JP2008122741A - Substrate for optical element - Google Patents

Substrate for optical element Download PDF

Info

Publication number
JP2008122741A
JP2008122741A JP2006307477A JP2006307477A JP2008122741A JP 2008122741 A JP2008122741 A JP 2008122741A JP 2006307477 A JP2006307477 A JP 2006307477A JP 2006307477 A JP2006307477 A JP 2006307477A JP 2008122741 A JP2008122741 A JP 2008122741A
Authority
JP
Japan
Prior art keywords
optical element
optical
groove
substrate
wiring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006307477A
Other languages
Japanese (ja)
Other versions
JP2008122741A5 (en
JP4986581B2 (en
Inventor
Masaru Takagi
優 高木
Toshikazu Horio
俊和 堀尾
Takeshi Ono
猛 大野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Niterra Co Ltd
Original Assignee
NGK Spark Plug Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Spark Plug Co Ltd filed Critical NGK Spark Plug Co Ltd
Priority to JP2006307477A priority Critical patent/JP4986581B2/en
Publication of JP2008122741A publication Critical patent/JP2008122741A/en
Publication of JP2008122741A5 publication Critical patent/JP2008122741A5/ja
Application granted granted Critical
Publication of JP4986581B2 publication Critical patent/JP4986581B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation

Abstract

<P>PROBLEM TO BE SOLVED: To provide a substrate for an optical element such that transmission loss of an optical path is small and an electronic component which should be mounted is easily sealed. <P>SOLUTION: The substrate 1 for an optical element is made of a resin-made molding (s) having a top surface 2(2b) where the optical element 24 is mounted and a reverse surface 3, and has a plurality of insertion grooves 10 for optical fibers 20 formed on the top surface 2(2c) of the molding (s) and a light reflecting surface 8 which is disposed at one-end sides of the plurality of insertion grooves 10 and tilts as it spreads toward the top surface side 2b of the molding (s), where a recessed groove 14 where an electronic component 26 electrically connected to the optical element 24 to be mounted is mounted is formed on the side of the top surfaces 2a and 2b of the molding (s) on the opposite side from the insertion grooves 10 for the optical fibers 20. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、光路の伝送ロスが少なく、且つ実装すべき光素子や電子部品の封止が容易に行える光素子用基板に関する。   The present invention relates to an optical element substrate that has a small optical path transmission loss and can easily seal an optical element or electronic component to be mounted.

従来、光通信に用いる光ファイバと光反射面と光素子との位置合わせ精度を確保しつつ、生産性に優れ且つ安価な光伝送モジュールを提供するため、光ファイバの固定溝と光路を変換する傾斜した反射面とを有する光ファイバ保持部材を製作するに際し、所定の方位を有する結晶基板に対し、半導体プロセスおよび異方性エッチングを施す方法が提案されている(例えば、特許文献1参照)。   Conventionally, in order to provide an optical transmission module that is excellent in productivity and inexpensive while ensuring alignment accuracy of an optical fiber used for optical communication, a light reflecting surface, and an optical element, the fixing groove and the optical path of the optical fiber are converted. In manufacturing an optical fiber holding member having an inclined reflecting surface, a semiconductor process and a method of performing anisotropic etching on a crystal substrate having a predetermined orientation have been proposed (for example, see Patent Document 1).

特許第3677348号 (第1〜12頁、図1〜5)Japanese Patent No. 3677348 (pages 1 to 12, FIGS. 1 to 5)

前記特許文献1に記載されているように、結晶基板に異方性エッチングを施して断面ほぼV字形の光反射面を形成する場合、高精度な加工ができる反面、基板の結晶方位を利用するため、形成すべき形状が制約される。しかも、異方性エッチングを行うには、酸化珪素などのエッチングマスクが必要となるため、生産性を低下させる一因にもなる、という問題があった。
また、製作される光ファイバ保持部材の固定溝に固定された光ファイバと、光反射面を挟んで上記保持部材に搭載する光素子との光路の結合率は、光ファイバの端面から光素子の受発光面までの距離に大きく依存するため、光路方向の位置ずれがあると、光信号の伝送ロスを招く、という問題もあった。
更に、実装すべき光素子や電子部品が光伝送モジュールの表面上に突出しているため、これらを外部から封止することが困難であり、且つ不用意な外力によって損傷するなどのおそれがある、という問題もあった。
As described in Patent Document 1, when a crystal substrate is anisotropically etched to form a light reflecting surface having a substantially V-shaped cross section, the crystal orientation of the substrate is used while high-precision processing is possible. Therefore, the shape to be formed is restricted. In addition, since anisotropic etching requires an etching mask made of silicon oxide or the like, there is a problem in that the productivity can be reduced.
Further, the coupling ratio of the optical path between the optical fiber fixed in the fixing groove of the manufactured optical fiber holding member and the optical element mounted on the holding member with the light reflection surface interposed therebetween is determined from the end face of the optical fiber to the optical element. Since it greatly depends on the distance to the light emitting / receiving surface, there is a problem that if there is a positional deviation in the optical path direction, transmission loss of the optical signal is caused.
Furthermore, since optical elements and electronic components to be mounted protrude on the surface of the optical transmission module, it is difficult to seal them from the outside, and there is a risk of damage due to inadvertent external force. There was also a problem.

本発明は、背景技術において説明した問題点を解決し、光路の伝送ロスが少なく、且つ実装すべき電子部品の封止が容易な光素子用基板を提供する、ことを課題とする。   An object of the present invention is to solve the problems described in the background art, and to provide an optical element substrate in which an optical path transmission loss is small and an electronic component to be mounted can be easily sealed.

課題を解決するための手段および発明の効果Means for Solving the Problems and Effects of the Invention

本発明は、前記課題を解決するため、光ファイバ用の挿入溝と光路を変換する光反射面とを有し、且つ光素子および電子部品を実装するための光素子用基板に対し、樹脂による一体成形体を適用する、ことに着想して成されたものである。
即ち、本発明の光素子用基板は、光素子が実装される表面および裏面を有する樹脂製の成形体からなり、かかる成形体の表面に開口する複数の光ファイバ用の挿入溝と、かかる複数の挿入溝の一端ごとに位置し、且つ上記成形体の表面側に向かって広がるように傾斜する光反射面と、を備え、前記光反射面に対し、前記光ファイバ用の挿入溝と反対側に位置する上記成形体の表面側には、実装すべき光素子と導通する電子部品を実装する凹溝または凹部が形成されている、ことを特徴とする。
In order to solve the above-described problems, the present invention provides an optical element substrate having an optical fiber insertion groove and a light reflecting surface for converting an optical path, and an optical element substrate for mounting an optical element and an electronic component. It was conceived by applying the integrally molded body.
That is, the substrate for optical elements of the present invention is composed of a resin molded body having a front surface and a back surface on which the optical element is mounted, and a plurality of optical fiber insertion grooves opened on the surface of the molded body. A light reflecting surface that is located at one end of each insertion groove and that is inclined so as to spread toward the surface side of the molded body, and is opposite to the insertion groove for the optical fiber with respect to the light reflecting surface. On the surface side of the above-mentioned molded body located in the step, a concave groove or a concave portion for mounting an electronic component that conducts with an optical element to be mounted is formed.

前記光素子用基板は、射出成形金型によって一括製作できる樹脂製の成形体であるため、生産性が高く、結晶基板を異方性エッチングした従来の光ファイバ保持部材と同等の高い位置精度を有すると共に、結晶方位による制約がなくなるので、形状および全体の配置に関する自由度が著しく高くなる。更に、上記挿入溝ごとの一端に光反射面が位置するので、光ファイバを挿入溝に挿入することで、当該光ファイバの端面を光反射面に容易に接近させ得る。このため、従来の結晶基板を異方性エッチングした光ファイバ保持部材に比べて、光信号の伝送ロスを低減することが可能となる。従って、光ファイバと光反射面との位置合わせを精度良く確実に行えると共に、表面側に実装する電子部品を封止樹脂により容易に封止することも可能となる。   Since the optical element substrate is a resin molded body that can be collectively manufactured by an injection mold, the productivity is high and the positional accuracy is equivalent to that of a conventional optical fiber holding member obtained by anisotropic etching of a crystal substrate. In addition, since there is no restriction due to crystal orientation, the degree of freedom regarding the shape and the overall arrangement is remarkably increased. Furthermore, since the light reflection surface is located at one end of each insertion groove, the end surface of the optical fiber can be easily brought close to the light reflection surface by inserting the optical fiber into the insertion groove. For this reason, it becomes possible to reduce the transmission loss of an optical signal compared with the optical fiber holding member which anisotropically etched the conventional crystal substrate. Therefore, the optical fiber and the light reflecting surface can be accurately aligned with high accuracy, and the electronic component mounted on the surface side can be easily sealed with the sealing resin.

