JP2008121105A - Method for measuring spraying thickness and rebound quantity of cement on furnace body in blast furnace - Google Patents

Method for measuring spraying thickness and rebound quantity of cement on furnace body in blast furnace Download PDF

Info

Publication number
JP2008121105A
JP2008121105A JP2007131513A JP2007131513A JP2008121105A JP 2008121105 A JP2008121105 A JP 2008121105A JP 2007131513 A JP2007131513 A JP 2007131513A JP 2007131513 A JP2007131513 A JP 2007131513A JP 2008121105 A JP2008121105 A JP 2008121105A
Authority
JP
Japan
Prior art keywords
blast furnace
point group
furnace
dimensional point
dimensional
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007131513A
Other languages
Japanese (ja)
Other versions
JP4879086B2 (en
Inventor
Shan Wen Du
シャン−ウェン・ドュ
Shih Kang Kuo
シー−カン・クオ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China Steel Corp
Original Assignee
China Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China Steel Corp filed Critical China Steel Corp
Publication of JP2008121105A publication Critical patent/JP2008121105A/en
Application granted granted Critical
Publication of JP4879086B2 publication Critical patent/JP4879086B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/02Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness
    • G01B11/06Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness for measuring thickness ; e.g. of sheet material
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B7/00Blast furnaces
    • C21B7/02Internal forms
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T17/00Three dimensional [3D] modelling, e.g. data description of 3D objects
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/50Depth or shape recovery
    • G06T7/521Depth or shape recovery from laser ranging, e.g. using interferometry; from the projection of structured light

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Software Systems (AREA)
  • Metallurgy (AREA)
  • Geometry (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Manufacturing & Machinery (AREA)
  • Optics & Photonics (AREA)
  • Materials Engineering (AREA)
  • Computer Graphics (AREA)
  • Organic Chemistry (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Blast Furnaces (AREA)
  • Waste-Gas Treatment And Other Accessory Devices For Furnaces (AREA)
  • Optical Radar Systems And Details Thereof (AREA)
  • Furnace Housings, Linings, Walls, And Ceilings (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To evaluate a spraying effect of a cement in a blast furnace and to measure the remained furnace wall thickness in the blast furnace. <P>SOLUTION: A method for evaluating the spraying effect of the cement in the blast furnace is performed as the followings: (a) a step for measuring and obtaining the first time of three-dimensional point group to the outer shape of the inner wall in the blast furnace; (b) a step for performing the cement spraying work to the inner wall in the blast furnace; (c) a step for measuring and obtaining the second time of three-dimensional point group to the outer shape after the cement spraying work on the inner wall in the blast furnace; and (d) a step for obtaining the thickness of the cement spraying by comparing the step (a) of the first time of three dimensional point group and the step (c) of the second time of three dimensional point group, are contained. In this way, it can be inspected whether a constitution of uniform thickness in the cement spraying quality is obtained or not. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、高炉の内壁の外形を測定する方法に関し、特に高炉内のセメント吹付け効果を評価する方法および高炉の炉壁残厚を測定する方法に関するものである。   The present invention relates to a method for measuring the outer shape of the inner wall of a blast furnace, and more particularly to a method for evaluating the cement spraying effect in the blast furnace and a method for measuring the remaining thickness of the blast furnace wall.

3次元レーザスキャナは、文献の〔曾義星、史天元、「新世代の測定利器である3次元レーザスキャナ」、科学発展、2003年5月、第365号〕に開示されているように、サンプリングの速さ(25000点/秒)、正確さ(約20mm)および測定範囲の広さ(100m以上)などの特性によって、土木、建築および古跡保護など、多くの分野に適用されている。鋼鉄生産プロセスにおいて転炉のライニング厚さ(例えば、米国特許第6,922,251号)、および材面外形(例えば文献、〔E. Meller and J.Hellmich、「Full Automation Of Stacker and Reclaimers」、Bulk Solids Handling,Vol 21,No,5,2001〕)に適用することができると開示されている。   The three-dimensional laser scanner is a sampling scanner as disclosed in the literature [Yoshiboshi, Shigengen, “3D laser scanner as a new generation measuring instrument”, Scientific Development, May 2003, No. 365]. Due to characteristics such as speed (25000 points / second), accuracy (about 20 mm) and wide measuring range (100 m or more), it is applied to many fields such as civil engineering, architecture and historic site protection. In the steel production process, the lining thickness of the converter (eg, US Pat. No. 6,922,251) and the surface profile (eg, literature, [E. Meller and J. Hellmicch, “Full Automation Of Stacker and Reclaimers”, (Bulk Solids Handling, Vol 21, No, 5, 2001]).

図1は、従来の高炉を示す概略図である。高炉1は、炉頂11、炉の喉部(炉喉)12、炉体13、炉の腰部(炉腰)4、炉腹15、および炉床16を含み、製鉄技術における重要な反応器である。炉頂11は円錐状であり、炉の喉部(炉喉)12は円柱状であり、炉頂11および炉の喉部(炉喉)12の材質は鋼である。炉頂11に、開けて高炉1の内部を露出させることができる複数のマンホール(Manhole)111がある。炉体13、炉の腰部(炉腰)14、炉腹15および炉床16の炉壁の材質は耐火材であり、それらによって液体鉄17が収容される。液体鉄17は材面171を有する。   FIG. 1 is a schematic view showing a conventional blast furnace. The blast furnace 1 includes a furnace top 11, a furnace throat (furnace throat) 12, a furnace body 13, a furnace waist (furnace waist) 4, a furnace belly 15, and a hearth 16, and is an important reactor in ironmaking technology. is there. The furnace top 11 is conical, the furnace throat (furnace throat) 12 is cylindrical, and the material of the furnace top 11 and furnace throat (furnace throat) 12 is steel. At the furnace top 11, there are a plurality of manholes 111 that can be opened to expose the inside of the blast furnace 1. The material of the furnace wall of the furnace body 13, the furnace waist (furnace waist) 14, the furnace belly 15 and the hearth 16 is a refractory material, and liquid iron 17 is accommodated by them. The liquid iron 17 has a material surface 171.

図2は、従来の高炉が長期間にわたって稼動した後に炉体の炉壁が侵食されたことを示す概略図である。図においてTは炉体13の炉壁の最初の厚さを表し、Tは炉体13の炉壁が侵食された後の残存厚さを表す。高炉1が長い年月にわたって高温高圧の厳しい環境において稼動するため、炉壁の耐火材は徐々に侵食される。その主な原因としては、文献の〔頼鳳成、「中鋼高炉ライニングレンガ使用に関する研究」、技術と訓練、21巻、第2号、pp.57〜66〕に開示されているように、液体鉄17の材料層降下による機械的磨耗、化学侵食および熱侵食などが考えられる。従って、高炉1は、その寿命を延長させるために、ある期間運転した後、停止して炉体13のセメント吹付け作業を行わなければならない。 FIG. 2 is a schematic view showing that the furnace wall of the furnace body has been eroded after the conventional blast furnace has been operated for a long period of time. In the figure, T 1 represents the initial thickness of the furnace wall of the furnace body 13, and T 2 represents the remaining thickness after the furnace wall of the furnace body 13 is eroded. Since the blast furnace 1 operates in a severe environment of high temperature and high pressure for many years, the refractory material on the furnace wall is gradually eroded. The main cause of this is that in the literature [Yoru Keisei, “Research on the Use of Medium Steel Blast Furnace Lining Bricks”, Technology and Training, Vol. 21, No. 2, pp. 57-66], mechanical abrasion, chemical erosion, thermal erosion, and the like due to the material layer falling of the liquid iron 17 are conceivable. Therefore, in order to extend the lifetime, the blast furnace 1 must be operated for a certain period, and then stopped to perform cement blowing work on the furnace body 13.

図3は、従来の高炉でセメント吹付け作業を行うことを示す概略図である。当該セメント吹付け作業は、機具2を高炉1内に吊り上げ、液体状の耐火材21を用いて炉体13の炉壁に対して吹付けを行いセメント吹付け厚さTを形成する。環境および設備などの要因に制限されていたため、これまでは炉壁上のセメント吹付け厚さTに対して測定と評価を行うことができず、セメント吹付け作業の品質を評価することもできなかった。また、機具2から噴出される耐火材21が液体状であるため、セメント吹付け過程において炉壁を経由して底部の材面171に跳ね返って跳ね返り量の厚さTを形成する。ある期間を経過すると、材面171上にある耐火材は相当硬い外殻に凝固して、高炉1において運転開始後に底部の高温ガスが上へ流れる経路を阻害することになる。これは、炉の運転開始プロセスに大きな影響があり、危険を引き起こすことさえある。しかし、同様に、環境および設備などの要因に制限されていたため、これまでは材面171上の跳ね返り量の厚さTを測定・評価することができなかった。 FIG. 3 is a schematic view showing that a cement spraying operation is performed in a conventional blast furnace. The cement spraying work, lifting the Kigu 2 in the blast furnace 1, to form a cement spraying thickness T 3 performs spraying against a furnace wall of the furnace body 13 by using a liquid refractory material 21. Because it is limited to factors such as environmental and equipment, so far can not be evaluated and measured for the cement spraying thickness T 3 of the furnace wall, also evaluate the quality of the cement spraying work could not. Further, the refractory material 21 ejected from Kigu 2 for a liquid to form a thickness T 4 of the bounce amount rebound on wood surface 171 of the bottom via the furnace wall in the cement spraying process. After a certain period of time, the refractory material on the material surface 171 solidifies into a considerably hard outer shell, and obstructs the path through which the hot gas at the bottom flows upward after the operation is started in the blast furnace 1. This has a major impact on the furnace start-up process and can even cause danger. However, similarly, since it is limited by factors such as environment and equipment, the thickness T 4 of the amount of rebound on the material surface 171 could not be measured / evaluated so far.

従って、新規性かつ進歩性のある高炉内のセメント吹付け効果を評価する方法を提供し、上記の問題を解決する必要がある。   Therefore, it is necessary to provide a novel and inventive method for evaluating cement spraying effects in a blast furnace and to solve the above problems.

本発明の主な目的は、高炉内セメント吹付け効果を評価する方法を提供することにある。この方法は、(a)当該高炉の内壁の外形に対する第一回の3次元点群を測定取得するステップと、(b)当該高炉の内壁に対してセメント吹付け作業を行うステップと、(c)当該高炉の内壁にセメント吹付けをした後の外形に対する第二回の3次元点群を測定取得するステップと、(d)前記ステップ(a)の第一回の3次元点群と前記ステップ(c)の第二回の3次元点群を比較して、セメント吹付け厚さを求めるステップと、を含む。これによって、セメント吹付け品質に厚さが均一ではない状況がないかを検査することができる。   The main object of the present invention is to provide a method for evaluating the blast furnace cement spraying effect. The method includes (a) measuring and acquiring a first three-dimensional point cloud for the outer wall of the blast furnace, (b) performing a cement spraying operation on the inner wall of the blast furnace, and (c) ) A step of measuring and acquiring a second three-dimensional point group for the outer shape after cement spraying on the inner wall of the blast furnace; and (d) the first three-dimensional point group of the step (a) and the step Comparing the second three-dimensional point group of (c) to determine the cement spraying thickness. Accordingly, it is possible to inspect whether or not the cement spray quality has a non-uniform thickness.

本発明のもう一つの目的は、高炉の炉壁残厚を測定する方法を提供することにある。この方法は、(a)当該高炉の内壁の現在の外形に対する第一回の3次元点群を測定取得するステップと、(b)当該高炉の内壁の最初の外形に対する機械的寸法モデルを取得するステップと、(c)前記ステップ(a)の第一回の3次元点群と前記ステップ(b)の機械的寸法モデルを比較して、当該高炉の炉壁残厚を求めるステップと、を含む。これによって、高炉の寿命を評価することができる。また、炉壁残厚の分布状況に従って侵食量が比較的多い部分の位置を表示し、セメント吹付けのプロセスを計画することもできる。   Another object of the present invention is to provide a method for measuring the residual wall thickness of a blast furnace. The method includes (a) measuring and acquiring a first three-dimensional point cloud for the current outer shape of the inner wall of the blast furnace, and (b) acquiring a mechanical dimension model for the first outer shape of the inner wall of the blast furnace. And (c) comparing the first three-dimensional point group of step (a) with the mechanical dimension model of step (b) to determine the furnace wall residual thickness of the blast furnace. . Thereby, the life of the blast furnace can be evaluated. It is also possible to plan the cement spraying process by displaying the position of the portion with a relatively large amount of erosion according to the distribution of the residual thickness of the furnace wall.

図4は、本発明の高炉内セメント吹付け効果を評価する方法の好ましい実施例を示すフローチャートである。本実施例で測定・評価する高炉1は図1に示した高炉1である。この方法は以下のステップを含む。ステップS401で3次元レーザスキャナを高炉1内に架設する。本実施例では、飛行時間(Time of flight)を原理としたレーザー距離測定システムの型番がRIEGL LMS−Z210iである3次元レーザスキャナを例としている。測定時に、レーザー光点が当該3次元レーザスキャナから被測体に発射され、当該3次元レーザスキャナに反射され、光点の空間中における飛行時間に基づいて被測体と当該3次元レーザスキャナ間の距離を計算する。また、当該3次元レーザスキャナは回転機構により光点を走査する方式で大面積の測定を達成し、それによる測定結果は3次元座標を有する点群(point cloud)である。当該回転機構には、水平角度φの回転(0〜330度)および垂直角度θ(50〜130度)の回転という2つの自由度がある。回転角度の解析度は最大で0.05度であり、それに対応する測定時間は約数分間である。   FIG. 4 is a flowchart showing a preferred embodiment of the method for evaluating the blast furnace cement spraying effect of the present invention. The blast furnace 1 measured and evaluated in the present embodiment is the blast furnace 1 shown in FIG. The method includes the following steps. In step S401, a three-dimensional laser scanner is installed in the blast furnace 1. In this embodiment, a three-dimensional laser scanner in which the model number of the laser distance measurement system based on the time of flight is RIEGL LMS-Z210i is taken as an example. At the time of measurement, a laser beam spot is emitted from the 3D laser scanner to the object to be measured, reflected by the 3D laser scanner, and between the object to be measured and the 3D laser scanner based on the flight time in the space of the light spot. Calculate the distance. Further, the three-dimensional laser scanner achieves a large area measurement by scanning a light spot with a rotating mechanism, and the measurement result is a point cloud having three-dimensional coordinates. The rotation mechanism has two degrees of freedom: rotation of the horizontal angle φ (0 to 330 degrees) and rotation of the vertical angle θ (50 to 130 degrees). The resolution of the rotation angle is 0.05 degrees at the maximum, and the corresponding measurement time is about several minutes.

本実施例では、当該3次元レーザスキャナは、高炉1の炉頂11にあるマンホール111を経由して高炉1内のマンホール111付近に架設されている。   In this embodiment, the three-dimensional laser scanner is installed near the manhole 111 in the blast furnace 1 via the manhole 111 at the top 11 of the blast furnace 1.

ステップS402で当該3次元レーザスキャナを起動し、それを利用して図5の曲線51で示されるような高炉1の内壁の外形に対する第一回の3次元点群を測定取得する。   In step S402, the three-dimensional laser scanner is activated, and the first three-dimensional point group for the outer shape of the inner wall of the blast furnace 1 as shown by the curve 51 in FIG.

ステップS403で、セメント吹付け作業の機具2(図3)をマンホール111から入れて高炉1に対してセメント吹付けを行いやすいよう、当該3次元レーザスキャナを取り出す。   In step S403, the cement spraying machine 2 (FIG. 3) is inserted from the manhole 111, and the three-dimensional laser scanner is taken out so that cement spraying can be easily performed on the blast furnace 1.

ステップS404で図3に示したように高炉1の内壁に対してセメント吹付け作業を行う。セメント吹付け作業が完了した後に再び機具2(図3)をマンホール111から吊り出す。   In step S404, a cement spraying operation is performed on the inner wall of the blast furnace 1 as shown in FIG. After the cement spraying operation is completed, the device 2 (FIG. 3) is suspended from the manhole 111 again.

ステップS405で再び当該3次元レーザスキャナを高炉1内に架設する。本実施例では、当該3次元レーザスキャナはステップS401と同一のマンホール111を経由して高炉1内の同一位置に架設する。正確な測定結果を得るために、セメント吹付け前後2回の3次元レーザスキャナの架設位置と角度に大きな差がなく、かつ、データ上の位置決めが困難ではないようにする必要がある。本実施例では、誤差を低減させるために、ステップS401およびS405の架設過程において電子式水平計を用いて補助し、架設中に傾斜度の調整を行い、2回の3次元レーザスキャナ架設時の角度に大きな差がないことを確保した。なお、本実施例において、当該電子式水平計の型番はTESA clinobevel2である。   In step S405, the three-dimensional laser scanner is installed in the blast furnace 1 again. In this embodiment, the three-dimensional laser scanner is installed at the same position in the blast furnace 1 through the same manhole 111 as in step S401. In order to obtain an accurate measurement result, it is necessary that there is no great difference between the installation position and angle of the two-dimensional three-dimensional laser scanner before and after the cement spraying, and that the positioning on the data is not difficult. In this embodiment, in order to reduce the error, the electronic level meter is used to assist in the installation process of steps S401 and S405, the inclination is adjusted during the installation, and the two-dimensional three-dimensional laser scanner is installed. Ensured that there was no big difference in angle. In this embodiment, the model number of the electronic level gauge is TESA clinobevel2.

ステップS406で当該3次元レーザスキャナを起動し、それを利用して図5の曲線52で示されるような高炉1の内壁のセメント吹付け後の外形に対する第二回の3次元点群を測定取得する。   In step S406, the three-dimensional laser scanner is activated, and a second three-dimensional point group is measured and acquired for the outer shape of the inner wall of the blast furnace 1 after cement spraying as shown by the curve 52 in FIG. To do.

ステップS407で前記ステップS402の第一回の3次元点群と前記ステップS406の第二回の3次元点群を比較して、図6に示したようなセメント吹付け厚さTを求める。本実施例では、当該第一回の3次元点群と当該第二回の3次元点群に対してICP(Iterative Closest Point)アルゴリズムを行う。当該ICPアルゴリズムの機能としては、2つの3次元点群の位置決めを行い、そのうちの1つの3次元点群が属する座標系を、回転およびシフトすることによって、もう1つの3次元点群が属する座標系と重ね合わせる。本実施例では、炉の喉部(炉喉)12以下の部分は耐火材の吹付けによって著しい変化があったため、当該ICPアルゴリズムの特徴点として選定することに適しない。炉の喉部(炉喉)12以上の部分はセメント吹付けの前後にともに変わらない構造となっているので、当該ICPアルゴリズムは高炉1の喉部(炉喉)12以上の外形に対応する点群を特徴点として選定する。セメント吹付け厚さTは重ね合わせた後の点群に基づいて算出する。セメント吹付け厚さTの測定によって、セメント吹付け品質に厚さが均一ではない状況がないかを検査することができる。 Comparing the second time three-dimensional point cloud of a single 3D point group and the step S406 of the step S402 in step S407, obtaining the cement spraying thickness T 3 as shown in FIG. In this embodiment, an ICP (Iterative Closest Point) algorithm is performed on the first three-dimensional point group and the second three-dimensional point group. The function of the ICP algorithm is to coordinate two 3D point groups by positioning two 2D point groups and rotating and shifting the coordinate system to which one 3D point group belongs. Superimpose with the system. In this embodiment, the portion below the throat portion (furnace throat) 12 of the furnace has changed significantly due to the spraying of the refractory material, and therefore is not suitable for selection as a feature point of the ICP algorithm. Since the portion of the furnace throat (furnace throat) 12 or more is the same structure before and after the cement spraying, the ICP algorithm corresponds to the outer shape of the blast furnace 1 throat (furnace throat) 12 or more. A group is selected as a feature point. Cement spraying thickness T 3 is calculated based on the point cloud after superposition. By measurement of the cement spraying thickness T 3, it is possible to check whether there is no not uniform situation thick cement spray quality.

本実施例では、同一のマンホール111においてセメント吹付け前後に各1回測定することになっているが、さらに、その他の位置にあるマンホールから測定を行い、即ち、2つまたは3つのマンホールから測定しても良い。このように、すべての測定結果を合わせると、高炉1の炉壁の360度の完全な全貌を表すことができる。   In this embodiment, the measurement is performed once before and after the cement spraying in the same manhole 111, but the measurement is further performed from manholes at other positions, that is, from two or three manholes. You may do it. Thus, when all the measurement results are combined, a complete 360 ° view of the furnace wall of the blast furnace 1 can be represented.

もう1つの実施例では、前記ステップS402の第一回の3次元点群はさらに高炉1内の材面171に対する外形を含み、前記ステップS406の第二回の3次元点群はさらに高炉1内のセメント吹付け後の材面の外形を含む。同様に、前記ステップS407の比較方式を利用してさらに跳ね返り量の厚さTを求めることができる(図3)。当該跳ね返り量の厚さTの評価によって、有用なデータを提供し、現場の作業員とセメント吹付け設備業者が責任の帰属と区分を行うことに資することができる。 In another embodiment, the first three-dimensional point group in step S402 further includes an outer shape with respect to the material surface 171 in the blast furnace 1, and the second three-dimensional point group in step S406 is further in the blast furnace 1. The outline of the material surface after spraying cement. Similarly, it is possible to determine the thickness T 4 of the further bounce amount by using the comparison method of step S407 (FIG. 3). The evaluation of the bounce thickness T 4 can provide useful data and help the field workers and cement spray equipment suppliers to attribute and classify responsibilities.

図7は、本発明の高炉の炉壁残厚を測定する方法の好ましい実施例を示すフローチャートである。本実施例で測定した高炉1は図1の高炉1である。この方法は以下のステップを含む。ステップS701で3次元レーザスキャナを高炉1内に架設する。上記の図4のステップS401と同様に、本実施例では、型番がRIEGL LMS−Z210iである3次元レーザスキャナを例としており、かつ当該3次元レーザスキャナは、高炉1の炉頂11にあるマンホール111を経由して高炉1内のマンホール111付近に架設されている。   FIG. 7 is a flowchart showing a preferred embodiment of the method for measuring the residual wall thickness of the blast furnace of the present invention. The blast furnace 1 measured in this example is the blast furnace 1 of FIG. The method includes the following steps. In step S701, a three-dimensional laser scanner is installed in the blast furnace 1. Similar to step S401 in FIG. 4 described above, in this embodiment, a three-dimensional laser scanner whose model number is RIEGL LMS-Z210i is taken as an example, and the three-dimensional laser scanner is a manhole at the top 11 of the blast furnace 1. It is installed near the manhole 111 in the blast furnace 1 via 111.

ステップS702で当該3次元レーザスキャナを起動し、それを利用して図8の曲線81で示されるような高炉1の内壁の外形に対する第一回の3次元点群を測定取得する。ここでは、本実施例の第一回の3次元点群は上記のステップS402の第一回の3次元点群と同様であり、図8の曲線81は図5の曲線51と同様であることに注意する必要がある。   In step S702, the three-dimensional laser scanner is activated, and the first three-dimensional point group for the outer shape of the inner wall of the blast furnace 1 as shown by the curve 81 in FIG. Here, the first three-dimensional point group in the present embodiment is the same as the first three-dimensional point group in step S402, and the curve 81 in FIG. 8 is the same as the curve 51 in FIG. It is necessary to pay attention to.

ステップS703で高炉1の内壁の最初の外形(即ち、高炉1が運転する前の最初の外形)に対する機械的寸法モデルを取得する。本実施例では、高炉1の最初の機械図により図8の曲線82で示されたような機械的寸法モデル(CAD model)を取得した。   In step S703, a mechanical dimension model for the first outer shape of the inner wall of the blast furnace 1 (that is, the first outer shape before the blast furnace 1 is operated) is acquired. In this example, a mechanical dimensional model (CAD model) as shown by a curve 82 in FIG.

ステップS704で前記ステップS702の第一回の3次元点群と前記ステップS703の機械的寸法モデルを比較して、図9に示したような高炉1の炉壁残厚Tを求める。上記の図4に示したステップS407と同様に、本実施例では、前記第一回の3次元点群と前記機械的寸法モデルに対して前記ICPアルゴリズムを行う。同様に、当該ICPアルゴリズムは、高炉1の喉部(炉喉)12以上の外形に対応する点群を特徴点として選定する。前記炉壁残厚Tは、重ね合わせた後の前記第一回の3次元点群と前記機械的寸法モデルに基づいて算出することができる。前記炉壁残厚Tの測定は、高炉1の寿命の評価に用いることができる。また、前記炉壁残厚Tの分布状況に基づいて侵食量が比較的多い部分の位置を表示し、セメント吹付けのプロセスを計画することもできる。 Comparing the mechanical dimensions model of the first time the three-dimensional point group in step S703 of the step S702 in step S704, obtains the RokabezanAtsu T 5 of the blast furnace 1 as shown in FIG. Similar to step S407 shown in FIG. 4 above, in this embodiment, the ICP algorithm is performed on the first three-dimensional point group and the mechanical dimension model. Similarly, the ICP algorithm selects a point group corresponding to the outer shape of the throat (furnace throat) 12 or more of the blast furnace 1 as a feature point. The furnace KabezanAtsu T 5 can be calculated on the basis of said first time three-dimensional point group after superposition the mechanical dimensions model. The measurement of the furnace wall remaining thickness T 5 can be used for evaluating the life of the blast furnace 1. Further, the furnace KabezanAtsu T erosion quantity based on the distribution of 5 to display the position of the relatively large portion, it is also possible to plan the process of cement spraying.

上記の実施例は、本発明の原理およびその効果を説明するためのものであり、本発明を制限するためのものではない。従って、当業者が上記の実施例に対して修正および変更を行っても本発明の思想から逸脱することはない。本発明の権利範囲は特許請求の範囲によって決められる。   The above embodiments are for explaining the principle of the present invention and its effects, and are not intended to limit the present invention. Therefore, even if those skilled in the art make corrections and changes to the above-described embodiments, they do not depart from the spirit of the present invention. The scope of the present invention is determined by the claims.

従来の高炉を示す概略図である。It is the schematic which shows the conventional blast furnace. 従来の高炉は長期間にわたって稼動した後に炉体の炉壁が侵食されたことを示す概略図である。It is the schematic which shows that the furnace wall of the furnace body was eroded after the conventional blast furnace operated for a long period of time. 従来の高炉でセメント吹付け作業を行うことを示す概略図である。It is the schematic which shows performing cement spraying work in the conventional blast furnace. 本発明の高炉内セメント吹付け効果を評価する方法の好ましい実施例を示すフローチャートである。It is a flowchart which shows the preferable Example of the method of evaluating the blast furnace cement spraying effect of this invention. 第一回の3次元点群が対応する高炉の内壁のセメント吹付け前と第二回の3次元点群が対応する高炉の内壁のセメント吹付け後の外形を示す概略図である。It is the schematic which shows the external shape after the cement spraying of the inner wall of the blast furnace to which the 3rd point group of the 1st time corresponds, and the inner wall of the blast furnace to which the 3rd time point group of the 2nd corresponds. 図5の2曲線が重ね合わせた後の状況を示す概略図である。It is the schematic which shows the condition after two curves of FIG. 5 overlap. 本発明の高炉の炉壁残厚を測定する方法の好ましい実施例を示すフローチャートである。It is a flowchart which shows the preferable Example of the method of measuring the furnace wall residual thickness of the blast furnace of this invention. 第一回の3次元点群が対応する高炉の内壁の外形と高炉の最初の機械的寸法モデルを示す概略図である。It is the schematic which shows the external shape of the inner wall of a blast furnace to which the three-dimensional point group of the 1st time corresponds, and the first mechanical dimension model of a blast furnace. 図8の2曲線が重ね合わせた後の状況を示す概略図である。It is the schematic which shows the condition after two curves of FIG. 8 overlap.

符号の説明Explanation of symbols

1 高炉
2 機具
11 炉頂
12 炉の喉部(炉喉)
13 炉体
14 炉の腰部(炉腰)
15 炉腹
16 炉床
17 液体鉄
21 耐火材
51 曲線
52 曲線
81 曲線
82 曲線
111 マンホール
171 材面
1 Blast Furnace 2 Equipment 11 Furnace Top 12 Furnace Throat
13 Furnace 14 Waist of the furnace (furnace waist)
15 Furnace 16 Hearth 17 Liquid Iron 21 Refractory Material 51 Curve 52 Curve 81 Curve 82 Curve 111 Manhole 171 Material Surface

Claims (13)

高炉内のセメント吹付け効果を評価する方法であって、
(a)当該高炉の内壁の外形に対する第一回の3次元点群を測定取得するステップと、
(b)当該高炉の内壁に対してセメント吹付け作業を行うステップと、
(c)当該高炉の内壁にセメント吹付けをした後の外形に対する第二回の3次元点群を測定取得するステップと、
(d)前記ステップ(a)の第一回の3次元点群と前記ステップ(c)の第二回の3次元点群を比較して、セメント吹付け厚さを求めるステップと、
を含むことを特徴とする、方法。
A method for evaluating the cement spraying effect in a blast furnace,
(A) a step of measuring and obtaining a first three-dimensional point group for the outer shape of the inner wall of the blast furnace;
(B) performing a cement spraying operation on the inner wall of the blast furnace;
(C) a step of measuring and acquiring a second three-dimensional point group for the outer shape after spraying cement on the inner wall of the blast furnace;
(D) comparing the first three-dimensional point group of step (a) with the second three-dimensional point group of step (c) to determine the cement spraying thickness;
A method comprising the steps of:
前記ステップ(a)は
(a1)3次元レーザスキャナを前記高炉内に架設するステップと、
(a2)前記3次元レーザスキャナを利用して前記第一回の3次元点群を測定取得するステップと、
を含むことを特徴とする、請求項1に記載の方法。
Step (a) includes (a1) installing a three-dimensional laser scanner in the blast furnace;
(A2) measuring and acquiring the first three-dimensional point group using the three-dimensional laser scanner;
The method of claim 1, comprising:
前記ステップ(b)の前に、さらに前記3次元レーザスキャナを取り出すステップを含むことを特徴とする、請求項2に記載の方法。   The method according to claim 2, further comprising the step of removing the three-dimensional laser scanner before the step (b). 前記ステップ(c)は、
(c1)再び前記3次元レーザスキャナを高炉内に架設するステップと、
(c2)前記3次元レーザスキャナを利用して前記第二回の3次元点群を測定取得するステップと、
を含むことを特徴とする、請求項3に記載の方法。
The step (c)
(C1) again installing the three-dimensional laser scanner in the blast furnace;
(C2) measuring and acquiring the second three-dimensional point group using the three-dimensional laser scanner;
The method of claim 3, comprising:
前記ステップ(a1)および(c1)の架設過程において、誤差を低減するために水平計を利用して補助することを特徴とする、請求項4に記載の方法。   5. The method according to claim 4, wherein in the installation process of the steps (a1) and (c1), a level gauge is used to assist in reducing errors. 前記ステップ(c)は
(c1)3次元レーザスキャナを前記高炉内に架設するステップと、
(c2)前記3次元レーザスキャナを利用して前記第二回の3次元点群を測定取得するステップと、
を含むことを特徴とする、請求項1に記載の方法。
Step (c) includes (c1) installing a three-dimensional laser scanner in the blast furnace;
(C2) measuring and acquiring the second three-dimensional point group using the three-dimensional laser scanner;
The method of claim 1, comprising:
前記ステップ(d)は、前記第一回の3次元点群と前記第二回の3次元点群に対してICP(Iterative Closest Point)アルゴリズムを行うことを特徴とする、請求項1に記載の方法。   The step (d) performs an ICP (Iterative Closest Point) algorithm on the first three-dimensional point group and the second three-dimensional point group. Method. 前記ICPアルゴリズムは、前記高炉の喉部(炉喉)以上の外形に対応する点群を特徴点として選定することを特徴とする、請求項7に記載の方法。   The method according to claim 7, wherein the ICP algorithm selects a point group corresponding to an outer shape of a throat (furnace throat) of the blast furnace as a feature point. 前記ステップ(a)の前記第一回の3次元点群がさらに前記高炉内の材面の外形に対するものであり、前記ステップ(c)の前記第二回の3次元点群がさらに前記高炉内にセメント吹付けをした後の材面の外形に対するものであり、前記ステップ(d)の比較の後にさらに跳ね返り量の厚さを得るステップを含むことを特徴とする、請求項1に記載の方法。   The first three-dimensional point group in the step (a) further relates to the outer shape of the material surface in the blast furnace, and the second three-dimensional point group in the step (c) is further in the blast furnace. The method according to claim 1, wherein the method further comprises a step of obtaining a thickness of a rebound amount after the comparison in the step (d). . 高炉の炉壁残厚を測定する方法であって、
(a)当該高炉の内壁の現在の外形に対する第一回の3次元点群を測定取得するステップと、
(b)当該高炉の内壁の最初の外形に対する機械的寸法モデルを取得するステップと、
(c)前記ステップ(a)の第一回の3次元点群と前記ステップ(b)の機械的寸法モデルを比較して、前記高炉の炉壁残厚を求めるステップと、
を含むことを特徴とする、方法。
A method for measuring a furnace wall residual thickness of a blast furnace,
(A) a step of measuring and obtaining a first three-dimensional point group for the current outer shape of the inner wall of the blast furnace;
(B) obtaining a mechanical dimension model for the initial profile of the inner wall of the blast furnace;
(C) comparing the first three-dimensional point group of step (a) with the mechanical dimension model of step (b) to determine the furnace wall residual thickness of the blast furnace;
A method comprising the steps of:
前記ステップ(a)は、
(a1)3次元レーザスキャナを前記高炉内に架設するステップと、
(a2)前記3次元レーザスキャナを利用して前記第一回の3次元点群を取得するステップと、
を含むことを特徴とする、請求項10に記載の方法。
The step (a)
(A1) installing a three-dimensional laser scanner in the blast furnace;
(A2) obtaining the first three-dimensional point group using the three-dimensional laser scanner;
The method according to claim 10, comprising:
前記ステップ(b)は、前記高炉の最初の機械図から前記機械的寸法モデルを取得することを特徴とする、請求項10に記載の方法。   The method according to claim 10, wherein the step (b) obtains the mechanical dimension model from an initial mechanical drawing of the blast furnace. 前記ステップ(c)は、前記第一回の3次元点群と前記機械的寸法モデルに対してICP(Iterative Closest Point)アルゴリズムを行うことを特徴とする、請求項10に記載の方法。   The method according to claim 10, wherein the step (c) performs an ICP (Iterative Closest Point) algorithm on the first three-dimensional point group and the mechanical dimension model.
JP2007131513A 2006-11-10 2007-05-17 Method for evaluating cement spraying effect in blast furnace and method for measuring residual wall thickness in blast furnace Expired - Fee Related JP4879086B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
TW095141824 2006-11-10
TW095141824A TW200821537A (en) 2006-11-10 2006-11-10 Methods for evaluating effect of gunite process and measuring the wall thickness remaining in blast furnace

Publications (2)

Publication Number Publication Date
JP2008121105A true JP2008121105A (en) 2008-05-29
JP4879086B2 JP4879086B2 (en) 2012-02-15

Family

ID=39506175

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007131513A Expired - Fee Related JP4879086B2 (en) 2006-11-10 2007-05-17 Method for evaluating cement spraying effect in blast furnace and method for measuring residual wall thickness in blast furnace

Country Status (3)

Country Link
JP (1) JP4879086B2 (en)
KR (1) KR20080042653A (en)
TW (1) TW200821537A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102134620A (en) * 2010-10-19 2011-07-27 新兴铸管股份有限公司 Blast furnace shaft upper part rapid hot wet method for producing lining
CN107644119A (en) * 2017-08-15 2018-01-30 四川大学 A kind of Half cast factor automatic calculating method based on 3-D scanning point cloud
CN107945178A (en) * 2017-12-19 2018-04-20 大昌建设集团有限公司 A kind of residual hole automatic identification of explosion and feature extracting method
WO2022209022A1 (en) * 2021-03-29 2022-10-06 日鉄エンジニアリング株式会社 Rotating chute inner surface wear testing apparatus and rotating chute inner surface wear testing method

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI480512B (en) * 2013-04-17 2015-04-11 China Steel Corp The method of obtaining the best position of blast furnace wall blast furnace
TWI564395B (en) * 2016-01-05 2017-01-01 China Steel Corp Skew Detection Method for Blast Furnace
CN112361989B (en) * 2020-09-30 2022-09-30 北京印刷学院 Method for calibrating parameters of measurement system through point cloud uniformity consideration
KR102568835B1 (en) * 2022-12-29 2023-08-21 주식회사 비엘 Safety management system for tunnel construction

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05256584A (en) * 1992-03-13 1993-10-05 Nisshin Steel Co Ltd Method and apparatus for repairing damaged part on furnace wall in melting furnace
JPH0920906A (en) * 1995-06-30 1997-01-21 Sumitomo Metal Ind Ltd Method for measuring profile of furnace wall of blast furnace and its instrument
JPH09176709A (en) * 1995-12-26 1997-07-08 Kawasaki Steel Corp Blast furnace wall spray-repairing method by measuring wear amount in its thickness
JPH09235606A (en) * 1996-02-28 1997-09-09 Sumitomo Metal Ind Ltd Method for measuring profile of inner wall of blast furnace

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05256584A (en) * 1992-03-13 1993-10-05 Nisshin Steel Co Ltd Method and apparatus for repairing damaged part on furnace wall in melting furnace
JPH0920906A (en) * 1995-06-30 1997-01-21 Sumitomo Metal Ind Ltd Method for measuring profile of furnace wall of blast furnace and its instrument
JPH09176709A (en) * 1995-12-26 1997-07-08 Kawasaki Steel Corp Blast furnace wall spray-repairing method by measuring wear amount in its thickness
JPH09235606A (en) * 1996-02-28 1997-09-09 Sumitomo Metal Ind Ltd Method for measuring profile of inner wall of blast furnace

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102134620A (en) * 2010-10-19 2011-07-27 新兴铸管股份有限公司 Blast furnace shaft upper part rapid hot wet method for producing lining
CN107644119A (en) * 2017-08-15 2018-01-30 四川大学 A kind of Half cast factor automatic calculating method based on 3-D scanning point cloud
CN107644119B (en) * 2017-08-15 2020-08-04 四川大学 Automatic half-porosity calculation method based on three-dimensional scanning point cloud
CN107945178A (en) * 2017-12-19 2018-04-20 大昌建设集团有限公司 A kind of residual hole automatic identification of explosion and feature extracting method
WO2022209022A1 (en) * 2021-03-29 2022-10-06 日鉄エンジニアリング株式会社 Rotating chute inner surface wear testing apparatus and rotating chute inner surface wear testing method

Also Published As

Publication number Publication date
JP4879086B2 (en) 2012-02-15
KR20080042653A (en) 2008-05-15
TWI293109B (en) 2008-02-01
TW200821537A (en) 2008-05-16

Similar Documents

Publication Publication Date Title
JP4879086B2 (en) Method for evaluating cement spraying effect in blast furnace and method for measuring residual wall thickness in blast furnace
CN107076676A (en) Crack Detection and measurement in metallurgical tank
BR102016026591A2 (en) METHOD AND APPARATUS FOR INSPECTING A MANUFACTURING PROCESS
CN104567690A (en) Field calibration method and device for laser beams
JPWO2020161852A1 (en) Structure measuring device and structure measuring method
CN109238154A (en) A kind of Con casting ladle wall thickness measurement method based on laser scaling ranging
CN106813589B (en) With External floating roof tank real-time deformation monitoring method
WO2020119250A1 (en) Surface deformation method for similar material simulation test in underground work using three-dimensional laser scanning
CN108253890A (en) The spatiality monitoring method and device of a kind of ground fissure
JP2021156706A (en) Method for evaluating amount of wear of refractory brick
Ma et al. 3D structural deformation monitoring of the archaeological wooden shipwreck stern investigated by optical measuring techniques
JP7131507B2 (en) Interference determination system, interference determination method, and construction method
US20210080249A1 (en) Inspection Method and Associated Computer Software
CN102618680A (en) Radar charge level-imaging system at blast furnace top and installation method thereof
JP2014032164A (en) Three-dimensional displacement measurement system for structure using digital camera
CN101240997A (en) Method for evaluating blast furnace gunite effect and method for measuring blast furnace furnace wall remaining thickness
JP7244832B2 (en) Condition evaluation device for inspection objects
JP2019049509A (en) Surface inspection device and surface inspection method
JP2018132425A (en) Smoothness detection method and system of rugged surface
Gan et al. Tunnel deformation monitoring based on laser distance measuring and vision assistant
JP6733127B2 (en) Information processing device, information processing method, and program
CN202110280U (en) Boat-carrying radar antenna zero memory apparatus
JP5818675B2 (en) Method for determining three-dimensional distribution of bubble distribution in silica glass crucible, method for producing silicon single crystal
JP2010096722A (en) Posture measuring method and grinding device
CN115060238B (en) Method and device for measuring relative pose of underwater component

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100413

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100712

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110426

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110721

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111115

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111129

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141209

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees