JP2008117934A - Semiconductor device - Google Patents

Semiconductor device Download PDF

Info

Publication number
JP2008117934A
JP2008117934A JP2006299668A JP2006299668A JP2008117934A JP 2008117934 A JP2008117934 A JP 2008117934A JP 2006299668 A JP2006299668 A JP 2006299668A JP 2006299668 A JP2006299668 A JP 2006299668A JP 2008117934 A JP2008117934 A JP 2008117934A
Authority
JP
Japan
Prior art keywords
package
semiconductor
semiconductor device
semiconductor element
thermal expansion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006299668A
Other languages
Japanese (ja)
Inventor
Akio Wakejima
彰男 分島
Naotaka Kuroda
尚孝 黒田
Masahiro Tanomura
昌宏 田能村
Hironobu Miyamoto
広信 宮本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP2006299668A priority Critical patent/JP2008117934A/en
Publication of JP2008117934A publication Critical patent/JP2008117934A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45144Gold (Au) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48135Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/48137Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being arranged next to each other, e.g. on a common substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • H01L2224/491Disposition
    • H01L2224/49105Connecting at different heights
    • H01L2224/49109Connecting at different heights outside the semiconductor or solid-state body

Abstract

<P>PROBLEM TO BE SOLVED: To provide a structure which restrains characteristic dispersion after mounting by reducing electrical characteristic variation by reducing stress newly applied when a semiconductor element is mounted on a package in a semiconductor field effect transistor for supplying electron by piezo polarization. <P>SOLUTION: In a semiconductor device having a semiconductor element 10 of a semiconductor field effect transistor for supplying carrier by piezo charge and a package for mounting the semiconductor element 10, thermal conductivity satisfies a relation of k<SB>X</SB><k<SB>Y</SB>≤k<SB>Z</SB>when the thermal conductivities of the package are k<SB>X</SB>, k<SB>Y</SB>, k<SB>Z</SB>each to an orientation X parallel to a longitudinal direction of the semiconductor element 10 which is a heat generation source, a vertical orientation Y and an orientation Z parallel to a thickness direction of the package. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は半導体結晶中のキャリア電子をピエゾ分極により供給している半導体装置に関する。   The present invention relates to a semiconductor device that supplies carrier electrons in a semiconductor crystal by piezoelectric polarization.

シリコン(Si)やガリウム砒素(GaAs)などの半導体を用いた半導体装置がデジタル、アナログ信号処理、無線通信、光通信用などに広く用いられている。このようなSiやGaAsベースの結晶を用いた半導体においては、一般に、半導体中のキャリア電子はイオン注入や結晶成長中に行うドーピングなどによる不純物により供給される。特に、高出力増幅器やスイッチング素子などの大電力を扱うような半導体においては、半導体が消費する電力による温度上昇を低減するために、パッケージベース材(半導体を搭載する部分の材料)として、熱伝導率の高い金属材料が用いられる。  Semiconductor devices using semiconductors such as silicon (Si) and gallium arsenide (GaAs) are widely used for digital, analog signal processing, wireless communication, optical communication, and the like. In semiconductors using such Si or GaAs based crystals, carrier electrons in the semiconductor are generally supplied by impurities such as ion implantation or doping performed during crystal growth. In particular, in semiconductors that handle high power, such as high-power amplifiers and switching elements, heat conduction is used as a package base material (material for semiconductor mounting parts) to reduce temperature rise due to power consumed by the semiconductor. A high rate metal material is used.

熱伝導率の良い金属材料としては、比較的安価な材料として銅(Cu)が広く用いられているが、Cuと半導体基板、例えばSiやGaAsとは3倍から6倍程度、熱膨張係数が異なるためアセンブリ工程で熱応力が半導体基板に加わり、長期信頼性を損なうという問題があった。この課題を解決するため Cuにタングステン(W)やモリブデン(Mo)などの熱膨張係数の小さな材料を混ぜたり、それらを複数の層構造にすることにより熱膨張係数を半導体基板に近い値に調整するという方法が取られている。これにより比較的高い熱伝導率と半導体基板に近い熱膨張係数の両立を図っている(例えば、特許文献1参照)。  As a metal material with good thermal conductivity, copper (Cu) is widely used as a relatively inexpensive material. However, Cu and a semiconductor substrate such as Si and GaAs have a thermal expansion coefficient of about 3 to 6 times. Due to the difference, thermal stress is applied to the semiconductor substrate during the assembly process, and the long-term reliability is impaired. In order to solve this problem, the thermal expansion coefficient is adjusted to a value close to that of a semiconductor substrate by mixing materials with small thermal expansion coefficients such as tungsten (W) and molybdenum (Mo) into Cu or making them into a multi-layer structure. The method of doing is taken. This achieves both a relatively high thermal conductivity and a thermal expansion coefficient close to that of a semiconductor substrate (see, for example, Patent Document 1).

最近、無線通信用フロントエンド高出力増幅器用半導体やスィッチング素子用半導体として、窒化ガリウム(GaN)をベースとした電界効果トランジスタ(Field Effect Transistor:FET)の開発が進められている。これは、GaNをベースとした半導体が、従来のSiやGaAsベースの半導体と比較して、バンドギャップが大きく高電圧動作が可能であるからである。また、GaNをベースとしたFETにおいては、GaNとAlGaNのヤング率の差(ΔEc)が大きいことに加えて、高濃度のキャリア電子をイオン注入やドーピングなどの方法ではなく、GaNとAlGaNの結晶歪によって生じるピエゾ分極により供給することが可能であり、大電流密度化が容易である。このようなGaN系FETにおいては、高電圧・大電流密度に伴い消費電力密度が従来のSiやGaAsベースのFETと比較して2倍〜10倍程度大きい。そのために、動作時のFETのチャネル温度低減の観点から、パッケージ材としては熱伝導率の大きい材料を用いることが望ましい。
特開2001−267441号公報
Recently, field effect transistors (FETs) based on gallium nitride (GaN) have been developed as semiconductors for wireless communication front-end high-power amplifiers and semiconductors for switching elements. This is because a semiconductor based on GaN has a large band gap and can operate at a high voltage compared to conventional Si or GaAs based semiconductors. In addition, in a GaN-based FET, in addition to a large Young's modulus difference (ΔEc) between GaN and AlGaN, a high concentration of carrier electrons is not a method such as ion implantation or doping, but a crystal of GaN and AlGaN. It can be supplied by piezopolarization caused by strain, and it is easy to increase the current density. In such a GaN-based FET, the power consumption density is about 2 to 10 times larger than that of a conventional Si or GaAs-based FET with high voltage and large current density. Therefore, from the viewpoint of reducing the channel temperature of the FET during operation, it is desirable to use a material having high thermal conductivity as the package material.
JP 2001-267441 A

しかしながら、前記文献記載の従来技術は、以下の点で改善の余地を有していた。   However, the prior art described in the document has room for improvement in the following points.

第一に、前記のCuパッケージ上にGaN系FETチップを搭載した場合には、搭載時にFETチップに外部から応力が新たに加わってしまい、ピエゾ分極で発生していたキャリア電子濃度が変化してしまう。これにより、FETの基本的な特性であるドレイン電流−電圧特性がFETチップのパッケージへの搭載前後で、大きく変化してしまう。  First, when a GaN-based FET chip is mounted on the Cu package, a stress is newly applied to the FET chip from the outside at the time of mounting, and the carrier electron concentration generated by piezoelectric polarization changes. End up. As a result, the drain current-voltage characteristic, which is a basic characteristic of the FET, greatly changes before and after the FET chip is mounted on the package.

第二に、熱膨張係数を半導体基板に近い値に調整したCuMoやCuWの場合には、ドレイン電流−電圧特性は若干小さくなるが十分ではない。  Secondly, in the case of CuMo or CuW whose thermal expansion coefficient is adjusted to a value close to that of the semiconductor substrate, the drain current-voltage characteristics are slightly reduced but not sufficient.

さらに、第一及び第二の場合においても、搭載工程で用いるハンダの微妙な量の違いや、搭載温度からの冷却工程における温度プロファイルの違いの影響により、FETチップのパッケージへの搭載前後のドレイン電流−電圧特性変化は素子間でおおきくばらつき、制御が困難であった。  Furthermore, in the first and second cases, drains before and after mounting on the FET chip package are affected by differences in the amount of solder used in the mounting process and differences in temperature profile in the cooling process from the mounting temperature. Changes in current-voltage characteristics varied greatly between the elements, and were difficult to control.

このように、ピエゾ分極によってキャリア電子を供給するようなFETにおいては、これまでの金属製のパッケージでは、チップ搭載時にFETに新たに加わる応力で特性が変化してしまい、特性の制御が困難になるという課題が新たに生じることが分かった。  Thus, in FETs that supply carrier electrons by piezo-polarization, the characteristics of conventional metal packages change due to the new stress applied to the FET when mounted on the chip, making it difficult to control the characteristics. It became clear that a new problem arises.

本発明は、前記事情に鑑みなされたものであって、ピエゾ分極によってキャリア電子を供給する半導体電界効果トランジスタに特有な課題である、半導体素子をパッケージに搭載する際に生じる特性変動を低減し、かつ、優れた放熱性能をもつ半導体装置を提供することにある。  The present invention has been made in view of the above circumstances, and is a problem peculiar to a semiconductor field effect transistor that supplies carrier electrons by piezo-polarization, reducing characteristic fluctuations that occur when a semiconductor element is mounted on a package, And it is providing the semiconductor device which has the outstanding heat dissipation performance.

本発明によれば、ピエゾ電荷によりキャリアを供給する半導体電界効果トランジスタの半導体素子と前記半導体素子を搭載するパッケージを備える半導体装置において、発熱源となる前記半導体素子の長手方向に平行な方位X、垂直な方位Y、パッケージの厚み方向と平行な方位Zに対して、パッケージの熱伝導率をそれぞれk、k、kZとした時に前記熱伝導率が、k<k≦kZ という関係を満たすことを特徴とする半導体装置が提供される。 According to the present invention, in a semiconductor device including a semiconductor element of a semiconductor field effect transistor that supplies carriers by piezoelectric charges and a package that mounts the semiconductor element, an orientation X parallel to the longitudinal direction of the semiconductor element that becomes a heat generation source, When the thermal conductivity of the package is k X , k Y , and k Z with respect to the vertical direction Y and the direction Z parallel to the thickness direction of the package, the thermal conductivity is k X <k Y ≦ k Z, respectively. A semiconductor device characterized by satisfying the relationship is provided.

パッケージの熱伝導率を、パッケージの厚み方向に高くすることにより、半導体素子は、積層方向に高い放熱性を有することとなり、半導体電界効果トランジスタのチャネル温度の上昇を均一かつ効率よく低減させることが可能となる。  By increasing the thermal conductivity of the package in the thickness direction of the package, the semiconductor element has high heat dissipation in the stacking direction, and the increase in the channel temperature of the semiconductor field effect transistor can be reduced uniformly and efficiently. It becomes possible.

また、前記の半導体装置は、炭素繊維を含む前記パッケージを備えることを特徴とする半導体装置とすることができる。さらに、前記の半導体装置は、炭素粒子を含む複合材を全体もしくは一部に有する前記パッケージを備えることを特徴とする半導体装置とすることもできる 。炭素繊維や、炭素粒子を含む混合材は、熱伝導性に異方性をもち、かつ熱膨張係数またはヤング率の小さな材料である。したがって、パッケージ上にピエゾ分極でキャリア電子を供給する半導体素子を搭載した際に、半導体素子がうける応力を小さくすることが可能となり、半導体素子搭載前後の電気的特性変化を低減し、搭載後の電気的特性ばらつきを抑制することができる。    The semiconductor device may be a semiconductor device including the package containing carbon fiber. Furthermore, the semiconductor device may be a semiconductor device including the package having a composite material including carbon particles in whole or in part. Carbon fibers and mixed materials containing carbon particles are materials having anisotropy in thermal conductivity and a small thermal expansion coefficient or Young's modulus. Therefore, when a semiconductor element that supplies carrier electrons by piezo polarization is mounted on the package, it is possible to reduce the stress applied to the semiconductor element, reduce the change in electrical characteristics before and after mounting the semiconductor element, Variations in electrical characteristics can be suppressed.

また、前記半導体装置は、ピエゾ電荷によりキャリアを供給する半導体電界効果トランジスタの半導体結晶部分の一部、もしくは、すべてをGaN層およびAlGa1−XN層(0<X≦1)で構成されるものとすることもできる。 Further, the semiconductor device is composed of a part of a semiconductor crystal of the semiconductor field-effect transistor for supplying a carrier by piezoelectric charge, or all GaN layer and Al X Ga 1-X N layer (0 <X ≦ 1) It can also be done.

さらに、前記半導体装置は、前記パッケージの前記半導体素子を搭載する面方向の熱膨張係数(αc)、及び前記半導体基板の前記パッケージとの接続面内の熱膨張係数(αs)と、前記パッケージの半導体素子を搭載する面方向のヤング率(Ec)の間の関係式
G=|αc−αs|*270*Ec
において、Gが0.1GPa以下であることを特徴とする半導体装置 とすることができる。
Further, the semiconductor device includes a thermal expansion coefficient (αc) in a surface direction on which the semiconductor element of the package is mounted, a thermal expansion coefficient (αs) in a connection surface of the semiconductor substrate with the package, Relational expression between Young's modulus (Ec) in the surface direction on which the semiconductor element is mounted G = | αc−αs | * 270 * Ec
The semiconductor device can be characterized in that G is 0.1 GPa or less.

本発明によれば、ピエゾ分極により電子を供給する半導体電界効果トランジスタにおいて、パッケージへの半導体素子の搭載により新たに加わる応力を低減することによって、電気的特性変化を低減し、搭載後の特性ばらつきを抑制することを可能とする半導体装置が提供される。   According to the present invention, in a semiconductor field effect transistor that supplies electrons by piezo-polarization, a change in electrical characteristics is reduced by reducing a stress newly applied by mounting a semiconductor element on a package, and a variation in characteristics after mounting. A semiconductor device that can suppress the above is provided.

以下、本発明の実施の形態について、図面を用いて説明する。尚、すべての図面において、同様な構成要素には同様の符号を付し、適宜説明を省略する。また、図面においては各部の詳細は省略し説明に必要な箇所のみを抽出して示している。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. In all the drawings, the same reference numerals are given to the same components, and the description will be omitted as appropriate. Further, in the drawings, details of each part are omitted, and only the portions necessary for explanation are extracted and shown.

図1は本発明の第1の実施形態を示す半導体装置の模式的な斜視図である。
また、図2は半導体素子の中央部でy方向に切断した模式的な断面図である。本図面においては各部の詳細は省略し説明に必要な箇所のみを抽出して示している。図1、2において10は半導体素子、11は半導体素子の発熱領域、12は整合回路基板、13はパッケージの蓋、14は金線、15はパッケージヒートシンク部である。なお、半導体素子10及び整合回路基板12の構成は公知の技術と同様であるので、その説明は省略する。
FIG. 1 is a schematic perspective view of a semiconductor device showing a first embodiment of the present invention.
FIG. 2 is a schematic cross-sectional view cut in the y direction at the center of the semiconductor element. In this drawing, the details of each part are omitted, and only the portions necessary for explanation are extracted and shown. 1 and 2, reference numeral 10 denotes a semiconductor element, 11 denotes a heat generation region of the semiconductor element, 12 denotes a matching circuit board, 13 denotes a package lid, 14 denotes a gold wire, and 15 denotes a package heat sink. Note that the configurations of the semiconductor element 10 and the matching circuit substrate 12 are the same as those of a known technique, and thus description thereof is omitted.

本実施の形態における半導体装置は以下のように作製される。まず、半導体プロセス前工程において、ピエゾ分極でキャリアを供給する半導体の基板として、例えば、Si、SiC又はサファイヤのいずれかを用い、Si基板の(111)面、SiC基板の(0001)面、サファイヤ基板の(0001)面にエピタキシャル成長させたウルツ鉱型結晶で形成されたFETなどの半導体デバイスに電極や配線などの表面プロセスを行う。  The semiconductor device in this embodiment is manufactured as follows. First, in the semiconductor process pre-process, for example, one of Si, SiC, and sapphire is used as a semiconductor substrate for supplying carriers by piezo polarization, and the (111) plane of the Si substrate, the (0001) plane of the SiC substrate, and the sapphire are used. Surface processes such as electrodes and wiring are performed on a semiconductor device such as an FET formed of a wurtzite crystal epitaxially grown on the (0001) plane of the substrate.

続いて裏面プロセスにおいてウエハ裏面にPlated Heat Sink(PHS)処理がされ、エッチングなどが行われた後、ダイシングにより個々にチップ化し、半導体素子10が作製される。これらの前工程は公知の技術と同様である。  Subsequently, in the back surface process, a plated heat sink (PHS) process is performed on the back surface of the wafer, etching and the like are performed, and then individual chips are formed by dicing, whereby the semiconductor element 10 is manufactured. These pre-processes are similar to known techniques.

続いて、作製した半導体素子10をパッケージに実装する後工程を行う。半導体素子10及び整合回路基板12は300℃に保たれたマウント装置上に保持されたパッケージ上にAuSn半田(Sn20%含有)により融着される。続いてワイヤーボンディング装置により金線14を用いて半導体素子10の入力側パッド電極と整合回路12のパッド電極さらにはパッケージの入力端子18の間を電気的に接続する。出力側も同様に半導体素子の出力側電極パッドからパッケージの出力端子19の間を金線で電気的に接続する。最後にパッケージに蓋13を被せて封止する。  Subsequently, a post-process for mounting the manufactured semiconductor element 10 on a package is performed. The semiconductor element 10 and the matching circuit substrate 12 are fused with AuSn solder (containing 20% Sn) on a package held on a mounting device maintained at 300 ° C. Subsequently, the wire bonding apparatus is used to electrically connect the input side pad electrode of the semiconductor element 10 and the pad electrode of the matching circuit 12 and further the input terminal 18 of the package using the gold wire 14. Similarly, on the output side, the output side electrode pad of the semiconductor element and the output terminal 19 of the package are electrically connected by a gold wire. Finally, the package 13 is covered with a lid 13 and sealed.

ここで、パッケージヒートシンク部15の材料には、熱伝導性に異方性をもつ材料を用いる。熱伝導性に異方性をもつ材料は、熱伝導率の高い方位が存在する一方で、低い方位も存在するため、発熱源である半導体素子10の形状やその配置される方位によって放熱性が変化することが予想される。そこで、パッケージヒートシンク部15は、発熱源の長手方向に平行にX、垂直方向にY、パッケージの厚み方向をZとした場合、熱伝導率をZ方向、あるいはY及びZ方向に高く、X方向に低くなるように配置する。こうすることにより、発熱源となる半導体素子10の長手方向に平行な方位X、垂直な方位Y、パッケージの厚み方向と平行な方位Zに対して、パッケージの熱伝導率をそれぞれk、k、kZとした時、パッケージの熱伝導率は、k<k≦kZ という関係を満たす。したがって、優れた放熱性をもつ半導体装置が実現できる。 Here, a material having anisotropy in thermal conductivity is used as the material of the package heat sink portion 15. A material having anisotropy in thermal conductivity has a direction with high thermal conductivity, but also has a low direction. Therefore, the heat dissipation performance depends on the shape of the semiconductor element 10 that is a heat generation source and the direction in which the semiconductor element 10 is arranged. It is expected to change. Therefore, when the package heat sink 15 has X parallel to the longitudinal direction of the heat generation source, Y in the vertical direction, and Z in the thickness direction of the package, the thermal conductivity is high in the Z direction, or in the Y and Z directions. To be low. By doing so, the thermal conductivity of the package is set to k X and k with respect to the azimuth X parallel to the longitudinal direction of the semiconductor element 10 serving as a heat generation source, the vertical azimuth Y, and the azimuth Z parallel to the thickness direction of the package, respectively. When Y 1 and k Z are set, the thermal conductivity of the package satisfies the relationship k X <k Y ≦ k Z. Therefore, a semiconductor device having excellent heat dissipation can be realized.

また、パッケージヒートシンク部15は、半導体基板の熱膨張係数とパッケージヒートシンク部15の熱膨張係数の差(Δα)がZ方向、あるいはY方向及びZ方向に小さくなるように配置することもできる。こうすることにより、パッケージヒートシンク部15の熱膨張係数をそれぞれαCX、αCY、αCZとし、半導体基板の熱膨張係数をαとした時、|αCZ―α|≦|αCY―α|<|αCX―α|という関係を満たすこととなる。したがって、パッケージと半導体素子間の歪量を低減することができる。また、半導体素子にかかる応力を低減することが可能となる。 The package heat sink 15 can also be arranged so that the difference (Δα) between the thermal expansion coefficient of the semiconductor substrate and the thermal expansion coefficient of the package heat sink 15 is reduced in the Z direction, or in the Y direction and the Z direction. Thus, when the thermal expansion coefficients of the package heat sink 15 are α CX , α CY , and α CZ and the thermal expansion coefficient of the semiconductor substrate is α S , | α CZ −α S | ≦ | α CY − α S | <| α CX −α S | Therefore, the amount of distortion between the package and the semiconductor element can be reduced. In addition, the stress applied to the semiconductor element can be reduced.

また、パッケージヒートシンク部15は、ヤング率がZ方向、あるいはY方向及びZ方向に小さくなるように配置することもできる。こうすることにより、パッケージのヤング率をそれぞれECX、ECY、ECZとした時に、ECZ≦ECY<ECXという関係を満たすこととなる。したがって、半導体素子10にかかる応力を低減することができる。 Moreover, the package heat sink part 15 can also be arrange | positioned so that Young's modulus may become small in a Z direction or a Y direction and a Z direction. By doing so, when the Young's modulus of the package is set to E CX , E CY and E CZ , the relationship of E CZ ≦ E CY <E CX is satisfied. Therefore, the stress applied to the semiconductor element 10 can be reduced.

パッケージヒートシンク部15の材料には、例えば、炭素繊維を含む材料を用いることができる。また、炭素粒子を含む複合材を用いることもできる。さらに、炭素繊維及び炭素粒子からなる複合材にCuやAl等の金属を含浸させた複合材をすることもできる。このような材料は、熱膨張係数が低く、ヤング率が低い材料である。したがって、アセンブリ工程における温度上昇においても、半導体素子に加わる熱応力を減少することができ、信頼性の高い半導体装置が実現できる。  As the material of the package heat sink portion 15, for example, a material containing carbon fiber can be used. A composite material containing carbon particles can also be used. Furthermore, a composite material in which a composite material made of carbon fiber and carbon particles is impregnated with a metal such as Cu or Al can be used. Such a material is a material having a low coefficient of thermal expansion and a low Young's modulus. Therefore, even when the temperature rises in the assembly process, the thermal stress applied to the semiconductor element can be reduced, and a highly reliable semiconductor device can be realized.

一般に、炭素繊維及び炭素粒子からなる複合材にCuやAlを含浸させた複合材の熱膨張係数は10ppm/℃以下であり、Cuの熱膨張係数(αcu)17ppm/℃やCu/Wの熱膨張係数190ppm/℃(W含有量90%の時)と比較して小さい。一方、ピエゾ分極によってキャリア電子供給を行うGaN/AlGaN系の基板として用いられるSi、SiCの熱膨張係数は、それぞれ、4ppm/℃である。よって、前記複合材とSi、SiCの熱膨張係数は、近似している。  In general, the thermal expansion coefficient of a composite material obtained by impregnating a composite material composed of carbon fibers and carbon particles with Cu or Al is 10 ppm / ° C. or less, and the thermal expansion coefficient (αcu) of Cu is 17 ppm / ° C. or the heat of Cu / W. The expansion coefficient is smaller than 190 ppm / ° C. (when the W content is 90%). On the other hand, the thermal expansion coefficients of Si and SiC used as a GaN / AlGaN-based substrate that supplies carrier electrons by piezoelectric polarization are 4 ppm / ° C., respectively. Therefore, the thermal expansion coefficients of the composite material and Si and SiC are approximate.

また、Cuのヤング率(Ecu)は125GPaであり、Cu/Wのヤング率は255GPa(W含有量90%の時)である。一方、炭素繊維及び炭素粒子からなる複合材にCuやAlを含浸させた複合材のヤング率は1〜30GPa(異方性があるものもある)であり、CuやCu/Wのヤング率などと比較して小さい。  The Young's modulus (Ecu) of Cu is 125 GPa, and the Young's modulus of Cu / W is 255 GPa (when the W content is 90%). On the other hand, the Young's modulus of a composite material obtained by impregnating a composite material composed of carbon fibers and carbon particles with Cu or Al is 1 to 30 GPa (some of which have anisotropy), such as the Young's modulus of Cu or Cu / W, etc. Small compared to

したがって、炭素繊維及び炭素粒子からなる複合材にCuやAlを含浸させた複合材をパッケージの材料として用いることにより、パッケージ上にピエゾ分極でキャリア電子を供給する半導体素子を搭載した際に、半導体素子がうける応力を小さくし、半導体素子搭載前後の半導体素子の特性変動、半導体素子間の特性ばらつきを小さくすることができる。  Therefore, by using a composite material in which Cu or Al is impregnated into a composite material composed of carbon fibers and carbon particles as a package material, when a semiconductor element that supplies carrier electrons by piezoelectric polarization is mounted on the package, the semiconductor The stress applied to the element can be reduced, and the characteristic variation of the semiconductor element before and after mounting the semiconductor element and the characteristic variation between the semiconductor elements can be reduced.

(実施例1)
図2において、半導体素子10を例えばSi基板上に形成したAlGaN/GaN層で構成されるFETチップとする。このFETチップのキャリア電子は主にピエゾ分極により供給される。プロセス前工程において半導体デバイスに電極や配線などの表面プロセスを行う。続いて裏面プロセスにおいてウエハ裏面を研磨等することにより基板厚を100μm厚に薄層化した後、PHSメッキ処理がされ、エッチングなどが行われた後、ダイシングにより個々にチップ化し、FETチップを作製する。これらの前工程は公知の技術と同様である。
(Example 1)
In FIG. 2, the semiconductor element 10 is an FET chip composed of an AlGaN / GaN layer formed on a Si substrate, for example. The carrier electrons of this FET chip are supplied mainly by piezo polarization. In the pre-process, the semiconductor device is subjected to surface processes such as electrodes and wiring. Subsequent polishing of the backside of the wafer in the backside process reduces the thickness of the substrate to 100 μm, then PHS plating, etching, etc., and then dicing into individual chips to produce FET chips To do. These pre-processes are similar to known techniques.

ヒートシンク部15は、炭素繊維及び炭素粒子からなる炭素系複合材料にCuを含浸させた複合材とし、X、Y、Z方位のヤング率(Ec)および熱膨張係数(αc)は、それぞれEcx=10GPa、Ecy=Ecz=25GPa、αcx=10ppm/℃、αcy=αcz=0.1ppm/℃とする。また、Siの熱膨張係数(αs)はαs=2.6ppm/℃とする。また、ΔTは、アセンブリ工程における最高温度を300℃とし、室温(30℃)との差から、270℃とする。300℃に保たれたマウント装置上に保持されたパッケージ上から室温(30℃)に冷却した場合、複合材とFETチップ間の歪量(ε)は 、
εx=|αcx−αs|*ΔT=2.0e−3
εy=|αcy−αs|*ΔT=0.7e−3
εz=|αcz−αs|*ΔT=0.7e−3
である。一方、パッケージベース材としてCuを用いた場合の歪量は 、
εcu=|αcu−αs|*ΔT=3.9e−3
である。このように、複合材をパッケージベース材として用いた場合には、Cuベースと比較して歪量を約半分以下に低減することができる。
The heat sink portion 15 is a composite material obtained by impregnating a carbon-based composite material made of carbon fibers and carbon particles with Cu, and Young's modulus (Ec) and thermal expansion coefficient (αc) in X, Y, and Z directions are Ecx = 10 GPa, Ecy = Ecz = 25 GPa, αcx = 10 ppm / ° C., αcy = αcz = 0.1 ppm / ° C. The thermal expansion coefficient (αs) of Si is αs = 2.6 ppm / ° C. ΔT is set to 270 ° C. from the difference between room temperature (30 ° C.) and the maximum temperature in the assembly process is 300 ° C. When cooled to room temperature (30 ° C.) from the package held on the mounting device maintained at 300 ° C., the amount of strain (ε) between the composite material and the FET chip is
εx = | αcx−αs | * ΔT = 2.0e −3 ,
εy = | αcy−αs | * ΔT = 0.7e −3 ,
εz = | αcz−αs | * ΔT = 0.7e −3
It is. On the other hand, the amount of strain when Cu is used as the package base material is
εcu = | αcu−αs | * ΔT = 3.9e −3
It is. Thus, when the composite material is used as the package base material, the strain amount can be reduced to about half or less compared to the Cu base material.

複合材を用いた場合に、Siが受ける応力(fc)は、
fcx=εx*Ecx=0.02GPa、
fcy=εy*Ecy=0.018GPa、
fcz=εz*Ecz=0.018GPa
である。一方、パッケージベース材としてCuを用いた場合にSiが受ける応力(fcu)は、
fcu=εcu*Ecu=0.5GPa
であり、複合材を用いた場合と比較して20倍以上大きい。
When using a composite material, the stress (fc) experienced by Si is
fcx = εx * Ecx = 0.02 GPa,
fcy = εy * Ecy = 0.018 GPa,
fcz = εz * Ecz = 0.018 GPa
It is. On the other hand, when Cu is used as the package base material, the stress (fcu) that Si receives is:
fcu = εcu * Ecu = 0.5 GPa
It is 20 times larger than the case where a composite material is used.

また、異方性をもつ複合材を前記の方向の配置として用いた場合、z方向の熱伝導率は約500W/m℃と極めて大きく、x方向の熱伝導率は約150W/m℃と低いため、優れた放熱性能をもつ。パッケージの熱伝導率は約400W/m℃であり、Cuの熱伝導率390W/m℃と比較しても問題のない値である。  Further, when an anisotropic composite material is used as the arrangement in the above-described direction, the thermal conductivity in the z direction is as extremely high as about 500 W / m ° C., and the thermal conductivity in the x direction is as low as about 150 W / m ° C. Therefore, it has excellent heat dissipation performance. The thermal conductivity of the package is about 400 W / m ° C., which is a value that does not cause a problem even when compared with the thermal conductivity of Cu, 390 W / m ° C.

このように、複合材をパッケージ材料とすることにより、Si基板にかかる応力を低減しつつ、高い熱伝導率を維持することが可能となる。  Thus, by using the composite material as the package material, it is possible to maintain high thermal conductivity while reducing the stress applied to the Si substrate.

複合材を前記の向きに配置して作製したパッケージ上に、Si基板上に形成したAlGaN/GaN層で構成されるFETチップを搭載し、FETチップ搭載前後のドレイン電流変動をグラフに示した(図3)。また、比較として銅ベースのパッケージの場合のドレイン電流変動もプロットした。  An FET chip composed of an AlGaN / GaN layer formed on a Si substrate is mounted on a package produced by arranging the composite material in the above-described direction, and the drain current fluctuation before and after mounting the FET chip is shown in a graph ( FIG. 3). For comparison, the drain current fluctuation in the case of a copper-based package is also plotted.

銅ベースのパッケージの場合には、FETチップ搭載後にはドレイン電流が約10%低下するが、複合材を用いた場合には、ほとんど変化しない。また、銅ベースのパッケージの場合には、FETチップ間の変動量差が10%程度異なるが、複合材の場合に極めて小さい。これは、銅ベースのパッケージの場合、FETチップ搭載の工程における、FETチップがうける応力が大きいことから、Au/Snソルダーの微妙な分量ならびに搭載後の降温工程の微妙なばらつきにより、FETチップの特性が大きく変化してしまうためである。一方、複合材を用いた場合は、そもそも応力が小さいのでこれらのばらつきの影響を受けにくい。  In the case of a copper-based package, the drain current decreases by about 10% after the FET chip is mounted, but hardly changes when a composite material is used. In the case of a copper-based package, the difference in variation between FET chips differs by about 10%, but in the case of a composite material, it is extremely small. This is because, in the case of a copper-based package, the stress applied to the FET chip in the process of mounting the FET chip is large. Therefore, due to the subtle amount of Au / Sn solder and the temperature variation process after mounting, This is because the characteristics are greatly changed. On the other hand, when a composite material is used, since the stress is small in the first place, it is difficult to be affected by these variations.

実施例1では、ピエゾ分極でキャリアを供給する半導体の基板としてSiを用いた場合を記載したが、それ以外のSiCやサファイヤを用いても複合材のヤング率が小さいので、同様の効果を得ることができる。  In Example 1, although the case where Si was used as a semiconductor substrate for supplying carriers by piezo-polarization was described, the same effect is obtained because the Young's modulus of the composite material is small even when other SiC or sapphire is used. be able to.

また、実施例1では、半導体基板厚を100μm厚に薄層化した場合について記載したが、一般に、用いられる半導体基板厚20μm〜200μmの範囲において、高い効果を得た。ただし、基板厚が薄い場合には、半導体素子とパッケージ間の応力が半導体の動作層に与える影響が大きくなるため、Cuベースのパッケージを用いた場合の特性変動や特性ばらつきは大きくなり、複合材を用いた場合の効果は相対的に顕著に現われる。逆に、基板厚が厚い場合には、Cuベースのパッケージを用いた場合の特性変動や特性ばらつきは小さくなるが、それでも複合材を用いた場合の方が特性変動量、特性ばらつきの点で優れていた。  In Example 1, the case where the thickness of the semiconductor substrate was reduced to 100 μm was described, but in general, a high effect was obtained in the range of the semiconductor substrate thickness used from 20 μm to 200 μm. However, when the substrate is thin, the stress between the semiconductor element and the package increases on the semiconductor operating layer, so that the characteristic fluctuation and characteristic variation when using a Cu-based package increase, and the composite material The effect when using is relatively prominent. Conversely, when the substrate is thick, the characteristic variation and characteristic variation when using a Cu-based package are reduced, but the composite material is still superior in terms of characteristic variation and characteristic variation. It was.

(実施例2)
複合材の特性は含浸させる金属種類や量により大きく変化する。例えば、金属の割合を多くすれば、その熱膨張係数は金属の熱膨張係数に近づくように大きくなり、炭素又は炭素繊維の割合を多くすれば、その熱膨張係数は炭素の熱膨張係数に近づくように小さくなる。そこで、含浸させる銅の量を変化させてヤング率および熱膨張係数の異なる複合材を用意し、これをパッケージ材料として用いて、実施例1で作製したFETチップをパッケージに搭載する時のFETチップにかかる応力と特性変化との関係について検討した。
(Example 2)
The characteristics of the composite material vary greatly depending on the type and amount of metal to be impregnated. For example, if the proportion of metal is increased, the coefficient of thermal expansion becomes larger so as to approach the coefficient of thermal expansion of the metal, and if the proportion of carbon or carbon fiber is increased, the coefficient of thermal expansion becomes closer to the coefficient of thermal expansion of carbon. It becomes so small. Therefore, a composite material having different Young's modulus and thermal expansion coefficient is prepared by changing the amount of copper to be impregnated, and this is used as a package material. When the FET chip manufactured in Example 1 is mounted on a package, the FET chip The relationship between the stress and the characteristic change was investigated.

図4は、パッケージのFETチップを搭載する面方向の熱膨張係数(αc)とヤング率(Ec)、及びSi基板のパッケージとの接続面内の熱膨張係数(αs)の関係を(式1)とした時の、半導体にかかる応力(G)とFETチップをパッケージ搭載する時の特性変動量をプロットしたグラフである。ただし、ΔTは270℃とした。G>0.1GPaでは、急激にドレイン電流が変化するとともに、ばらつきも大きくなってくる。この結果から、異方性のある複合材においても、全方位において、G≦0.1GPaを満たすことが望ましいといえる。
(式1)G=|αc−αs|*ΔT*Ec
FIG. 4 shows the relationship between the thermal expansion coefficient (αc) and Young's modulus (Ec) in the surface direction on which the FET chip of the package is mounted, and the thermal expansion coefficient (αs) in the connection surface with the Si substrate package (Formula 1). ) Is a graph plotting the stress (G) applied to the semiconductor and the characteristic variation when the FET chip is mounted on the package. However, ΔT was 270 ° C. When G> 0.1 GPa, the drain current changes abruptly and the variation increases. From this result, it can be said that it is desirable to satisfy G ≦ 0.1 GPa in all directions even in an anisotropic composite material.
(Formula 1) G = | αc−αs | * ΔT * Ec

前記の実施例2では、ピエゾ分極でキャリアを供給する半導体の基板としてSiの場合を記載したが、それ以外のSiCやサファイヤを用いた場合でも複合材のヤング率が小さいので、同様の効果を得ることができる。  In the second embodiment, the case where Si is used as the semiconductor substrate for supplying carriers by piezo-polarization is described. However, even when other SiC or sapphire is used, the composite material has a small Young's modulus, so the same effect can be obtained. Obtainable.

また、前記の実施例2では、半導体基板厚を100μm厚に薄層化した場合について記載したが、一般に、用いられる半導体基板厚20μm〜200μmの範囲においては、G<0.1GPaの範囲であれば炭素系複合材パッケージにチップを搭載するときの特性変動量ならびに、特性ばらつきを十分に抑制できることを確認した。  In the second embodiment, the thickness of the semiconductor substrate is reduced to 100 μm. However, generally, in the range of 20 μm to 200 μm of the used semiconductor substrate, G <0.1 GPa may be used. In other words, it was confirmed that the amount of variation in characteristics and the variation in characteristics when a chip is mounted on a carbon-based composite package can be sufficiently suppressed.

以上、本発明の実施形態に即して説明したが、本発明は前記態様のみに限定されず、本発明の原理に準ずる各種態様を含むことは勿論である。 例えば、以上の実施形態においては異方性熱伝導率をもつ材料として炭素及び炭素繊維からなる複合材にCuを含浸させた炭素系複合材を用いたが、Alなど別の金属が含浸された炭素系複合材であってもよい。また、半導体素子は、AlGaN/GaN層で構成される半導体結晶を含むものとしたが、GaN層およびAlGa1−XN層(0<X≦1)で構成される半導体結晶とすることもできる。また、図面を参照して本発明の実施形態について述べたが、これらは本発明の例示であり、前記以外の様々な構成を採用することもできる。 As mentioned above, although explained according to the embodiment of the present invention, the present invention is not limited only to the above-mentioned mode, and of course includes various modes according to the principle of the present invention. For example, in the above embodiment, a carbon-based composite material in which Cu is impregnated with a composite material made of carbon and carbon fiber is used as a material having anisotropic thermal conductivity, but another metal such as Al is impregnated. A carbon-based composite material may be used. The semiconductor element includes a semiconductor crystal composed of an AlGaN / GaN layer. However, the semiconductor element is composed of a GaN layer and an Al X Ga 1-X N layer (0 <X ≦ 1). You can also. Further, although the embodiments of the present invention have been described with reference to the drawings, these are exemplifications of the present invention, and various configurations other than those described above can be adopted.

本発明の第一の実施形態における矩形の発熱源からなる半導体素子がパッケージ上に実装された模式的な斜視図である。It is a typical perspective view in which the semiconductor element which consists of a rectangular heat source in a first embodiment of the present invention was mounted on a package. 本発明の第一の実施形態における矩形の発熱源からなる半導体素子がパッケージ上に実装された半導体装置の断面図である。It is sectional drawing of the semiconductor device by which the semiconductor element which consists of a rectangular heat source in 1st embodiment of this invention was mounted on the package. 本発明の実施例1を説明する図である。It is a figure explaining Example 1 of this invention. 本発明の実施例2を説明する図であるIt is a figure explaining Example 2 of this invention.

符号の説明Explanation of symbols

10 半導体素子
11 発熱領域(能動領域)
12 整合回路基板
13 パッケージ蓋
14 金線
15 ヒートシンク部
18 入力端子
19 出力端子
10 Semiconductor element 11 Heat generation area (active area)
12 Matching circuit board 13 Package lid 14 Gold wire 15 Heat sink 18 Input terminal 19 Output terminal

Claims (7)

ピエゾ電荷によりキャリアを供給する半導体電界効果トランジスタの半導体素子と前記半導体素子を搭載するパッケージを備える半導体装置において、
発熱源となる前記半導体素子の長手方向に平行な方位X、垂直な方位Y、パッケージの厚み方向と平行な方位Zに対して、パッケージの熱伝導率をそれぞれk、k、kZとした時に前記熱伝導率が、k<k≦kZ という関係を満たすことを特徴とする半導体装置。
In a semiconductor device including a semiconductor element of a semiconductor field effect transistor that supplies carriers by piezoelectric charges and a package that mounts the semiconductor element,
The thermal conductivity of the package is expressed as k X , k Y , and k Z with respect to an azimuth X that is parallel to the longitudinal direction of the semiconductor element that is a heat source, a vertical azimuth Y, and an azimuth Z that is parallel to the thickness direction of the package. The semiconductor device is characterized in that the thermal conductivity satisfies the relationship k X <k Y ≦ k Z.
請求項1に記載の半導体装置において、炭素繊維を含む前記パッケージを備えることを特徴とする半導体装置 。  The semiconductor device according to claim 1, comprising the package containing carbon fiber. 請求項1乃至2いずれかに記載の半導体装置において、炭素粒子を含む複合材を全体もしくは一部に有する前記パッケージを備えることを特徴とする半導体装置 。  3. The semiconductor device according to claim 1, comprising the package having a composite material including carbon particles in whole or in part. 請求項1乃至3いずれかに記載の半導体装置において、前記パッケージの熱膨張係数をそれぞれαCX、αCY、αCZとし、前記半導体素子に含まれる半導体基板の熱膨張係数をαとした時に前記熱膨張係数が、|αCZ―α|≦|αCY―α|<|αCX―α|という関係を満たすことを特徴とする半導体装置。 4. The semiconductor device according to claim 1, wherein thermal expansion coefficients of the package are α CX , α CY , and α CZ , respectively, and a thermal expansion coefficient of a semiconductor substrate included in the semiconductor element is α S. A semiconductor device, wherein the thermal expansion coefficient satisfies a relationship of | α CZ −α S | ≦ | α CY −α S | <| α CX −α S |. 請求項1乃至4いずれかに記載の半導体装置において、前記パッケージのヤング率をそれぞれECX、ECY、ECZとした時に前記ヤング率が、ECZ≦ECY<ECXという関係を満たすことを特徴とする半導体装置。 5. The semiconductor device according to claim 1, wherein when the Young's modulus of the package is set to E CX , E CY , and E CZ , the Young's modulus satisfies a relationship of E CZ ≦ E CY <E CX. A semiconductor device characterized by the above. 請求項1乃至5いずれかに記載の半導体装置において、前記半導体素子に含まれる半導体結晶の一部、もしくは、すべてがGaN層およびAlGa1−XN層(0<X≦1)で構成されることを特徴とする半導体装置 。 6. The semiconductor device according to claim 1, wherein a part or all of the semiconductor crystal included in the semiconductor element includes a GaN layer and an Al X Ga 1-X N layer (0 <X ≦ 1). A semiconductor device characterized by that. 請求項1乃至6いずれかに記載の半導体装置において、前記パッケージの前記半導体素子を搭載する面方向の熱膨張係数(αc)、及び前記半導体基板の前記パッケージとの接続面内の熱膨張係数(αs)と、前記パッケージの半導体素子を搭載する面方向のヤング率(Ec)の間の関係式
G=|αc−αs|*270*Ec
において、Gが0.1GPa以下であることを特徴とする半導体装置 。
7. The semiconductor device according to claim 1, wherein a thermal expansion coefficient (αc) in a surface direction on which the semiconductor element of the package is mounted, and a thermal expansion coefficient in a connection surface of the semiconductor substrate with the package ( αs) and the Young's modulus (Ec) in the surface direction on which the semiconductor element of the package is mounted G = | αc−αs | * 270 * Ec
And G is 0.1 GPa or less.
JP2006299668A 2006-11-02 2006-11-02 Semiconductor device Pending JP2008117934A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006299668A JP2008117934A (en) 2006-11-02 2006-11-02 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006299668A JP2008117934A (en) 2006-11-02 2006-11-02 Semiconductor device

Publications (1)

Publication Number Publication Date
JP2008117934A true JP2008117934A (en) 2008-05-22

Family

ID=39503641

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006299668A Pending JP2008117934A (en) 2006-11-02 2006-11-02 Semiconductor device

Country Status (1)

Country Link
JP (1) JP2008117934A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012523695A (en) * 2009-04-08 2012-10-04 エフィシエント パワー コンヴァーション コーポレーション Bumped self-separating GaN transistor chip with electrically isolated backside

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002076329A (en) * 2000-09-01 2002-03-15 Nec Corp Semiconductor device
JP2002076023A (en) * 2000-09-01 2002-03-15 Nec Corp Semiconductor device
JP2002246497A (en) * 2001-02-20 2002-08-30 Kyocera Corp Package for accommodating semiconductor device
JP2003133467A (en) * 2001-10-24 2003-05-09 Kyocera Corp Package for containing semiconductor element and semiconductor device
JP2005005528A (en) * 2003-06-12 2005-01-06 Hitachi Metals Ltd Module for mounting semiconductor element
JP2007157835A (en) * 2005-12-01 2007-06-21 Matsushita Electric Ind Co Ltd Mounting substrate

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002076329A (en) * 2000-09-01 2002-03-15 Nec Corp Semiconductor device
JP2002076023A (en) * 2000-09-01 2002-03-15 Nec Corp Semiconductor device
JP2002246497A (en) * 2001-02-20 2002-08-30 Kyocera Corp Package for accommodating semiconductor device
JP2003133467A (en) * 2001-10-24 2003-05-09 Kyocera Corp Package for containing semiconductor element and semiconductor device
JP2005005528A (en) * 2003-06-12 2005-01-06 Hitachi Metals Ltd Module for mounting semiconductor element
JP2007157835A (en) * 2005-12-01 2007-06-21 Matsushita Electric Ind Co Ltd Mounting substrate

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012523695A (en) * 2009-04-08 2012-10-04 エフィシエント パワー コンヴァーション コーポレーション Bumped self-separating GaN transistor chip with electrically isolated backside

Similar Documents

Publication Publication Date Title
US9502398B2 (en) Composite device with integrated diode
CN1757119B (en) Group III nitride based flip-chip integrated circuit and method for fabricating
JP4154558B2 (en) Semiconductor device
JP5526179B2 (en) Stacked composite device comprising a III-V transistor and a IV group lateral transistor
US8674405B1 (en) Gallium—nitride-on-diamond wafers and devices, and methods of manufacture
WO2010047030A1 (en) Nitride semiconductor device
JP2002076023A (en) Semiconductor device
US8796843B1 (en) RF and milimeter-wave high-power semiconductor device
WO2008053586A1 (en) Semiconductor device
JP2007305954A (en) Field-effect transistor and its device
JP2007128994A (en) Semiconductor device
JP2023060151A (en) Monolithic microwave integrated circuit with both enhancement-mode and depression-mode transistors
JP2007157835A (en) Mounting substrate
US20210408978A1 (en) Radio frequency transistor amplifiers having leadframes with integrated shunt inductors and/or direct current voltage source inputs
US20090194773A1 (en) Gallium nitride material devices including diamond regions and methods associated with the same
WO2018061711A1 (en) Semiconductor device and manufacturing method
JP4492034B2 (en) HEMT and manufacturing method thereof
JP2007081096A (en) Semiconductor device
US20230395455A1 (en) Semiconductor device, electronic device, and semiconductor device preparation method
JP2762987B2 (en) Semiconductor device and manufacturing method thereof
JP2008117934A (en) Semiconductor device
US10068780B2 (en) Lead frame connected with heterojunction semiconductor body
CN111653473B (en) Silicon-based gallium nitride microwave device material structure with enhanced heat dissipation
JP7099255B2 (en) Compound semiconductor equipment, high frequency amplifier and power supply equipment
JP2021034546A (en) Semiconductor device, method of manufacturing semiconductor device, and electronic device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091027

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100405

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120417

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120807