JP2008120626A - Joined body and joining method - Google Patents

Joined body and joining method Download PDF

Info

Publication number
JP2008120626A
JP2008120626A JP2006305236A JP2006305236A JP2008120626A JP 2008120626 A JP2008120626 A JP 2008120626A JP 2006305236 A JP2006305236 A JP 2006305236A JP 2006305236 A JP2006305236 A JP 2006305236A JP 2008120626 A JP2008120626 A JP 2008120626A
Authority
JP
Japan
Prior art keywords
carbon
carbide
ceramic material
bonding
joining
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006305236A
Other languages
Japanese (ja)
Other versions
JP5052101B2 (en
Inventor
Masakatsu Maeda
将克 前田
Masayuki Takahashi
正行 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka University NUC
Panasonic Holdings Corp
Original Assignee
Osaka University NUC
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka University NUC, Matsushita Electric Industrial Co Ltd filed Critical Osaka University NUC
Priority to JP2006305236A priority Critical patent/JP5052101B2/en
Publication of JP2008120626A publication Critical patent/JP2008120626A/en
Application granted granted Critical
Publication of JP5052101B2 publication Critical patent/JP5052101B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Ceramic Products (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a joined body of a base material, such as a ceramic material, and a carbon material; and to provide a method for joining the same. <P>SOLUTION: The joined body has such a structure that a carbon material 1 and a carbide-based ceramic material 2 having, as one of constitutive elements, carbon on the surface to be joined with the carbon material 1 are joined by inducing a chemical reaction which produces the same compound as the carbide-based ceramic material 2. The joining process comprises depositing a film composed of constituting elements 3 except carbon of the carbide-based ceramic material 2, being an intermediate material, on at least one of the joining surface 1a of the carbon material 1 and the joining surface 2a of the carbide-based ceramic material 2, then stacking the carbon material 1 and the carbide-based ceramic material 2, setting the stacked carbon material 1 and carbide-based ceramic material 2 in a chamber 6 of a joining apparatus 5, further reducing the pressure at the inside of the chamber 6, applying pressure to the joining face between the stacked carbon material 1 and carbide-based ceramic material 2, and joining the stacked carbon material 1 and carbide-based ceramic material 2 by raising the temperature of the chamber 6. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、光学ガラスレンズ,樹脂レンズ,プリズム等の光学素子やガラス磁気ディスク基板の成形型などに用いる接合体に関するものである。   The present invention relates to a joined body used for an optical element such as an optical glass lens, a resin lens, and a prism, a mold for a glass magnetic disk substrate, and the like.

ガラス成形型材としてガラス状カーボンを使用することは(特許文献1)などで知られている。ガラス製光学素子の場合、成型温度が600℃を超えることも稀でなく、温度が高いことによる成形型の高温劣化や、ガラスと成型部との融着が生じにくい点からガラス状カーボンが型材として有効である。   The use of glassy carbon as a glass mold material is known (Patent Document 1). In the case of glass optical elements, it is not rare that the molding temperature exceeds 600 ° C, and glassy carbon is the molding material because it is difficult to cause high-temperature deterioration of the mold due to high temperature and fusion between the glass and the molded part. It is effective as

光学素子の成形に使用するガラス成形型をガラス状カーボンで構成するには、ある程度物理的な大きさがある方が好都合である。それは成型面の形状変更等をする場合、追加工すれば容易にできるからである。しかしながら、ガラス成形に適したガラス状カーボンは、10mm厚み以下の板状の素材しか工業的に製造されていない。それ故にガラス状カーボンが耐熱性、ガラス素材との反応性の少なさ、離型性の良さなど、ガラスの成形に使用する上でのメリットを有することが古くから知られていたにも関わらず、工業的にも利用されていなかった。   In order to configure a glass mold used for molding an optical element with glassy carbon, it is advantageous that the glass mold has a certain physical size. This is because when the shape of the molding surface is changed, it can be easily done by additional machining. However, glassy carbon suitable for glass molding is only industrially produced in the form of a plate-like material having a thickness of 10 mm or less. Therefore, although it has long been known that glassy carbon has merits for use in glass molding, such as heat resistance, low reactivity with glass materials, and good releasability. It was not used industrially.

現在、工業的に利用されたガラス成形型素材としては、耐熱性、強度面から、超硬やセラミックスが基材として使用され、ガラスと接する成形面には白金系の合金膜やDLC(ダイヤモンドライクカーボン)、カーボン系の薄膜が形成されている。しかし、型の基材として耐熱性と強度に優れた材料を使用していても、ガラスと接する成形面の薄膜が剥がれたりするため、成形型の寿命が短いという問題がある。   Currently, glass mold materials used industrially are made of carbide or ceramics as a base material in terms of heat resistance and strength, and platinum-based alloy films or DLC (diamond-like) are used on the molding surface in contact with glass. Carbon), a carbon-based thin film is formed. However, even if a material having excellent heat resistance and strength is used as the base material of the mold, there is a problem that the life of the mold is short because the thin film on the molding surface in contact with the glass is peeled off.

そこで、元に立ち返って(特許文献2)〜(特許文献5)などでは、バルク材のガラス状カーボンを成形型として使用する試みがなされている。
(特許文献2)においては、カーボン系材料からなる基材と、成形面となるガラス状カーボンを、カーボン系の接着剤を用いて接合するアイデアである。基材、接着剤、ガラス状カーボンの三者の熱膨張率は比較的近く、熱による応力の発生は比較的少ないと考えられる。
Therefore, returning to the original (Patent Document 2) to (Patent Document 5), attempts have been made to use glassy carbon of a bulk material as a mold.
In (Patent Document 2), the idea is to join a base material made of a carbon-based material and glassy carbon to be a molding surface using a carbon-based adhesive. The thermal expansion coefficients of the base material, the adhesive, and the glassy carbon are relatively close, and the generation of stress due to heat is considered to be relatively small.

(特許文献3)(特許文献4)では、ガラス状カーボンと基材とをろう付けすることが提案されている。
(特許文献5)では、SiC基材の上に中間材を設けて、ホットプレス法により接合を行い、ガラス成形型とした例がある。
(Patent Document 3) (Patent Document 4) proposes brazing glassy carbon and a substrate.
In Patent Document 5, there is an example in which an intermediate material is provided on a SiC base material and bonded by a hot press method to form a glass mold.

このような構成では基材と成形材とで機能を分けることが可能となり、より高性能な成形型を構成することができる。基材と成形用材料との接合部を連続的に変化するように基材と成形用材料を一体で作り込むことが可能とされている。
特開昭47−11277号公報 特許第2626880号 特開平6−340435号公報 特開2005−112672号公報 特開2001−335334号公報
In such a configuration, the functions can be divided between the base material and the molding material, and a higher performance molding die can be configured. The base material and the molding material can be integrally formed so that the joint portion between the base material and the molding material is continuously changed.
JP 47-11277 A Japanese Patent No. 2626880 JP-A-6-340435 JP 2005-112672 A JP 2001-335334 A

しかしながら、(特許文献2)のように基材となるカーボン材とガラス状カーボンを炭素系接着剤で結合するのは、型構成の上で問題がある。一つに基材の強度が弱すぎて、実用上問題が生じる。第二に、カーボン系接着剤とガラス状カーボンの接合力が弱く、実用に供しない。   However, as in (Patent Document 2), there is a problem in terms of mold configuration to bond a carbon material serving as a base material and glassy carbon with a carbon-based adhesive. For one thing, the strength of the substrate is too weak, which causes practical problems. Secondly, the bonding strength between the carbon-based adhesive and the glassy carbon is weak and not practically used.

次に(特許文献3)のようにガラス状カーボンと基材となる金属をろう付けすることは、技術的に困難である。まず第一にガラス状カーボンは濡れ性が低く、ろう材がそのままでは結合力を持たない。   Next, it is technically difficult to braze the glassy carbon and the base metal as in (Patent Document 3). First of all, glassy carbon has low wettability, and the brazing material does not have bonding strength as it is.

(特許文献4)の方法では接合は可能であり、接合強度も十分であるが、接合面積が大きくなると、熱応力が高くなり破壊する可能性がある。これは、基材となる炭化珪素とガラス状カーボンの熱膨張係数は3〜4×10−6/℃と小さく、かつほぼ等しいのに対して、ろう材の熱膨張係数は18×10−6/℃と大きい組合せであることに起因している。
このような接合体をガラス成形型に用いると、昇温と降温の成形サイクルを繰り返すことで熱疲労破壊することが容易に推察できる。特に、SiCとろう材の界面は、SiCのヤング率が高いために発生する応力も大きくなり、この界面で熱疲労破壊する可能性が高い。
In the method of (Patent Document 4), the bonding is possible and the bonding strength is sufficient, but if the bonding area is increased, the thermal stress may be increased and may be broken. This is because the thermal expansion coefficient of silicon carbide and glassy carbon as the base material is as small as 3-4 × 10 −6 / ° C. and almost equal, whereas the thermal expansion coefficient of the brazing material is 18 × 10 −6. This is due to the large combination of / ° C.
When such a joined body is used for a glass mold, it can be easily inferred that thermal fatigue failure is caused by repeating molding cycles of temperature increase and temperature decrease. In particular, at the interface between the SiC and the brazing material, the stress generated due to the high Young's modulus of SiC is increased, and there is a high possibility of thermal fatigue failure at this interface.

次にSiC基材とガラス状カーボンをホットプレス法で接合する構成は、複合体を作る工程が複雑すぎて、実用的でない。基材と成形部となる機能材とを接合する目的で構成する中間材は、多元素により構成されているので、高価な成膜装置を複雑な管理の下で成膜する必要がある。かつ中間材の厚みが1ミクロン以上と厚いので、実施するにあたって時間も要するという課題を有している。   Next, the structure which joins a SiC base material and glassy carbon by a hot press method is not practical because the process of making a composite is too complicated. Since the intermediate material formed for the purpose of joining the base material and the functional material serving as the forming part is composed of multiple elements, it is necessary to form an expensive film forming apparatus under complicated control. And since the thickness of an intermediate material is as thick as 1 micron or more, it has the subject that time is required in implementation.

基材となるSiCとガラス状カーボンを一体で作り込もうとしても、SiCの焼成条件とガラス状カーボンの焼成条件は異なり、同時に作り込めたとしてもそれぞれの機能が十分満たされない。   Even if SiC and glassy carbon serving as a base material are made integrally, the firing conditions for SiC and glassy carbon are different, and even if they are made simultaneously, the respective functions are not sufficiently satisfied.

本発明は、前記従来の課題を解決するもので、従来に比べて容易にガラス状カーボンと炭化珪素などの基材との接合体を構成できる、実用的な接合体とその接合方法を提供することを目的とする。   The present invention solves the above-described conventional problems, and provides a practical joined body and a joining method thereof that can easily form a joined body of glassy carbon and a substrate such as silicon carbide as compared with the conventional art. For the purpose.

本発明の請求項1記載の接合体は、炭素材料と前記炭素材料との接合面に炭素を構成元素の一つとする炭化物系セラミックス材料とを、前記炭化物系セラミックス材料と同じ化合物を生成する化学反応を誘起させることにより接合したことを特徴とする。この構成によると、熱膨張係数の概ね等しい材料の接合体であるため熱応力による歪が発生しにくく、接合面の剥離がおきにくくなる。   According to a first aspect of the present invention, there is provided a bonded body comprising: a carbon-based ceramic material having carbon as one of constituent elements on a bonding surface between a carbon material and the carbon material; and a chemistry that generates the same compound as the carbide-based ceramic material. It is characterized by joining by inducing a reaction. According to this configuration, since the joined body is made of a material having substantially the same thermal expansion coefficient, distortion due to thermal stress is unlikely to occur, and separation of the joint surface is difficult to occur.

本発明の請求項2記載の接合方法は、炭素材料と前記炭素材料との接合面に炭素を構成元素の一つとする炭化物系セラミックス材料とを積層して接合するに際し、前記炭素材料と前記炭化物系セラミックス材料との間に前記炭化物系セラミックス材料の炭素以外の構成元素より成る層を挟んで積層する工程と、積層した前記炭素材料と前記炭化物系セラミックス材料を接合装置のチャンバーにセットして前記チャンバーの内部を真空引きする工程と、積層した前記炭素材料と前記炭化物系セラミックス材料の接合面に圧力を付与する工程と、接合装置の前記チャンバーを昇温して前記炭化物系セラミックス材料の炭素以外の構成元素より成る層と前記炭化物系セラミックス材料の間で原子拡散を誘起する工程とを有することを特徴とする。この構成によると、容易でかつ強固に接合できる。   In the joining method according to claim 2 of the present invention, when the carbon material and a carbide ceramic material having carbon as one of the constituent elements are laminated and joined to the joining surface of the carbon material and the carbon material, the carbon material and the carbide are bonded. A step of laminating a layer made of a constituent element other than carbon of the carbide-based ceramic material between the ceramic-based ceramic material, and setting the laminated carbon material and the carbide-based ceramic material in a chamber of a bonding apparatus, A step of evacuating the interior of the chamber, a step of applying pressure to the bonding surface of the laminated carbon material and the carbide-based ceramic material, and heating the chamber of the bonding apparatus to raise the temperature other than the carbon of the carbide-based ceramic material. And a step of inducing atomic diffusion between the layer made of the constituent elements and the carbide-based ceramic material. According to this structure, it can join easily and firmly.

本発明の請求項3記載の接合方法は、請求項2において、前記炭素材料と前記炭化物系セラミックス材料との間に前記炭化物系セラミックス材料の炭素以外の構成元素より成る層を挟んで積層する工程は、前記炭素材料または前記炭化物系セラミックス材料の接合面の少なくとも一方に、前記炭化物系セラミックス材料の炭素以外の構成元素より成る層を成膜してから積層することを特徴とする。この構成によると、炭素材料と炭化物系セラミックス材料との間に、前記炭化物系セラミックス材料の炭素以外の構成元素を容易に挟むことができる。   The bonding method according to claim 3 of the present invention is the bonding method according to claim 2, wherein a layer made of a constituent element other than carbon of the carbide ceramic material is sandwiched between the carbon material and the carbide ceramic material. Is characterized in that a layer made of a constituent element other than carbon of the carbide ceramic material is deposited on at least one of the bonding surfaces of the carbon material or the carbide ceramic material and then laminated. According to this configuration, constituent elements other than carbon of the carbide-based ceramic material can be easily sandwiched between the carbon material and the carbide-based ceramic material.

本発明の請求項4記載の接合方法は、請求項2において、前記炭素材料が、ガラス状カーボン、ダイヤモンド、グラファイトあるいはフラーレン結晶体であることを特徴とする。   The bonding method according to claim 4 of the present invention is characterized in that, in claim 2, the carbon material is glassy carbon, diamond, graphite or fullerene crystal.

本発明の請求項5記載の接合方法は、請求項2において、前記炭化物系セラミックス材料が、炭化珪素または炭化硼素であることを特徴とする。この構成によると、中間材となる前記炭化物系セラミックス材料の炭素以外の構成元素が有効に作用し、炭素材料と基材の炭化物系セラミックス材料とを強固に接合できる。   The bonding method according to claim 5 of the present invention is characterized in that, in claim 2, the carbide-based ceramic material is silicon carbide or boron carbide. According to this configuration, the constituent elements other than carbon of the carbide-based ceramic material serving as the intermediate material act effectively, and the carbon material and the carbide-based ceramic material of the base material can be firmly bonded.

本発明の請求項6記載の接合方法は、請求項3において、前記炭化物系セラミックス材料の炭素以外の構成元素より成る層の成膜厚みが1マイクロメートル以下であることを特徴とする。この構成によると、炭化物系セラミックス材料の炭素以外の構成元素と炭素材料が良好に反応し、より強固な接合が可能となる。   The bonding method according to claim 6 of the present invention is characterized in that, in claim 3, the thickness of the layer made of a constituent element other than carbon of the carbide-based ceramic material is 1 micrometer or less. According to this structure, constituent elements other than carbon of the carbide-based ceramic material and the carbon material react satisfactorily, and stronger bonding is possible.

本発明の請求項7記載の接合方法は、請求項2において、到達する真空度が少なくとも1×10−1Pa以上、接合面に付与する圧力が少なくとも5MPa以上、接合温度が800℃以上であることを特徴とする。この構成によると、強固な接合体を構成できる。 The joining method according to claim 7 of the present invention is the joining method according to claim 2, wherein the degree of vacuum reached is at least 1 × 10 −1 Pa or more, the pressure applied to the joining surface is at least 5 MPa, and the joining temperature is 800 ° C. or more. It is characterized by that. According to this configuration, a strong bonded body can be configured.

本発明の請求項8記載の成形型は、請求項1記載の接合体の前記炭素材料の前記炭化物系セラミックス材料との接合面でない方の面に、成形面を形成したことを特徴とする。この構成によると、成形型は成形する度に加熱/冷却を繰り返すことになるが、熱疲労破壊することの無い型構造を構成できる。   The forming die according to claim 8 of the present invention is characterized in that a forming surface is formed on the surface of the bonded body according to claim 1 which is not the bonding surface between the carbon material and the carbide-based ceramic material. According to this configuration, the mold is repeatedly heated / cooled each time it is molded, but a mold structure without thermal fatigue failure can be configured.

このように、従来に比べて容易に炭素材料と炭化物系セラミックス材料の基材との接合体を構成でき、製作された接合体の炭素材料側を成形面とした光学素子用成形型を製作することが可能となる。また、成形型によれば、成形時の高温と取出し時の常温を繰り返しても、接合部での発生応力も小さく、熱疲労に耐えることができ実用的である。また、実用的に入手可能なガラス状カーボンなどの炭素材料を成形部に使用することが可能となるので、高温での耐久性や離型性の点でも優れる。   Thus, it is possible to easily form a joined body of a carbon material and a carbide-based ceramic material base material as compared with the conventional one, and to produce a molding die for an optical element having the carbon material side of the produced joined body as a molding surface. It becomes possible. Further, according to the mold, even if the high temperature at the time of molding and the room temperature at the time of taking out are repeated, the stress generated at the joint is small, and it is practical because it can withstand thermal fatigue. Moreover, since it becomes possible to use carbon materials, such as glass-like carbon which can be obtained practically, for a molding part, it is excellent also in terms of durability at high temperatures and releasability.

以下、本発明の接合方法を具体的な実施の形態に基づいて説明する。
図1は、本発明の接合方法による接合体の製作プロセスフローである。
1は炭素材料としてのガラス状カーボンである。2は基材としてのセラミックスで、具体的には炭化物系セラミックスとしての炭化珪素である。ガラス状カーボン1の接合面1aとセラミックス2の接合面2aは、あらかじめ平滑に研磨しておくと接合時に有効である。図では平面のように描いているが、曲面であってもかまわない。
Hereinafter, the joining method of the present invention will be described based on specific embodiments.
FIG. 1 is a manufacturing process flow of a joined body according to the joining method of the present invention.
Reference numeral 1 denotes glassy carbon as a carbon material. Reference numeral 2 denotes a ceramic as a base material, specifically silicon carbide as a carbide-based ceramic. It is effective at the time of bonding if the bonding surface 1a of the glassy carbon 1 and the bonding surface 2a of the ceramic 2 are polished smoothly in advance. Although it is drawn like a plane in the figure, it may be a curved surface.

平滑研磨の後、炭化珪素2の接合面2aに前記セラミックス2である炭化珪素の炭素以外の構成元素より成る層としての珪素膜3を薄膜プロセスで形成する。珪素膜3の厚みは1マイクロメートル以下が有効である。成膜方法はスパッタリングや蒸着でもかまわない。   After smooth polishing, a silicon film 3 as a layer made of a constituent element other than carbon of silicon carbide as the ceramic 2 is formed on the bonding surface 2a of the silicon carbide 2 by a thin film process. The effective thickness of the silicon film 3 is 1 micrometer or less. The film forming method may be sputtering or vapor deposition.

成膜後、接合面1aとの接合面2aが珪素膜3を介して接するようにして、接合装置5に入れる。接合装置5は、チャンバー内を真空にする機能と、試料を加圧する機能および加熱する機能を備えている必要がある。実際の接合プロセスは、試料投入後、接合装置5のチャンバー内を所定の圧力まで真空にする。   After the film formation, the bonding surface 2a with the bonding surface 1a is put into the bonding device 5 so as to be in contact with the silicon film 3 therebetween. The bonding apparatus 5 needs to have a function of evacuating the chamber, a function of pressurizing the sample, and a function of heating. In the actual bonding process, after the sample is put, the inside of the chamber of the bonding apparatus 5 is evacuated to a predetermined pressure.

これ以降、試料を加熱する。加熱開始のタイミングは、真空度が所定の値に達してからが望ましい。ガラス状カーボン1を酸素雰囲気中で加熱すると、酸素と反応し一酸化炭素、二酸化炭素が発生するためである。一般的に酸素との反応は400℃付近より上の温度で生じる。真空にする意味は、酸素の排出であるため、酸素置換すれば窒素、アルゴン等の不活性ガス雰囲気でも接合できる可能性がある。   Thereafter, the sample is heated. It is desirable that the heating start timing is after the degree of vacuum reaches a predetermined value. This is because when the glassy carbon 1 is heated in an oxygen atmosphere, it reacts with oxygen to generate carbon monoxide and carbon dioxide. In general, the reaction with oxygen occurs at temperatures above about 400 ° C. Since the meaning of making a vacuum is the discharge of oxygen, if oxygen substitution is performed, bonding may be possible even in an inert gas atmosphere such as nitrogen or argon.

次に所定の温度に到達後、ガラス状カーボン1とセラミックス2を上下から加圧して接合面1a,2aに圧力を掛け、一定時間保持する。高温下で圧力を掛けることで、珪素膜3とガラス状カーボン1が界面反応により炭化珪素が形成される。即ち、接合完了後は中間材の珪素膜3の層はほぼ消失する。また、高温下で圧力を掛けることで、珪素膜3はカーボンと反応し部分的に炭化珪素を形成することで、接合面2aから積層方向に炭化珪素の割合が変化し炭化珪素になった部分とカーボンとが混じり合った混合層4が形成されている。   Next, after reaching a predetermined temperature, the glassy carbon 1 and the ceramics 2 are pressurized from above and below to apply pressure to the bonding surfaces 1a and 2a and hold for a certain time. By applying pressure at a high temperature, silicon carbide is formed by an interfacial reaction between the silicon film 3 and the glassy carbon 1. That is, the layer of the silicon film 3 of the intermediate material is almost lost after the bonding is completed. Further, by applying pressure at a high temperature, the silicon film 3 reacts with carbon to partially form silicon carbide, so that the silicon carbide portion changes in the stacking direction from the bonding surface 2a and becomes silicon carbide. A mixed layer 4 in which carbon and carbon are mixed is formed.

この高温下で加圧した後は、常温まで冷却し、大気開放して試料を接合装置5から取り出す。
前述した概略の工程を、各工程毎に詳述する。
After pressurization at this high temperature, the sample is cooled to room temperature, opened to the atmosphere, and the sample is taken out from the bonding apparatus 5.
The general process described above will be described in detail for each process.

図2は本発明のプロセスで使用した試料のサイズを示す。ここではガラス状カーボン1として厚みが3mmのCG23(東海カーボン株式会社・商品名)を使用した。セラミックス2として厚みが4mmの炭化珪素SC1000(京セラ株式会社・商品名)を使用した。   FIG. 2 shows the size of the sample used in the process of the present invention. Here, CG23 (Tokai Carbon Co., Ltd., trade name) having a thickness of 3 mm was used as the glassy carbon 1. As ceramic 2, silicon carbide SC1000 (Kyocera Corporation, trade name) having a thickness of 4 mm was used.

ガラス状カーボン1の接合面1a,セラミックス2の接合面2aを、ラッピングにより加工した。接合面1a,2aともに、平均粒径2ミクロンのダイヤモンドスラリーを使用し、錫ラップ盤で加工した。図3(a)(b)に平滑研磨後の接合面の顕微鏡拡大図を示す。   The joining surface 1a of the glassy carbon 1 and the joining surface 2a of the ceramic 2 were processed by lapping. Both joining surfaces 1a and 2a were processed with a tin lapping machine using diamond slurry having an average particle diameter of 2 microns. 3 (a) and 3 (b) are enlarged views of the bonded surface after smooth polishing.

ガラス状カーボン1の接合面1aは、最大高さ29ナノメートルの面となった。同じ加工条件で施したセラミックス2の接合面2aは、最大高さ54ナノメートルである。接合面2aは、材料内部に存在する気孔が現れるので、部分的に凹んだ加工面となっていることがわかる。   The bonding surface 1a of the glassy carbon 1 was a surface having a maximum height of 29 nanometers. The joining surface 2a of the ceramics 2 applied under the same processing conditions has a maximum height of 54 nanometers. It can be seen that the bonding surface 2a is a partially recessed working surface because pores existing inside the material appear.

本発明の接合を実施する上で、接合面をどの程度平滑にする必要があるか、その詳細は不明であるが、本発明のメカニズムから鑑みて、より平滑である方が実質の接合面積が増えて有効であることが予想される。言い換えれば、接合する面のあらさが大きくなると、実質的に接触している部分は接合できるが、部分的未接合の部分が増えるので全体としての所定の接合強度に達しない場合があることが考えられる。   Although it is unclear how much the joint surface needs to be smooth in carrying out the bonding of the present invention, in view of the mechanism of the present invention, the smoother surface has a substantial bonding area. It is expected to increase and be effective. In other words, if the roughness of the surfaces to be joined increases, the substantially contacted part can be joined, but the partially unjoined part increases, so that it may not reach the predetermined joint strength as a whole. It is done.

次に、セラミックス2の接合面2aに珪素膜3の膜を形成する。今回のプロセスの中では、珪素をスパッタリングして形成した。珪素膜3の厚みは、1マイクロメートル以下で十分である。接合後に、この珪素膜3はカーボンと反応して炭化珪素となるので、必要以上に厚いと反応時間を要し、接合不十分になることが考えられる。   Next, a silicon film 3 is formed on the bonding surface 2 a of the ceramic 2. In this process, silicon was formed by sputtering. The thickness of the silicon film 3 is sufficient to be 1 micrometer or less. Since this silicon film 3 reacts with carbon to form silicon carbide after bonding, it is considered that if it is thicker than necessary, reaction time is required and bonding becomes insufficient.

上記接合の理論的な検討を図9(a)〜図9(d)に基づいて説明する。
炭素材料(例えばガラス状カーボン)と炭化物系セラミックス材料(例えば炭化珪素)を、真空中で珪素薄膜を介して密に接触させ、適度に温度を上げると、各材料の構成原子の拡散が活発に生じるようになる。しかし、原子間の結合エネルギー(=原子の拘束力:移動のしにくさの指標)が材料によって大きく異なるため、拡散による原子の移動速度は材料によって大きく異なる。炭化珪素中の炭素と珪素は非常に強く共有結合し、化学的に安定化しているのに対して、珪素は温度を上げることで著しく活性化し、材料自身の中での原子拡散(自己拡散と呼ばれる現象)が活発に生じるようになる。また、珪素中への炭素の溶解度、炭化珪素中への珪素の溶解度は、いずれも非常に微々たるものであることが知られている。したがって、珪素中への炭素、および炭化珪素中への珪素の拡散溶解はほとんど生じないと考えられる。以上のことから、接合界面で生じる原子移動は、珪素薄膜からガラス状カーボンへの原子拡散がほとんどであることが分かる。
The theoretical examination of the joining will be described with reference to FIGS. 9 (a) to 9 (d).
When a carbon material (for example, glassy carbon) and a carbide-based ceramic material (for example, silicon carbide) are brought into close contact with each other through a silicon thin film in a vacuum and the temperature is raised moderately, diffusion of constituent atoms of each material becomes active. It comes to occur. However, since the bond energy between atoms (= atomic binding force: index of difficulty of movement) varies greatly depending on the material, the moving speed of atoms due to diffusion varies greatly depending on the material. Carbon and silicon in silicon carbide are very strongly covalently bonded and chemically stabilized, whereas silicon is significantly activated by raising the temperature, and atomic diffusion (self-diffusion and (Phenomenon called) becomes active. Further, it is known that both the solubility of carbon in silicon and the solubility of silicon in silicon carbide are extremely insignificant. Therefore, it is considered that almost no diffusion and dissolution of carbon into silicon and silicon into silicon carbide occurs. From the above, it can be seen that the atomic migration occurring at the bonding interface is mostly atomic diffusion from the silicon thin film to the glassy carbon.

ガラス状カーボン中に拡散した珪素原子は、直ちにガラス状カーボンの炭素原子と強固な共有結合を形成して炭化珪素を生成する。炭化珪素を形成した領域では、以降の原子移動が著しく拘束されるようになる。そのため、珪素原子は接合界面の未接合部(空隙となっている領域)を表面拡散することでガラス状カーボンの未反応領域に達し、反応するようになる。このように、接合の極めて初期の段階では接合界面に対して垂直な方向への珪素原子の拡散が主であるが、これは次第に速度を減じ、界面の未接合部に沿った(界面に平行な方向への)原子拡散が支配的に生じるようになる。   The silicon atoms diffused into the glassy carbon immediately form a strong covalent bond with the carbon atoms of the glassy carbon to form silicon carbide. In the region where silicon carbide is formed, subsequent atomic movement is significantly restricted. For this reason, silicon atoms reach the unreacted region of the glassy carbon by diffusing the surface of the unbonded portion (the region serving as a void) at the bonding interface, and react. In this way, the diffusion of silicon atoms in the direction perpendicular to the bonding interface is mainly performed at the very early stage of bonding, but this gradually reduces the velocity, along the unbonded portion of the interface (parallel to the interface). Atomic diffusion (in any direction) occurs predominantly.

ガラス状カーボン、珪素薄膜、炭化珪素は、いずれも金属材料に比べると塑性変形がほとんど期待できない脆性材料であるので、接合面を平滑に仕上げたとしても初期段階で実際に接触している面積は極めて少ないことが分かる(図9(a))。接合時の界面に平行な方向への原子拡散は、このような未接合部(=空隙)に向かう原子の流れと捉えることができる。この機構によって、空隙が充填されることで実質の接合面積が拡大して行く(図9(b)〜(c))。そして、最終的には珪素薄膜が完全にガラス状カーボンと反応して炭化珪素となり、大きな空隙がごくわずかに残留した接合界面が形成される(図9(d))。図9(a)から図9(c)への過程は非常に高速で進行するが、図9(c)から図9(d)への過程はかなり時間を要するものとなる。   Glassy carbon, silicon thin film, and silicon carbide are all brittle materials that can hardly be expected to undergo plastic deformation compared to metal materials, so even if the joint surface is smooth, the area actually in contact at the initial stage is It can be seen that there is very little (FIG. 9A). The atomic diffusion in the direction parallel to the interface at the time of bonding can be regarded as such a flow of atoms toward the unbonded portion (= void). By this mechanism, the substantial bonding area is expanded by filling the gap (FIGS. 9B to 9C). Finally, the silicon thin film completely reacts with glassy carbon to become silicon carbide, and a bonding interface in which a very large gap remains is formed (FIG. 9D). The process from FIG. 9 (a) to FIG. 9 (c) proceeds at a very high speed, but the process from FIG. 9 (c) to FIG. 9 (d) takes a considerable amount of time.

図4に本発明で使用した接合装置5の概略図を示す。
本発明は必ずしも図4と同じ構成でなくとも実現できるが、一例として使用した接合装置について説明する。
FIG. 4 shows a schematic view of the bonding apparatus 5 used in the present invention.
Although the present invention can be realized without necessarily having the same configuration as that of FIG. 4, a joining apparatus used as an example will be described.

接合装置5は、チャンバー6と、本図では詳述していないがチャンバー6内を所定の真空度にするための真空ポンプ7を備える。また、チャンバー6の内部には試料を加熱する加熱装置8と、圧力を加える油圧シリンダ9を備えている。   The bonding apparatus 5 includes a chamber 6 and a vacuum pump 7 which is not described in detail in this drawing, and for making the inside of the chamber 6 have a predetermined degree of vacuum. The chamber 6 is provided with a heating device 8 for heating the sample and a hydraulic cylinder 9 for applying pressure.

加熱装置8は、誘導コイル10によって、カーボン製の加熱体11を誘導加熱する。加熱体11内には、熱電対12を設けて、誘導コイルを制御するためのコントローラ(図示せず)にフィードバックして温度制御するように構成されている。加熱体11の内側に試料を設置する構成となっている。また、加熱温度が高いので誘導コイル10の保護のために断熱材13が設けられている。   The heating device 8 induction-heats the carbon heating body 11 with the induction coil 10. A thermocouple 12 is provided in the heating body 11 and is configured to be fed back to a controller (not shown) for controlling the induction coil for temperature control. The configuration is such that the sample is placed inside the heating element 11. Further, since the heating temperature is high, a heat insulating material 13 is provided to protect the induction coil 10.

加熱装置8は、以下のように動作する。
所定の温度プロファイルに基づいて制御すると、誘導コイル10に電流が流れ、加熱体11が昇温する。その結果、加熱体11のさらに内側に設けた試料(ガラス状カーボン1、セラミックス2と図示していない珪素膜3)を輻射で加熱する。温度は加熱体11の温度を熱電対12で測定し、制御できるようになっている。
The heating device 8 operates as follows.
When control is performed based on a predetermined temperature profile, a current flows through the induction coil 10 and the heating element 11 is heated. As a result, the sample (glassy carbon 1, ceramics 2 and silicon film 3 not shown) provided further inside the heating body 11 is heated by radiation. The temperature can be controlled by measuring the temperature of the heating element 11 with the thermocouple 12.

接合面1a,2aに圧力を付与する加圧機構は、前記試料を挟み付けるように上下にある。本実験装置の場合、加圧は油圧シリンダ9で行っている。前記試料の上下には、カーボン製のプレス治具14を通して加圧するようになっている。プレス治具14は、高温下で前記試料と強く接しても、接合されることの無いようにカーボン製の治具が良い。   The pressurizing mechanism for applying pressure to the joining surfaces 1a and 2a is located above and below so as to sandwich the sample. In the case of this experimental apparatus, pressurization is performed by the hydraulic cylinder 9. The upper and lower sides of the sample are pressurized through a carbon pressing jig 14. The pressing jig 14 is preferably a carbon jig so that the pressing jig 14 is not bonded even if it is in strong contact with the sample at a high temperature.

また、前記試料の近傍の温度を測定するために、プレス治具14の中央部に穴を開けて、試料の直下の温度が測定できるように熱電対15が設けてある。
図5に本発明の接合プロセスの一例を、図4の接合装置によるプロセスフローの概念図を示した。
Further, in order to measure the temperature in the vicinity of the sample, a hole is formed in the center of the press jig 14, and a thermocouple 15 is provided so that the temperature immediately below the sample can be measured.
FIG. 5 shows a conceptual diagram of a process flow by the joining apparatus of FIG. 4 as an example of the joining process of the present invention.

先ず、ガラス状カーボン1とセラミックス2の接合面が珪素膜3を介して接するように接合装置5内に入れる。同図においてP1で示すように試料加圧力が少し高くなっているのは、試料が動かないようにするためである。   First, the glassy carbon 1 and the ceramic 2 are put in the bonding apparatus 5 so that the bonding surfaces are in contact with each other through the silicon film 3. The reason why the sample pressing force is slightly higher as indicated by P1 in the figure is to prevent the sample from moving.

次に、チャンバー6内の真空度を高める。真空度が概ね1×10−1Pa以上になったら、加熱する。図4の実験装置では、図5中に示すように熱電対12の温度表示値と熱電対15のそれとでは、同じ値を示さない。熱電対12の方が、熱電対15よりある割合で高い値を示す。2ヶ所の温度は、接合装置5の構成や測定部位によって異なることが予想できる。 Next, the degree of vacuum in the chamber 6 is increased. When the degree of vacuum is approximately 1 × 10 −1 Pa or higher, heating is performed. In the experimental apparatus of FIG. 4, the temperature display value of the thermocouple 12 and that of the thermocouple 15 do not show the same value as shown in FIG. The thermocouple 12 shows a higher value than the thermocouple 15 at a certain rate. The two temperatures can be expected to vary depending on the configuration of the bonding apparatus 5 and the measurement site.

ここでは、温度制御が容易な熱電対12の温度表示値を基準に実験した。設定温度によって異なるが、熱電対12の表示値より、熱電対15の方が、100〜150℃低い値を示した。   Here, the experiment was performed based on the temperature display value of the thermocouple 12 that can be easily controlled. Although it differs depending on the set temperature, the value of the thermocouple 15 is lower by 100 to 150 ° C. than the display value of the thermocouple 12.

温度が所定の値になったら、設定圧力となるように加圧する。その状態で一定時間保持する。
その後、加熱を止める。ここでは圧力を保持した状態で、自然冷却した。温度計測部が200℃以下になった段階で、真空度を下げて大気圧に戻し、試料への加圧を解除した。
When the temperature reaches a predetermined value, pressurization is performed so that the set pressure is reached. Hold in that state for a certain period of time.
Thereafter, the heating is stopped. Here, natural cooling was performed while maintaining the pressure. When the temperature measurement unit reached 200 ° C. or lower, the degree of vacuum was reduced to atmospheric pressure, and the pressure on the sample was released.

下記の(表1)に示す各条件で接合試験を実施した。同表中の各実験条件は、条件1を例にとると、以下の通りである。直径6mmの炭化珪素とガラス状カーボン(GC)を、真空度1×10−3Paの雰囲気で、加熱体11が1300℃となるように制御し、接合面(φ6)の応力が50MPaとなるように加圧する。接合面には珪素(Si)を炭化珪素(SiC)基材側に50nmの厚みとなるよう成膜して実験したことを意味する。 A joining test was performed under the conditions shown in Table 1 below. Each experimental condition in the table is as follows, taking Condition 1 as an example. Silicon carbide having a diameter of 6 mm and glassy carbon (GC) are controlled so that the heating element 11 is 1300 ° C. in an atmosphere having a degree of vacuum of 1 × 10 −3 Pa, and the stress of the bonding surface (φ6) becomes 50 MPa. Pressurize as follows. It means that an experiment was conducted by depositing silicon (Si) on the bonding surface to a thickness of 50 nm on the silicon carbide (SiC) substrate side.

Figure 2008120626
(表1)中の条件2、条件3の接合時の加熱体11の実験温度が1100℃の条件を除き、強固に接合できた。珪素(Si)の成膜は、条件10,条件11の通りガラス状カーボン側に施しても同様の効果があることが確認できた。また同表中の条件12に示す通り接合面に珪素が無いと、全く接合できないことが確認できた。
Figure 2008120626
Except for the condition that the experimental temperature of the heating element 11 at the time of joining in the conditions 2 and 3 in (Table 1) was 1100 ° C., it was possible to join firmly. It was confirmed that the silicon (Si) film had the same effect even when applied to the glassy carbon side as in conditions 10 and 11. Further, as shown in the condition 12 in the same table, it was confirmed that the bonding could not be performed at all if there was no silicon on the bonding surface.

(表1)内の条件1での接合面のSEM(走査電子顕微鏡)の拡大図を、図6に示す。図6(a)は接合後の接合面をFIB(Focused Ion Beam)で加工し、界面を明瞭にした状態を示しており、図6(b)は、図6(a)に四角で囲った区域の界面を深さ方向にFIBで加工し、矢印A方向から見た状態である。図6(a)の倍率は3000倍,図6(b)の倍率は7500倍である。   FIG. 6 shows an enlarged view of the SEM (scanning electron microscope) of the joint surface under the condition 1 in (Table 1). FIG. 6A shows a state in which the bonded surface after bonding is processed by FIB (Focused Ion Beam) to clarify the interface, and FIG. 6B is surrounded by a square in FIG. 6A. The interface of the area is processed with FIB in the depth direction and is seen from the direction of arrow A. The magnification of FIG. 6 (a) is 3000 times, and the magnification of FIG. 6 (b) is 7500 times.

図6(a)からは、接合面に幅2マイクロメートル程度の領域にわたって、コントラストの異なる部分が観察され、ここが炭化珪素とカーボンの混じり合った混合層4であると考えられる。すなわち、条件1の試料の場合、セラミックス(炭化珪素)2の表面に50ナノメートルの珪素膜3を形成したことで、ガラス状カーボン1の炭素と反応したことが予想される。   From FIG. 6A, a portion having a different contrast is observed over a region having a width of about 2 micrometers on the bonding surface, and this is considered to be a mixed layer 4 in which silicon carbide and carbon are mixed. That is, in the case of the sample of the condition 1, it is expected that the silicon film 3 of 50 nanometers was formed on the surface of the ceramic (silicon carbide) 2 and thus reacted with the carbon of the glassy carbon 1.

図6(b)は深さ方向に観察しても同様の混合層4の存在が確認できた。矢印Bで示す位置が、ガラス状カーボン1の接合面1aとセラミックス2の接合面2aとの接合面の位置である。   In FIG. 6B, the presence of the mixed layer 4 was confirmed even when observed in the depth direction. The position indicated by the arrow B is the position of the bonding surface between the bonding surface 1 a of the glassy carbon 1 and the bonding surface 2 a of the ceramic 2.

図7に、図6(b)の顕微鏡拡大図に示した各部を元素分析した結果を示す。
図7中のポイントXは、セラミックス2の炭化珪素部である。炭化珪素中の元素比率は、珪素と炭素が50対50となる。しかしながら本測定では、見かけ上、炭素に比べて珪素の割合が多く見えるが、軽元素である炭素の検出感度が低いためである。またガリウムが検出されているが、FIBで加工したためであり、本来は無い元素である。酸素も若干検出されているが、詳細は不明である。ガリウム、酸素の存在は、ポイントX,Y,Zともに共通である。
FIG. 7 shows the result of elemental analysis of each part shown in the enlarged microscopic view of FIG.
A point X in FIG. 7 is a silicon carbide portion of the ceramic 2. The element ratio in silicon carbide is 50:50 for silicon and carbon. However, in this measurement, although the ratio of silicon appears to be higher than that of carbon, it is because the detection sensitivity of carbon, which is a light element, is low. Although gallium is detected, it is because it was processed by FIB, and is an element that is not originally present. Some oxygen is also detected, but details are unknown. The presence of gallium and oxygen is common to points X, Y, and Z.

ポイントYは、ガラス状カーボン部である。主成分の炭素が大部分を占める。ポイントZは、混合層4である。本来、50ナノメートルの珪素膜3が、接合条件によって反応したと考えられる。組成分析の結果から考えると、検出感度の低い炭素のピークが高いので、炭素が主たる成分と考えられる。しかしながら珪素のピークも明瞭なことから、部分的に炭化珪素が生成しているものと考えられる。炭化珪素の存在割合は、セラミックス2の側からガラス状カーボン1の側に近づくほど減少した混合層になっている。   Point Y is a glassy carbon part. The main component is carbon. Point Z is the mixed layer 4. Originally, the silicon film 3 of 50 nanometers is considered to have reacted depending on the bonding conditions. Considering from the result of the composition analysis, carbon has a low peak of detection sensitivity, so carbon is considered to be the main component. However, since the peak of silicon is clear, it is considered that silicon carbide is partially generated. The abundance ratio of silicon carbide is a mixed layer that decreases from the ceramic 2 side toward the glassy carbon 1 side.

なお、上記の具体例では、ガラス状カーボン1の接合面1aとセラミックス2の接合面2aのうちの、炭化珪素2の接合面2aに珪素膜3を形成したが、ガラス状カーボン1の接合面1aに珪素膜3を薄膜プロセスで形成しても良い。珪素膜3の厚みは1マイクロメートル以下が有効である。成膜方法はスパッタリングや蒸着でもかまわない。または、ガラス状カーボン1の接合面1aと炭化珪素2の接合面2aにそれぞれ珪素膜3を薄膜プロセスまたはスパッタリングや蒸着で形成する。   In the above specific example, the silicon film 3 is formed on the bonding surface 2a of the silicon carbide 2 out of the bonding surface 1a of the glassy carbon 1 and the bonding surface 2a of the ceramic 2, but the bonding surface of the glassy carbon 1 The silicon film 3 may be formed on the thin film process 1a. The effective thickness of the silicon film 3 is 1 micrometer or less. The film forming method may be sputtering or vapor deposition. Alternatively, the silicon film 3 is formed on the bonding surface 1a of the glassy carbon 1 and the bonding surface 2a of the silicon carbide 2 by a thin film process, sputtering or vapor deposition, respectively.

なお、この場合のそれぞれの膜厚は、両方の膜の合算値が1マイクロメートル以下が有効である。
(表1)に示した実験例では、真空度が1×10−3Pa、接合面に付与する圧力が50〜65MPa、接合温度が1100〜1450℃であったが、真空度が少なくとも1×10−1Pa以上、接合面に付与する圧力が少なくとも5MPa以上、接合温度が800℃以上で良好な結果が得られた。
In addition, as for each film thickness in this case, it is effective that the total value of both films is 1 micrometer or less.
In the experimental example shown in Table 1, the degree of vacuum was 1 × 10 −3 Pa, the pressure applied to the joining surface was 50 to 65 MPa, and the joining temperature was 1100 to 1450 ° C., but the degree of vacuum was at least 1 ×. Good results were obtained when 10 −1 Pa or higher, the pressure applied to the bonding surface was at least 5 MPa, and the bonding temperature was 800 ° C. or higher.

このようにして作成された接合体は、例えば、ガラス状カーボン1の接合面1aとは反対側の面1bに、図8に示すように成形用凹部(成形面)16を形成することによって、光学ガラスレンズ,樹脂レンズ,プリズム等の光学素子やガラス磁気ディスク基板の成形型などに用いることができる。   The joined body created in this way is formed, for example, by forming a molding recess (molding surface) 16 on the surface 1b opposite to the joining surface 1a of the glassy carbon 1 as shown in FIG. It can be used for optical elements such as optical glass lenses, resin lenses, and prisms, and glass magnetic disk substrate molds.

図8は、本発明の接合体を使ったガラスレンズ成型機の一例を示している。
上パンチ17と下パンチ18は一対の構成であり、本発明によるところの接合体からなる。すなわち、レンズ19の成形用凹部(成形面)16がガラス状カーボン1の面1bに形成されている。
FIG. 8 shows an example of a glass lens molding machine using the joined body of the present invention.
The upper punch 17 and the lower punch 18 have a pair of structures, and are composed of the joined body according to the present invention. That is, the molding recess (molding surface) 16 of the lens 19 is formed on the surface 1 b of the glassy carbon 1.

図8の例では、精度良く内径加工された胴型20の中に沿うように、上パンチ17と下パンチ18が挿入されている。そして、成形面となる対向するガラス状カーボン型内にレンズ素材を入れた状態で、本例では誘導加熱ユニット21により昇温され、所定の温度に達したところで加圧軸22を制御して、ベース23との間で上パンチ17と下パンチ18を加圧して、型形状をレンズ面に転写するように動作させる。   In the example of FIG. 8, the upper punch 17 and the lower punch 18 are inserted so as to be along the body mold 20 whose inner diameter is processed with high accuracy. And in the state which put the lens raw material in the glassy carbon mold which becomes the forming surface, in this example, the temperature is raised by the induction heating unit 21, and when the predetermined temperature is reached, the pressure shaft 22 is controlled, The upper punch 17 and the lower punch 18 are pressed between the base 23 and the mold shape is transferred to the lens surface.

上記の各実施の形態では、ガラス状カーボンと炭化珪素の接合の場合を例に挙げて説明したが、様々の炭素材料と炭化物系セラミックス材料の接合に適用することができる。炭素材料としては、ガラス状カーボンの他にダイヤモンドやグラファイト、フラーレン結晶体、炭化物系セラミックス材料としては、炭化珪素の他に炭化硼素を選択して、これらの組み合わせに対して適用できる。炭化物系セラミックス材料として炭化硼素を選択した場合には、炭素材料と炭化物系セラミックス材料との間に前記炭化物系セラミックス材料の炭素以外の構成元素より成る層を挟んで積層する工程では、中間層として硼素(ボロン)を挟んで積層することで、同様に接合できる。   In each of the above embodiments, the case of joining glassy carbon and silicon carbide has been described as an example, but the present invention can be applied to joining various carbon materials and carbide-based ceramic materials. As a carbon material, in addition to glassy carbon, diamond, graphite, fullerene crystal, and a carbide-based ceramic material can be applied to a combination of boron carbide in addition to silicon carbide. When boron carbide is selected as the carbide-based ceramic material, an intermediate layer is formed in the step of laminating a layer made of a constituent element other than carbon of the carbide-based ceramic material between the carbon material and the carbide-based ceramic material. Bonding can be performed in the same manner by laminating boron (boron).

本発明の接合体とその製造方法と接合体を用いた成形型は、昇温と降温を繰り返す使用環境においても剥離することの無い信頼性の高い成形型を提供できる。したがって、ガラスレンズ、樹脂レンズの成形型に限ること無く、ガラス製ハードディスクの製造装置や通信用光学デバイス分野の製造装置として、広範に適用できる。   The joined body of the present invention, its manufacturing method, and a mold using the joined body can provide a highly reliable mold that does not peel even in a use environment in which the temperature is raised and lowered. Therefore, the present invention is not limited to glass lens and resin lens molds, and can be widely applied as a glass hard disk manufacturing apparatus or a communication optical device manufacturing apparatus.

本発明の実施の形態における複合体とその製造方法のプロセスフロー図Process flow diagram of composite and manufacturing method thereof in an embodiment of the present invention 本発明の実施の形態における試料の一例の図Diagram of an example of a sample in an embodiment of the present invention 本発明の実施の形態における接合面の前処理状態の図The figure of the pre-processing state of the joint surface in embodiment of this invention 本発明の実施の形態における接合装置の図The figure of the joining apparatus in embodiment of this invention 本発明の実施の形態における接合プロセスの概念図Conceptual diagram of bonding process in an embodiment of the present invention 本発明の実施の形態における接合体の接合面の図The figure of the joint surface of the joined body in embodiment of this invention 本発明の実施の形態における接合体の成分分析例の図The figure of the component analysis example of the conjugate | zygote in embodiment of this invention 本発明の実施の形態における接合体を使用したガラス成形金型の図The figure of the glass molding die using the joined object in an embodiment of the invention 本発明の接合プロセスの理論説明図Theoretical illustration of the joining process of the present invention

符号の説明Explanation of symbols

1 ガラス状カーボン
2 セラミックス(炭化珪素)
3 珪素膜(中間材)
4 混合層
7 真空ポンプ
9 油圧シリンダ
10 誘導コイル
11 加熱体
12 熱電対
13 断熱材
14 プレス治具
15 熱電対
17 上パンチ
18 下パンチ
19 レンズ
20 胴型
21 誘導加熱ユニット
22 加圧軸
23 ベース
1 Glassy carbon 2 Ceramics (silicon carbide)
3 Silicon film (intermediate material)
4 Mixing Layer 7 Vacuum Pump 9 Hydraulic Cylinder 10 Induction Coil 11 Heating Body 12 Thermocouple 13 Heat Insulating Material 14 Pressing Jig 15 Thermocouple 17 Upper Punch 18 Lower Punch 19 Lens 20 Body Mold 21 Induction Heating Unit 22 Pressure Shaft 23 Base

Claims (8)

炭素材料と前記炭素材料との接合面に炭素を構成元素の一つとする炭化物系セラミックス材料とを、前記炭化物系セラミックス材料と同じ化合物を生成する化学反応を誘起させることにより接合した
接合体。
A joined body in which a carbide ceramic material having carbon as one of constituent elements is joined to a joining surface between a carbon material and the carbon material by inducing a chemical reaction that generates the same compound as the carbide ceramic material.
炭素材料と前記炭素材料との接合面に炭素を構成元素の一つとする炭化物系セラミックス材料とを積層して接合するに際し、
前記炭素材料と前記炭化物系セラミックス材料との間に前記炭化物系セラミックス材料の炭素以外の構成元素より成る層を挟んで積層する工程と、
積層した前記炭素材料と前記炭化物系セラミックス材料を接合装置のチャンバーにセットして前記チャンバーの内部を真空引きする工程と、
積層した前記炭素材料と前記炭化物系セラミックス材料の接合面に圧力を付与する工程と、
接合装置の前記チャンバーを昇温して前記炭化物系セラミックス材料の炭素以外の構成元素より成る層と前記炭化物系セラミックス材料の間で原子拡散を誘起する工程と
を有する接合方法。
When laminating and bonding a carbonaceous ceramic material having carbon as one of the constituent elements on the bonding surface between the carbon material and the carbon material,
A step of laminating a layer made of a constituent element other than carbon of the carbide ceramic material between the carbon material and the carbide ceramic material;
Setting the laminated carbon material and the carbide-based ceramic material in a chamber of a bonding apparatus and evacuating the inside of the chamber; and
Applying a pressure to the bonding surface of the laminated carbon material and the carbide-based ceramic material;
A bonding method including a step of inducing atomic diffusion between a layer made of a constituent element other than carbon of the carbide-based ceramic material by heating the chamber of the bonding apparatus and the carbide-based ceramic material.
前記炭素材料と前記炭化物系セラミックス材料との間に前記炭化物系セラミックス材料の炭素以外の構成元素より成る層を挟んで積層する工程は、
前記炭素材料または前記炭化物系セラミックス材料の接合面の少なくとも一方に、前記炭化物系セラミックス材料の炭素以外の構成元素より成る層を成膜してから積層することを特徴とする
請求項2記載の接合方法。
A step of laminating a layer made of a constituent element other than carbon of the carbide ceramic material between the carbon material and the carbide ceramic material,
3. The bonding according to claim 2, wherein a layer made of a constituent element other than carbon of the carbide-based ceramic material is formed on at least one of the bonding surfaces of the carbon material or the carbide-based ceramic material, and then laminated. Method.
前記炭素材料が、ガラス状カーボン、ダイヤモンド、グラファイトあるいはフラーレン結晶体であることを特徴とする
請求項2記載の接合方法。
3. The joining method according to claim 2, wherein the carbon material is glassy carbon, diamond, graphite, or fullerene crystal.
前記炭化物系セラミックス材料が、炭化珪素または炭化硼素であることを特徴とする
請求項2記載の接合方法。
The joining method according to claim 2, wherein the carbide-based ceramic material is silicon carbide or boron carbide.
前記炭化物系セラミックス材料の炭素以外の構成元素より成る層の成膜厚みが1マイクロメートル以下であることを特徴とする
請求項3記載の接合方法。
4. The bonding method according to claim 3, wherein the thickness of the layer made of a constituent element other than carbon of the carbide-based ceramic material is 1 micrometer or less.
到達する真空度が少なくとも1×10−1Pa以上、接合面に付与する圧力が少なくとも5MPa以上、接合温度が800℃以上であることを特徴とする
請求項2記載の接合方法。
The joining method according to claim 2, wherein the degree of vacuum reached is at least 1 × 10 −1 Pa, the pressure applied to the joining surface is at least 5 MPa, and the joining temperature is 800 ° C. or more.
請求項1記載の接合体の前記炭素材料の前記炭化物系セラミックス材料との接合面でない方の面に、成形面を形成した
成形型。
The shaping | molding die which formed the shaping | molding surface in the surface which is not a joining surface with the said carbide | carbonized_material ceramic material of the said carbon material of the joined body of Claim 1.
JP2006305236A 2006-11-10 2006-11-10 Joining method Expired - Fee Related JP5052101B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006305236A JP5052101B2 (en) 2006-11-10 2006-11-10 Joining method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006305236A JP5052101B2 (en) 2006-11-10 2006-11-10 Joining method

Publications (2)

Publication Number Publication Date
JP2008120626A true JP2008120626A (en) 2008-05-29
JP5052101B2 JP5052101B2 (en) 2012-10-17

Family

ID=39505783

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006305236A Expired - Fee Related JP5052101B2 (en) 2006-11-10 2006-11-10 Joining method

Country Status (1)

Country Link
JP (1) JP5052101B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011040343A (en) * 2009-08-18 2011-02-24 National Institute Of Advanced Industrial Science & Technology Porous heating device, and manufacturing method thereof
CN114531748A (en) * 2022-02-24 2022-05-24 西安交通大学 Electromagnetic induction heat treatment device for ceramic blade base film thermocouple

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0497962A (en) * 1990-08-16 1992-03-30 Agency Of Ind Science & Technol Method for joining carbon material to carbon material
JPH07196379A (en) * 1993-12-28 1995-08-01 Kobe Steel Ltd Tool for brazing synthetic diamond in gas phase and its production

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0497962A (en) * 1990-08-16 1992-03-30 Agency Of Ind Science & Technol Method for joining carbon material to carbon material
JPH07196379A (en) * 1993-12-28 1995-08-01 Kobe Steel Ltd Tool for brazing synthetic diamond in gas phase and its production

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011040343A (en) * 2009-08-18 2011-02-24 National Institute Of Advanced Industrial Science & Technology Porous heating device, and manufacturing method thereof
CN114531748A (en) * 2022-02-24 2022-05-24 西安交通大学 Electromagnetic induction heat treatment device for ceramic blade base film thermocouple

Also Published As

Publication number Publication date
JP5052101B2 (en) 2012-10-17

Similar Documents

Publication Publication Date Title
JP4939232B2 (en) Composite ceramic body, method for producing the same, microchemical chip, and reformer
JP5759152B2 (en) Aluminum-diamond composite and method for producing the same
KR101960264B1 (en) Residual stress free joined SiC ceramics and the processing method of the same
TWI307296B (en) Superhard mold face for forming elements and associated methods
JP3092796B2 (en) Method of bonding silicon carbide parts
JP2006225260A (en) Joined product and its manufacturing method
JP2009220121A (en) Joining jig and method for manufacturing dissimilar material bonded body using the same
CN111875403A (en) Connecting material, system, connecting structure and application for connecting silicon carbide materials
JP5052101B2 (en) Joining method
CN107488043B (en) Multilayer composite film, preparation method thereof and application of multilayer composite film as silicon carbide and composite material connecting material thereof
US20120094145A1 (en) Process for joining stainless steel part and zirconia ceramic part and composite articles made by same
JP7142864B2 (en) Method for producing anisotropic graphite composite
US8426032B2 (en) Composite articles made by process for joining stainless steel part and silicon carbide ceramic part
JP2754042B2 (en) Composite mold for optical component molding and method for producing the same
JP2009149474A (en) Molding die and method for manufacturing the die
JP2013075800A (en) METHOD FOR JOINING B4C/Si COMPOSITE MATERIAL BODY AND B4C/Si COMPOSITE MATERIAL JOINED BODY
CN107488045A (en) The method of silicon carbide ceramics connecting material and connection silicon carbide ceramics with low connection temperature high bending strength
JP6236314B2 (en) Silicon carbide bonded body and method for manufacturing the same
KR20110010230A (en) Silicon carbide assembly and method of fabricating the same
KR100623183B1 (en) Joining method of ceramic substrates using transient nano-particle layer
JP3505212B2 (en) Joint and method of manufacturing joint
KR100560961B1 (en) Method of making reaction diffusion-bonded compound materials
Flores et al. Joining of silicon nitride to metal (Mo and Ti) using a Cu-foil interlayer
JPS60161384A (en) Metallization of carbide ceramic surface
TW201217085A (en) Process for bonding stainless steel and zirconia ceramic and articles made by the same

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20080430

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090907

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111017

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111101

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120626

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120724

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150803

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150803

Year of fee payment: 3

R154 Certificate of patent or utility model (reissue)

Free format text: JAPANESE INTERMEDIATE CODE: R154

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees