JP2008121051A - Method for producing silver powder - Google Patents

Method for producing silver powder Download PDF

Info

Publication number
JP2008121051A
JP2008121051A JP2006304875A JP2006304875A JP2008121051A JP 2008121051 A JP2008121051 A JP 2008121051A JP 2006304875 A JP2006304875 A JP 2006304875A JP 2006304875 A JP2006304875 A JP 2006304875A JP 2008121051 A JP2008121051 A JP 2008121051A
Authority
JP
Japan
Prior art keywords
silver
powder
silver powder
powder particles
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006304875A
Other languages
Japanese (ja)
Inventor
Yasunari Wakimori
康成 脇森
Shintaro Wachi
慎太郎 和地
Masahiro Miwa
昌宏 三輪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Mining and Smelting Co Ltd
Original Assignee
Mitsui Mining and Smelting Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Mining and Smelting Co Ltd filed Critical Mitsui Mining and Smelting Co Ltd
Priority to JP2006304875A priority Critical patent/JP2008121051A/en
Publication of JP2008121051A publication Critical patent/JP2008121051A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Powder Metallurgy (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide new silver powder different from the conventional silver powder, and to provide its production method. <P>SOLUTION: To provide a method where powder grains composed of a metal baser than silver are placed in a solution capable of the substitution reaction of silver and are brought into substitution reaction, and ≥99 mass% of the metal is substituted with silver, so as to obtain silver powder grains. By the method, hollow silver powder grains having void parts at the insides of the grains can be stably produced. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、銀粉の新たな製造方法に関する。   The present invention relates to a new method for producing silver powder.

銀粉は、導電性ペースト、焼結助剤、プラズマディスプレイ用電極材料など、各種電子部品の電極や回路形成に使用されている。例えば導電ペーストとしては、スクリーン印刷法を用いたプリント配線板の回路形成、各種電気的接点部等に応用され、電気的導通確保の材料として用いられている。   Silver powder is used for forming electrodes and circuits of various electronic components such as conductive pastes, sintering aids, and electrode materials for plasma displays. For example, the conductive paste is applied to circuit formation of printed wiring boards using a screen printing method, various electrical contact portions, and the like, and is used as a material for ensuring electrical continuity.

銀粉の製造方法としては、銀イオンを含む電解液を電解して銀粒子を電極に析出させる電解法(特許文献1参照)のほか、特許文献2に開示されているように、硝酸銀溶液とアンモニア水とで銀アンミン錯体水溶液を製造し、これに有機還元剤を添加する湿式還元する方法、さらには、特許文献3に開示されているように、例えば、硫酸銀水溶液に還元剤としてホスフィン酸ナトリウム、ホルムアルデヒド、ハイドロキノンのうちの1種とポリビニルピロリドンを用いて反応を行う化学還元法を利用した方法などが知られている。   As a method for producing silver powder, in addition to an electrolytic method (see Patent Document 1) in which an electrolytic solution containing silver ions is electrolyzed to deposit silver particles on an electrode, as disclosed in Patent Document 2, a silver nitrate solution and ammonia are used. A method of wet reduction in which an aqueous silver ammine complex solution is prepared with water and an organic reducing agent is added thereto, and further, for example, as disclosed in Patent Document 3, for example, sodium phosphinate as a reducing agent in an aqueous silver sulfate solution In addition, a method using a chemical reduction method in which a reaction is performed using one of formaldehyde and hydroquinone and polyvinylpyrrolidone is known.

特開平8-209375号公報JP-A-8-209375 特開2001−107101号公報JP 2001-107101 A 特開平6−122905号公報JP-A-6-122905

本発明は、従来の銀粉とは異なる新たな銀粉及びその製造方法を提供せんとするものである。   The present invention provides a new silver powder different from conventional silver powder and a method for producing the same.

本発明は、銀よりも卑な金属からなる粉体粒子(この粉体粒子を「元粉粒子」ともいい、この粉体を「元粉」ともいう)と、銀を置換可能な溶液とを混合して置換反応させ、前記金属の99質量%以上を銀に置換させることにより銀粉粒子を得ることを特徴とする銀粉の製造方法を提案する。
また、好ましい一例として、元粉粒子を水に分散させた水分散スラリー中に、キレート化剤を加えた後、水に可溶な銀塩を加えて置換反応させ、前記金属の99質量%以上を銀に置換させることにより銀粉粒子を得ることを特徴とする銀粉の製造方法を提案する。
In the present invention, powder particles made of a metal lower than silver (this powder particle is also referred to as “original powder particle” and this powder is also referred to as “original powder”) and a solution capable of replacing silver are provided. A silver powder production method is proposed, characterized in that silver powder particles are obtained by mixing and substitution reaction to replace 99% by mass or more of the metal with silver.
Further, as a preferred example, after adding a chelating agent to an aqueous dispersion slurry in which the original powder particles are dispersed in water, a water-soluble silver salt is added to cause a substitution reaction, and 99% by mass or more of the metal We propose a method for producing silver powder characterized by obtaining silver powder particles by substituting silver with silver.

このような本発明の製造方法によれば、粒子内部に空洞部を有する中空銀粉粒子を安定して製造することができる。このような中空銀粉粒子は、従来の製造方法では得ることができないものであり、中空であるがゆえに嵩密度が小さいから、例えば導電ペーストを作製する場合であれば、必要な導電性を得るための銀(質量)が少なくて済み、コストを抑えることができる。さらに、粒子内部に空洞部を有するものであるから、中実な粒子に比べて変形させ易く、フレーク状粒子に容易に加工することもできる。   According to such a production method of the present invention, hollow silver powder particles having a hollow portion inside the particles can be stably produced. Such hollow silver powder particles cannot be obtained by a conventional manufacturing method and have a low bulk density because they are hollow. For example, if a conductive paste is to be produced, the necessary conductivity can be obtained. The silver (mass) can be reduced, and the cost can be reduced. Furthermore, since it has a cavity inside the particles, it can be easily deformed compared to solid particles, and can be easily processed into flaky particles.

発明を実施するための形態BEST MODE FOR CARRYING OUT THE INVENTION

以下、本発明の実施形態について詳述するが、本発明の範囲が以下の実施形態に限定されるものではない。
また、本明細書において、「X〜Y」(X,Yは任意の数字)と記載した場合、特にことわらない限り「X以上Y以下」の意を示し、同時に「好ましくはXより大きく、Yより小さい」の意を包含する。
Hereinafter, although the embodiment of the present invention is described in detail, the scope of the present invention is not limited to the following embodiment.
Further, in this specification, when “X to Y” (X and Y are arbitrary numbers) is described, it means “X or more and Y or less” unless otherwise specified, and at the same time, “preferably larger than X, "Less than Y" is included.

本実施形態では、元粉となる金属粉粒子の表面酸化物(酸化皮膜)を除去する<元粉前処理工程>、元粉を水に分散させた水分散スラリー中にキレート化剤を加え、水に可溶な銀塩を加えて元粉の金属と銀とを置換させる<銀置換工程>を経て銀粉粒子を得るというものである。   In this embodiment, the surface oxide (oxide film) of the metal powder particles to be the base powder is removed <base powder pretreatment step>, a chelating agent is added to the water dispersion slurry in which the base powder is dispersed in water, Silver powder particles are obtained through a <silver replacement step> in which a silver salt soluble in water is added to replace the metal and silver of the original powder.

<元粉>
元粉となる金属は、銀と置換し得る金属、すなわち銀よりも卑な金属(銀よりもイオン化傾向の大きい金属)であればよい。例えばMg、Al、Ti、Zr、Mn、Cr、V、Zn、Cr、Fe、Cd、In、Co、Ni、Sn、Pb、Cuなどを挙げることができ、中でもCu、Fe、Niなどが好ましく、その中でも、安価で入手し易い上、酸化に対して比較的安定で、しかも、最終生成物である銀粉粒子中に残留しても導電性を大きく損なわない観点からCuが特に好ましい。
元粉粒子の大きさは、D50が1μm〜50μmであるのが好ましく、より好ましくは1μm〜40μm、中でも1μm〜30μmがさらに好ましい。
また、元粉粒子の形状は、特に限定するものではないが、中空銀粉粒子を作製する上では、球状、六面体状、八面体状等の等方状粒子ではなく、デンドライト状、針状、不定形状などの非等方状粒子が好ましく、中でもとりわけデンドライト状粒子が好ましい。通常の電解銅粉はデンドライト状を呈するから、かかる観点から電解銅粉は特に好ましいといえる。
<Original flour>
The metal used as the base powder may be a metal that can replace silver, that is, a metal that is baser than silver (a metal that has a higher ionization tendency than silver). For example, Mg, Al, Ti, Zr, Mn, Cr, V, Zn, Cr, Fe, Cd, In, Co, Ni, Sn, Pb, Cu and the like can be mentioned, among which Cu, Fe, Ni and the like are preferable. Of these, Cu is particularly preferable from the viewpoints of being inexpensive and easily available, relatively stable against oxidation, and not significantly detracting from conductivity even when remaining in the final product silver powder particles.
As for the size of the original powder particles, D50 is preferably 1 μm to 50 μm, more preferably 1 μm to 40 μm, and even more preferably 1 μm to 30 μm.
Further, the shape of the original powder particles is not particularly limited, but in producing the hollow silver powder particles, it is not an isotropic particle such as a spherical shape, a hexahedral shape, and an octahedral shape, but a dendrite shape, a needle shape, an indefinite shape. Anisotropic particles such as a shape are preferred, and among these, dendritic particles are particularly preferred. Since ordinary electrolytic copper powder has a dendritic shape, it can be said that electrolytic copper powder is particularly preferable from this viewpoint.

<元粉前処理工程>
元粉粒子の酸化皮膜を除去することにより、後工程で置換反応を促進させることができる。このため、銀置換反応させる前に、予め元粉の酸化皮膜を除去する前処理を行なうのが好ましい。但し、元粉の状態によっては必ずしも前処理を行なう必要はない。
なお、元粉粒子の表面に有機物が存在する場合には、この前処理を行なう前に予め脱脂処理を行なうのが好ましい。
<Original powder pretreatment process>
By removing the oxide film of the original powder particles, the substitution reaction can be promoted in a later step. For this reason, it is preferable to perform a pretreatment for removing the oxide film of the original powder before the silver substitution reaction. However, it is not always necessary to perform pretreatment depending on the state of the original powder.
In addition, when organic substance exists in the surface of the base powder particle | grains, it is preferable to perform a degreasing process previously before performing this pretreatment.

