the switching power supply device which concerns on embodiment of this invention. 従来のスイッチング電源装置であって、スイッチ素子を縦に2つ直列に接続したPFCの回路図である。FIG. 6 is a circuit diagram of a conventional switching power supply device, which is a PFC in which two switch elements are connected in series vertically. 従来のスイッチング電源装置であって、スイッチ素子を横に2つ配置したPFCの回路図である。FIG. 6 is a circuit diagram of a conventional switching power supply device and a PFC in which two switch elements are arranged horizontally. 本発明の別の実施の形態に係るスイッチング電源装置であって、図1の整流ダイオード6をスイッチ素子5に置き換えた時の回路図である。FIG. 5 is a circuit diagram of a switching power supply device according to another embodiment of the present invention, in which the rectifier diode 6 of FIG. 図1の回路方式において、スイッチング周波数を低くした場合の昇圧チョークのリップル電流波形を示す図である。FIG. 2 is a diagram showing a ripple current waveform of a boost choke when the switching frequency is lowered in the circuit system of FIG. 1. 図2及び図3の従来の回路方式における昇圧チョークの電流波形を示す図である。It is a figure which shows the current waveform of the pressure | voltage rise choke in the conventional circuit system of FIG.2 and FIG.3.

符号の説明Explanation of symbols

1 交流電源
2 高域阻止フィルタ
3 電流検出素子
4 昇圧チョーク
5 スイッチ素子
6 整流ダイオード
7 平滑用コンデンサ
8 電気的負荷
9 誤差増幅器
10 乗算回路
11 絶対値演算回路
12 コンパレータ
13 NOT論理回路
14 のこぎり波発振器
15 のこぎり波発振器14より位相を180°ずらしたのこぎり波発振器
16 AND論理回路
17 差動増幅器
18 基準電圧Vref
DESCRIPTION OF SYMBOLS 1 AC power supply 2 High frequency block filter 3 Current detection element 4 Boost choke 5 Switch element 6 Rectifier diode 7 Smoothing capacitor 8 Electrical load 9 Error amplifier 10 Multiplication circuit 11 Absolute value calculation circuit 12 Comparator 13 NOT logic circuit 14 Saw wave oscillator 15 sawtooth wave oscillator 16 with phase shifted by 180 ° from sawtooth wave oscillator 14 AND logic circuit 17 differential amplifier 18 reference voltage Vref

Claims (1)

交流電源を入力とし、直流電圧を出力するコンバータであり、高域阻止フィルタを介して交流電源に電流検出素子と昇圧チョークを直列接続し、上記直流電圧出力の正負極に平滑用コンデンサを接続し、上記平滑用コンデンサに2つ直列のスイッチ素子を並列接続し、上記平滑用コンデンサに2つ直列のダイオードを並列接続し、上記高域阻止フィルタを介して交流電源と電流検出素子と昇圧チョークを直列接続したものを、上記2つ直列のスイッチ素子の間と上記2つ直列のダイオードの間に接続し、上記高域阻止フィルタを介して交流電源の電流波形が正弦波状になるように上記2つのスイッチ素子が制御されるスイッチング電源装置において、
上記直流出力の平滑用コンデンサと上記高域阻止フィルタの出力に、もう一対の2つ直列のスイッチ素子と電流検出素子と昇圧チョークを追加することによって、上記高域阻止フィルタの出力側の交流電流の高周波分をタイミングがずれて流れるように制御することを特徴とするスイッチング電源装置。
This converter uses an AC power supply as an input and outputs a DC voltage. A current detection element and a boost choke are connected in series to the AC power supply via a high-frequency blocking filter, and a smoothing capacitor is connected to the positive and negative electrodes of the DC voltage output. Two series switch elements are connected in parallel to the smoothing capacitor, two series diodes are connected in parallel to the smoothing capacitor, and an AC power source, a current detection element, and a boost choke are connected via the high-frequency blocking filter. Those connected in series are connected between the two series switch elements and between the two series diodes, and the current waveform of the AC power source is made sinusoidal via the high-frequency blocking filter. In a switching power supply in which two switch elements are controlled,
By adding another pair of two series switch elements, a current detection element, and a boosting choke to the output of the DC output smoothing capacitor and the high-frequency blocking filter, an AC current on the output side of the high-frequency blocking filter is obtained. The switching power supply device is characterized in that the high frequency component of the current is controlled so as to flow out of timing.
JP2006308752A 2006-11-15 2006-11-15 Switching power supply Pending JP2008125310A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006308752A JP2008125310A (en) 2006-11-15 2006-11-15 Switching power supply

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006308752A JP2008125310A (en) 2006-11-15 2006-11-15 Switching power supply

Publications (1)

Publication Number Publication Date
JP2008125310A true JP2008125310A (en) 2008-05-29

Family

ID=39509492

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006308752A Pending JP2008125310A (en) 2006-11-15 2006-11-15 Switching power supply

Country Status (1)

Country Link
JP (1) JP2008125310A (en)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011142726A (en) * 2010-01-06 2011-07-21 Logah Technology Corp Interleave bridgeless power factor corrector and method of controlling the same
CN102185504A (en) * 2011-05-17 2011-09-14 成都芯源系统有限公司 Power supply circuit and method for controlling power supply circuit
WO2012120788A1 (en) * 2011-03-07 2012-09-13 パナソニック株式会社 Boost pfc control device
CN102857128A (en) * 2011-06-30 2013-01-02 海洋王照明科技股份有限公司 AC (alternating-current) and DC (direct-current) conversion circuit
WO2013071975A1 (en) * 2011-11-17 2013-05-23 Alstom Technology Ltd Hybrid ac/dc converter for hvdc applications
JP2015023606A (en) * 2013-07-16 2015-02-02 新電元工業株式会社 Power-factor correction circuit
US9065299B2 (en) 2010-06-18 2015-06-23 Alstom Technology Ltd Converter for HVDC transmission and reactive power compensation
US9130458B2 (en) 2010-03-15 2015-09-08 Alstom Technology Ltd. Static VAR compensator with multilevel converter
US9209693B2 (en) 2011-11-07 2015-12-08 Alstom Technology Ltd Control circuit for DC network to maintain zero net change in energy level
US9350269B2 (en) 2009-07-31 2016-05-24 Alstom Technology Ltd. Configurable hybrid converter circuit
US9350250B2 (en) 2011-06-08 2016-05-24 Alstom Technology Ltd. High voltage DC/DC converter with cascaded resonant tanks
US9479061B2 (en) 2011-08-01 2016-10-25 Alstom Technology Ltd. DC to DC converter assembly
EP2741414A3 (en) * 2012-12-07 2017-08-30 General Electric Company System and Method for Optimization of Dual Bridge Doubly Fed Induction Generator (DFIG)
JP2018019489A (en) * 2016-07-27 2018-02-01 新電元工業株式会社 Electric power supply and control method of electric power supply
JP2018064335A (en) * 2016-10-11 2018-04-19 新電元工業株式会社 Power supply device and method for controlling the same
US9954358B2 (en) 2012-03-01 2018-04-24 General Electric Technology Gmbh Control circuit
JP2018157714A (en) * 2017-03-21 2018-10-04 Necプラットフォームズ株式会社 Power factor improvement circuit, power factor improvement system, method of controlling power factor improvement system and program
JP2019022396A (en) * 2017-07-20 2019-02-07 新電元工業株式会社 Power-factor improvement circuit and control method of the same
US11189439B2 (en) 2017-08-04 2021-11-30 Mitsubishi Electric Corporation Power converting apparatus, motor drive apparatus, and air conditioner

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001186768A (en) * 1999-12-24 2001-07-06 Mitsubishi Electric Corp Dc power source unit
JP2002153067A (en) * 2000-11-08 2002-05-24 Origin Electric Co Ltd High power factor converter and method of controlling the same
JP2006136046A (en) * 2004-11-02 2006-05-25 Foster Electric Co Ltd Power factor improving device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001186768A (en) * 1999-12-24 2001-07-06 Mitsubishi Electric Corp Dc power source unit
JP2002153067A (en) * 2000-11-08 2002-05-24 Origin Electric Co Ltd High power factor converter and method of controlling the same
JP2006136046A (en) * 2004-11-02 2006-05-25 Foster Electric Co Ltd Power factor improving device

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9350269B2 (en) 2009-07-31 2016-05-24 Alstom Technology Ltd. Configurable hybrid converter circuit
JP2011142726A (en) * 2010-01-06 2011-07-21 Logah Technology Corp Interleave bridgeless power factor corrector and method of controlling the same
US9130458B2 (en) 2010-03-15 2015-09-08 Alstom Technology Ltd. Static VAR compensator with multilevel converter
US9490693B2 (en) 2010-06-18 2016-11-08 Alstom Technology Ltd. Converter for HVDC transmission and reactive power compensation
US9065299B2 (en) 2010-06-18 2015-06-23 Alstom Technology Ltd Converter for HVDC transmission and reactive power compensation
WO2012120788A1 (en) * 2011-03-07 2012-09-13 パナソニック株式会社 Boost pfc control device
CN102185504A (en) * 2011-05-17 2011-09-14 成都芯源系统有限公司 Power supply circuit and method for controlling power supply circuit
US9350250B2 (en) 2011-06-08 2016-05-24 Alstom Technology Ltd. High voltage DC/DC converter with cascaded resonant tanks
CN102857128A (en) * 2011-06-30 2013-01-02 海洋王照明科技股份有限公司 AC (alternating-current) and DC (direct-current) conversion circuit
US9509218B2 (en) 2011-08-01 2016-11-29 Alstom Technology Ltd. DC to DC converter assembly
US9479061B2 (en) 2011-08-01 2016-10-25 Alstom Technology Ltd. DC to DC converter assembly
US9209693B2 (en) 2011-11-07 2015-12-08 Alstom Technology Ltd Control circuit for DC network to maintain zero net change in energy level
WO2013071975A1 (en) * 2011-11-17 2013-05-23 Alstom Technology Ltd Hybrid ac/dc converter for hvdc applications
US9362848B2 (en) 2011-11-17 2016-06-07 Alstom Technology Ltd. Hybrid AC/DC converter for HVDC applications
CN103959634A (en) * 2011-11-17 2014-07-30 阿尔斯通技术有限公司 Hybrid AC/DC converter for HVDC applications
US9954358B2 (en) 2012-03-01 2018-04-24 General Electric Technology Gmbh Control circuit
EP2741414A3 (en) * 2012-12-07 2017-08-30 General Electric Company System and Method for Optimization of Dual Bridge Doubly Fed Induction Generator (DFIG)
JP2015023606A (en) * 2013-07-16 2015-02-02 新電元工業株式会社 Power-factor correction circuit
JP2018019489A (en) * 2016-07-27 2018-02-01 新電元工業株式会社 Electric power supply and control method of electric power supply
JP2018064335A (en) * 2016-10-11 2018-04-19 新電元工業株式会社 Power supply device and method for controlling the same
JP2018157714A (en) * 2017-03-21 2018-10-04 Necプラットフォームズ株式会社 Power factor improvement circuit, power factor improvement system, method of controlling power factor improvement system and program
JP2019022396A (en) * 2017-07-20 2019-02-07 新電元工業株式会社 Power-factor improvement circuit and control method of the same
US11189439B2 (en) 2017-08-04 2021-11-30 Mitsubishi Electric Corporation Power converting apparatus, motor drive apparatus, and air conditioner

Similar Documents

Publication Publication Date Title
JP2008125310A (en) Switching power supply
US8094473B2 (en) Bridgeless power factor correction circuit
JP4669723B2 (en) Electric motor control device
TWI442681B (en) Power factor correction circuit for estimating input current and its control method
JP2008113514A (en) Power supply circuit and control circuit therewith
CN102484425A (en) Pfc converter
JP2005110434A (en) Power factor improvement circuit
TWI499183B (en) Power factor correction circuit of power converter
JP2006025579A (en) Power circuit
JP2012085489A (en) Switching power supply device
JP2008125313A (en) Switching power supply
CN111213311B (en) AC-AC converter circuit
JP6911677B2 (en) AC-DC converter
JP4450169B2 (en) Switching power supply
JP2010246204A (en) Dc power supply device and refrigerator with the same
JP2005218224A (en) Power factor improving circuit
JP5958153B2 (en) DC power supply
JP5004559B2 (en) Switching power supply
KR101609726B1 (en) Control circuit of switching rectifier with high power factor
TWI524647B (en) Multilevel ac/dc power converting method and converter device thereof
WO2011058665A1 (en) Power conversion device
JP2009273242A (en) Dc power unit and air conditioner having the same
KR101954636B1 (en) Simple control circuit of switching rectifier with high power factor
JP4931558B2 (en) Switching power supply
Heldwein et al. Single-phase pwm boost-type unidirectional rectifier doubling the switching frequency

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090525

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110912

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110920

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111129

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120515