JPH0497962A - Method for joining carbon material to carbon material - Google Patents

Method for joining carbon material to carbon material

Info

Publication number
JPH0497962A
JPH0497962A JP21662090A JP21662090A JPH0497962A JP H0497962 A JPH0497962 A JP H0497962A JP 21662090 A JP21662090 A JP 21662090A JP 21662090 A JP21662090 A JP 21662090A JP H0497962 A JPH0497962 A JP H0497962A
Authority
JP
Japan
Prior art keywords
carbon materials
carbon material
bonding
carbon
bonded
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP21662090A
Other languages
Japanese (ja)
Other versions
JPH0649619B2 (en
Inventor
Shigeru Ikeda
茂 池田
Masaki Narisawa
雅紀 成澤
Isao Soma
相馬 勲
Masakazu Adachi
足立 正和
Hiroshi Shioyama
洋 塩山
Kuniaki Tatsumi
国昭 辰巳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP2216620A priority Critical patent/JPH0649619B2/en
Publication of JPH0497962A publication Critical patent/JPH0497962A/en
Publication of JPH0649619B2 publication Critical patent/JPH0649619B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)

Abstract

PURPOSE:To maintain uniform joining strength between carbon materials over a wide temp. range and to prevent the exfoliation of the joined surfaces by interposing a metallic silicon sheet between the carbon materials and holding them in a flow of gaseous nitrogen under special conditions. CONSTITUTION:A metallic silicon sheet is interposed between carbon materials, 50-500kg/cm<2> load is placed and they are heated to 1,400-1,900 deg.C at 100-250 deg.C/min rate in a flow of gaseous nitrogen under ordinary pressure and are held for 2-15 min.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、炭素材料と炭素材料とを接合する方法に関す
る。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a method of joining carbon materials.

従来技術およびその問題点 現在、炭素祠料は、耐熱性、断熱性、導電性、耐食性、
潤滑性などに優れているため、鉄鋼、通信、交通、海洋
、医療などの殆んど全ての工業的分野で広く利用されて
いる。また、炭素材料は、原子炉、宇宙空間、超高温な
どの極限的環境下で利用できるため、次世代材料として
も期待されている。
Prior art and its problems At present, carbon abrasives have properties such as heat resistance, heat insulation, conductivity, corrosion resistance,
Because of its excellent lubricity, it is widely used in almost all industrial fields such as steel, communications, transportation, marine, and medical fields. Carbon materials are also expected to be used as next-generation materials because they can be used in extreme environments such as nuclear reactors, outer space, and extremely high temperatures.

このような炭素材料が、工業的分野で今後更に一層利用
されるためには、炭素材料を複雑な形状の製品、大型品
などに加工する技術が必要である。
In order for such carbon materials to be used even more in the industrial field in the future, techniques for processing carbon materials into products with complex shapes, large products, etc. are required.

しかしながら、通常、複雑な形状への加工は、切削など
の除去加工によるため、作業効率が悪く、コスト高とな
り、また大型品への加工は、大規模な製造設備が必要で
あるため、設備費用がかかるなどの問題がある。大型化
には、炭素材料を一定の形状に加工して、得られたパー
ツを組み立てるという方法もあるが、パーツを製造する
際に極めて精度の高い加工が要求されるため、時間的お
よび経済的な問題がある 現在、比較的容易に炭素材料を複雑な形状または大型品
に加工するための手段として、炭素材料と炭素材料とを
接合させる技術が研究されている。
However, processing into complex shapes usually involves removal processing such as cutting, resulting in poor work efficiency and high costs, and processing into large products requires large-scale manufacturing equipment, which increases equipment costs. There are some problems such as it takes a lot of time. One way to increase the size is to process carbon materials into a certain shape and assemble the resulting parts, but this requires extremely high precision machining when manufacturing the parts, which is time-consuming and economical. In response to these problems, research is currently being conducted into techniques for bonding carbon materials together as a means to relatively easily process carbon materials into complex shapes or large products.

例えば、炭化率の比較的高いコールタールピッチ、有機
高分子材料などを接合材として用いて加熱炭化すること
により接合する方法、金属または合金を接合材として用
いてろう付けすることにより接合する方法などが検討さ
れている。しかしながら、コールタールピッチ、有機高
分子材料などを接合材として用いる場合には、接合時の
炭化の際に揮散する揮発成分によって接合部分が多孔質
となり、接合強度が低くなる。また、金属系の接合材を
用いる場合には、接合部分が高温において膨張するため
、一定の接合強度を得ることができないなどの欠点があ
る。
For example, a method of joining by heating and carbonizing using coal tar pitch with a relatively high carbonization rate, an organic polymer material, etc. as a joining material, a method of joining by brazing using a metal or alloy as a joining material, etc. is being considered. However, when coal tar pitch, an organic polymer material, or the like is used as a bonding material, the bonded portion becomes porous due to volatile components volatilized during carbonization during bonding, resulting in a low bonding strength. Further, when a metal-based bonding material is used, the bonded portion expands at high temperatures, so there is a drawback that a constant bonding strength cannot be obtained.

問題点を解決するための手段 本発明者は、上記のような従来技術の問題点に鑑みて、
研究した結果、炭素材料と炭素材料との接合のための接
合材として、金属シリコンを用いることにより、上記問
題点を解消若しくは軽減し得ることを見出した。
Means for Solving the Problems In view of the problems of the prior art as described above, the inventors have
As a result of research, it has been found that the above problems can be solved or alleviated by using metal silicon as a bonding material for bonding carbon materials together.

本発明は下記の炭素材料同士の接合方法を提供するもの
である。
The present invention provides the following method for joining carbon materials together.

「炭素材料と炭素材料との間に金属シリコンの薄板を挾
み、窒素気流中で、1400〜1900℃まで昇温して
、50〜500g/cm2の荷重下に、2〜15分間保
持することを特徴とする炭素材料と炭素材料とを接合す
る方法。」 本発明において用いる炭素材料は、工業的に通常用いら
れている天然黒鉛、人造黒鉛、黒鉛化以前の無定形炭素
などである。接合は、同種材料間のみならず、異種材料
間で行っても良い。
"A thin plate of metal silicon is sandwiched between two carbon materials, heated to 1400 to 1900°C in a nitrogen stream, and held for 2 to 15 minutes under a load of 50 to 500 g/cm2. A method for bonding carbon materials and carbon materials, characterized by the following." Carbon materials used in the present invention include natural graphite, artificial graphite, and amorphous carbon before graphitization, which are commonly used in industry. Bonding may be performed not only between materials of the same type but also between materials of different types.

金属シリコンは、比較的高融点を持ち、高温において炭
素材料との濡れ性が良く、炭素に極めて近い熱膨張係数
を持つため、常温から高温までの広い温度範囲において
一定の接合強度を示すことができる。このような金属シ
リコンを0.2〜1011I11の薄板として用いる。
Metallic silicon has a relatively high melting point, good wettability with carbon materials at high temperatures, and a coefficient of thermal expansion extremely close to that of carbon, so it can exhibit a constant bonding strength over a wide temperature range from room temperature to high temperature. can. Such metal silicon is used as a thin plate of 0.2 to 1011I11.

本発明方法においては、炭素材料と炭素材料との間に金
属シリコンの薄板を挾んだ後、50〜500g/cJの
荷重を与える。荷重の大きさは、炭素材料の種類、厚さ
などにより適宜選択すれば良いが、50g/cdより小
さいと、十分な接合強度を得ることができず、500g
/cdを超えると、炭素材料を破損するおそれがある。
In the method of the present invention, a thin metal silicon plate is sandwiched between two carbon materials, and then a load of 50 to 500 g/cJ is applied. The magnitude of the load may be appropriately selected depending on the type and thickness of the carbon material, but if it is smaller than 50 g/cd, sufficient bonding strength cannot be obtained;
/cd, there is a risk of damaging the carbon material.

次いで、上記のような荷重下に、装置内の空気を窒素置
換し、常圧で窒素雰囲気中もしくは窒素気流中で、通常
100〜b 1400〜1900℃まで昇温して、そのまま2〜15
分間保持した後、室温まで放冷する。
Next, under the above-mentioned load, the air in the apparatus is replaced with nitrogen, and the temperature is raised to usually 100 to 1400 to 1900 degrees Celsius in a nitrogen atmosphere or nitrogen stream at normal pressure, and then heated for 2 to 15 minutes.
After holding for a minute, allow to cool to room temperature.

この工程においては、窒素ガスを用いることにより、金
属シリコンの表面に形成された窒化物の薄膜が、炭素材
料の細孔内への溶融シリコンの流出・拡散を大巾に抑制
するので、一部のシリコンが細孔内に流入するのみで、
大部分は接合部近傍の炭素材料間に存在することができ
る。これに対し、雰囲気ガスとして他の不活性ガス、例
えばアルゴンを使用する場合には、溶融シリコンが炭素
材料の細孔を伝って流出・拡散するので、良好な接合状
態は得られない。
In this process, by using nitrogen gas, a thin film of nitride formed on the surface of metal silicon greatly suppresses the outflow and diffusion of molten silicon into the pores of the carbon material. of silicon flows into the pores,
The majority may be present between the carbon materials near the joint. On the other hand, if another inert gas such as argon is used as the atmospheric gas, molten silicon flows out and diffuses through the pores of the carbon material, making it impossible to obtain a good bonding state.

接合温度は、接合すべき炭素材料の大きさ、反応器内の
圧力によって異なるが、通常1400〜1900℃であ
り、好ましくは1500〜1700℃である。1400
℃より低いと、金属シリコンの炭素材料への移行乃至溶
融が生じないため、接合せず、また1900℃を超える
と、溶融した金屑シリコンの流動性が高くなり過ぎて、
炭素材料の細孔内を通って流出・拡散してしまうため、
接合面積が減少して、接合強度が低下する。
The joining temperature varies depending on the size of the carbon materials to be joined and the pressure within the reactor, but is usually 1400 to 1900°C, preferably 1500 to 1700°C. 1400
If the temperature is lower than 1900°C, the transition or melting of the metal silicon to the carbon material will not occur, so no bonding will occur, and if the temperature exceeds 1900°C, the fluidity of the molten metal silicon will become too high.
Because it flows out and diffuses through the pores of the carbon material,
The bonding area decreases and the bonding strength decreases.

加熱処理の保持時間は、接合温度によって異なるが、通
常2〜15分、好ましくは3〜10分である。2分より
短いと、金属シリコンが充分に溶融しないため、充分に
接合せず、15分を超えると、溶融した金属シリコンが
流出・拡散してしまうため、接合面積が減少して、接合
強度が弱くなる。
The holding time for the heat treatment varies depending on the bonding temperature, but is usually 2 to 15 minutes, preferably 3 to 10 minutes. If it is shorter than 2 minutes, the metal silicon will not melt sufficiently, resulting in insufficient bonding, and if it exceeds 15 minutes, the molten metal silicon will flow out and diffuse, reducing the bonding area and reducing the bonding strength. become weak.

発明の効果 本発明によれば、特別の設備を必要とすることなく、容
易に炭素材料と炭素材料とを接合することができる。
Effects of the Invention According to the present invention, carbon materials can be easily joined without requiring special equipment.

本発明方法により得られた接合体は、広い温度領域で接
合強度が一定し、接合面が容易に剥離しない。
The bonded body obtained by the method of the present invention has a constant bonding strength over a wide temperature range, and the bonded surfaces do not easily peel off.

従って、本発明方法により、炭素材料を複雑形状品、大
型品などに容易に加工することができる。
Therefore, by the method of the present invention, carbon materials can be easily processed into complex-shaped products, large-sized products, and the like.

実施例 下記に実施例を挙げて、本発明を具体的に説明する。Example The present invention will be specifically explained below with reference to Examples.

実施例1 2本の高密度等方性黒鉛材料IG−11(東洋炭素製)
の円柱型ブロック(10■φX30m112)の間に金
属シリコン(三津和科学製、99.5%)の薄板(10
mmφxO,5+u+Q)を挾み、これに80g (1
02g/cd)の錘をのせて、高周波誘導炉内に置いた
。炉内を窒素気流中で、150℃/分の速度で1500
℃まで昇温し、そのまま8分間保持した後、室温まで放
冷した。
Example 1 Two pieces of high-density isotropic graphite material IG-11 (manufactured by Toyo Tanso)
A thin plate (10 mm) of metal silicon (manufactured by Mitsuwa Kagaku, 99.5%) was placed between the cylindrical blocks (10 mm φ x 30 m 112 mm).
mmφxO, 5+u+Q) and add 80g (1
A weight of 0.02 g/cd) was placed on the tube and placed in a high frequency induction furnace. 1500°C at a rate of 150°C/min in a nitrogen stream inside the furnace.
The temperature was raised to .degree. C., maintained at that temperature for 8 minutes, and then allowed to cool to room temperature.

得られた接合炭素材について、室温および1350℃で
、3点曲げ試験を実施した。得られた接合炭素材の曲げ
強さは、室温で198kg/cd。
A three-point bending test was conducted on the obtained bonded carbon material at room temperature and 1350°C. The bending strength of the obtained bonded carbon material was 198 kg/cd at room temperature.

1350℃で173kg/cシであった。It was 173 kg/c at 1350°C.

実施例2 接合温度1600℃で8分間保持する以外は、実施例1
と同様にして、炭素材料を接合した。
Example 2 Example 1 except that the bonding temperature was held at 1600°C for 8 minutes.
Carbon materials were bonded in the same manner as above.

得られた接合炭素材について実施例1と同様にして、曲
げ強度を測定したところ、室温で357kg/cd、1
350℃で325 kg/ clであった。
The bending strength of the obtained bonded carbon material was measured in the same manner as in Example 1, and it was found to be 357 kg/cd at room temperature, 1
It was 325 kg/cl at 350°C.

実施例3 接合温度1700℃で8分間保持する以外は、実施例1
と同様にして、炭素材料を接合した。
Example 3 Example 1 except that the bonding temperature was held at 1700°C for 8 minutes.
Carbon materials were bonded in the same manner as above.

得られた接合炭素材について実施例1と同様にして、曲
げ強度を測定したところ、室温で151kg/co?、
1350℃で149 kg/ cdであった。
When the bending strength of the obtained bonded carbon material was measured in the same manner as in Example 1, it was found to be 151 kg/co? at room temperature. ,
It was 149 kg/cd at 1350°C.

試験例1 窒素雰囲気の代わりに真空中またはアルゴン雰囲気で接
合させる以外は実施例2と同様にして、接合炭素材を得
た。
Test Example 1 A bonded carbon material was obtained in the same manner as in Example 2, except that bonding was performed in a vacuum or argon atmosphere instead of a nitrogen atmosphere.

真空中またはアルゴン雰囲気で接合した接合炭素材の断
面を走査型電子顕微鏡で観察したところ、金属シリコン
は、接合部およびその近傍に観察されず、接合部からか
なり遠い炭素材料の細孔内に観察された。
When a cross section of bonded carbon materials bonded in vacuum or in an argon atmosphere was observed using a scanning electron microscope, metallic silicon was not observed at or near the bond, but was observed within the pores of the carbon material quite far away from the bond. It was done.

一方、実施例2で得られた接合炭素材の断面を走査型電
子顕微鏡で同様に観察したところ、金属シリコンは、接
合部およびその近傍に観察され、良好な接合状態を示し
た。
On the other hand, when the cross section of the bonded carbon material obtained in Example 2 was similarly observed using a scanning electron microscope, metallic silicon was observed in the bonded portion and its vicinity, indicating a good bonded state.

(以 上)(that's all)

Claims (1)

【特許請求の範囲】[Claims] (1)炭素材料と炭素材料との間に金属シリコンの薄板
を挾み、窒素気流中で、1400〜 1900℃まで昇温して、50〜500g/cm^2の
荷重下に、2〜15分間保持することを特徴とする炭素
材料と炭素材料とを接合する方法。
(1) A thin plate of metal silicon is sandwiched between carbon materials, heated to 1400 to 1900°C in a nitrogen stream, and heated for 2 to 15 minutes under a load of 50 to 500 g/cm^2. A method for bonding carbon materials together, characterized by holding the carbon materials together for a minute.
JP2216620A 1990-08-16 1990-08-16 Method for joining carbon material and carbon material Expired - Lifetime JPH0649619B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2216620A JPH0649619B2 (en) 1990-08-16 1990-08-16 Method for joining carbon material and carbon material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2216620A JPH0649619B2 (en) 1990-08-16 1990-08-16 Method for joining carbon material and carbon material

Publications (2)

Publication Number Publication Date
JPH0497962A true JPH0497962A (en) 1992-03-30
JPH0649619B2 JPH0649619B2 (en) 1994-06-29

Family

ID=16691290

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2216620A Expired - Lifetime JPH0649619B2 (en) 1990-08-16 1990-08-16 Method for joining carbon material and carbon material

Country Status (1)

Country Link
JP (1) JPH0649619B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008120626A (en) * 2006-11-10 2008-05-29 Matsushita Electric Ind Co Ltd Joined body and joining method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008120626A (en) * 2006-11-10 2008-05-29 Matsushita Electric Ind Co Ltd Joined body and joining method

Also Published As

Publication number Publication date
JPH0649619B2 (en) 1994-06-29

Similar Documents

Publication Publication Date Title
US3925577A (en) Silicon carbide coated graphite members and process for producing the same
JP2006083057A (en) Method for low-deformation diffusion-welding of ceramic component
JPWO2017082147A1 (en) Coating formed on a graphite substrate and method for producing the same
CN113968749B (en) Method for connecting high-entropy ceramics and metal
CN113549895A (en) Method for preparing tantalum carbide coating on surface of graphite substrate and graphite device
CN113045325B (en) Preparation method of high-strength carbon/carbon-silicon carbide composite material
JP2000169125A (en) Graphite material and its production
JP4106572B2 (en) Brazed joints of ceramic materials containing silicon carbide
CN108296586A (en) A kind of SiO2The method for welding of-BN composite ceramics and Invar alloys
CN104711457A (en) High temperature solder and application thereof
CN106884159B (en) The method that carbon-coating coats the preparation method and its assistant brazing C/C composite material and metal of foam carbon/carbon-copper composite material
JP5773331B2 (en) Manufacturing method of ceramic joined body
US20090159647A1 (en) Method for bonding glassy metals
JPH0497962A (en) Method for joining carbon material to carbon material
CN112122826A (en) Soldering paste for brazing titanium-based composite material and silicon nitride ceramic, and method and application thereof
JPH01273691A (en) Ni-zr solder foil
CN115595659A (en) Surface coating of graphite matrix, preparation method and application
CN109851388B (en) Surface modified auxiliary brazing SiO2Method of alloying of-BN with Invar
CN113429215A (en) Method for connecting polysilazane with silicon carbide
CN113385851B (en) High-temperature-resistant corrosion-resistant solder for silicon carbide ceramic connection and preparation method and application thereof
JPS59107058A (en) Heat-resistant ceramic material
JPH0649617B2 (en) Method for joining graphite and graphite
JPH0255695A (en) Cu-zr-solder foil
JPH0134954B2 (en)
CN105801171B (en) Product made from the method and use this method of a kind of diamond for preparing overlay coating controlled thickness

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term