JP2008125310A - Switching power supply - Google Patents
Switching power supply Download PDFInfo
- Publication number
- JP2008125310A JP2008125310A JP2006308752A JP2006308752A JP2008125310A JP 2008125310 A JP2008125310 A JP 2008125310A JP 2006308752 A JP2006308752 A JP 2006308752A JP 2006308752 A JP2006308752 A JP 2006308752A JP 2008125310 A JP2008125310 A JP 2008125310A
- Authority
- JP
- Japan
- Prior art keywords
- power supply
- current
- series
- blocking filter
- switch elements
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Rectifiers (AREA)
Abstract
Description
本発明は交流電源を入力とする高力率形スイッチング電源装置(以下PFC)の改善に関するものである。 The present invention relates to an improvement of a high power factor type switching power supply (hereinafter referred to as PFC) using an AC power supply as an input.
従来のPFCとして図2、図3に示すような回路方式がある。
図2はスイッチ素子を縦に2つ直列に接続した(以下アーム)もので、図3はスイッチ素子を横に2つ配置したものである。
As a conventional PFC, there are circuit systems as shown in FIGS.
FIG. 2 shows two switch elements connected in series vertically (hereinafter referred to as an arm), and FIG. 3 shows two switch elements arranged horizontally.
図2の回路では、入力電圧が正の時に下側のスイッチ素子Q2がスイッチング動作を行ない、入力電圧が負の時に上側のスイッチ素子Q1がスイッチング動作を行なう。図3の回路では、2つのスイッチ素子Q1,Q2が同じタイミングでスイッチング動作を行なう。 In the circuit of FIG. 2, the lower switch element Q2 performs a switching operation when the input voltage is positive, and the upper switch element Q1 performs a switching operation when the input voltage is negative. In the circuit of FIG. 3, the two switch elements Q1 and Q2 perform the switching operation at the same timing.
図2と図3の回路の動作原理はほとんど同じであるが、図2の回路方式と比較して、図3の回路方式の方が制御回路を簡素化できる。また、図2の回路方式は、アーム上側のスイッチ素子のドライブ回路のためにグランドから絶縁された電源が必要になるが、図3の回路方式は2つのスイッチ素子の片側がグランドで共通にできるためドライブ回路を簡素化できる。そのため、低コスト化が図れる図3の回路方式を採用する場合が多い。 The operation principle of the circuits of FIGS. 2 and 3 is almost the same, but the control circuit can be simplified in the circuit system of FIG. 3 compared to the circuit system of FIG. 2 requires a power supply insulated from the ground for the drive circuit of the switch element on the upper side of the arm, but the circuit system of FIG. 3 can share one side of the two switch elements with the ground. Therefore, the drive circuit can be simplified. For this reason, the circuit system shown in FIG. 3 that can reduce the cost is often employed.
図2、図3の回路方式では、高域阻止フィルタを小型化するため、入力電流の高周波分を低減するには、スイッチング周波数を上げるか、昇圧チョークの大型化をする必要があった。スイッチング周波数を上げる場合はスイッチング損による効率の低下という問題があり、昇圧チョークの大型化は装置の大型化とコストの増大という問題があった。 In the circuit systems of FIGS. 2 and 3, in order to reduce the size of the high-frequency blocking filter, it is necessary to increase the switching frequency or increase the size of the boost choke in order to reduce the high frequency component of the input current. When the switching frequency is increased, there is a problem that efficiency is lowered due to switching loss, and an increase in the size of the boosting choke has a problem that the apparatus is increased in size and cost.
また、採用事例の多い図3の回路方式では、電流の高周波分をタイミングがずれて流れるように制御すること(以下リンターリーブ方式)が難しいという問題もあった。 Further, in the circuit system shown in FIG. 3 in which many examples are adopted, there is a problem that it is difficult to control the high frequency component of the current so that it flows at a shifted timing (hereinafter referred to as a linterleave system).
本発明は上記課題を鑑みて、採用事例の少ない図2の回路方式を発展させたスイッチ電源装置を提供することを目的とするものである。 The present invention has been made in view of the above problems, and an object of the present invention is to provide a switch power supply apparatus in which the circuit system shown in FIG.
上記した目的を達成するため、本発明は、交流電源を入力とし、直流電圧を出力するコンバータであり、高域阻止フィルタを介して交流電源に電流検出素子と昇圧チョークを直列接続し、上記直流電圧出力の正負極に平滑用コンデンサを接続し、上記平滑用コンデンサに2つ直列のスイッチ素子を並列接続し、上記平滑用コンデンサに2つ直列のダイオードを並列接続し、上記高域阻止フィルタを介して交流電源と電流検出素子と昇圧チョークを直列接続したものを、上記2つ直列のスイッチ素子の間と上記2つ直列のダイオードの間に接続し、上記高域阻止フィルタを介して交流電源の電流波形が正弦波状になるように上記2つのスイッチ素子が制御されるスイッチング電源装置において、上記直流出力の平滑用コンデンサと上記高域阻止フィルタの出力に、もう一対の2つ直列のスイッチ素子と電流検出素子と昇圧チョークを追加することによって、上記高域阻止フィルタの出力側の交流電流の高周波分をタイミングがずれて流れるように制御することを特徴とする。 In order to achieve the above-described object, the present invention is a converter that takes an AC power supply as an input and outputs a DC voltage. A current detection element and a boost choke are connected in series to the AC power supply via a high-frequency blocking filter, and A smoothing capacitor is connected to the positive and negative electrodes of the voltage output, two series switch elements are connected in parallel to the smoothing capacitor, two series diodes are connected in parallel to the smoothing capacitor, and the high-frequency blocking filter is connected to the smoothing capacitor. An AC power source, a current detection element, and a boost choke connected in series are connected between the two series switch elements and between the two series diodes, and the AC power source via the high-frequency blocking filter. In the switching power supply apparatus in which the two switch elements are controlled so that the current waveform of the DC current is sinusoidal, the DC output smoothing capacitor and the high-frequency blocking By adding another pair of two series switch elements, a current detection element, and a boost choke to the output of the filter, control is performed so that the high-frequency component of the AC current on the output side of the high-frequency blocking filter flows at a time offset. It is characterized by doing.
本発明によれば、高域阻止フィルタの小型化・低コスト化を達成し、且つ、スイッチ素子と昇圧チョークに流れる電流によって発生する損失を低減できる。 According to the present invention, it is possible to reduce the size and cost of the high-frequency blocking filter, and to reduce the loss caused by the current flowing through the switch element and the boost choke.
図1に本発明を実施するための回路図を示す。
交流電源1は高域阻止フィルタ2を介し、一端は、2対の電流検出素子3と昇圧チョーク4に接続される。昇圧チョーク4は、2対のアームの中間点に接続され、2対のアームは直流出力に接続された平滑用コンデンサ7に並列接続される。
FIG. 1 shows a circuit diagram for carrying out the present invention.
The
上記高域阻止フィルタ2のもう一端は、2つ直列接続された整流ダイオード6の中間点に接続される。2つ直列接続された整流ダイオード6は上記平滑用コンデンサ7に並列接続される。上記直流出力に接続された平滑用コンデンサ7には電気的負荷8が接続される。
The other end of the high-
直流出力電圧を誤差増幅器9によって基準電圧Vref18との電圧の誤差分を増幅・積分し、乗算器10によって入力電圧の全波整流信号との乗算を行ない電流基準信号Irefを出力する。上記電流基準信号Irefは2つのアームの共通の信号となり、このIrefに追従するように2つの昇圧チョーク4の電流を制御する。
The DC output voltage is amplified and integrated by the
そのため、以降の制御はアームごとに、電流検出素子3によって検出された入力電流Iin1・Iin2の全波整流信号と上記電流基準信号Irefを誤差増幅器9によって電流の誤差分を増幅・積分し、2つの電流の誤差増幅器9の信号を作る。のこぎり波発振器14と、位相を180°ずらしたのこぎり波発振器15により、上記2つの電流の誤差増幅器9の信号をコンパレータ12によってPWM変調を行なう。
Therefore, in the subsequent control, the full-wave rectified signal of the input currents Iin1 and Iin2 detected by the
入力電圧が正の期間はアームの下側のスイッチ素子5をスイッチング動作し、入力電圧が負の期間はアームの上側のスイッチ素子5をスイッチング動作させる。
When the input voltage is positive, the
また、のこぎり波発振器の波形形状は3角波でも問題無く動作する。 In addition, even if the waveform shape of the sawtooth wave oscillator is a triangular wave, it operates without any problem.
本発明において整流ダイオード6をスイッチ素子5に置きかえる場合の回路図を図4に示す。入力電圧が正の期間はアームの下側のスイッチ素子5をオンし、入力電圧が負の期間はアームの上側のスイッチ素子5をオンさせる。計6つのスイッチ素子5は3相フルブリッジの接続と同じ構成になっているため、3相ブリッジのモジュールをそのまま使用できる利点がある。
FIG. 4 shows a circuit diagram when the
1 交流電源
2 高域阻止フィルタ
3 電流検出素子
4 昇圧チョーク
5 スイッチ素子
6 整流ダイオード
7 平滑用コンデンサ
8 電気的負荷
9 誤差増幅器
10 乗算回路
11 絶対値演算回路
12 コンパレータ
13 NOT論理回路
14 のこぎり波発振器
15 のこぎり波発振器14より位相を180°ずらしたのこぎり波発振器
16 AND論理回路
17 差動増幅器
18 基準電圧Vref
DESCRIPTION OF
Claims (1)
上記直流出力の平滑用コンデンサと上記高域阻止フィルタの出力に、もう一対の2つ直列のスイッチ素子と電流検出素子と昇圧チョークを追加することによって、上記高域阻止フィルタの出力側の交流電流の高周波分をタイミングがずれて流れるように制御することを特徴とするスイッチング電源装置。 This converter uses an AC power supply as an input and outputs a DC voltage. A current detection element and a boost choke are connected in series to the AC power supply via a high-frequency blocking filter, and a smoothing capacitor is connected to the positive and negative electrodes of the DC voltage output. Two series switch elements are connected in parallel to the smoothing capacitor, two series diodes are connected in parallel to the smoothing capacitor, and an AC power source, a current detection element, and a boost choke are connected via the high-frequency blocking filter. Those connected in series are connected between the two series switch elements and between the two series diodes, and the current waveform of the AC power source is made sinusoidal via the high-frequency blocking filter. In a switching power supply in which two switch elements are controlled,
By adding another pair of two series switch elements, a current detection element, and a boosting choke to the output of the DC output smoothing capacitor and the high-frequency blocking filter, an AC current on the output side of the high-frequency blocking filter is obtained. The switching power supply device is characterized in that the high frequency component of the current is controlled so as to flow out of timing.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006308752A JP2008125310A (en) | 2006-11-15 | 2006-11-15 | Switching power supply |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006308752A JP2008125310A (en) | 2006-11-15 | 2006-11-15 | Switching power supply |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2008125310A true JP2008125310A (en) | 2008-05-29 |
Family
ID=39509492
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2006308752A Pending JP2008125310A (en) | 2006-11-15 | 2006-11-15 | Switching power supply |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2008125310A (en) |
Cited By (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011142726A (en) * | 2010-01-06 | 2011-07-21 | Logah Technology Corp | Interleave bridgeless power factor corrector and method of controlling the same |
CN102185504A (en) * | 2011-05-17 | 2011-09-14 | 成都芯源系统有限公司 | Power supply circuit and method for controlling power supply circuit |
WO2012120788A1 (en) * | 2011-03-07 | 2012-09-13 | パナソニック株式会社 | Boost pfc control device |
CN102857128A (en) * | 2011-06-30 | 2013-01-02 | 海洋王照明科技股份有限公司 | AC (alternating-current) and DC (direct-current) conversion circuit |
WO2013071975A1 (en) * | 2011-11-17 | 2013-05-23 | Alstom Technology Ltd | Hybrid ac/dc converter for hvdc applications |
JP2015023606A (en) * | 2013-07-16 | 2015-02-02 | 新電元工業株式会社 | Power-factor correction circuit |
US9065299B2 (en) | 2010-06-18 | 2015-06-23 | Alstom Technology Ltd | Converter for HVDC transmission and reactive power compensation |
US9130458B2 (en) | 2010-03-15 | 2015-09-08 | Alstom Technology Ltd. | Static VAR compensator with multilevel converter |
US9209693B2 (en) | 2011-11-07 | 2015-12-08 | Alstom Technology Ltd | Control circuit for DC network to maintain zero net change in energy level |
US9350269B2 (en) | 2009-07-31 | 2016-05-24 | Alstom Technology Ltd. | Configurable hybrid converter circuit |
US9350250B2 (en) | 2011-06-08 | 2016-05-24 | Alstom Technology Ltd. | High voltage DC/DC converter with cascaded resonant tanks |
US9479061B2 (en) | 2011-08-01 | 2016-10-25 | Alstom Technology Ltd. | DC to DC converter assembly |
EP2741414A3 (en) * | 2012-12-07 | 2017-08-30 | General Electric Company | System and Method for Optimization of Dual Bridge Doubly Fed Induction Generator (DFIG) |
JP2018019489A (en) * | 2016-07-27 | 2018-02-01 | 新電元工業株式会社 | Electric power supply and control method of electric power supply |
JP2018064335A (en) * | 2016-10-11 | 2018-04-19 | 新電元工業株式会社 | Power supply device and method for controlling the same |
US9954358B2 (en) | 2012-03-01 | 2018-04-24 | General Electric Technology Gmbh | Control circuit |
JP2018157714A (en) * | 2017-03-21 | 2018-10-04 | Necプラットフォームズ株式会社 | Power factor improvement circuit, power factor improvement system, method of controlling power factor improvement system and program |
JP2019022396A (en) * | 2017-07-20 | 2019-02-07 | 新電元工業株式会社 | Power-factor improvement circuit and control method of the same |
US11189439B2 (en) | 2017-08-04 | 2021-11-30 | Mitsubishi Electric Corporation | Power converting apparatus, motor drive apparatus, and air conditioner |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001186768A (en) * | 1999-12-24 | 2001-07-06 | Mitsubishi Electric Corp | Dc power source unit |
JP2002153067A (en) * | 2000-11-08 | 2002-05-24 | Origin Electric Co Ltd | High power factor converter and method of controlling the same |
JP2006136046A (en) * | 2004-11-02 | 2006-05-25 | Foster Electric Co Ltd | Power factor improving device |
-
2006
- 2006-11-15 JP JP2006308752A patent/JP2008125310A/en active Pending
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001186768A (en) * | 1999-12-24 | 2001-07-06 | Mitsubishi Electric Corp | Dc power source unit |
JP2002153067A (en) * | 2000-11-08 | 2002-05-24 | Origin Electric Co Ltd | High power factor converter and method of controlling the same |
JP2006136046A (en) * | 2004-11-02 | 2006-05-25 | Foster Electric Co Ltd | Power factor improving device |
Cited By (23)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9350269B2 (en) | 2009-07-31 | 2016-05-24 | Alstom Technology Ltd. | Configurable hybrid converter circuit |
JP2011142726A (en) * | 2010-01-06 | 2011-07-21 | Logah Technology Corp | Interleave bridgeless power factor corrector and method of controlling the same |
US9130458B2 (en) | 2010-03-15 | 2015-09-08 | Alstom Technology Ltd. | Static VAR compensator with multilevel converter |
US9490693B2 (en) | 2010-06-18 | 2016-11-08 | Alstom Technology Ltd. | Converter for HVDC transmission and reactive power compensation |
US9065299B2 (en) | 2010-06-18 | 2015-06-23 | Alstom Technology Ltd | Converter for HVDC transmission and reactive power compensation |
WO2012120788A1 (en) * | 2011-03-07 | 2012-09-13 | パナソニック株式会社 | Boost pfc control device |
CN102185504A (en) * | 2011-05-17 | 2011-09-14 | 成都芯源系统有限公司 | Power supply circuit and method for controlling power supply circuit |
US9350250B2 (en) | 2011-06-08 | 2016-05-24 | Alstom Technology Ltd. | High voltage DC/DC converter with cascaded resonant tanks |
CN102857128A (en) * | 2011-06-30 | 2013-01-02 | 海洋王照明科技股份有限公司 | AC (alternating-current) and DC (direct-current) conversion circuit |
US9509218B2 (en) | 2011-08-01 | 2016-11-29 | Alstom Technology Ltd. | DC to DC converter assembly |