尚、光ファイバ用の挿入溝は、一対の対称な傾斜面からなる断面ほぼV字形(例えば、底部の角度が60度)の形態や、一対の対称な傾斜面または垂直壁面とこれらの底辺間の水平な平坦面とを有するほぼU字形の形態も含まれる。
また、前記光反射面は、前記表面に対し、例えば、傾斜角度が45度の形態のほか、60度、または30度の傾斜角度、これらの間の傾斜角度の形態でも良い。
更に、前記凹溝は、前記反射面の長手方向にほぼ沿っており、平坦な底面の両側から前記表面に向かって立設する垂直面を有する形態のほか、平坦な底面の両側から前記表面に向かって広がる傾斜面を有する形態も含まれる。
また、前記凹部(キャビティ)は、平坦な底面の周辺から前記表面に向かって立設する垂直面を有する形態のほか、平坦な底面の周辺から前記表面に向かって広がる傾斜面を有する形態も含まれる。
更に、前記凹溝または凹部と反射面との間の表面には、反射面側に位置する段部を形成し、かかる段部の水平面に光素子を搭載する形態としても良い。これによる場合、かかる段部の上に搭載される光素子の封止も容易に行い得る。
加えて、前記光素子は、発光素子、受光素子、および受・発光素子の何れかを指す。
The insertion groove for the optical fiber has a substantially V-shaped cross section (for example, the bottom angle is 60 degrees) formed by a pair of symmetrical inclined surfaces, or between a pair of symmetrical inclined surfaces or vertical wall surfaces and their bottom sides. A substantially U-shaped configuration with a horizontal flat surface is also included.
Further, the light reflecting surface may be in the form of an inclination angle of 45 degrees, an inclination angle of 60 degrees or 30 degrees, and an inclination angle between these, for example, with respect to the surface.
Further, the concave groove is substantially along the longitudinal direction of the reflecting surface, and has a vertical surface standing from both sides of the flat bottom surface toward the surface, as well as from both sides of the flat bottom surface to the surface. The form which has the inclined surface which spreads toward is also contained.
The concave portion (cavity) includes not only a form having a vertical surface standing from the periphery of the flat bottom surface toward the surface, but also a form having an inclined surface extending from the periphery of the flat bottom surface toward the surface. It is.
Further, a step portion located on the reflection surface side may be formed on the surface between the groove or the recess and the reflection surface, and an optical element may be mounted on the horizontal surface of the step portion. In this case, the optical element mounted on the step portion can be easily sealed.
In addition, the optical element refers to any of a light emitting element, a light receiving element, and a light receiving / emitting element.

また、前記成形体の樹脂には、熱硬化性樹脂または熱可塑性樹脂が用いられる。
上記熱硬化性樹脂には、エポキシ系樹脂(クレゾールノボラック型、フェノールノボラック型、ビスフェノール型、ビフェニール系、ジンクロペンタジエン系、ナフタレン系など)や、フェノール系樹脂が含まれる。
一方、前記熱可塑性樹脂には、ポリスチレン系、ポリアミド系、ポリアセタール系、ポリカーボネート系、ポリブチレン・テレフタレート系、ポリエチレン・テレフタレート系、ポリフェニレン・エーテル系、ポリエーテルスルフォン系、ポリスルフォン系、ポリエーテル・エーテルケトン系、ポリフェニレンスルフィド系、ポリメチルペンテン系、ポリテトラ・フルオロ・エチレン系、ポリシクロヘキシレンジメチル・テレフタレート系樹脂や、液晶ポリマなどが含まれる。
更に、上記各樹脂材料に対し、熱膨張係数を抑制するシリカなどの無機フィラを添加したものも含まれる。
Moreover, a thermosetting resin or a thermoplastic resin is used for the resin of the molded body.
Examples of the thermosetting resin include epoxy resins (cresol novolac type, phenol novolac type, bisphenol type, biphenyl type, gincopentadiene type, naphthalene type, etc.) and phenolic resins.
On the other hand, the thermoplastic resin includes polystyrene, polyamide, polyacetal, polycarbonate, polybutylene / terephthalate, polyethylene / terephthalate, polyphenylene / ether, polyethersulfone / polysulfone, polyether / etherketone. , Polyphenylene sulfide, polymethylpentene, polytetrafluoroethylene, polycyclohexylenedimethyl terephthalate resin, liquid crystal polymer, and the like.
Furthermore, what added inorganic fillers, such as a silica which suppresses a thermal expansion coefficient with respect to said each resin material, is also contained.

また、本発明には、前記光反射面は、前記光ファイバ用の挿入溝に対し、平面視で直角にして前記表面に形成される反射溝の一部である、光素子用基板も含まれる。
これによれば、複数の挿入溝ごとに挿入される複数の光ファイバの端面と、これらに対応する受・発光面を有する複数の光素子、あるいは複数の受・発光面を有する単一の光素子とに対し、それぞれ光路方向が位置ずれしない光反射面を確実に形成することが可能となる。このため、一層伝送ロスを低減することができる。
Further, the present invention includes an optical element substrate in which the light reflecting surface is a part of a reflecting groove formed on the surface at a right angle in a plan view with respect to the optical fiber insertion groove. .
According to this, a plurality of optical elements having a plurality of optical fibers inserted into a plurality of insertion grooves and a light receiving / emitting surface corresponding thereto, or a single light having a plurality of light receiving / emitting surfaces. It is possible to reliably form a light reflecting surface in which the optical path direction is not displaced with respect to the element. For this reason, transmission loss can be further reduced.

尚、前記反射溝は、前記表面に対し、傾斜角度が45度の光反射面と、これと対称な傾斜面とからなる断面ほぼV字形(例えば、底部の角度が90度)の形態、あるいは表面に対する傾斜角度が45度〜60度の光反射面と垂直面とからなる断面ほぼレ字形の形態が含まれる。
付言すれば、前記複数の光ファイバ用の挿入溝ごとの一端には、前記表面に対し直角で垂直なファイバ停止面が位置し、かかるファイバ停止面の上辺と、前記反射溝の最低部とがほぼ同じ位置にある光素子用基板、とすることも可能である。
これによる場合、上記挿入溝ごとの一端にファイバ停止面が位置するので、光ファイバを挿入溝に挿入し、その端面を前記停止面に突き当てるだけで、当該光ファイバの実装を所定位置に正確に行うことが容易となる。
The reflection groove has a substantially V-shaped cross section (for example, an angle of the bottom portion of 90 degrees) composed of a light reflection surface having an inclination angle of 45 degrees with respect to the surface and an inclined surface symmetrical to the light reflection surface. It includes a substantially letter-shaped cross section composed of a light reflecting surface and a vertical surface with an inclination angle of 45 degrees to 60 degrees with respect to the surface.
In other words, a fiber stop surface perpendicular to the surface and perpendicular to the surface is located at one end of each of the insertion grooves for the plurality of optical fibers, and the upper side of the fiber stop surface and the lowest part of the reflection groove are It is also possible to use a substrate for optical elements in substantially the same position.
In this case, since the fiber stop surface is located at one end of each of the insertion grooves, the optical fiber can be accurately mounted at a predetermined position simply by inserting the optical fiber into the insertion groove and abutting the end surface against the stop surface. Easy to do.

更に、本発明には、前記光反射面またはこれを含む前記反射溝を挟んで、前記光ファイバ用の挿入溝と反対側に位置する前記成形体の表面には、光反射面またはこれを含む光反射溝の上方に実装すべき前記光素子と前記凹溝または凹部に実装すべき電子部品とを導通する第1の表面配線、および、上記電子部品と外部配線とを導通する第2の表面配線が形成されている、光素子用基板も含まれる。
これによれば、前記光ファイバ中を伝送された光信号は、前記光反射面で反射され、受発光面から光素子内の取り込まれ、電気信号に変換されてから、第1の表面配線を介して、電子部品に送信され、所要の電気特性に調整された後、第2の表面配線を介して外部配線に送信される。一方、外部配線から送信された電気信号は、上記と逆の経路で光信号に変換され、光反射面で反射した後、光ファイバ中を伝送して行く。従って、遠距離間との通信を光信号で行い、且つ近距離間のに通信を電気信号によって、情報通信を正確に行うことが可能となる。
Further, in the present invention, the surface of the molded body located on the opposite side of the optical fiber insertion groove across the light reflection surface or the reflection groove including the light reflection surface includes the light reflection surface or the same. A first surface wiring for conducting the optical element to be mounted above the light reflecting groove and an electronic component to be mounted in the groove or recess, and a second surface for conducting the electronic component and an external wiring Also included is an optical element substrate on which wiring is formed.
According to this, the optical signal transmitted through the optical fiber is reflected by the light reflecting surface, taken into the optical element from the light receiving / emitting surface, converted into an electric signal, and then the first surface wiring is routed. Then, after being adjusted to a required electrical characteristic, it is transmitted to the external wiring via the second surface wiring. On the other hand, the electrical signal transmitted from the external wiring is converted into an optical signal through a path opposite to that described above, reflected by the light reflecting surface, and then transmitted through the optical fiber. Accordingly, communication between long distances can be performed using optical signals, and communication between short distances using electrical signals can be accurately performed.

尚、前記光素子用基板は、前記凹溝または凹部にICチップなどの電子部品を実装した表面側を、底面とする姿勢とし、配線基板の接続配線(外部配線)と、前記第2の表面配線とをハンダを介して導通させ、且つ前記段部に実装した光素子と共に、上記配線基板との間に封止樹脂を充填・固化することができる。これにより、実装された光素子や電子部品を保護できると共に、光素子と光反射面と光ファイバとの位置関係を正確に保ち易くなるため、光路の方向の位置ずれを長期にわたり防止することが可能となる。
また、前記第1・第2の表面配線は、成形体を射出成形する際に、金型の内面の所定位置に予めセットすることで、前記挿入溝、光反射面を、および凹溝など有する成形体を成形すると同時に、かかる成形体の表面に配置することができる。
The optical element substrate has a posture in which the surface side on which an electronic component such as an IC chip is mounted in the concave groove or the concave portion is a bottom surface, and the connection wiring (external wiring) of the wiring substrate and the second surface It is possible to fill and solidify a sealing resin between the wiring board and the optical element that is electrically connected to the wiring through solder and is mounted on the stepped portion. As a result, the mounted optical element and electronic component can be protected, and the positional relationship among the optical element, the light reflecting surface, and the optical fiber can be easily maintained. It becomes possible.
In addition, the first and second surface wirings have the insertion groove, the light reflection surface, a concave groove, and the like by being preset at a predetermined position on the inner surface of the mold when the molded body is injection molded. At the same time as molding the molded body, it can be placed on the surface of the molded body.

以下において、本発明を実施するための最良の形態について説明する。
図1は、本発明における一形態の光素子用基板1を示す斜視図、図2は、その側面図である。
かかる光素子用基板1は、例えば、エポキシ系樹脂による一体の成形体sから主に構成され、図1,図2に示すように、表面2および裏面3を有する全体がほぼ板形状を呈している。かかる成形体sの表面2は、平面視が長方形で、その中間でこの表面2の長手方向と直交する方向に沿った反射溝6および凹溝14を挟んで、三つの表面2a,2b,2cに分割されている。尚、表面2a,2bは、表面2cよりも裏面3側からやや高い位置にある。
図1,図2で右側の表面2cには、当該表面2cに開口する断面ほぼV字形を呈する四個(複数)の光ファイバ用の挿入溝10が平行に形成されている。かかる挿入溝10は、表面2cに対し60度ずつ対称に傾斜した一対の傾斜面11からなる。尚、四個の挿入溝10を含む表面2cの外側(右側)には、各挿入溝10の最低部とほぼ同じ高さを上面とするファイバ用の支持部5が延出している。
In the following, the best mode for carrying out the present invention will be described.
FIG. 1 is a perspective view showing an optical element substrate 1 according to one embodiment of the present invention, and FIG. 2 is a side view thereof.
The optical element substrate 1 is mainly composed of, for example, an integrally molded body s made of an epoxy resin, and as shown in FIGS. 1 and 2, the entire surface having a front surface 2 and a back surface 3 has a substantially plate shape. Yes. The surface 2 of the molded body s is rectangular in plan view, and has three surfaces 2a, 2b, 2c sandwiching the reflection groove 6 and the concave groove 14 along the direction perpendicular to the longitudinal direction of the surface 2 in the middle. It is divided into The front surfaces 2a and 2b are located slightly higher from the back surface 3 side than the front surface 2c.
In FIG. 1 and FIG. 2, four (a plurality of) optical fiber insertion grooves 10 having a substantially V-shaped cross-section opening on the surface 2 c are formed in parallel on the right surface 2 c. The insertion groove 10 includes a pair of inclined surfaces 11 inclined symmetrically by 60 degrees with respect to the surface 2c. In addition, a support portion 5 for a fiber whose upper surface is substantially the same height as the lowest portion of each insertion groove 10 extends on the outer side (right side) of the surface 2c including the four insertion grooves 10.

図1,図2に示すように、四個の挿入溝10ごとの一端(奥端)には、一対の傾斜面11の最低部から垂直に立設する逆三角形のファイバ停止面12が位置している。また、反射溝6は、表面2b,2c側に向かって広がるように45度ずつ対称に傾斜する光反射面8と傾斜面7とからなる。かかる反射溝6の最低部は、四個の挿入溝10の最低部よりも高い位置にある。このため、反射溝6の最低部と各挿入溝10の最低部との間には、これらの高さの差に応じた高さを有する上記ファイバ停止面12が形成されている。更に、反射溝6の傾斜面7には、各挿入溝10の一端のほぼ上半部が開口している。   As shown in FIGS. 1 and 2, an inverted triangular fiber stop surface 12 standing vertically from the lowest part of the pair of inclined surfaces 11 is located at one end (back end) of each of the four insertion grooves 10. ing. The reflection groove 6 includes a light reflection surface 8 and an inclined surface 7 that are inclined symmetrically by 45 degrees so as to spread toward the surfaces 2b and 2c. The lowest part of the reflection groove 6 is higher than the lowest part of the four insertion grooves 10. Therefore, the fiber stop surface 12 having a height corresponding to the difference in height is formed between the lowest part of the reflection groove 6 and the lowest part of each insertion groove 10. Furthermore, the upper half of one end of each insertion groove 10 is opened on the inclined surface 7 of the reflection groove 6.

図1,図2に示すように、反射溝6の光反射面8と表面2bとの間には、水平な段部9が位置する。尚、かかる段部9には、後述する光素子24が実装される。
更に、表面2a,2b間に位置する凹溝14は、反射溝6の長手方向に沿った水平な底面と一対の対称な傾斜面15とからなる。かかる凹溝14、表面2b、および段部9にまたがって、複数の第1の表面配線18が、互いに平行で且つ断面ほぼハット形に形成されている。一方、凹溝14から表面2aに向かって、複数の第2の表面配線19が、平行に形成されている。かかる第2の表面配線19は、後述する外部配線と導通に利用され、それらの一端は、表面2aに隣接する成形体sの側面(端面)4の上辺付近に達している。
尚、上記凹溝14には、第1・第2の表面配線18,19にまたがって接続される後述するICチップ(電子部品)26が実装される。また、第1・第2の表面配線18,19は、傾斜面15や段部9側の傾斜面を通過するため、これらを導通する電気信号のリターンロスを低減することができる。
As shown in FIGS. 1 and 2, a horizontal step 9 is located between the light reflecting surface 8 and the surface 2 b of the reflecting groove 6. In addition, the optical element 24 mentioned later is mounted in this step part 9. FIG.
Further, the concave groove 14 located between the surfaces 2 a and 2 b is composed of a horizontal bottom surface along the longitudinal direction of the reflection groove 6 and a pair of symmetrical inclined surfaces 15. A plurality of first surface wirings 18 are formed in parallel with each other and in a substantially hat shape across the concave groove 14, the surface 2 b, and the step portion 9. On the other hand, a plurality of second surface wirings 19 are formed in parallel from the concave groove 14 toward the surface 2a. The second surface wiring 19 is used for electrical connection with an external wiring described later, and one end thereof reaches the vicinity of the upper side of the side surface (end surface) 4 of the molded body s adjacent to the surface 2a.
An IC chip (electronic component) 26 (described later) connected across the first and second surface wirings 18 and 19 is mounted in the concave groove 14. Further, since the first and second surface wirings 18 and 19 pass through the inclined surface 15 and the inclined surface on the stepped portion 9 side, it is possible to reduce the return loss of the electrical signal that conducts them.

図3は、異なる形態の光素子用基板1aを示す斜視図、図4は、その側面図である。かかる光素子用基板1aも、前記同様のエポキシ系樹脂による一体の成形体saから主に構成され、図3,図4に示すように、表面2および裏面3を有する全体がほぼ板形状を呈している。かかる成形体saの表面2は、平面視が長方形で、その中間でこの表面2の長手方向と直交する反射溝6および凹部16を挟んで、三つの表面2a,2b,2cに分割されている。尚、表面2a,2bは、図1に示すように、表面2の長手方向に沿った凹部16の両側で連続している。
かかる光素子用基板1aが前記光素子用基板1と相違する点は、前記凹溝14に替えて、凹部(キャビティ)16を有する点である。かかる凹部16は、水平な底面と、かかる底面において互いに対向する一対の前記傾斜面15、および一対の垂直面17と、からなる。尚、かかる垂直面17を傾斜面15と同様な傾斜面とすると、その表面に形成する配線のリターンロスを低減できる。
図3,図4に示すように、凹部16、表面2b、および段部9にまたがって、複数の第1の表面配線18が、前記同様に形成されている。一方、凹部16から表面2aに沿って、複数の第2の表面配線19が、前記同様に形成されている。
FIG. 3 is a perspective view showing an optical element substrate 1a of a different form, and FIG. 4 is a side view thereof. The optical element substrate 1a is also mainly composed of an integral molded body sa made of the same epoxy resin as described above, and the whole having the front surface 2 and the back surface 3 has a substantially plate shape as shown in FIGS. ing. The surface 2 of the molded body sa has a rectangular shape in plan view, and is divided into three surfaces 2a, 2b, and 2c with a reflection groove 6 and a recess 16 perpendicular to the longitudinal direction of the surface 2 interposed therebetween. . The surfaces 2a and 2b are continuous on both sides of the recess 16 along the longitudinal direction of the surface 2 as shown in FIG.
The optical element substrate 1 a is different from the optical element substrate 1 in that a concave portion (cavity) 16 is provided instead of the concave groove 14. The recess 16 includes a horizontal bottom surface, a pair of the inclined surfaces 15 and a pair of vertical surfaces 17 facing each other on the bottom surface. If the vertical surface 17 is an inclined surface similar to the inclined surface 15, the return loss of the wiring formed on the surface can be reduced.
As shown in FIGS. 3 and 4, a plurality of first surface wirings 18 are formed in the same manner as described above across the recess 16, the surface 2 b, and the stepped portion 9. On the other hand, a plurality of second surface wirings 19 are formed in the same manner as described above from the recess 16 along the surface 2a.

以上のような形状(構造)を有する成形体s,saからなり且つ表面配線18,19を有する光素子用基板1,1aは、次のようにして製作される。
予め、前記反射溝6、光ファイバ用の挿入溝10、およびファイバ停止面12に対応する凸状など、前記表面2a,2b,2cに対応する平坦面、凹溝14または凹部16に対応する凸部、および側面4に対応する側面などを含む内面を有する下型と、前記裏面3に対応する平坦面とを含む内面を有する上型とを、金型加工により製作する。下型の平坦面における表面2a,2b付近に対応する部分には、第1・第2の表面配線18,19を収容する浅い凹みが形成されている。
次に、下型の各凹みに、銅合金の薄板(銅箔)からなる第1・第2の表面配線18,19とを収容した後、その上に上型をセットして型閉めする。かかる状態で、上・下型間のゲートから溶けたエポキシ系樹脂を型内に向かって射出成形する。その結果、図1〜図4に示したような形状の成形体s,saからなり且つ表面配線18,19を有する光素子用基板1,1aを得ることができる。
尚、第1・第2の表面配線18,19は、樹脂成形された成形体s,saの表面に対して、パターニングやエッチングなどを含む薄膜加工を施すことで形成しても良い。
The optical element substrates 1 and 1a made of the molded bodies s and sa having the shapes (structures) as described above and having the surface wirings 18 and 19 are manufactured as follows.
A convex surface corresponding to the surface 2a, 2b, 2c, such as a convex shape corresponding to the reflection groove 6, the optical fiber insertion groove 10, and the fiber stop surface 12, and a convex corresponding to the concave groove 14 or the concave portion 16 in advance. A lower die having an inner surface including a part and a side surface corresponding to the side surface 4 and an upper die having an inner surface including a flat surface corresponding to the back surface 3 are manufactured by die processing. Shallow dents for accommodating the first and second surface wirings 18 and 19 are formed in portions corresponding to the vicinity of the surfaces 2a and 2b on the flat surface of the lower mold.
Next, after accommodating the first and second surface wirings 18 and 19 made of a copper alloy thin plate (copper foil) in each recess of the lower mold, the upper mold is set on the first and second surface wirings 18 and 19, and the mold is closed. In this state, the epoxy resin melted from the gate between the upper and lower molds is injection-molded into the mold. As a result, it is possible to obtain the optical element substrates 1, 1 a made of the molded bodies s, sa having the shapes as shown in FIGS. 1 to 4 and having the surface wirings 18, 19.
The first and second surface wirings 18 and 19 may be formed by performing thin film processing including patterning and etching on the surfaces of the molded bodies s and sa molded by the resin.

以下において、光素子用基板1を例として、その使用方法を説明する。
図5,図6は、光素子用基板1の挿入溝10内に、光ファイバ20を挿入する状態を示す。光ファイバ20は、石英ガラスからなる断面円形のガラス線であり、中心部に沿った屈折率の高いコア22と、その周囲を囲う屈折率の低いクラッド21とを同心で備えており、光信号をコア22中の軸方向に沿って反射させつつ伝送する。
図5,図6中の矢印で示すように、光素子用基板1の挿入溝10ごとに、支持部5側から光ファイバ20を軸方向に沿って挿入する。尚、光ファイバ20の外径は、挿入溝10における一対の傾斜面11,11間の中間位置の幅とほぼ同等であると共に、かかる挿入溝10の深さとほぼ同じか、やや小径である。
In the following, the method of using the optical element substrate 1 will be described as an example.
5 and 6 show a state in which the optical fiber 20 is inserted into the insertion groove 10 of the optical element substrate 1. The optical fiber 20 is a glass wire having a circular cross section made of quartz glass, and includes a core 22 having a high refractive index along a central portion and a clad 21 having a low refractive index surrounding the periphery of the core 22. Is transmitted along the axial direction in the core 22.
As shown by the arrows in FIGS. 5 and 6, the optical fiber 20 is inserted along the axial direction from the support portion 5 side for each insertion groove 10 of the optical element substrate 1. The outer diameter of the optical fiber 20 is substantially equal to the width of the intermediate position between the pair of inclined surfaces 11 and 11 in the insertion groove 10 and is substantially the same as or slightly smaller in depth than the insertion groove 10.

予め、軸方向と直交する角度で切断された光ファイバ20の先端面は、図6に示すように、挿入溝10の一端(奥端)に位置するファイバ停止面12にクラッド21の下部が突き当たって停止する。この際、光ファイバ20の先端面に露出するコア22は、ファイバ停止面12の真上に位置すると共に、傾斜面7から挿入溝6内に入り、その中央付近の位置に達する。かかる状態で、光ファイバ20のクラッド21と挿入溝10の傾斜面11との間に、図示しない接着剤が塗布され、当該光ファイバ20が位置固定される。
これにより、図6に示すように、4本の光ファイバ20は、挿入溝10ごとのファイバ停止面12に先端面の下部が面接触して位置決めされると共に、反射溝6の中央付近に位置する先端面のコア22は、光反射面8と最接近しつつ対向する。
As shown in FIG. 6, the tip end surface of the optical fiber 20 cut in advance at an angle orthogonal to the axial direction is such that the lower portion of the clad 21 abuts against the fiber stop surface 12 located at one end (back end) of the insertion groove 10. Stop. At this time, the core 22 exposed at the distal end surface of the optical fiber 20 is located immediately above the fiber stop surface 12, enters the insertion groove 6 from the inclined surface 7, and reaches a position near the center thereof. In this state, an adhesive (not shown) is applied between the clad 21 of the optical fiber 20 and the inclined surface 11 of the insertion groove 10 to fix the position of the optical fiber 20.
As a result, as shown in FIG. 6, the four optical fibers 20 are positioned with the lower end of the tip surface in surface contact with the fiber stop surface 12 of each insertion groove 10 and positioned near the center of the reflection groove 6. The core 22 on the leading end face faces the light reflecting surface 8 while being closest.

次いで、図7に示すように、段部9上の表面配線18ごとの上に、複数のパッド23を個別に形成し、これらの上に跨って、光素子24を図示しないロウ材を介して搭載する。かかる光素子24の底面に露出する複数の受・発光面(図示せず)は、光反射面8の真上に位置している。このため、図7の中の矢印で示すように、光ファイバ20のコア22中を伝送された光信号は、光反射面8で直角に反射して垂直に上昇し、上記発光面から光素子24中に進入する。かかる光路の方向は、挿入溝10ごとのファイバ停止面12で正確に位置決めされた4本の光ファイバ20および光反射面8によって、位置ずれを生じにくくなる。
尚、光素子24は、反射溝6の長手方向に沿った平面視が長方形を呈するほぼ直方体であり、内部に4つ(複数)の光・電気変換素子を内蔵している。また、光素子24の上面は、成形体sの表面2a,2bとほぼ面一である。。
Next, as shown in FIG. 7, a plurality of pads 23 are individually formed on each surface wiring 18 on the step portion 9, and the optical element 24 is interposed over these via a brazing material (not shown). Mount. A plurality of light receiving / emitting surfaces (not shown) exposed on the bottom surface of the optical element 24 are located immediately above the light reflecting surface 8. For this reason, as indicated by the arrows in FIG. 7, the optical signal transmitted through the core 22 of the optical fiber 20 is reflected at a right angle by the light reflecting surface 8 and rises vertically. Enter 24. The direction of the optical path is less likely to be misaligned by the four optical fibers 20 and the light reflecting surfaces 8 that are accurately positioned by the fiber stop surface 12 for each insertion groove 10.
The optical element 24 is a substantially rectangular parallelepiped having a rectangular shape in a plan view along the longitudinal direction of the reflection groove 6, and four (a plurality) of optical / electrical conversion elements are incorporated therein. The upper surface of the optical element 24 is substantially flush with the surfaces 2a and 2b of the molded body s. .

図7に示すように、凹溝14の底面における第1・第2の表面配線18,19間にまたがって、ハンダ25を介してICチップ(電子部品)26が実装される。かかるICチップ26は、光素子24で変換された電気信号を、所定の電圧に高めるなどの制御を行い、表面配線19を通じて外部に送信すると共に、外部から送電された電気信号を光信号に変換し易い電気特性に制御する働きを成す。尚、ICチップ26の上面は、表面2a,2bとほぼ面一である。
これにより、第1の表面配線18を介して、光素子24とICチップ26とは、互いに導通される共に、これらは、第2の表面配線19とも導通される。
即ち、4本の光ファイバ20の先端面から射出された光信号は、光反射面8で直角に反射され、光素子24で電気信号に変換され、第1の表面配線19を通じて、ICチップ26において所定の電圧に高められるなどの制御を受けた後、第2の表面配線19を通じて外部に出力される。
As shown in FIG. 7, an IC chip (electronic component) 26 is mounted via solder 25 across the first and second surface wirings 18 and 19 on the bottom surface of the groove 14. The IC chip 26 performs control such as increasing the electric signal converted by the optical element 24 to a predetermined voltage, and transmits the electric signal to the outside through the surface wiring 19 and converts the electric signal transmitted from the outside into an optical signal. It works to control the electrical characteristics that are easy to do. Note that the upper surface of the IC chip 26 is substantially flush with the surfaces 2a and 2b.
Thereby, the optical element 24 and the IC chip 26 are electrically connected to each other via the first surface wiring 18, and they are also electrically connected to the second surface wiring 19.
That is, the optical signals emitted from the front end surfaces of the four optical fibers 20 are reflected at a right angle by the light reflecting surface 8, converted into an electrical signal by the optical element 24, and passed through the first surface wiring 19 to the IC chip 26. After being controlled to be increased to a predetermined voltage at, it is output to the outside through the second surface wiring 19.

一方、外部から表面配線19を通じて、送信された電気信号は、ICチップ26において所要の電気特性に調整され、表面配線18を通じて、光素子24に送らて光信号に変換された後、その発光面から下向きに垂直に発光され、光反射面8で直角の水平方向に反射した後、最接近する光ファイバ20のコア22中を伝送される。
尚、前記図1,3で示したように、4本の光ファイバ20に対し、第1の表面配線18は、それぞれ一対ずつが対応するため、全体の数を2倍の8個としており、第2の表面配線19も、同数である。
また、以上のような光ファイバ20の挿入・固定と、光素子24およびICチップ26の実装とは、凹部16を有する前記光素子用基板1aについても、同様にして行われ、上記同様の作用を成すことができる。
On the other hand, the electrical signal transmitted from the outside through the surface wiring 19 is adjusted to a required electrical characteristic in the IC chip 26, sent to the optical element 24 through the surface wiring 18 and converted into an optical signal, and then the light emitting surface. Then, the light is emitted vertically downward, reflected by the light reflecting surface 8 in a horizontal direction perpendicular to the light, and then transmitted through the core 22 of the optical fiber 20 that is closest.
As shown in FIGS. 1 and 3, the first surface wiring 18 corresponds to each of the four optical fibers 20, so that the total number is doubled to eight. The number of second surface wirings 19 is also the same.
Further, the insertion / fixation of the optical fiber 20 as described above and the mounting of the optical element 24 and the IC chip 26 are performed in the same manner for the optical element substrate 1a having the recess 16, and the same action as described above. Can be made.

以上のような光素子用基板1,1aによれば、樹脂製の成形体s,saにおける表面2cには、複数(四個)の光ファイバ用の挿入溝10が形成され、それらの一端には垂直なファイバ停止面12が位置すると共に、かかる一端は、挿入溝10と直交する反射溝6に開口している。このため、挿入溝10ごとに光ファイバ20を支持部5側から挿入すると、それらの先端面における下部の被覆部21がファイバ停止面12に面接触し、かかる位置で停止すると共に、先端面に露出するコア22は、反射溝6の内側に露出し且つ光反射面8に最接近する。この結果、光反射面8の上方に実装される光素子24との間で、光路方向の位置ずれが生じにくく、正確な光路が形成できるので、伝送ロスを低減することが可能となる。   According to the optical element substrates 1 and 1a as described above, a plurality (four) of optical fiber insertion grooves 10 are formed on the surface 2c of the resin molded bodies s and sa, and one end thereof is formed. The vertical fiber stop surface 12 is positioned, and one end of the vertical fiber stop surface 12 is opened in the reflection groove 6 orthogonal to the insertion groove 10. For this reason, when the optical fiber 20 is inserted into the insertion groove 10 from the support portion 5 side, the lower coating portion 21 on the tip surface thereof comes into surface contact with the fiber stop surface 12 and stops at this position. The exposed core 22 is exposed inside the reflecting groove 6 and is closest to the light reflecting surface 8. As a result, the optical element 24 mounted above the light reflecting surface 8 is less likely to be displaced in the optical path direction and an accurate optical path can be formed, so that transmission loss can be reduced.

更に、ICチップ26は、凹溝14あるいは凹部16に実装され、光素子24は、段部9に実装されるため、外力による不用意な損傷を防止でき、且つ後述する封止も容易となる。しかも、反射溝6、挿入溝10、ファイバ停止面12、および凹溝14または凹部16などを有する成形体s,saは、エポキシ樹脂などによる射出成形によって、形状および寸法精度が高く、従来の結晶基板に比べて効率良く安価に製作することができる。
従って、光素子用基板1,1aによれば、光ファイバ20と光反射面8と搭載すべき光素子24との位置合わせを精度良く確実に行え、光信号の位置ずれや信号の劣化による損失を低減でき、ICチップ26や光素子24の防護ないし封止が容易にできると共に、安価に製作して提供することも可能となる。
Furthermore, since the IC chip 26 is mounted in the concave groove 14 or the concave portion 16 and the optical element 24 is mounted in the stepped portion 9, it is possible to prevent inadvertent damage due to external force and to facilitate sealing described later. . Moreover, the molded body s, sa having the reflection groove 6, the insertion groove 10, the fiber stop surface 12, and the concave groove 14 or the concave portion 16 has high shape and dimensional accuracy by injection molding with an epoxy resin or the like, and has a conventional crystal structure. It can be manufactured efficiently and inexpensively compared to the substrate.
Therefore, according to the optical element substrates 1 and 1a, the optical fiber 20, the light reflecting surface 8, and the optical element 24 to be mounted can be accurately and reliably aligned, and the loss due to the optical signal misalignment or signal degradation. The IC chip 26 and the optical element 24 can be easily protected or sealed, and can be manufactured and provided at a low cost.

図8は、光素子用基板1(1a)を用いた配線基板30を示す斜視図である。
かかる配線基板30は、樹脂またはセラミックからなり、表面32および裏面33を有する基板本体31と、その一辺から裏面33側に沿って外方に水平に延出する支持部35と、を一体に備えている。基板本体31の表面32の中央には、電子部品(例えば、LSI)40の実装エリアが位置している。かかる実装エリアと支持部35側に面する一辺との間には、2組の接続配線36a,36bが形成されている。かかる接続配線36a,36bは、それぞれ6本の並列な配線からなり、上記電子部品40の底面に突出する図示しない電極とハンダとを介して導通される。尚、基板本体31は、多層基板であり、内部に図示しない所要パターンの配線層を有しており、かかる配線層は、表面32や裏面33に位置する図示しないパッドなどと導通可能とされている。
FIG. 8 is a perspective view showing a wiring board 30 using the optical element substrate 1 (1a).
The wiring substrate 30 is made of resin or ceramic, and integrally includes a substrate body 31 having a front surface 32 and a back surface 33, and a support portion 35 extending horizontally outward from one side along the back surface 33 side. ing. A mounting area for an electronic component (for example, LSI) 40 is located at the center of the surface 32 of the substrate body 31. Two sets of connection wirings 36a and 36b are formed between the mounting area and one side facing the support portion 35 side. Each of the connection wirings 36 a and 36 b is composed of six parallel wirings, and is electrically connected via an electrode (not shown) protruding from the bottom surface of the electronic component 40 and solder. The substrate body 31 is a multilayer substrate, and has a wiring layer with a required pattern (not shown) inside. The wiring layer can be electrically connected to pads (not shown) located on the front surface 32 and the back surface 33. Yes.

図8に示すように、支持部35の上面に前後2個の光素子用基板1(1a)をアンダーフィル材を介して固着する。かかる光素子用基板1(1a)は、前記同様に、表面2c側の挿入溝10に光ファイバ20が挿入・固着され、表面2a,2b側の凹部14などに光素子24およびICチップ26が実装されている。
図8に示すように、配線基板30の支持部35の上面に搭載された2個の光素子用基板1(1a)は、それらの表面配線19と配線基板30の表面32側の接続配線36a,36bとが、個々にボンディングワイヤwを介して接続される。この際、例えば、図8で手前側の光素子用基板1(1a)を受信用とし、図8で奥側の光素子用基板1(1a)を送信用として使い分けしても良い。
As shown in FIG. 8, the front and rear two optical element substrates 1 (1a) are fixed to the upper surface of the support portion 35 via an underfill material. In the optical element substrate 1 (1a), as described above, the optical fiber 20 is inserted and fixed in the insertion groove 10 on the surface 2c side, and the optical element 24 and the IC chip 26 are inserted in the recesses 14 on the surface 2a, 2b side. Has been implemented.
As shown in FIG. 8, the two optical element substrates 1 (1 a) mounted on the upper surface of the support portion 35 of the wiring substrate 30 are connected to the surface wiring 19 and the connection wiring 36 a on the surface 32 side of the wiring substrate 30. , 36b are individually connected via bonding wires w. At this time, for example, the front optical element substrate 1 (1a) in FIG. 8 may be used for reception, and the rear optical element substrate 1 (1a) in FIG. 8 may be used for transmission.

以上のような配線基板30によれば、図8で手前側に位置する受信用の光素子用基板1(1a)の光ファイバ20から伝送された光信号は、光素子24で電気信号に変換され、ICチップ26、表面配線19、および接続配線36aを介して、表面32中央に実装される電子部品40に送信され、所要の処理を受ける。
一方、上記電子部品40から送信された電気信号は、接続配線36b、図8で奥側の光素子用基板1(1a)の表面配線19、およびICチップ26を介して、光素子24に送信され且つ光信号に変換された後、光ファイバ20中を通じて外部に伝送される。
According to the wiring board 30 as described above, the optical signal transmitted from the optical fiber 20 of the receiving optical element substrate 1 (1 a) located on the near side in FIG. 8 is converted into an electrical signal by the optical element 24. Then, it is transmitted to the electronic component 40 mounted at the center of the surface 32 through the IC chip 26, the surface wiring 19, and the connection wiring 36a, and undergoes a required process.
On the other hand, the electrical signal transmitted from the electronic component 40 is transmitted to the optical element 24 via the connection wiring 36b, the surface wiring 19 of the optical element substrate 1 (1a) on the back side in FIG. After being converted into an optical signal, it is transmitted through the optical fiber 20 to the outside.

このため、光信号の伝送ロスを低減し、且つ変換された電気信号を正確に受信できると共に、電気信号から変換された光信号の伝送ロスを少なくして、外部に送信することができる。従って、例えば、遠距離との間における信号の伝送を光ファイバ20を通じて伝送ロスを少なくして行えると共に、変換され且つ調整された電気信号に基づき、所要の動作や処理を正確に実行することが可能となる。しかも、ICチップ26は、凹溝14内に実装され、光素子24は、段部9上に実装されているため、不用意に損傷せず、安定した作用が行える。
尚、光素子用基板1に替えて、前記光素子用基板1aを同様に用いても良い。また、配線基板30に対し、1個の光素子用基板1(1a)のみを用い、2本ずつの光ファイバ20を受信用と送信用とに使い分けしても良い。
For this reason, the transmission loss of the optical signal can be reduced, and the converted electrical signal can be accurately received, and the transmission loss of the optical signal converted from the electrical signal can be reduced and transmitted to the outside. Therefore, for example, transmission of signals between long distances can be performed through the optical fiber 20 with reduced transmission loss, and required operations and processing can be accurately executed based on the converted and adjusted electrical signals. It becomes possible. In addition, since the IC chip 26 is mounted in the concave groove 14 and the optical element 24 is mounted on the stepped portion 9, it can be stably operated without being inadvertently damaged.
In place of the optical element substrate 1, the optical element substrate 1a may be used in the same manner. Alternatively, only one optical element substrate 1 (1a) may be used for the wiring substrate 30, and two optical fibers 20 may be used separately for reception and transmission.

図9は、配線基板30に対し、光素子用基板1(1a)を異なる態様で用いた部分断面図である。配線基板30の支持部35の上面には、基板本体31内の図示しない配線層と導通する複数の外部端子(外部配線)37が延出している。
予め、光素子用基板1(1a)は、前記同様に、表面2c側の挿入溝10に光ファイバ20が挿入・固着され、表面2a,2b側の段部9または凹部14に光素子24およびICチップ26が実装されている。
図9に示すように、上記光素子用基板1(1a)を上下逆の姿勢とし、上下に対向する第2の表面配線19と外部端子37とを、ハンダ38を介して接続する。尚、第1の表面配線18と支持部35の中央側に位置する外部端子37とを、図示のように、ハンダ38を介して直に接続するようにしても良い。
FIG. 9 is a partial cross-sectional view in which the optical element substrate 1 (1 a) is used in a different manner with respect to the wiring substrate 30. A plurality of external terminals (external wirings) 37 that are electrically connected to a wiring layer (not shown) in the substrate body 31 extend on the upper surface of the support portion 35 of the wiring board 30.
In the optical element substrate 1 (1a), in the same manner as described above, the optical fiber 20 is inserted and fixed in the insertion groove 10 on the surface 2c side, and the optical element 24 and the step portion 9 or the concave portion 14 on the surface 2a, 2b side. An IC chip 26 is mounted.
As shown in FIG. 9, the optical element substrate 1 (1 a) is turned upside down, and the second surface wiring 19 and the external terminal 37 facing vertically are connected via a solder 38. Note that the first surface wiring 18 and the external terminal 37 located on the center side of the support portion 35 may be directly connected via a solder 38 as shown in the figure.

次いで、図9に示すように、対向する配線基板30の支持部35と、光素子用基板1(1a)の表面2a,2b,2cとの隙間に、例えば、エポキシ系の封止樹脂(光透過用アンダーフィル材)39を充填し且つ固化させる。その結果、光ファイバ20、光素子24、およびICチップ26は、封止樹脂39によって、位置固定されると同時に外部から封止される。
その結果、実装された光素子24やICチップ26を外部から封止できると共に、光素子24と光反射面8と光ファイバ20との位置関係を正確に保ち易くなるため、光路方向の位置ずれを長期にわたり防止することが可能となる。
従って、以上のように光素子用基板1(1a)を用いることで、配線基板30における光信号の受・送信および電気信号の受・送信を、一層安定させることが可能となる。尚、光素子用基板1に替えて、前記光素子用基板1aを図9で示したように配線基板30に用いても良い。
Next, as shown in FIG. 9, for example, an epoxy-based sealing resin (light-emitting element) is formed in the gap between the support portion 35 of the wiring substrate 30 facing the surface 2 a, 2 b, 2 c of the optical element substrate 1 (1 a). The underfill material for transmission) 39 is filled and solidified. As a result, the optical fiber 20, the optical element 24, and the IC chip 26 are fixed in position by the sealing resin 39 and simultaneously sealed from the outside.
As a result, the mounted optical element 24 and IC chip 26 can be sealed from the outside, and the positional relationship among the optical element 24, the light reflecting surface 8, and the optical fiber 20 can be easily maintained. Can be prevented over a long period of time.
Therefore, by using the optical element substrate 1 (1a) as described above, it is possible to further stabilize the reception / transmission of optical signals and the reception / transmission of electrical signals in the wiring substrate 30. Instead of the optical element substrate 1, the optical element substrate 1a may be used for the wiring substrate 30 as shown in FIG.

本発明は、以上において説明した各形態に限定されるものではない。
前記光素子用基板を構成する成形体は、前記エポキシ系以外の熱硬化性樹脂や、ポリアミド系などの熱可塑性樹脂により製作しても良い。
また、光ファイバ用の挿入溝は、一対の傾斜面と、これらの底辺間に水平な底面を有する形態としたり、あるいは、一対の垂直な側壁と、これらの底辺間の底面とからなる断面がほぼU字形の形態としても良い。これらの場合、挿入溝の一端における底部側には、ほぼ台形またし矩形のファイバ停止面が形成される。
更に、光反射溝の光反射面(8)は、光素子用基板の表面2(2b)に対して、30度〜60度の範囲内における任意の傾斜を有するものとしても良い。
また、反射溝は、傾斜した光反射面とその底辺から垂直に立設する垂直面とからなる断面がほぼレ字形の形態としても良い。
更に、前記段部(9)と凹溝(14)または凹部(16)の底面とは、成形体(s,sa)の裏面(3)から同じ高さとしても良い。
加えて、前記光素子用基板の支持部(5)の上面は、光ファイバ用の挿入溝(10)の最低部より裏面(3)側に低くい位置とし、挿入される光ファイバにおいて、その被覆部(21)の外周を覆う保護カバーの最低部を支持するようにしても良い。あるいは、上記支持部(5)を省略した成形体(s,sa)を備えた光素子用基板とすることも可能である。
The present invention is not limited to the embodiments described above.
The molded body constituting the optical element substrate may be made of a thermosetting resin other than the epoxy resin or a thermoplastic resin such as a polyamide resin.
The insertion groove for the optical fiber has a pair of inclined surfaces and a horizontal bottom surface between these bottoms, or a cross section composed of a pair of vertical side walls and a bottom surface between these bottoms. It is good also as a substantially U-shaped form. In these cases, a substantially trapezoidal or rectangular fiber stop surface is formed on the bottom side at one end of the insertion groove.
Furthermore, the light reflection surface (8) of the light reflection groove may have an arbitrary inclination within a range of 30 degrees to 60 degrees with respect to the surface 2 (2b) of the optical element substrate.
In addition, the reflection groove may have a substantially letter-shaped cross section including an inclined light reflection surface and a vertical surface erected vertically from the bottom.
Further, the step portion (9) and the bottom surface of the concave groove (14) or the concave portion (16) may have the same height from the back surface (3) of the molded body (s, sa).
In addition, the upper surface of the support portion (5) of the optical element substrate is positioned lower on the back surface (3) side than the lowest portion of the optical fiber insertion groove (10). You may make it support the minimum part of the protective cover which covers the outer periphery of a coating | coated part (21). Or it is also possible to set it as the board | substrate for optical elements provided with the molded object (s, sa) which abbreviate | omitted the said support part (5).

本発明の一形態である光素子用基板を示す斜視図。The perspective view which shows the board | substrate for optical elements which is one form of this invention. 上記光素子用基板を示す側面図。The side view which shows the said board | substrate for optical elements. 異なる形態の光素子用基板を示す斜視図。The perspective view which shows the board | substrate for optical elements of a different form. 上記光素子用基板を示す側面図。The side view which shows the said board | substrate for optical elements. 図1の光素子用基板に光ファイバを挿入する状態の概略を示す側面図。The side view which shows the outline of the state which inserts an optical fiber in the board | substrate for optical elements of FIG. 光ファイバが挿入された上記光素子用基板を示す側面図。The side view which shows the said board | substrate for optical elements in which the optical fiber was inserted. 更に光素子などが実装された上記光素子用基板を示す側面図。Furthermore, the side view which shows the said board | substrate for optical elements in which the optical element etc. were mounted. 上記光素子用基板を用いた配線基板を示す斜視図。The perspective view which shows the wiring board using the said board | substrate for optical elements. 光素子用基板の異なる使用形態を示す部分断面図。The fragmentary sectional view which shows the usage pattern from which the board | substrate for optical elements differs.

符号の説明Explanation of symbols

1,1a…………………光素子用基板
2,2a,2b,2c…表面
3…………………………裏面
6…………………………反射溝
8…………………………光反射面
10………………………挿入溝
14………………………凹溝
16………………………凹部
18,19………………表面配線
20………………………光ファイバ
s,sa…………………成形体
1, 1a ............ Optical element substrate 2, 2a, 2b, 2c ... Front surface 3 …………………… Back surface 6 ………………………… Reflection groove 8… ……………………… Light reflecting surface 10 ……………………… Insertion groove 14 ……………………… Recess groove 16 ……………………… Recess 18 and 19 ……………… Surface wiring 20 ……………………… Optical fiber s, sa ………………… Molded body

Claims (3)

光素子が実装される表面および裏面を有する樹脂製の成形体からなり、
上記成形体の表面に形成した複数の光ファイバ用の挿入溝と、
上記複数の挿入溝の一端ごとに位置し、且つ上記成形体の表面側に向かって広がるように傾斜する光反射面と、を備え、
上記光反射面に対し、前記光ファイバ用の挿入溝と反対側に位置する上記成形体の表面側には、搭載すべき光素子と導通する電子部品を実装する凹溝または凹部が形成されている、
ことを特徴とする光素子用基板。
It consists of a resin molded body having a front surface and a back surface on which the optical element is mounted,
Insert grooves for a plurality of optical fibers formed on the surface of the molded body,
A light reflecting surface that is located at one end of each of the plurality of insertion grooves and is inclined so as to spread toward the surface side of the molded body,
On the surface side of the molded body located on the opposite side of the optical fiber insertion groove with respect to the light reflecting surface, a concave groove or a concave portion for mounting an electronic component that conducts with an optical element to be mounted is formed. Yes,
An optical element substrate characterized by the above.
前記光反射面は、前記光ファイバ用の挿入溝に対し、平面視で直角にして前記表面に形成される反射溝の一部である、
ことを特徴とする請求項1に記載の光素子用基板。
The light reflection surface is a part of a reflection groove formed on the surface at a right angle in a plan view with respect to the insertion groove for the optical fiber.
The optical element substrate according to claim 1.
前記光反射面またはこれを含む前記反射溝を挟んで、前記光ファイバ用の挿入溝と反対側に位置する前記成形体の表面には、光反射面またはこれを含む反射溝の上方に実装すべき前記光素子と前記凹溝または凹部に実装すべき電子部品とを導通する第1の表面配線、および、上記電子部品と外部配線とを導通する第2の表面配線が形成されている、
ことを特徴とする請求項1または2に記載に記載の光素子用基板。
Mounted on the surface of the molded article located on the opposite side of the optical fiber insertion groove across the light reflection surface or the reflection groove including the light reflection surface or the reflection groove including the light reflection surface. A first surface wiring for conducting the optical element and the electronic component to be mounted in the concave groove or the concave portion, and a second surface wiring for conducting the electronic component and the external wiring are formed.
The optical element substrate according to claim 1, wherein the substrate is an optical element substrate.
JP2006307477A 2006-11-14 2006-11-14 Optical device substrate Expired - Fee Related JP4986581B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006307477A JP4986581B2 (en) 2006-11-14 2006-11-14 Optical device substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006307477A JP4986581B2 (en) 2006-11-14 2006-11-14 Optical device substrate

Publications (3)

Publication Number Publication Date
JP2008122741A true JP2008122741A (en) 2008-05-29
JP2008122741A5 JP2008122741A5 (en) 2011-07-07
JP4986581B2 JP4986581B2 (en) 2012-07-25

Family

ID=39507542

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006307477A Expired - Fee Related JP4986581B2 (en) 2006-11-14 2006-11-14 Optical device substrate

Country Status (1)

Country Link
JP (1) JP4986581B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103443675A (en) * 2011-01-25 2013-12-11 泰科电子公司 Optical interposer
US9869829B2 (en) 2011-01-25 2018-01-16 Te Connectivity Corporation Optical interposer for waveguides

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0566330A (en) * 1990-09-28 1993-03-19 Toshiba Corp Semiconductor module
JPH0777634A (en) * 1993-09-09 1995-03-20 Fujitsu Ltd Optical terminal device
JPH0784148A (en) * 1993-09-03 1995-03-31 Motorola Inc Intelligent optical bus with display part
JPH1126783A (en) * 1997-07-03 1999-01-29 Nec Corp Photo detector module and manufacture thereof
JP2000098192A (en) * 1998-09-18 2000-04-07 Sumitomo Electric Ind Ltd Optical reception module
JP2001156381A (en) * 1999-11-30 2001-06-08 Kyocera Corp Optical module
JP2002357745A (en) * 2001-05-31 2002-12-13 Kyocera Corp Optical module
JP2004119493A (en) * 2002-09-24 2004-04-15 Sumitomo Electric Ind Ltd Optical module
JP2006084891A (en) * 2004-09-17 2006-03-30 Fujikura Ltd Optical connection device
JP2007535712A (en) * 2004-05-06 2007-12-06 インテル・コーポレーション Method and apparatus for providing an electro-optical coupler

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0566330A (en) * 1990-09-28 1993-03-19 Toshiba Corp Semiconductor module
JPH0784148A (en) * 1993-09-03 1995-03-31 Motorola Inc Intelligent optical bus with display part
JPH0777634A (en) * 1993-09-09 1995-03-20 Fujitsu Ltd Optical terminal device
JPH1126783A (en) * 1997-07-03 1999-01-29 Nec Corp Photo detector module and manufacture thereof
JP2000098192A (en) * 1998-09-18 2000-04-07 Sumitomo Electric Ind Ltd Optical reception module
JP2001156381A (en) * 1999-11-30 2001-06-08 Kyocera Corp Optical module
JP2002357745A (en) * 2001-05-31 2002-12-13 Kyocera Corp Optical module
JP2004119493A (en) * 2002-09-24 2004-04-15 Sumitomo Electric Ind Ltd Optical module
JP2007535712A (en) * 2004-05-06 2007-12-06 インテル・コーポレーション Method and apparatus for providing an electro-optical coupler
JP2006084891A (en) * 2004-09-17 2006-03-30 Fujikura Ltd Optical connection device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103443675A (en) * 2011-01-25 2013-12-11 泰科电子公司 Optical interposer
US9869829B2 (en) 2011-01-25 2018-01-16 Te Connectivity Corporation Optical interposer for waveguides

Also Published As

Publication number Publication date
JP4986581B2 (en) 2012-07-25

Similar Documents

Publication Publication Date Title
EP0987769B1 (en) Photodiode module
US9122025B2 (en) Optical module
JP3570882B2 (en) Optical element mounting board, optical module using the mounting board, and manufacturing method thereof
US6435734B2 (en) Optoelectronic module
JP3403306B2 (en) Optical module
EP3894920B1 (en) Optical assembly
KR20090052286A (en) Optical waveguide, manufacturing method thereof, and connecting structure therefor
US20110229092A1 (en) Optical connector
TWI612350B (en) Photoelectric hybrid module
TW201632929A (en) Receptacle, connector set, and receptacle production method
JP3775069B2 (en) Optical receiver module
JP2008122721A (en) Substrate for optical element
JP3019078B1 (en) Optical receiving module
JP2008122756A (en) Substrate for optical element
JP4986581B2 (en) Optical device substrate
JP2001343560A (en) Optical module
US20080135863A1 (en) Optical semiconductor device and optical transmission device
JP7033394B2 (en) Photoelectric mixed board, connector kit and its manufacturing method
JP4161899B2 (en) Optical waveguide module
JP5047591B2 (en) Flexible optical waveguide and optical waveguide module
JP4931764B2 (en) Optical connector
JP2626760B2 (en) Manufacturing method of optical circuit board
TWI781162B (en) Photoelectric hybrid substrate, connector group and manufacturing method thereof
JP7331508B2 (en) Optical module and method for manufacturing optical module
JP4722816B2 (en) Flexible optical waveguide and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091023

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110419

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110523

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120403

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120424

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150511

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees