JP2008121910A - Humidity exchange type humidifier and fuel cell power generation system using the same - Google Patents

Humidity exchange type humidifier and fuel cell power generation system using the same Download PDF

Info

Publication number
JP2008121910A
JP2008121910A JP2006302899A JP2006302899A JP2008121910A JP 2008121910 A JP2008121910 A JP 2008121910A JP 2006302899 A JP2006302899 A JP 2006302899A JP 2006302899 A JP2006302899 A JP 2006302899A JP 2008121910 A JP2008121910 A JP 2008121910A
Authority
JP
Japan
Prior art keywords
gas
exchange type
humidity
type humidifier
fuel cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006302899A
Other languages
Japanese (ja)
Inventor
Kazunori Tsuchino
和典 土野
Toshio Shinoki
俊雄 篠木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2006302899A priority Critical patent/JP2008121910A/en
Publication of JP2008121910A publication Critical patent/JP2008121910A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)
  • Air Humidification (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a humidity exchange type humidifier and a fuel cell power generation system using the same, capable of reducing variations of a pressure and a flow rate of a humidified gas, and reducing condensate water included in the gas discharged after exchanging humidity with a gas supplied from the external. <P>SOLUTION: This humidity exchange-type humidifier for allowing the first gas supplied from the external to exchange humidity with the second gas having a humidity higher than the first gas, through a moisture permeable film, comprises a condensate water draining mechanism connected with an outlet manifold portion disposed at an outlet of the second gas. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

この発明は、供給ガスとオフガスとの間で水分を交換する湿度交換型加湿器および加湿した供給ガスを用いて発電する燃料電池発電システムに関する。   The present invention relates to a humidity exchange type humidifier that exchanges moisture between a supply gas and an off gas, and a fuel cell power generation system that generates power using the humidified supply gas.

従来の固体高分子形燃料電池システムでは、発電を行う際に、燃料電池において大量の水蒸気が生成し、これが空気側加湿器や空気側流路で結露し、空気側圧力および空気流量が変動し、電池特性が低下する課題があることから、凝縮して生じる水滴を重力を利用してスムーズに流下することができるように、最上部に燃料電池が位置し、燃料電池の下方に湿度交換型加湿器が位置し、湿度交換型加湿器の下方に空気側水回収器が位置する必要がある(例えば、特許文献1参照)。   In a conventional polymer electrolyte fuel cell system, when generating electricity, a large amount of water vapor is generated in the fuel cell, which is condensed in the air-side humidifier or air-side flow path, and the air-side pressure and air flow rate fluctuate. Because there is a problem that the battery characteristics deteriorate, the fuel cell is located at the top and the humidity exchange type is located below the fuel cell so that water droplets that are condensed can flow smoothly using gravity A humidifier is located and an air side water recovery device needs to be located under the humidity exchange type humidifier (for example, refer to patent documents 1).

特開2000−156236号公報JP 2000-156236 A

このような固体高分子形燃料電池システムにあっては、最上部に燃料電池が位置し、燃料電池の下方に湿度交換型加湿器が位置し、湿度交換型加湿器の下方に水回収熱交換器が位置するので、燃料電池システムの高さがこれら燃料電池、湿度交換型加湿器、水回収熱交換器により制約され、小型化できないし、自由に配置できないという問題がある。
また、固体高分子形燃料電池システムの停止時には、湿度交換型加湿器の下方から空気を供給するので、湿度交換型空気加湿器の空気供給口から湿度交換型空気加湿器内の凝縮水が重力により空気供給装置へと流れ出て、この水により空気供給装置に不具合を生じるという問題がある。
In such a polymer electrolyte fuel cell system, the fuel cell is located at the top, the humidity exchange type humidifier is located below the fuel cell, and the water recovery heat exchange is located below the humidity exchange type humidifier. Therefore, there is a problem that the height of the fuel cell system is restricted by these fuel cells, the humidity exchange type humidifier, and the water recovery heat exchanger, and cannot be reduced in size or placed freely.
In addition, when the polymer electrolyte fuel cell system is stopped, air is supplied from below the humidity exchange type humidifier, so that the condensed water in the humidity exchange type air humidifier is pulled from the air supply port of the humidity exchange type air humidifier. Flows out to the air supply device, and this water causes a problem in the air supply device.

この発明の目的は、加湿するガスの圧力および流量の変動が小さく、且つ外部から供給されたガスと湿度交換し排出されるガスに含まれる凝縮水が少ない湿度交換型加湿器とおよびそれを用いた燃料電池発電システムを提供することである。   An object of the present invention is to provide a humidity exchange type humidifier in which the fluctuation of the pressure and flow rate of the gas to be humidified is small and the condensed gas contained in the gas discharged by exchanging humidity with the gas supplied from the outside is small. Was to provide a fuel cell power generation system.

この発明に係わる湿度交換型加湿器は、外部から供給される第1のガスを上記第1のガスより湿度の高い第2のガスと透湿膜を介して湿度交換して加湿する湿度交換型加湿器において、上記第2のガスの出口に設けられた出口マニホールド部に接続される凝縮水排水機構を備える。   The humidity exchange type humidifier according to the present invention is a humidity exchange type humidifier which exchanges humidity through a moisture permeable membrane for the first gas supplied from the outside through the second gas having a higher humidity than the first gas. The humidifier includes a condensed water drainage mechanism connected to an outlet manifold portion provided at the outlet of the second gas.

この発明に係わる湿度交換型加湿器の効果は、出口マニホールド部に凝縮水排水機構を接続したことにより、加湿するガスの圧力および流量の変動が小さく、且つ外部から供給された第1のガスと湿度交換し排出される第2のガスに含まれる凝縮水が少ないということである。   The effect of the humidity exchange type humidifier according to the present invention is that the condensate drainage mechanism is connected to the outlet manifold portion, so that fluctuations in the pressure and flow rate of the gas to be humidified are small and the first gas supplied from the outside This means that the condensed water contained in the second gas discharged after exchanging the humidity is small.

実施の形態1.
図1は、この発明の実施の形態1に係わる固体高分子形の燃料電池発電システムの配置構成図である。図2は、この発明の実施の形態1に係わる湿度交換型加湿器5の断面図である。なお、図1では、燃料電池発電システムを構成する要素のシステム筐体9内での位置関係を表している。
固体高分子形の燃料電池システムは、図1に示すように、水素を含む燃料ガスと空気を用いて発電する燃料電池1、外部から供給される第1のガスとしての供給空気2と第2のガスとしてのオフガス3との間で湿度の交換を行い加湿空気4を生成して燃料電池1に供給する湿度交換型加湿器5、供給空気2と湿度交換されて湿度が低下したオフガス6から水を回収する水回収熱交換器7、湿度交換型加湿器5と水回収熱交換器7で生成した水が溜められる水タンク8を備える。
Embodiment 1 FIG.
1 is an arrangement configuration diagram of a solid polymer fuel cell power generation system according to Embodiment 1 of the present invention. FIG. 2 is a cross-sectional view of the humidity exchange type humidifier 5 according to Embodiment 1 of the present invention. In FIG. 1, the positional relationship in the system housing 9 of the elements constituting the fuel cell power generation system is shown.
As shown in FIG. 1, a solid polymer fuel cell system includes a fuel cell 1 that generates power using hydrogen-containing fuel gas and air, a supply air 2 and a second gas as a first gas supplied from the outside. Humidity exchange type humidifier 5 that exchanges humidity with off-gas 3 as a gas to generate humidified air 4 and supplies it to fuel cell 1, and off-gas 6 that has undergone humidity exchange with supply air 2 to reduce humidity A water recovery heat exchanger 7 for recovering water, a humidity exchange type humidifier 5 and a water tank 8 in which water generated by the water recovery heat exchanger 7 is stored are provided.

燃料電池1は、システム筐体9の上部に配置され、図示しない水素生成装置から天然ガスなどの燃料が水蒸気改質され水素リッチな加湿された燃料ガスが燃料電池1の燃料極に供給される。
また、酸化剤としての空気は、図示しない空気供給装置から供給空気2が供給され、湿度交換型加湿器5により加湿された加湿空気4が燃料電池1の空気極に供給される。
The fuel cell 1 is disposed in the upper part of the system housing 9, and a fuel such as natural gas is steam reformed from a hydrogen generator (not shown), and a hydrogen-rich humidified fuel gas is supplied to the fuel electrode of the fuel cell 1. .
Further, as the oxidant, supply air 2 is supplied from an air supply device (not shown), and humidified air 4 humidified by the humidity exchange type humidifier 5 is supplied to the air electrode of the fuel cell 1.

湿度交換型加湿器5は、システム筐体9内の燃料電池1の下方に配置される。これは燃料電池1からの凝縮した水を含むオフガス3をスムーズに流下して湿度交換型加湿器5に導くためである。
水回収熱交換器7は、湿度交換型加湿器5と上下方向がオーバーラップした位置に配置される。
水タンク8は、湿度交換型加湿器5および水回収熱交換器7より低い位置、すなわちシステム筐体9の下部に配置される。
The humidity exchange type humidifier 5 is disposed below the fuel cell 1 in the system housing 9. This is because the off gas 3 containing the condensed water from the fuel cell 1 flows smoothly and led to the humidity exchange type humidifier 5.
The water recovery heat exchanger 7 is disposed at a position where the humidity exchange type humidifier 5 overlaps the vertical direction.
The water tank 8 is disposed at a position lower than the humidity exchange type humidifier 5 and the water recovery heat exchanger 7, that is, at the lower part of the system housing 9.

次に、湿度交換型加湿器5について説明する。
固体高分子形の燃料電池1の電解質膜は乾燥するとイオン伝導性が低下し電解質としての機能を失うため、電解質膜を一定の含水状態に保つ必要がある。このため加湿空気4を燃料電池1に供給して電解質膜を湿潤に保持する方法が一般的に採られている。そして、湿度交換型加湿器5はこの加湿空気4を生成するために備える。
Next, the humidity exchange type humidifier 5 will be described.
When the electrolyte membrane of the polymer electrolyte fuel cell 1 is dried, the ionic conductivity is reduced and the electrolyte function is lost. Therefore, it is necessary to keep the electrolyte membrane in a certain water-containing state. For this reason, a method is generally employed in which humidified air 4 is supplied to the fuel cell 1 to keep the electrolyte membrane moist. The humidity exchange type humidifier 5 is provided to generate the humidified air 4.

湿度交換型加湿器5は、図2に示すように、供給空気2が流れる供給空気流路11、オフガス3が流れるオフガス流路12、供給空気流路11とオフガス流路12の間に配置される透湿膜13、供給空気流路11の一端に接続され供給空気2が供給される供給空気入口マニホールド部14、供給空気流路11の他端に接続され加湿空気4が排出される加湿空気出口マニホールド部15、オフガス流路12の一端に接続されオフガス3が供給されるオフガス入口マニホールド部16、オフガス流路12の他端に接続され湿度が低下したオフガス6が排出されるオフガス出口マニホールド部17、オフガス出口マニホールド部17の底に設けられた排水孔18に接続された排水ライン19を備える。
なお、排水孔18と排水ライン19とをまとめて凝縮水排水機構と称す。
As shown in FIG. 2, the humidity exchange type humidifier 5 is disposed between a supply air passage 11 through which the supply air 2 flows, an offgas passage 12 through which the offgas 3 flows, and between the supply air passage 11 and the offgas passage 12. The moisture permeable membrane 13 connected to one end of the supply air channel 11 and supplied with the supply air 2, and the humidified air connected to the other end of the supply air channel 11 and discharged from the humidified air 4. An outlet manifold section 15, an offgas inlet manifold section 16 connected to one end of the offgas flow path 12 and supplied with the offgas 3, and an offgas outlet manifold section connected to the other end of the offgas flow path 12 and discharged with reduced offgas 6. 17, a drain line 19 connected to a drain hole 18 provided at the bottom of the off-gas outlet manifold 17 is provided.
The drain hole 18 and the drain line 19 are collectively referred to as a condensed water drain mechanism.

オフガス出口マニホールド部17は、オフガス6が上向きに流れるように配置され、断面積は結露による凝縮水21をオフガス6が搬送しないようオフガス6の流速を小さくするために大きくしている。そして、オフガス出口マニホールド部17の出口は、湿度交換型加湿器5の上面に開口されている。このようなオフガス出口マニホールド部17にすることにより、湿度交換型加湿器5で水分と熱が奪われ湿度が下がったオフガス6においても、オフガス出口マニホールド部17の中で、結露による凝縮水21が生成するが、オフガス6の流れの向きを上向きとし且つ流速を遅くすることにより凝縮水21がオフガス6と一緒に水回収熱交換器7に搬送されずに、オフガス出口マニホールド部17の底に溜めることができる。   The off-gas outlet manifold portion 17 is arranged so that the off-gas 6 flows upward, and the cross-sectional area is increased in order to reduce the flow rate of the off-gas 6 so that the off-gas 6 does not transport the condensed water 21 due to condensation. The outlet of the off-gas outlet manifold portion 17 is opened on the upper surface of the humidity exchange type humidifier 5. By using such an off-gas outlet manifold section 17, even in the off-gas 6 where moisture and heat are taken away by the humidity exchange type humidifier 5 and the humidity is lowered, the condensed water 21 due to condensation is generated in the off-gas outlet manifold section 17. However, the condensate 21 is not transferred to the water recovery heat exchanger 7 together with the offgas 6 but is accumulated at the bottom of the offgas outlet manifold 17 by making the flow direction of the offgas 6 upward and slowing the flow velocity. be able to.

オフガス入口マニホールド部16の入口は、燃料電池1から流下してきたオフガス3を受け止めるために湿度交換型加湿器5の上面に開口されている。
また、加湿空気出口マニホールド部15の出口、供給空気入口マニホールド部14の入口は湿度交換型加湿器5の上面に開口されている。
An inlet of the off-gas inlet manifold section 16 is opened on the upper surface of the humidity exchange type humidifier 5 in order to receive the off-gas 3 flowing down from the fuel cell 1.
Further, the outlet of the humidified air outlet manifold section 15 and the inlet of the supply air inlet manifold section 14 are opened on the upper surface of the humidity exchange type humidifier 5.

排水孔18は、オフガス出口マニホールド部17の底に設けられ、滴下する凝縮水21を排水ライン19に導く。
排水ライン19は、オフガス出口マニホールド部17の底に設けられた排水孔18と水回収熱交換器7の下流配管22とを連通している。そして、結露による凝縮水21は、排水孔18から排水ライン19に流れ出し、下流配管22に流れる。
排水ライン19の圧力損失は、オフガス出口マニホールド部17と水回収熱交換器7の圧力損失より十分に大きくし、例えば排水ライン19にオフガスが流通したとしても、水回収量に大きな影響を与えない程度の流通量になるように構成されている。
The drain hole 18 is provided at the bottom of the off-gas outlet manifold 17 and guides the dripping condensed water 21 to the drain line 19.
The drainage line 19 communicates a drainage hole 18 provided at the bottom of the off-gas outlet manifold 17 and a downstream pipe 22 of the water recovery heat exchanger 7. The condensed water 21 due to condensation flows out from the drain hole 18 to the drain line 19 and flows to the downstream pipe 22.
The pressure loss of the drainage line 19 is sufficiently larger than the pressure loss of the offgas outlet manifold section 17 and the water recovery heat exchanger 7. For example, even if offgas circulates in the drainage line 19, the water recovery amount is not greatly affected. It is configured so that the amount of circulation is about.

湿度交換型加湿器5は、供給空気流路11を流れる供給空気2とオフガス流路12を流れるオフガス3とを透湿膜13を介して接触させて供給空気2を加湿し予熱して加湿空気4を生成する。このようにオフガス3の熱とそれが含む水分とを用いて供給空気2を加湿し予熱するので、湿度交換型加湿器5は、外部より加湿用の水を供給する必要がなく、また、加湿時に多量の気化熱を奪われることがないので熱効率良く利用でき、空気の加湿および予熱を特別の制御を必要とせずに行うことができる。   The humidity exchange type humidifier 5 humidifies and preheats the supply air 2 by bringing the supply air 2 flowing through the supply air flow path 11 and the off gas 3 flowing through the off gas flow path 12 into contact with each other through the moisture permeable membrane 13. 4 is generated. Thus, since the supply air 2 is humidified and preheated using the heat of the offgas 3 and the moisture contained therein, the humidity exchange type humidifier 5 does not need to supply humidification water from the outside. Sometimes, a large amount of heat of vaporization is not taken away, so that it can be used efficiently, and air humidification and preheating can be performed without requiring special control.

湿度交換型加湿器5で湿度、温度が下げられたオフガス6は、水回収熱交換器7に導かれ水回収熱交換器7で冷却され、さらに除湿され、水タンク8を介して大気中に放出される。
水回収熱交換器7で生成された凝縮水と湿度交換型加湿器5の排水ライン19からの凝縮水21は、水タンク8に重力により流下し蓄えられる。水タンク8に回収した凝縮水は、水素生成装置の水蒸気改質のために使用される。
The off-gas 6 whose humidity and temperature have been lowered by the humidity exchange type humidifier 5 is guided to the water recovery heat exchanger 7, cooled by the water recovery heat exchanger 7, further dehumidified, and then introduced into the atmosphere via the water tank 8. Released.
Condensed water generated in the water recovery heat exchanger 7 and condensed water 21 from the drain line 19 of the humidity exchange type humidifier 5 flow down and are stored in the water tank 8 by gravity. The condensed water collected in the water tank 8 is used for steam reforming of the hydrogen generator.

このような湿度交換型加湿器5は、オフガス出口マニホールド部17に連なる凝縮水排水機構が設けられているので、空気側圧力および空気流量の変動が小さいという効果を得る。
また、外部から供給された空気と湿度交換し排出されるオフガスに含まれる凝縮水が少ないという効果を得る。
Such a humidity exchange type humidifier 5 is provided with a condensate drainage mechanism connected to the off-gas outlet manifold section 17, so that the effect of small fluctuations in air-side pressure and air flow rate is obtained.
Moreover, the effect that there is little condensed water contained in the off gas discharged | emitted by exchanging humidity with the air supplied from the outside is acquired.

また、この湿度交換型加湿器5を燃料電池発電システムに適用すると、水回収熱交換器7の配置の位置に制約を受けることが無く、水回収熱交換器7の配置の自由度を増すことができ、燃料電池発電システムを小型化できる。
また、供給空気入口マニホールド部14の入口が上面に開口されているので、燃料電池発電システムを停止した時に湿度交換型加湿器5内の凝縮水が重力により空気供給装置へ流れ込むことはなく、空気供給装置の信頼性を向上できる。
Further, when the humidity exchange type humidifier 5 is applied to the fuel cell power generation system, the position of the water recovery heat exchanger 7 is not restricted, and the degree of freedom of the water recovery heat exchanger 7 is increased. The fuel cell power generation system can be downsized.
Further, since the inlet of the supply air inlet manifold portion 14 is opened on the upper surface, the condensed water in the humidity exchange type humidifier 5 does not flow into the air supply device due to gravity when the fuel cell power generation system is stopped. The reliability of the supply device can be improved.

実施の形態2.
図3は、この発明の実施の形態2に係わる湿度交換型加湿器5Bの断面図である。
この発明の実施の形態2に係わる湿度交換型加湿器5Bは、図3に示すように、実施の形態1に係わる湿度交換型加湿器5とオフガス出口マニホールド部17Bが異なり、それ以外は同様であるので、同様な部分に同じ符号を付記して説明は省略する。
実施の形態2に係わるオフガス出口マニホールド部17Bは、オフガス流路12より低い位置に凝縮水溜まり空間30が設けられている。
このように凝縮水溜まり空間30がオフガス出口マニホールド部17Bの底に設けると、生成する凝縮水21の量が変動しても空気の流路の断面積を変えることなく、より空気側圧力および空気流量の変動を抑えることができ、安定した発電特性が得られる。
Embodiment 2. FIG.
FIG. 3 is a cross-sectional view of a humidity exchange type humidifier 5B according to Embodiment 2 of the present invention.
As shown in FIG. 3, the humidity exchange type humidifier 5B according to the second embodiment of the present invention is different from the humidity exchange type humidifier 5 according to the first embodiment in the off gas outlet manifold portion 17B. Therefore, the same parts are denoted by the same reference numerals and the description thereof is omitted.
The off gas outlet manifold portion 17B according to the second embodiment is provided with a condensed water pool space 30 at a position lower than the off gas flow path 12.
When the condensate pool space 30 is provided at the bottom of the off-gas outlet manifold portion 17B as described above, the air-side pressure and the air flow rate can be increased without changing the cross-sectional area of the air flow path even if the amount of the condensed water 21 to be generated varies. Fluctuations can be suppressed, and stable power generation characteristics can be obtained.

なお、上述の実施の形態1、2では、透湿膜13が単層の湿度交換型加湿器5について説明したが、複数段を積層した透湿膜構造の湿度交換型加湿器であってもよい。
また、湿度交換型加湿器5の排水ライン19を水回収熱交換器7の下流配管22と接続した場合について説明したが、水タンク8に直接接続してもよい。
また、湿度交換型加湿器5の排水ライン19を下方に排水する場合について説明したが、排水ライン19を湿度交換型加湿器5の横側面から引き出してもよい。
また、空気を加湿する湿度交換型加湿器5について説明したが、燃料ガスを加湿する湿度交換型加湿器であってもよい。
In Embodiments 1 and 2 described above, the moisture permeable membrane 13 has been described for the humidity exchange type humidifier 5 having a single layer. Good.
Moreover, although the case where the drain line 19 of the humidity exchange type humidifier 5 is connected to the downstream pipe 22 of the water recovery heat exchanger 7 has been described, it may be directly connected to the water tank 8.
Moreover, although the case where the drainage line 19 of the humidity exchange type humidifier 5 is drained downward has been described, the drainage line 19 may be drawn out from the lateral side surface of the humidity exchange type humidifier 5.
Moreover, although the humidity exchange type humidifier 5 which humidifies air was demonstrated, the humidity exchange type humidifier which humidifies fuel gas may be sufficient.

この発明の実施の形態1に係わる固体高分子形燃料電池発電システムの構成図である。BRIEF DESCRIPTION OF THE DRAWINGS It is a block diagram of the polymer electrolyte fuel cell power generation system concerning Embodiment 1 of this invention. この発明の実施の形態1に係わる湿度交換型加湿器の断面図である。It is sectional drawing of the humidity exchange type humidifier concerning Embodiment 1 of this invention. この発明の実施の形態2に係わる湿度交換型加湿器の断面図である。It is sectional drawing of the humidity exchange type humidifier concerning Embodiment 2 of this invention.

符号の説明Explanation of symbols

1 燃料電池、2 供給空気、3、6 オフガス、4 加湿空気、5 湿度交換型加湿器、7 水回収熱交換器、8 水タンク、9 システム筐体、11 供給空気流路、12 オフガス流路、13 透湿膜、14 供給空気入口マニホールド部、15 加湿空気出口マニホールド部、16 オフガス入口マニホールド部、17 オフガス出口マニホールド部、18 排水孔、19 排水ライン、21 凝縮水、22 下流配管、30 凝縮水溜まり空間。   DESCRIPTION OF SYMBOLS 1 Fuel cell, 2 Supply air, 3, 6 Off gas, 4 Humidification air, 5 Humidity exchange type humidifier, 7 Water recovery heat exchanger, 8 Water tank, 9 System housing, 11 Supply air flow path, 12 Off gas flow path , 13 Moisture permeable membrane, 14 Supply air inlet manifold, 15 Humidified air outlet manifold, 16 Off gas inlet manifold, 17 Off gas outlet manifold, 18 Drain hole, 19 Drain line, 21 Condensed water, 22 Downstream piping, 30 Condensation Puddle space.

Claims (3)

外部から供給される第1のガスを上記第1のガスより湿度の高い第2のガスと透湿膜を介して湿度交換して加湿する湿度交換型加湿器において、
上記第2のガスの出口に設けられた出口マニホールド部に接続される凝縮水排水機構を備えることを特徴とする湿度交換型加湿器。
In a humidity exchange type humidifier that humidifies by exchanging the humidity of the first gas supplied from outside through the moisture permeable membrane with the second gas having a higher humidity than the first gas,
A humidity exchange type humidifier comprising a condensed water drainage mechanism connected to an outlet manifold portion provided at an outlet of the second gas.
上記第2のガスの出口マニホールドの下部より低い位置に凝縮水溜まり空間を設けることを特徴とする請求項1に記載する湿度交換型加湿器。   The humidity exchange type humidifier according to claim 1, wherein a condensate pool space is provided at a position lower than a lower portion of the outlet manifold of the second gas. 燃料電池に燃料および酸化剤を導入して電気化学反応により発電する燃料電池発電システムにおいて、
上記燃料または上記酸化剤の少なくともいずれか1つのガスに関し、外部から供給されるガスを上記請求項1または2に記載の湿度交換型加湿器を用いて上記燃料電池を流通した反応後のガスと湿度交換して加湿することを特徴とする燃料電池発電システム。
In a fuel cell power generation system that introduces fuel and an oxidant into a fuel cell and generates power by an electrochemical reaction,
With respect to at least one gas of the fuel or the oxidant, a gas supplied from the outside is a gas after reaction that has flowed through the fuel cell using the humidity exchange type humidifier according to claim 1 or 2. A fuel cell power generation system characterized by humidifying by exchanging humidity.
JP2006302899A 2006-11-08 2006-11-08 Humidity exchange type humidifier and fuel cell power generation system using the same Pending JP2008121910A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006302899A JP2008121910A (en) 2006-11-08 2006-11-08 Humidity exchange type humidifier and fuel cell power generation system using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006302899A JP2008121910A (en) 2006-11-08 2006-11-08 Humidity exchange type humidifier and fuel cell power generation system using the same

Publications (1)

Publication Number Publication Date
JP2008121910A true JP2008121910A (en) 2008-05-29

Family

ID=39506861

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006302899A Pending JP2008121910A (en) 2006-11-08 2006-11-08 Humidity exchange type humidifier and fuel cell power generation system using the same

Country Status (1)

Country Link
JP (1) JP2008121910A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011014292A (en) * 2009-06-30 2011-01-20 Eneos Celltech Co Ltd Fuel cell system
WO2015176806A1 (en) * 2014-05-20 2015-11-26 Daimler Ag Treatment device for treating exhaust gas of a fuel cell stack, fuel cell system and vehicle with a fuel cell system
US10170779B2 (en) 2016-08-31 2019-01-01 Hyundai Motor Company Humidifier for fuel cell
CN110455697A (en) * 2019-08-21 2019-11-15 东南大学 Single layer diaphragm mass-transfer performance refines measuring device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011014292A (en) * 2009-06-30 2011-01-20 Eneos Celltech Co Ltd Fuel cell system
WO2015176806A1 (en) * 2014-05-20 2015-11-26 Daimler Ag Treatment device for treating exhaust gas of a fuel cell stack, fuel cell system and vehicle with a fuel cell system
CN106463744A (en) * 2014-05-20 2017-02-22 戴姆勒股份公司 Treatment device for treating exhaust gas of a fuel cell stack, fuel cell system and vehicle with a fuel cell system
US10170779B2 (en) 2016-08-31 2019-01-01 Hyundai Motor Company Humidifier for fuel cell
CN110455697A (en) * 2019-08-21 2019-11-15 东南大学 Single layer diaphragm mass-transfer performance refines measuring device
CN110455697B (en) * 2019-08-21 2022-04-15 东南大学 Single-layer diaphragm mass transfer performance fine measurement device

Similar Documents

Publication Publication Date Title
JP6660472B2 (en) Humidifier with integrated water separator for fuel cell system, fuel cell system and vehicle with the same
KR101461874B1 (en) Full cell system and its humidifying and cooling method
JP5022592B2 (en) Gas-liquid separator and fuel cell power generation system equipped with gas-liquid separator
JP2000090954A (en) Fuel cell stack
US7744070B2 (en) External gas humidifier for fuel cell
JP2012134067A (en) Fuel cell system
JP2005276757A (en) Fuel cell cogeneration system
US20190356009A1 (en) Fuel cell system
JP2008121910A (en) Humidity exchange type humidifier and fuel cell power generation system using the same
JP2005235586A (en) Fuel cell system
JP2005337539A (en) Humidifying device
JP2007157508A (en) Gas liquid separator and fuel cell power generation system with gas liquid separator
JP2009064619A (en) Fuel cell system
JP2006216241A (en) Fuel cell system
JP2007258020A (en) Method of shutting down solid polymer fuel cell cogeneration system
KR101283247B1 (en) Fuel cell system
JP2008243540A (en) Polymer electrolyte fuel cell power-generating device
JP2014191866A (en) Fuel cell humidifier and fuel cell system
US7514165B2 (en) Fuel cell system fluid recovery
JP2008041537A (en) Fuel cell system
JP2008016269A (en) Fuel cell system
JP2005158501A (en) Catalyst combustion device and fuel cell cogeneration system
JP4454352B2 (en) Total heat exchanger
JP2006196249A (en) Fuel cell system
JP2007299644A (en) Fuel cell system