US9479061B2 (en) | 2011-08-01 | 2016-10-25 | Alstom Technology Ltd. | DC to DC converter assembly |
US9209693B2 (en) | 2011-11-07 | 2015-12-08 | Alstom Technology Ltd | Control circuit for DC network to maintain zero net change in energy level |
WO2013071975A1 (en) * | 2011-11-17 | 2013-05-23 | Alstom Technology Ltd | Hybrid ac/dc converter for hvdc applications |
US9362848B2 (en) | 2011-11-17 | 2016-06-07 | Alstom Technology Ltd. | Hybrid AC/DC converter for HVDC applications |
CN103959634A (en) * | 2011-11-17 | 2014-07-30 | 阿尔斯通技术有限公司 | Hybrid AC/DC converter for HVDC applications |
US9954358B2 (en) | 2012-03-01 | 2018-04-24 | General Electric Technology Gmbh | Control circuit |
EP2741414A3 (en) * | 2012-12-07 | 2017-08-30 | General Electric Company | System and Method for Optimization of Dual Bridge Doubly Fed Induction Generator (DFIG) |
JP2015023606A (en) * | 2013-07-16 | 2015-02-02 | 新電元工業株式会社 | Power-factor correction circuit |
JP2018019489A (en) * | 2016-07-27 | 2018-02-01 | 新電元工業株式会社 | Electric power supply and control method of electric power supply |
JP2018064335A (en) * | 2016-10-11 | 2018-04-19 | 新電元工業株式会社 | Power supply device and method for controlling the same |
JP2018157714A (en) * | 2017-03-21 | 2018-10-04 | Necプラットフォームズ株式会社 | Power factor improvement circuit, power factor improvement system, method of controlling power factor improvement system and program |
JP2019022396A (en) * | 2017-07-20 | 2019-02-07 | 新電元工業株式会社 | Power-factor improvement circuit and control method of the same |
US11189439B2 (en) | 2017-08-04 | 2021-11-30 | Mitsubishi Electric Corporation | Power converting apparatus, motor drive apparatus, and air conditioner |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2008125310A (en) | Switching power supply | |
US8094473B2 (en) | Bridgeless power factor correction circuit | |
JP4669723B2 (en) | Electric motor control device | |
TWI442681B (en) | Power factor correction circuit for estimating input current and its control method | |
JP2008113514A (en) | Power supply circuit and control circuit therewith | |
CN102484425A (en) | Pfc converter | |
JP2005110434A (en) | Power factor improvement circuit | |
TWI499183B (en) | Power factor correction circuit of power converter | |
JP2006025579A (en) | Power circuit | |
JP2012085489A (en) | Switching power supply device | |
JP2008125313A (en) | Switching power supply | |
CN111213311B (en) | AC-AC converter circuit | |
JP6911677B2 (en) | AC-DC converter | |
JP4450169B2 (en) | Switching power supply | |
JP2010246204A (en) | Dc power supply device and refrigerator with the same | |
JP2005218224A (en) | Power factor improving circuit | |
JP5958153B2 (en) | DC power supply | |
JP5004559B2 (en) | Switching power supply | |
KR101609726B1 (en) | Control circuit of switching rectifier with high power factor | |
TWI524647B (en) | Multilevel ac/dc power converting method and converter device thereof | |
WO2011058665A1 (en) | Power conversion device | |
JP2009273242A (en) | Dc power unit and air conditioner having the same | |
KR101954636B1 (en) | Simple control circuit of switching rectifier with high power factor | |
JP4931558B2 (en) | Switching power supply | |
Heldwein et al. | Single-phase pwm boost-type unidirectional rectifier doubling the switching frequency |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20090525 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20110912 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20110920 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20111129 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20120515 |