元粉の前処理は、例えば、元粉を水に投入して攪拌混合した後、還元剤又は酸性溶液を加えて攪拌混合して反応させ、次いで元粉を洗浄して前記還元剤若しくは酸性溶液を元粉から除去して使用するのが好ましい。
但し、元粉の酸化皮膜を除去することができれば、他の方法を採用することも可能である。
The pretreatment of the base powder is, for example, adding the base powder to water and stirring and mixing, then adding a reducing agent or an acidic solution, stirring and mixing, and then washing the base powder to wash the reducing agent or the acidic solution. Is preferably used after removing from the base powder.
However, other methods can be adopted as long as the oxide film of the original powder can be removed.

この際、元粉を投入する水の温度は、特に限定するものではないが、50〜60℃に設定するのが好ましい。50℃より低温であると、還元剤又は酸性溶液との反応速度が遅くなることがあり、また、60℃より高温であっても反応速度は早くならないから経済性の点で好ましくない。   At this time, the temperature of the water into which the raw powder is charged is not particularly limited, but is preferably set to 50 to 60 ° C. When the temperature is lower than 50 ° C, the reaction rate with the reducing agent or the acidic solution may be slow, and even when the temperature is higher than 60 ° C, the reaction rate does not increase.

加える還元剤又は酸性溶液としては、元粉となる金属粉粒子の表面酸化物(酸化皮膜)を除去できるものであればよく、例えばヒドラジン、水素化ホウ素カリウム、次亜リン酸などの還元剤、硫酸、塩酸、リン酸などの酸性溶液を挙げることができる。
酸化膜除去する際の液(酸処理液)のpHは2〜5であるのが好ましい。pHが2より低いと元粉の溶解が生じ、元粉自体の凝集も進行し易くなる。他方、pHが5より高いと表面酸化物の除去効果が低下する。
As the reducing agent or acidic solution to be added, any reducing agent such as hydrazine, potassium borohydride, hypophosphorous acid, etc., may be used as long as it can remove the surface oxide (oxide film) of the metal powder particles as the original powder. Examples include acidic solutions such as sulfuric acid, hydrochloric acid, and phosphoric acid.
The pH of the solution (acid treatment solution) for removing the oxide film is preferably 2 to 5. When the pH is lower than 2, the base powder is dissolved, and the aggregation of the base powder itself easily proceeds. On the other hand, if the pH is higher than 5, the effect of removing the surface oxide is lowered.

加えた還元剤又は酸性溶液は、十分に洗浄して元粉から除去するのが好ましい。還元剤や酸性溶液が元粉中に残留すると、後工程の置換反応の反応効率が低下する。すなわち、還元剤が残留していると、元粉と銀とが置換反応し難くなり、残留する還元剤と反応して銀が単独で析出するようになる。酸性溶液が残留すると、pHを変動させることになるので、後工程で別途pH調整をする必要が生じることになる。   The added reducing agent or acidic solution is preferably washed thoroughly and removed from the original powder. If the reducing agent or the acidic solution remains in the base powder, the reaction efficiency of the substitution reaction in the subsequent process is lowered. In other words, if the reducing agent remains, the substitutional reaction between the original powder and silver becomes difficult, and the silver reacts with the remaining reducing agent and precipitates alone. If the acidic solution remains, the pH will fluctuate, and it will be necessary to adjust the pH separately in a later step.

なお、上記のように還元剤又は酸性溶液を含む溶液中に元粉を分散させた後、デカンテーション処理を行なうようにしてもよい。これによれば、元粉が大気と接触することがないので、元粉粒子表面の再酸化を防止した状態で次工程に移行することが可能となる。   In addition, you may make it perform a decantation process after disperse | distributing a base powder in the solution containing a reducing agent or an acidic solution as mentioned above. According to this, since the base powder does not come into contact with the atmosphere, it is possible to proceed to the next step in a state in which reoxidation of the surface of the base powder particles is prevented.

<銀置換工程>
銀置換工程では、元粉を水に分散させ、キレート化剤を添加した後、水に可溶な銀塩を加えて置換反応させ、元粉の金属を銀に置換させることにより銀粉粒子を得る。
<Silver replacement process>
In the silver replacement step, the base powder is dispersed in water, a chelating agent is added, then a silver salt soluble in water is added to cause a substitution reaction, and silver powder particles are obtained by replacing the base powder metal with silver. .

この際、元粉を分散させる水は、特に水温を限定するものではないが、20℃以上、特に30℃以上、中でも特に40℃以上であるのが好ましい。30℃以上、特に40℃以上であれば置換反応の反応速度を速めることができる。   At this time, the water in which the base powder is dispersed is not particularly limited in water temperature, but is preferably 20 ° C. or higher, particularly 30 ° C. or higher, and particularly preferably 40 ° C. or higher. If it is 30 degreeC or more, especially 40 degreeC or more, the reaction rate of substitution reaction can be sped up.

キレート化剤としては、例えばエチレンジアミン四酢酸塩(以下「EDTA」という)、トリエチレンジアミン、ジエチレントリアミン五酢酸、イミノ二酢酸から選ばれた1種又は2種以上のものを挙げることができるが、中でもEDTAを用いるのが好ましい。
キレート化剤を添加することにより、優先的に元粉金属のイオン(例えば銅イオン)の錯体を形成することができ、置換反応に供する元粉金属をイオンとして安定させることが可能となり、銀置換反応を促進させることができる。
キレート化剤の添加量は、元粉に対して1〜10質量%、特に2〜5質量%の割合で添加するのが好ましい。この際、1〜10質量%であれば、置換反応の反応速度が顕著に遅くなることもない。なお、10質量%を超えても反応速度に影響しないから不経済である。
Examples of the chelating agent include one or more selected from ethylenediamine tetraacetate (hereinafter referred to as “EDTA”), triethylenediamine, diethylenetriaminepentaacetic acid, and iminodiacetic acid. Is preferably used.
By adding a chelating agent, it is possible to preferentially form a complex of ions (for example, copper ions) of the original powder metal, and to stabilize the original powder metal used for the substitution reaction as an ion. The reaction can be promoted.
The addition amount of the chelating agent is preferably 1 to 10% by mass, particularly 2 to 5% by mass with respect to the original powder. At this time, if it is 1 to 10% by mass, the reaction rate of the substitution reaction is not significantly reduced. In addition, since exceeding 10 mass% does not affect the reaction rate, it is uneconomical.

銀塩を加える際、溶液のpH、すなわち置換反応させる際の溶液のpHは3〜4に調整するのが好ましい。
この際、pH調整に用いる物質を特に限定するものではない。例えばフタル酸カリウム、フタル酸ナトリウムなどのフタル酸塩類を好適に用いることができる。フタル酸塩類は緩衝剤として作用するため溶液をpH3〜4の酸性領域に安定的に維持することができる。
When adding a silver salt, it is preferable to adjust the pH of the solution, that is, the pH of the solution at the time of the substitution reaction to 3 to 4.
At this time, the substance used for pH adjustment is not particularly limited. For example, phthalates such as potassium phthalate and sodium phthalate can be preferably used. Since phthalates act as a buffering agent, the solution can be stably maintained in the acidic region of pH 3-4.

水に可溶な銀塩、すなわちAgイオン供給源としては、硝酸銀、過塩素酸銀、酢酸銀、シュウ酸銀、塩素酸銀、6フッ化リン酸銀、4フッ化ホウ酸銀、6フッ化ヒ酸銀、硫酸銀から選ばれた1種又は2種以上を挙げることができる。   Silver salts soluble in water, that is, Ag ion sources include silver nitrate, silver perchlorate, silver acetate, silver oxalate, silver chlorate, silver hexafluorophosphate, silver tetrafluoroborate, and 6 fluorine. One type or two or more types selected from silver arsenate and silver sulfate can be mentioned.

銀塩の添加量は、特に制限はないが、理論当量以上、例えば銅を元粉として用いる場合、銅1モルに対して銀2モル以上、特に2.1モル以上となるように添加するのが好ましい。2モルより少ないと、置換が不十分となり銀粉粒子中に銅が多く残留する。但し、2.5モル以上入れても不経済である。   The addition amount of the silver salt is not particularly limited, but when it is more than the theoretical equivalent, for example, when copper is used as the base powder, it is added so as to be 2 mol or more, particularly 2.1 mol or more of silver with respect to 1 mol of copper. Is preferred. When the amount is less than 2 mol, the substitution is insufficient and a large amount of copper remains in the silver powder particles. However, it is not economical to add 2.5 mol or more.

銀塩は、攪拌しながらゆっくりと時間をかけて加えるのが好ましい。一度に多量に加えると、銀塩が大過剰となり、元粉と置換反応しない銀イオンが多量に生じ、銀が単独で析出するようになる。但し、あまり長時間になると、元粉が酸化して酸化皮膜を形成するため、適度な時間、例えば60分〜120分かけて銀塩濃度が0.1〜10g/Lとなるように調整するのが好ましい。   The silver salt is preferably added slowly over time with stirring. When a large amount is added at once, the silver salt becomes excessively large, a large amount of silver ions that do not undergo a substitution reaction with the original powder is generated, and silver is precipitated alone. However, if the time is too long, the base powder is oxidized to form an oxide film, so that the silver salt concentration is adjusted to 0.1 to 10 g / L over an appropriate time, for example, 60 minutes to 120 minutes. Is preferred.

置換反応終了の目安としては、得られた銀粉粒子の銀の含有率が99質量%以上(元粉金属の含有量1質量%未満)、好ましくは銀の含有率が99.5質量%以上(元粉金属の含有量0.5質量%未満)、さらに好ましくは銀の含有率が99.9質量%以上(元粉金属の含有量0.1質量%未満)に達した時点で終了させるのが好ましい。
銀粉粒子における銀の含有率は、銀塩の添加量、反応時間、反応速度、キレート化剤の添加量などによって調整することができる。
なお、得られた粒子の銀の含有率が99質量%以上(元粉金属の含有量1質量%未満)であれば、得られた粒子を銀粉粒子と認めることができ、本実施形態の製造方法を銀粉若しくは銀粉粒子の製造方法として認めることができるという意味がある。
As a measure of completion of the substitution reaction, the silver content of the obtained silver powder particles is 99% by mass or more (the content of the original powder metal is less than 1% by mass), preferably the silver content is 99.5% by mass or more ( The content of the base powder metal is less than 0.5% by mass), and more preferably, when the silver content reaches 99.9% by mass or more (the content of the base powder metal is less than 0.1% by mass). Is preferred.
The silver content in the silver powder particles can be adjusted by the amount of silver salt added, the reaction time, the reaction rate, the amount of chelating agent added, and the like.
In addition, if the content rate of silver of the obtained particle | grains is 99 mass% or more (content of original powder metal is less than 1 mass%), the obtained particle | grains can be recognized as silver powder particle | grains, and manufacture of this embodiment It means that the method can be recognized as a method for producing silver powder or silver powder particles.

置換反応終了後は、銀粉粒子を十分に洗浄し、乾燥させるのが好ましい。   After completion of the substitution reaction, the silver powder particles are preferably thoroughly washed and dried.

上記銀塩の代わりに、例えば硝酸銀、炭酸アンモニウム塩、エチレンジアミン四酢酸塩などからなる銀錯塩溶液を用いて銀を置換させることも可能であると考えられる。
また、銀塩を加えた後、還元剤を添加して置換反応を促進させることも可能である。
Instead of the silver salt, it is considered possible to replace silver by using a silver complex salt solution made of, for example, silver nitrate, ammonium carbonate salt, ethylenediaminetetraacetate, or the like.
Moreover, after adding a silver salt, it is also possible to add a reducing agent and to promote a substitution reaction.

(銀粉粒子)
本実施形態で得られる銀粉粒子は、その多くが、少なくとも50個数%以上が、好ましくは80個数%以上が、特に好ましくは90個数%以上(100%含む)が、粒子内部に空洞部を有する中空銀粉粒子である。すなわち、FIB/SEM断面加工観察装置(FIB:Focus Ion Beam:収束イオンビーム法:絞ったイオンビームで表面をスパッタリング(削り取り)して微細な加工を可能にする装置)によって、得られた銀粉粒子の縦断面を観察すると、粒子内部に空洞部を有し、しかも空洞部と外部とを連通する孔を備えているという特徴を有するものである。
(Silver powder particles)
Most of the silver powder particles obtained in the present embodiment are at least 50% by number or more, preferably 80% by number or more, and particularly preferably 90% by number or more (including 100%) have a cavity inside the particle. Hollow silver powder particles. In other words, silver powder particles obtained by FIB / SEM cross-section processing observation apparatus (FIB: Focus Ion Beam: focused ion beam method: an apparatus that enables fine processing by sputtering the surface with a focused ion beam). Observing the vertical cross section of this particle, it has a feature that it has a cavity inside the particle and a hole communicating the cavity with the outside.

本実施形態で得られる銀粉粒子の大きさは、D50が1μm〜50μmであるのが好ましく、より好ましくは1μm〜40μm、中でも1μm〜30μmが特に好ましい。D50が1μm〜50μmであれば、後述する用途に好適となる。
また、本実施形態で得られる銀粉粒子は、嵩密度が小さいという特徴があり、AD(見掛密度)は0.5〜2.0g/cm、特に0.7〜1.4g/cmが好ましく、TD(タップ充填密度)は1.0〜3.0g/cm、特に1.5〜2.5g/cmが好ましい。
As for the size of the silver powder particles obtained in this embodiment, D50 is preferably 1 μm to 50 μm, more preferably 1 μm to 40 μm, and particularly preferably 1 μm to 30 μm. If D50 is 1 micrometer-50 micrometers, it will become suitable for the use mentioned later.
Further, the silver powder particles obtained in the present embodiment are characterized by a small bulk density, and AD (apparent density) is 0.5 to 2.0 g / cm 3 , particularly 0.7 to 1.4 g / cm 3. The TD (tap filling density) is preferably 1.0 to 3.0 g / cm 3 , particularly preferably 1.5 to 2.5 g / cm 3 .

(用途)
本実施形態で得られる銀粉粒子の用途は、銀粉粒子形状が維持される用途、例えば焼結した際に焼結が進んで粒子内空隙が消滅するような使われ方をしない用途が好ましい。例えば導電性ペーストなど、各種電子部品の電極や回路形成に用いることができる。特に、この銀粉から導電ペーストを作製すると、中空銀粉であるがゆえに銀量が少なくて済み、コストを抑えることができる。また、中空銀粉粒子であるから、中実な粒子に比べて変形させ易く、フレーク状粒子に容易に加工することもできる。
(Use)
The use of the silver powder particles obtained in the present embodiment is preferably an application in which the shape of the silver powder particles is maintained, for example, an application that is not used such that sintering progresses and voids in the particles disappear when sintered. For example, it can be used for forming electrodes and circuits of various electronic components such as conductive paste. In particular, when a conductive paste is produced from this silver powder, the amount of silver can be reduced because of the hollow silver powder, and the cost can be reduced. Moreover, since it is a hollow silver powder particle, it is easy to deform | transform compared with a solid particle, and can also be easily processed into a flaky particle.

以下、本発明の実施例について説明するが、本発明が以下の実施例に限定されるものではない。   Examples of the present invention will be described below, but the present invention is not limited to the following examples.

<粒度測定>
測定サンプル(銅粉)を少量ビーカーに取り、3%トリトンX溶液(関東化学製)を2、3滴添加し、粉末になじませてから、0.1%SNディスパーサント41溶液(サンノプコ製)50mLを添加し、その後、超音波分散器TIPφ20(日本精機製作所製、OUTPUT:8、TUNING:5)を用いて2分間分散処理して測定用サンプルを調製した。
この測定用サンプルを、レーザー回折散乱式粒度分布測定装置MT3300 (日機装製)を用いて、体積累積基準D50を測定した。
<Particle size measurement>
Take a measurement sample (copper powder) in a small amount of beaker, add a few drops of 3% Triton X solution (manufactured by Kanto Chemical Co., Ltd.), and blend with the powder. Then 0.1% SN Dispersant 41 solution (manufactured by San Nopco) 50 mL was added, and then a measurement sample was prepared by dispersing for 2 minutes using an ultrasonic disperser TIPφ20 (manufactured by Nippon Seiki Seisakusho, OUTPUT: 8, TUNING: 5).
The volume accumulation standard D50 of this measurement sample was measured using a laser diffraction / scattering particle size distribution analyzer MT3300 (manufactured by Nikkiso).

<見掛密度(AD)測定方法>
JIS Z-2504(2000)に準拠して蔵持科学器械製作所製カサ比重測定器を使用して測定した。
<Apparent density (AD) measurement method>
Based on JIS Z-2504 (2000), the measurement was performed using a Casa specific gravity measuring instrument manufactured by Kuramochi Scientific Instruments.

<タップ充填密度(TD)測定方法>
試料重量を120gとして、蔵持科学器械製作所製タップ測定器KRS−406を用いて測定した。
<Tap packing density (TD) measurement method>
The sample weight was set to 120 g, and the measurement was performed using a tap measuring instrument KRS-406 manufactured by Kuramochi Scientific Instruments.

<体積固有抵抗率の測定方法>
抵抗率測定は、試料15gを筒状容器に入れプレス圧40×106Pa(408kgf/cm2)で圧縮成形した測定サンプルを形成し、ロレスタAP及びロレスタPD−41型(いずれも三菱化学(株)社製)により測定を行った。
<Measurement method of volume resistivity>
The resistivity measurement was performed by forming a measurement sample in which 15 g of a sample was put in a cylindrical container and compression-molded with a press pressure of 40 × 10 6 Pa (408 kgf / cm 2 ), and Loresta AP and Loresta PD-41 types (both Mitsubishi Chemical Corporation) The measurement was carried out.

(実施例1)
デンドライト状電解銅粉(図1参照、純度99%以上、D50:15.88μm)300gを、50℃に保温した3000mlの純水に投入し、5分間攪拌混合してスラリーとした。次いで、還元剤である100%ヒドラジンを27.6g投入し、30分間攪拌を維持して還元処理を行なった。その後、ブフナロートにて固液分離し、1.8Lの純水で洗浄した後、メタノールを0.5mL添加処理して前処理済銅粉を得た。
(Example 1)
300 g of dendritic electrolytic copper powder (see FIG. 1, purity 99% or more, D50: 15.88 μm) was put into 3000 ml of pure water kept at 50 ° C. and stirred for 5 minutes to obtain a slurry. Next, 27.6 g of 100% hydrazine as a reducing agent was added, and the reduction treatment was performed while maintaining stirring for 30 minutes. Then, after solid-liquid separation with a buchner funnel and washing with 1.8 L of pure water, 0.5 mL of methanol was added to obtain a pretreated copper powder.

次に、3000mLの純水を40℃に加熱させ、上記得られた全ての前処理済銅粉を投入し、5分間攪拌混合してスラリーとした。次いで、EDTAを127.8g投入して10分間攪拌した後、予め用意しておいた硝酸銀溶液4.2L(硝酸銀1680g)を2時間かけて攪拌しながら滴下して置換反応を進めた後、5分間攪拌を止めて静置してエージング処理を行なった。その後、ブフナロートにて固液分離し、3000mLの純水で洗浄した後、メタノール500mL添加処理後、続いてアセトン500mLで脱水処理を行い、得られたケーキをステンレス製バットに移し変えて100℃の雰囲気で5時間乾燥させて銀粉粒子を得た。   Next, 3000 mL of pure water was heated to 40 ° C., and all of the pretreated copper powder obtained above were added and stirred for 5 minutes to form a slurry. Next, 127.8 g of EDTA was added and stirred for 10 minutes. Then, 4.2 L (1680 g of silver nitrate) prepared in advance was added dropwise with stirring over 2 hours, and the substitution reaction proceeded. Stirring was stopped for a minute and the mixture was allowed to stand for aging treatment. Then, after solid-liquid separation with a buch funnel and washing with 3000 mL of pure water, 500 mL of methanol was added, followed by dehydration with 500 mL of acetone, and the resulting cake was transferred to a stainless steel vat at 100 ° C. Silver powder particles were obtained by drying in an atmosphere for 5 hours.

得られた銀粉粒子をSEM観察(2000倍)及びFIB/SEM断面加工観察(5000倍)したところ、いずれの粒子も、粒子内部に空洞部を有すると共に、この空洞部と外部とを連通する孔を備えていた(図2、3)。
また、D50は15.54μm、Cu含有率は0.13質量%(銀:99.87質量%)、体積固有抵抗値は4.0×10-5mΩ・cmであった。
When the obtained silver powder particles were observed by SEM (2000 times) and FIB / SEM cross-section processing observation (5000 times), each particle had a cavity inside the particle and a hole communicating this cavity with the outside. (Figs. 2 and 3).
Further, D50 was 15.54 μm, the Cu content was 0.13 mass% (silver: 99.87 mass%), and the volume resistivity value was 4.0 × 10 −5 mΩ · cm.

(実施例2)
硝酸銀溶液の滴下時間を30分間に変更した以外、実施例1と同様にして銀粉粒子を得た。
得られた銀粉粒子をSEM観察(2000倍)及びFIB/SEM断面加工観察(5000倍)したところ、いずれの粒子も、粒子内部に空洞部を有すると共に、この空洞部と外部とを連通する孔を備えていた。
また、D50は14.99μm、Cu含有率は0.13質量%(銀:99.87質量%)、体積固有抵抗値は5.1×10-5mΩ・cmであった。
(Example 2)
Silver powder particles were obtained in the same manner as in Example 1 except that the dropping time of the silver nitrate solution was changed to 30 minutes.
When the obtained silver powder particles were observed by SEM (2000 times) and FIB / SEM cross-section processing observation (5000 times), each particle had a cavity inside the particle and a hole communicating this cavity with the outside. It was equipped with.
Further, D50 was 14.99 μm, the Cu content was 0.13 mass% (silver: 99.87 mass%), and the volume resistivity value was 5.1 × 10 −5 mΩ · cm.

(実施例3)
硝酸銀溶液の滴下時間を60分間に変更した以外、実施例1と同様にして銀粉粒子を得た。
得られた銀粉粒子をSEM観察(2000倍)及びFIB/SEM断面加工観察(5000倍)したところ、いずれの粒子も、粒子内部に空洞部を有すると共に、この空洞部と外部とを連通する孔を備えていた。
また、D50は19.47μm、Cu含有率は0.13質量%(銀:99.87質量%)、体積固有抵抗値は4.0×10-5mΩ・cmであった。
(Example 3)
Silver powder particles were obtained in the same manner as in Example 1 except that the dropping time of the silver nitrate solution was changed to 60 minutes.
When the obtained silver powder particles were observed by SEM (2000 times) and FIB / SEM cross-section processing observation (5000 times), each particle had a cavity inside the particle and a hole communicating this cavity with the outside. It was equipped with.
Further, D50 was 19.47 μm, the Cu content was 0.13 mass% (silver: 99.87 mass%), and the volume resistivity value was 4.0 × 10 −5 mΩ · cm.

(実施例4)
元粉を球状銅粉(純度:99%、D50:5.51μm)に変更以外は実施例1と同様の方法で銀粉粒子を製造した。
得られた銀粉粒子のD50は9.85μm、Cu含有率は0.98%(銀:99.02%)、体積固有抵抗値は6.2×10-5mΩ・cmであった。
Example 4
Silver powder particles were produced in the same manner as in Example 1 except that the original powder was changed to spherical copper powder (purity: 99%, D50: 5.51 μm).
D50 of the obtained silver powder particles was 9.85 μm, the Cu content was 0.98% (silver: 99.02%), and the volume resistivity value was 6.2 × 10 −5 mΩ · cm.

球状銅粉を元粉として使用した実施例4に比べて、デンドライト状銅粉を元粉として使用した実施例1−3の銀粉の銀置換率が高いという結果からすると、元粉としては球状銅粉などの等方状粒子ではなく、デンドライト状銅粉のような非等方状粒子を使用するのが好ましいと考えられる。   From the result that the silver substitution rate of the silver powder of Example 1-3 using the dendritic copper powder as the base powder is higher than that in Example 4 using the spherical copper powder as the base powder, the base powder is spherical copper. It is considered preferable to use anisotropic particles such as dendritic copper powder instead of isotropic particles such as powder.

実施例1で使用した元粉粒子のSEM観察像(倍率2000倍)である。It is a SEM observation image (magnification 2000 times) of the original powder particle used in Example 1. 実施例1で得られた銀粉のSEM観察像(倍率2000倍)である。It is a SEM observation image (magnification 2000 times) of the silver powder obtained in Example 1. 実施例1で得られた銀粉のFIB/SEM断面加工観察(倍率5000倍)である。It is FIB / SEM cross-section processing observation (5000 times magnification) of the silver powder obtained in Example 1. FIG.

Claims (4)

銀よりも卑な金属からなる粉体粒子と、銀を置換可能な溶液とを混合して置換反応させ、前記金属の99質量%以上を銀に置換させることにより銀粉粒子を得ることを特徴とする銀粉の製造方法。   It is characterized in that powder particles made of a metal that is baser than silver and a solution capable of replacing silver are mixed and subjected to a substitution reaction, and silver powder particles are obtained by replacing 99% by mass or more of the metal with silver. To produce silver powder. 銀よりも卑な金属からなる粉体粒子を水に分散させた水分散スラリー中に、キレート化剤を加えた後、水に可溶な銀塩を加えて置換反応させ、前記金属の99質量%以上を銀に置換させることにより銀粉粒子を得ることを特徴とする銀粉の製造方法。   After adding a chelating agent to a water-dispersed slurry in which powder particles made of a metal lower than silver are dispersed in water, a silver salt soluble in water is added to cause a substitution reaction, and 99 mass of the metal. A method for producing silver powder, characterized in that silver powder particles are obtained by substituting at least% by silver. 還元剤或いは酸によって、銀よりも卑な金属からなる粉体粒子の酸化皮膜を、置換反応前に予め除去しておくことを特徴とする請求項1又は2に記載の銀粉の製造方法。   The method for producing silver powder according to claim 1 or 2, wherein the oxide film of the powder particles made of a metal lower than silver is previously removed with a reducing agent or acid before the substitution reaction. 請求項1乃至3の何れかに記載の製造方法によって得られる銀粉。
The silver powder obtained by the manufacturing method in any one of Claims 1 thru | or 3.
JP2006304875A 2006-11-10 2006-11-10 Method for producing silver powder Pending JP2008121051A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006304875A JP2008121051A (en) 2006-11-10 2006-11-10 Method for producing silver powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006304875A JP2008121051A (en) 2006-11-10 2006-11-10 Method for producing silver powder

Publications (1)

Publication Number Publication Date
JP2008121051A true JP2008121051A (en) 2008-05-29

Family

ID=39506133

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006304875A Pending JP2008121051A (en) 2006-11-10 2006-11-10 Method for producing silver powder

Country Status (1)

Country Link
JP (1) JP2008121051A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150034883A1 (en) * 2012-02-13 2015-02-05 Dowa Electronics Materials Co., Ltd. Spherical silver powder and method for producing same
CN109967760A (en) * 2019-04-17 2019-07-05 宁波大学 A kind of dendritic silver nanometer sheet material and its preparation method and application containing zigzag inner surface
JP2019178355A (en) * 2018-03-30 2019-10-17 トヨタ自動車株式会社 Method for manufacturing metal nanoparticle
CN114082974A (en) * 2021-10-25 2022-02-25 温州伟达贵金属粉体材料有限公司 Method for preparing silver powder from copper material
CN117620193A (en) * 2023-10-18 2024-03-01 广东聚砺新材料有限责任公司 Silver powder preparation method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150034883A1 (en) * 2012-02-13 2015-02-05 Dowa Electronics Materials Co., Ltd. Spherical silver powder and method for producing same
US11424049B2 (en) * 2012-02-13 2022-08-23 Dowa Electronics Materials Co., Ltd. Spherical silver powder and method for producing same
JP2019178355A (en) * 2018-03-30 2019-10-17 トヨタ自動車株式会社 Method for manufacturing metal nanoparticle
CN109967760A (en) * 2019-04-17 2019-07-05 宁波大学 A kind of dendritic silver nanometer sheet material and its preparation method and application containing zigzag inner surface
CN114082974A (en) * 2021-10-25 2022-02-25 温州伟达贵金属粉体材料有限公司 Method for preparing silver powder from copper material
CN117620193A (en) * 2023-10-18 2024-03-01 广东聚砺新材料有限责任公司 Silver powder preparation method

Similar Documents

Publication Publication Date Title
JP4660701B2 (en) Silver-coated copper powder, method for producing the same, and conductive paste
JP6166012B2 (en) Conductive powder and conductive paste
JP5284728B2 (en) Silver-coated aluminum powder and method for producing the same
JP2009046708A (en) Silver powder
KR20080100365A (en) Process for production of ultrafine silver particles and ultrafine silver particles produced by the process
JP6165399B1 (en) Silver coated copper powder
JP2021113358A (en) Silver-covered metal powder and method for producing the same
JP6186197B2 (en) Silver-coated copper alloy powder and method for producing the same
CN107427912A (en) Cover silver-bearing copper powder and the conductive paste, conductive coating paint, conductive sheet of silver-bearing copper powder are covered using this
JP4651533B2 (en) Method for producing copper particles
JP2013541640A (en) Silver particles and method for producing the same
JP5778941B2 (en) Method for producing silver-coated flake copper powder
JP2008121051A (en) Method for producing silver powder
JP2015021143A (en) Silver-coated copper alloy powder and method for producing the same
JP6278969B2 (en) Silver coated copper powder
WO2006118182A1 (en) Tin powder, process for producing tin powder, and tin powder-containing elctrically conductive paste
JP6271231B2 (en) Silver-coated copper powder and conductive paste
JP5453598B2 (en) Silver-coated copper powder and conductive paste
JP2017039991A (en) Silver-coated copper powder, method for producing the same, and conductive paste using the same
JP6194166B2 (en) Method for producing silver-coated copper alloy powder
JP2012140661A (en) Flat copper particle
JP5576319B2 (en) Copper particles
JP5785433B2 (en) Low carbon copper particles
JP2016145404A (en) Copper powder for conductive paste and method for producing the same
JP6577316B2 (en) Copper powder for conductive paste and method for producing the same