JP2008116148A - Water heater - Google Patents

Water heater Download PDF

Info

Publication number
JP2008116148A
JP2008116148A JP2006300792A JP2006300792A JP2008116148A JP 2008116148 A JP2008116148 A JP 2008116148A JP 2006300792 A JP2006300792 A JP 2006300792A JP 2006300792 A JP2006300792 A JP 2006300792A JP 2008116148 A JP2008116148 A JP 2008116148A
Authority
JP
Japan
Prior art keywords
hot water
water supply
circulation
heat exchanger
liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006300792A
Other languages
Japanese (ja)
Inventor
Seishi Imai
誠士 今井
Yoshiki Takeuchi
誉樹 竹内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rinnai Corp
Original Assignee
Rinnai Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rinnai Corp filed Critical Rinnai Corp
Priority to JP2006300792A priority Critical patent/JP2008116148A/en
Publication of JP2008116148A publication Critical patent/JP2008116148A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Steam Or Hot-Water Central Heating Systems (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To efficiently recover heat of combustion emission gas generated by a gas burner 12 by means of a circulation heat exchanger 13 for improving heat efficiency of a water heater having: a circulation heating circuit which has the circulation heat exchanger heated by the gas burner 12 and a circulation pump 15; a liquid-liquid heat exchanger performing heat exchange between water flowing through a hot water supply circuit to be heated and circulation hot water flowing through the circulation heating circuit; a supply water temperature sensor detecting an entering water temperature Tin of the water to be heated flowing into the liquid-liquid heat exchanger in the hot water supply circuit; a hot water supply temperature setting apparatus for setting a hot water supply set temperature Tset of supplied hot water taken out from the hot water supply circuit; and a flow rate sensor determining a flow rate Q1 of the supplied hot water. <P>SOLUTION: The number of revolutions of the circulation pump 15 is lowered within the limit to maintain a temperature of the supplied hot water at the hot water supply set temperature Tset. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、循環加熱回路の循環温水と給湯回路の被加熱水を液々熱交換器で熱交換させることにより、給湯設定温度の温水を前記給湯回路から取り出せるようにした給湯器に関するものである。   The present invention relates to a water heater in which hot water at a hot water supply set temperature can be taken out from the hot water supply circuit by exchanging heat between the circulating hot water in the circulation heating circuit and the heated water in the hot water supply circuit using a liquid heat exchanger. .

図11は、給湯機能や暖房機能、更に、風呂の追焚機能等を備えた、複合給湯器の概略構成図である(特許文献1)。
このものでは、台所や洗面所等に配設された出湯蛇口(図示せず)に給湯する給湯回路(3)と、浴槽(40)を追焚きする追焚熱交換器(41)を備えた風呂回路(4)と、床暖房マット(110)等が接続された暖房回路(5)を備えており、これらの回路(3)(4)(5)は、循環加熱回路(2)の循環温水で加熱されるようになっている。
FIG. 11 is a schematic configuration diagram of a composite water heater having a hot water supply function, a heating function, a bath retreat function, and the like (Patent Document 1).
This device was equipped with a hot water supply circuit (3) for supplying hot water to a hot water tap (not shown) arranged in a kitchen or a washroom, etc., and a recuperation heat exchanger (41) for retreating the bathtub (40). It is equipped with a heating circuit (5) to which a bath circuit (4) and a floor heating mat (110) etc. are connected. These circuits (3), (4) and (5) are connected to the circulation heating circuit (2). It is designed to be heated with warm water.

循環加熱回路(2)は、ガスバーナ(12)で加熱される循環用熱交換器(13)→給湯加熱弁(16)→液液熱交換器(10)の一次側→タンク(14)→循環ポンプ(15)→循環用熱交換器(13)と循環する回路である。尚、液液熱交換器(10)とは、これによって熱交換される循環回路(2)である一次側と給湯回路(3)である二次側が共に液体回路であるものをいう。
給湯回路(3)は、給水入口(37)→液液熱交換器(10)の二次側→温水出口(38)→図示しない出湯蛇口の順序で繋がる回路である。
The circulation heating circuit (2) consists of a circulation heat exchanger (13) heated by a gas burner (12) → a hot water supply heating valve (16) → a primary side of a liquid-liquid heat exchanger (10) → a tank (14) → circulation It is a circuit that circulates with the pump (15) → the heat exchanger for circulation (13). Note that the liquid-liquid heat exchanger (10) means a circuit in which the primary side that is the circulation circuit (2) and the secondary side that is the hot-water supply circuit (3) are both liquid circuits.
The hot water supply circuit (3) is a circuit connected in the order of the water supply inlet (37) → the secondary side of the liquid-liquid heat exchanger (10) → the hot water outlet (38) → the hot water tap (not shown).

暖房回路(5)は、循環用熱交換器(13)から暖房端末(11)を経て循環ポンプ(15)に繋がる回路であり、ファンコンベクタ(111)が配設された高温暖房回路(52)と、床暖房マット(110)が配設された低温暖房回路(53)を備えている。
高温暖房回路(52)は、循環用熱交換器(13)の出口側から高温暖房弁(50)へ分岐し、ファンコンベクタ(111)を経由してタンク(14)に繋がっている。低温暖房回路(53)は、循環用熱交換器(13)から高温暖房弁(50)に繋がる回路より分岐し、低温暖房弁(51)→床暖房マット(110)→タンク(14)と繋がっている。
The heating circuit (5) is a circuit connected from the heat exchanger for circulation (13) to the circulation pump (15) via the heating terminal (11), and the high-temperature heating circuit (52) provided with the fan convector (111). And a low-temperature heating circuit (53) provided with a floor heating mat (110).
The high temperature heating circuit (52) branches from the outlet side of the circulation heat exchanger (13) to the high temperature heating valve (50) and is connected to the tank (14) via the fan convector (111). The low-temperature heating circuit (53) branches from the circuit connected to the high-temperature heating valve (50) from the circulation heat exchanger (13), and is connected to the low-temperature heating valve (51) → floor heating mat (110) → tank (14). ing.

次に、上記複合給湯器による給湯動作を説明する。
温水出口(38)の下流側に配設された出湯蛇口(図示せず)が開放されると、給水入口(37)から流入した被加熱水が給湯回路(3)内を流れ始める。一方、給湯回路(3)内の流量センサ(図示せず)が水流を検知すると、循環加熱回路(2)の給湯加熱弁(16)が開弁すると共に循環ポンプ(15)が作動してガスバーナ(12)が燃焼し、これにより、循環用熱交換器(13)で加熱昇温された循環温水が、該循環用熱交換器(13)→給湯加熱弁(16)→液液熱交換器(10)の一次側→タンク(14)→循環ポンプ(15)→循環用熱交換器(13)と繋がる経路で循環する。そして、循環加熱回路(2)の循環温水と給湯回路(3)の被加熱水が液液熱交換器(10)で熱交換され、これにより、被加熱水が給湯設定温度に加熱され、給湯回路(3)の下流側に配管接続された出湯蛇口に給湯される。
このものでは、給湯回路(3)での給湯流量Q1、給湯回路(3)に流入する被加熱水の入水温度Tin、更には、リモコン(図示せず)にセットされた給湯設定温度Tsetから、給湯に必要な熱量を演算し、該必要な熱量に応じてガスバーナ(12)を燃焼させると共に循環ポンプ(15)のポンプ回転数を設定している。
特開2003−130448号公報
Next, the hot water supply operation by the composite water heater will be described.
When a hot water tap (not shown) disposed on the downstream side of the hot water outlet (38) is opened, heated water that has flowed from the water supply inlet (37) begins to flow through the hot water supply circuit (3). On the other hand, when a flow rate sensor (not shown) in the hot water supply circuit (3) detects a water flow, the hot water heating valve (16) of the circulation heating circuit (2) is opened and the circulation pump (15) is operated to operate the gas burner. (12) is combusted, and the circulating hot water heated by the circulation heat exchanger (13) is heated to the circulation heat exchanger (13) → the hot water supply heating valve (16) → the liquid-liquid heat exchanger. (10) Primary side-> Tank (14)-> Circulation pump (15)-> Circulate through a path connected to the circulation heat exchanger (13). Then, the circulating hot water in the circulating heating circuit (2) and the heated water in the hot water supply circuit (3) are heat-exchanged in the liquid-liquid heat exchanger (10), whereby the heated water is heated to the hot water supply set temperature, Hot water is supplied to a tap tap connected to the downstream side of the circuit (3).
In this case, from the hot water supply flow rate Q1 in the hot water supply circuit (3), the incoming water temperature Tin of the heated water flowing into the hot water supply circuit (3), and the hot water supply set temperature Tset set in the remote controller (not shown), The amount of heat required for hot water supply is calculated, the gas burner (12) is combusted according to the required amount of heat, and the pump rotational speed of the circulation pump (15) is set.
JP 2003-130448 A

しかしながら、上記従来のものでは、ガスバーナ(12)で生成される燃焼排気の熱が循環用熱交換器(13)で十分に回収されない場合があり、器具全体の熱効率が十分に高くならないことがあるという問題があった。   However, in the above conventional one, the heat of the combustion exhaust generated by the gas burner (12) may not be sufficiently recovered by the circulation heat exchanger (13), and the thermal efficiency of the entire instrument may not be sufficiently high. There was a problem.

即ち、ガスバーナ(12)の燃焼量が同一である場合、循環加熱回路(2)に於いて液液熱交換器(10)から循環用熱交換器(13)に戻る循環温水の温度(以下、「戻り温度」という。)を低くすることができれば、循環用熱交換器(13)に流入する循環温水の温度が低くなり、循環用熱交換器(13)自体も低温となる。そして、かかる場合は循環用熱交換器(13)とガスバーナ(12)からの燃焼排気の温度差が大きくなる為、ガスバーナ(12)の燃焼排気から循環用熱交換器(13)で回収できる熱量が多くなる。従って、ガスバーナ(12)で生成される燃焼排気から多くの熱を循環用熱交換器(13)で回収する為には、前記戻り温度を低くするのが望ましい。ところが、上記従来のものでは、必要熱量のみから循環ポンプ(15)の回転数を決定している為、液液熱交換器(10)から循環用熱交換器(13)に帰還する循環温水の戻り温度が積極的に制御されていない。従って、前記循環用熱交換器(13)への戻り温度が成り行き状態になり、該循環用熱交換器(13)が燃焼排気の熱を効率的に回収できず、十分な熱効率が確保できないことがあるのである。   That is, when the combustion amount of the gas burner (12) is the same, the temperature of the circulating hot water returning to the circulation heat exchanger (13) from the liquid-liquid heat exchanger (10) in the circulation heating circuit (2) (hereinafter, If the "return temperature") can be lowered, the temperature of the circulating hot water flowing into the circulation heat exchanger (13) is lowered, and the circulation heat exchanger (13) itself is also lowered. In such a case, since the temperature difference between the combustion exhaust from the circulation heat exchanger (13) and the gas burner (12) increases, the amount of heat that can be recovered from the combustion exhaust from the gas burner (12) by the circulation heat exchanger (13). Will increase. Therefore, in order to recover a large amount of heat from the combustion exhaust generated by the gas burner (12) by the circulation heat exchanger (13), it is desirable to lower the return temperature. However, in the above-mentioned conventional one, since the rotational speed of the circulation pump (15) is determined only from the necessary amount of heat, the circulating hot water returning from the liquid-liquid heat exchanger (10) to the circulation heat exchanger (13) is determined. The return temperature is not actively controlled. Accordingly, the return temperature to the circulation heat exchanger (13) is in a state of success, the circulation heat exchanger (13) cannot efficiently recover the heat of the combustion exhaust, and sufficient thermal efficiency cannot be ensured. There is.

本発明は、かかる点に鑑みて成されたもので、
『ガスバーナ(12)で加熱される循環用熱交換器(13)と循環ポンプ(15)を備えた循環加熱回路(2)と、
給湯回路(3)を流れる被加熱水と前記循環加熱回路(2)を流れる循環温水の熱交換を行う液液熱交換器(10)と、
前記給湯回路(3)に於いて前記液液熱交換器(10)に流入する被加熱水の入水温Tinを検知する給水温センサ(32)と、
前記給湯回路(3)から取り出す給湯温水の給湯設定温度Tsetを設定する為の給湯温度設定部(65)と、
前記給湯温水の流量Q1を判定する流量センサ(33)を具備し、
前記循環ポンプ(15)で循環される前記循環加熱回路(2)内の循環温水と前記給湯回路(3)の被加熱水を前記液液熱交換器(10)で熱交換させることにより、前記被加熱水を前記給湯設定温度Tsetまで昇温させる給湯器』に於いて、ガスバーナ(12)で生成された燃焼排気の熱が循環用熱交換器(13)で効率的に回収されるようにし、これにより、給湯器の熱効率の向上を図ることを課題とする。
The present invention has been made in view of such points.
`` A circulation heating circuit (2) having a circulation heat exchanger (13) heated by a gas burner (12) and a circulation pump (15);
A liquid-liquid heat exchanger (10) for performing heat exchange between heated water flowing through the hot water supply circuit (3) and circulating hot water flowing through the circulation heating circuit (2);
A water supply temperature sensor (32) for detecting an incoming temperature Tin of heated water flowing into the liquid-liquid heat exchanger (10) in the hot water supply circuit (3);
A hot water supply temperature setting section (65) for setting a hot water supply set temperature Tset of hot water and hot water to be taken out from the hot water supply circuit (3);
A flow rate sensor (33) for determining a flow rate Q1 of the hot water supply hot water;
By exchanging heat between the circulating hot water in the circulation heating circuit (2) circulated by the circulation pump (15) and the heated water in the hot water supply circuit (3) in the liquid-liquid heat exchanger (10), In the “water heater for raising the temperature of the heated water to the hot water supply set temperature Tset”, the heat of the combustion exhaust generated by the gas burner (12) is efficiently recovered by the circulation heat exchanger (13). Thus, an object is to improve the thermal efficiency of the water heater.

[請求項1に係る発明]
上記課題を解決するための請求項1に係る発明の解決手段は、
『前記給湯温水の温度を前記給湯設定温度Tsetに維持できる限度で、循環ポンプ(15)のポンプ回転数を低下させる』ことである。
上記解決手段は次のように作用する。
循環ポンプ(15)のポンプ回転数を低下させると、循環加熱回路(2)の循環温水が液液熱交換器(10)を通過する時間が長くなるから、前記循環温水が給湯回路(3)の被加熱水で冷却される時間が長くなる。これにより、循環用熱交換器(13)へ帰還する循環温水の戻り温度が低下するから、前記帰還する循環温水で循環用熱交換器(13)が冷却され易くなり、その分、循環用熱交換器(13)で燃焼排気から多くの熱を回収できる。
[Invention of Claim 1]
The solution means of the invention according to claim 1 for solving the above-mentioned problem is as follows:
“To reduce the rotational speed of the circulation pump (15) as long as the temperature of the hot water supply hot water can be maintained at the hot water supply set temperature Tset”.
The above solution works as follows.
When the pump rotational speed of the circulation pump (15) is reduced, the time for the circulating hot water in the circulating heating circuit (2) to pass through the liquid-liquid heat exchanger (10) becomes longer, so that the circulating hot water is supplied to the hot water supply circuit (3). The time for cooling with water to be heated becomes longer. As a result, the return temperature of the circulating hot water returning to the circulating heat exchanger (13) is lowered, so that the circulating heat exchanger (13) is easily cooled by the returning circulating hot water. The exchanger (13) can recover a lot of heat from the combustion exhaust.

[請求項2に係る発明]
請求項1に係る発明に於いて、
『前記ポンプ回転数は、前記入水温Tinの低下に伴って低下する』ものとすることができる。
給湯設定温度等の他の給湯条件が一定の場合、給湯回路(3)に於いて液液熱交換器(10)の一次側に流入する被加熱水の入水温Tinが高くなると、液液熱交換器(10)の一次側である循環加熱回路(2)と二次側である給湯回路(3)の温度差が小さくなるので、循環加熱回路(2)から給湯回路(3)に熱が流れ難くなって、熱交換し難い。従って、循環加熱回路(2)を流れる循環温水の流量Q2を増大させる(循環ポンプ(15)のポンプ回転数を増大させる)ことにより、循環用熱交換器(13)からの高温の循環温水を盛んに液液熱交換器(10)に供給しなければ、給湯設定温度Tsetの給湯温水が給湯回路(3)から取り出せない。これとは逆に、入水温Tinが低くなると、液液熱交換器(10)の一次側である循環加熱回路(2)と二次側である給湯回路(3)の温度差が大きくなるので、循環加熱回路(2)側から給湯回路(3)に熱が流れ易くなって、熱交換し易い。このことから、同一温度の給湯温水を取り出す場合、入水温Tinが低い場合は高い場合に比べて循環温水の流量Q2を小さくすることができる。従って、入水温Tinが低い場合は、循環ポンプ(15)のポンプ回転数を低下させて循環温水の流量Q2を小さくしても、給湯設定温度Tsetの給湯温水が給湯回路(3)から取り出せる。そこで、請求項2に係る発明では、入水温Tinの低下に伴って前記ポンプ回転数を低下させるようにした。
[Invention of Claim 2]
In the invention according to claim 1,
“The pump speed decreases as the incoming water temperature Tin decreases”.
When other hot water supply conditions such as the hot water supply set temperature are constant, if the incoming temperature Tin of the heated water flowing into the primary side of the liquid-liquid heat exchanger (10) in the hot-water supply circuit (3) becomes high, the liquid-liquid heat Since the temperature difference between the circulating heating circuit (2), which is the primary side of the exchanger (10), and the hot water supply circuit (3), which is the secondary side, becomes small, heat is transferred from the circulating heating circuit (2) to the hot water supply circuit (3). It becomes difficult to flow and heat exchange is difficult. Therefore, by increasing the flow rate Q2 of the circulating hot water flowing through the circulating heating circuit (2) (increasing the pump rotation speed of the circulating pump (15)), the hot circulating hot water from the circulating heat exchanger (13) is removed. If the liquid-liquid heat exchanger (10) is not actively supplied, hot water at the hot water supply set temperature Tset cannot be taken out from the hot water supply circuit (3). Conversely, when the incoming water temperature Tin decreases, the temperature difference between the circulating heating circuit (2) which is the primary side of the liquid-liquid heat exchanger (10) and the hot water supply circuit (3) which is the secondary side increases. In addition, heat easily flows from the circulating heating circuit (2) side to the hot water supply circuit (3), and heat exchange is easy. From this, when extracting hot-water hot water having the same temperature, the flow rate Q2 of the circulating hot water can be made smaller when the incoming water temperature Tin is lower than when it is high. Therefore, when the incoming water temperature Tin is low, the hot water supply hot water at the hot water supply set temperature Tset can be taken out from the hot water supply circuit (3) even if the flow rate Q2 of the circulating hot water is reduced by reducing the pump rotation speed of the circulation pump (15). Therefore, in the invention according to claim 2, the pump rotational speed is decreased as the incoming water temperature Tin decreases.

[請求項3に係る発明]
請求項1又は請求項2に係る発明に於いて、
『前記ポンプ回転数は、前記給湯設定温度Tsetの低下に伴って低下する』ものとすることができる。
このものでは、給湯回路(3)の入水温Tinが一定であれば、給湯設定温度Tsetが低下すると、給湯回路(3)側の熱需要が低下するから、循環加熱回路(2)から供給すべき熱量も低下する。その為、循環流量Q2を多くして熱交換される熱量を増やさなくても、給湯設定温度Tsetの給湯が給湯回路(3)から取り出せる。そこで、請求項3に係る発明では、給湯設定温度Tsetの低下に伴ってポンプ回転数を低下させるようにした。
[Invention of Claim 3]
In the invention according to claim 1 or claim 2,
“The pump rotation speed decreases as the hot water supply set temperature Tset decreases”.
In this case, if the incoming water temperature Tin of the hot water supply circuit (3) is constant, if the hot water supply set temperature Tset is lowered, the heat demand on the hot water supply circuit (3) side is reduced. The amount of heat to be reduced also decreases. Therefore, the hot water at the hot water supply set temperature Tset can be taken out from the hot water supply circuit (3) without increasing the amount of heat exchanged by increasing the circulation flow rate Q2. Therefore, in the invention according to claim 3, the pump rotational speed is decreased as the hot water supply set temperature Tset decreases.

[請求項4に係る発明]
請求項1から請求項3に係る発明に於いて、
『前記液液熱交換器(10)の循環加熱回路(2)側の入口温度を70℃以上、85℃以下に設定する』ものとすることができる。
このものでは、液液熱交換器(10)の循環加熱回路(2)側の入口温度を70℃以上、85℃以下の高温に設定したから、後述の実施の形態で説明するように、70℃未満の低温の場合に比べ、液液熱交換器(10)の循環加熱回路(2)側の出口から循環用熱交換器(13)への戻り温度を一層低くすることができ、循環用熱交換器(13)の熱効率を更に向上させることができる。
又、液液熱交換器(10)の循環加熱回路(2)側の入口温度を85℃以下に設定したから、循環温水が循環用熱交換器(13)で沸騰するまで加熱される不都合を確実に防止できる。
[Invention of Claim 4]
In the invention according to claims 1 to 3,
“The inlet temperature on the circulating heating circuit (2) side of the liquid-liquid heat exchanger (10) is set to 70 ° C. or higher and 85 ° C. or lower”.
In this case, the inlet temperature on the circulating heating circuit (2) side of the liquid-liquid heat exchanger (10) is set to a high temperature of 70 ° C. or higher and 85 ° C. or lower. Compared to the case of a low temperature of less than ℃, the return temperature from the outlet on the circulation heating circuit (2) side of the liquid-liquid heat exchanger (10) to the circulation heat exchanger (13) can be further lowered, The thermal efficiency of the heat exchanger (13) can be further improved.
In addition, since the inlet temperature on the circulating heating circuit (2) side of the liquid-liquid heat exchanger (10) is set to 85 ° C. or lower, there is a problem that the circulating hot water is heated until it boils in the circulating heat exchanger (13). It can be surely prevented.

[請求項5に係る発明]
請求項1〜請求項4に係る発明に於いて、
『前記給湯回路(3)に於ける前記液液熱交換器(10)を迂回するバイパス回路(36)が設けられ、
前記給湯回路(3)に於ける前記液液熱交換器(10)を介する温水と前記バイパス回路(36)を介する冷水とを混合することにより前記給湯設定温度Tsetの温水にする湯水混合手段が設けられている』ものでは、湯水混合手段により、給湯回路(3)にて液液熱交換器(10)側に分配する被加熱水の流量Q1を調整することができる。従って、蛇口等へ供給する給湯温水の温度がフラツキそうになっても、液液熱交換器(10)側の前記流量Q1とバイパス回路(36)側の流量の比率を調整することにより、安定した給湯温制御ができる。
[Invention of Claim 5]
In the invention according to claims 1 to 4,
`` A bypass circuit (36) for bypassing the liquid-liquid heat exchanger (10) in the hot water supply circuit (3) is provided,
Hot water mixing means for mixing hot water through the liquid-liquid heat exchanger (10) in the hot water supply circuit (3) and cold water through the bypass circuit (36) to make the hot water at the hot water supply set temperature Tset. In the case of “provided”, the flow rate Q1 of the water to be heated distributed to the liquid-liquid heat exchanger (10) side in the hot water supply circuit (3) can be adjusted by the hot water mixing means. Therefore, even if the temperature of hot water supplied to the faucet or the like seems to fluctuate, it can be stabilized by adjusting the ratio of the flow rate Q1 on the liquid-liquid heat exchanger (10) side and the flow rate on the bypass circuit (36) side. Hot water temperature control.

本発明は次の特有の効果を有する。
請求項1に係る発明では、既述したように、循環用熱交換器(13)で燃焼排気から多くの熱を回収できるから、給湯器の熱効率が向上する。
請求項2に係る発明では、入水温Tinの低下に伴ってポンプ回転数を低下させることにより、循環用熱交換器(13)への戻り温度を低下させて熱効率を向上させることができる。従って、入水温Tinの変化に対しても熱効率の高い給湯器を提供できる。
The present invention has the following specific effects.
In the invention according to the first aspect, as described above, since a large amount of heat can be recovered from the combustion exhaust gas by the circulation heat exchanger (13), the thermal efficiency of the water heater is improved.
In the invention which concerns on Claim 2, the return temperature to the heat exchanger (13) for circulation can be reduced and thermal efficiency can be improved by reducing pump rotation speed with the fall of incoming water temperature Tin. Therefore, it is possible to provide a water heater with high thermal efficiency even with respect to changes in the incoming water temperature Tin.

請求項3に係る発明では、給湯設定温度Tsetの低下に伴ってポンプ回転数を低下させることにより、循環用熱交換器(13)への戻り温度を低下させて熱効率を向上させることができる。従って、給湯設定温度Tsetの変化に対しても熱効率の高い給湯器を提供できる。   In the invention which concerns on Claim 3, the return temperature to the heat exchanger (13) for circulation can be reduced and thermal efficiency can be improved by reducing pump rotation speed with the fall of hot water supply preset temperature Tset. Therefore, it is possible to provide a hot water heater with high thermal efficiency even with respect to changes in the hot water supply set temperature Tset.

請求項4に係る発明では、後述する実施の形態で説明するように、更に熱効率の高い給湯器を提供できる。
請求項5に係る発明では、既述したように、蛇口等へ供給する給湯温水の温度がフラツキそうになっても、液液熱交換器(10)側の前記流量Q1とバイパス回路(36)側の流量の比率を調整することにより、安定した給湯温制御ができる。
The invention according to claim 4 can provide a water heater with higher thermal efficiency, as will be described in an embodiment described later.
In the invention according to claim 5, as described above, the flow rate Q1 and the bypass circuit (36) on the liquid-liquid heat exchanger (10) side even when the temperature of hot water supplied to the faucet or the like seems to fluctuate. By adjusting the ratio of the flow rate on the side, stable hot water supply temperature control can be performed.

以下に、本発明を実施するための最良の形態について添付図面を参照しながら説明する。
A.実施形態1
[全体構成]
図1は、本実施の形態に係る給湯器の全体構成を示している。
このものでは、台所や洗面所等に配設された出湯蛇口(30)に給湯する給湯回路(3)と、浴槽(40)の追焚き等を行う風呂回路(4)と、床暖房マット(110)やファンコンベクタ(111)が接続された暖房回路(5)を備えており、これらの回路(3)(4)(5)は、後述する循環加熱回路(2)の循環温水で加熱されるようになっている。
以下、各部の詳細を説明する。
The best mode for carrying out the present invention will be described below with reference to the accompanying drawings.
A. Embodiment 1
[overall structure]
FIG. 1 shows an overall configuration of a water heater according to the present embodiment.
In this product, a hot water supply circuit (3) for supplying hot water to a tap (30) provided in a kitchen or a washroom, a bath circuit (4) for reheating the bathtub (40), and a floor heating mat ( 110) and a fan convector (111) are connected, and these circuits (3), (4), and (5) are heated by circulating hot water from a circulating heating circuit (2) described later. It has become so.
Details of each part will be described below.

《循環加熱回路(2)》
給湯回路(3)、風呂回路(4)、暖房回路(5)を加熱する循環加熱回路(2)の熱源たるガスバーナ(12)は、大バーナ(12a)と中バーナ(12b)及び小バーナ(12c)で構成されており、ガスバーナ(12)には、ガス回路(17)を介してガス供給されるようになっている。ガス回路(17)には、上流側から順にガス元弁(18)とガス比例弁(19)が設けられ、ガス比例弁(19)の下流側から大バーナ(12a)、中バーナ(12b)、小バーナ(12c)への分岐回路にはガス開閉弁(20a)(20b)(20c)が各別に配設されている。
《Circulating heating circuit (2)》
The gas burner (12), which is the heat source of the circulation heating circuit (2) for heating the hot water supply circuit (3), the bath circuit (4), and the heating circuit (5), has a large burner (12a), a medium burner (12b), and a small burner ( 12c), and gas is supplied to the gas burner (12) via the gas circuit (17). The gas circuit (17) is provided with a gas main valve (18) and a gas proportional valve (19) in order from the upstream side, and a large burner (12a) and a middle burner (12b) from the downstream side of the gas proportional valve (19). In the branch circuit to the small burner (12c), gas on-off valves (20a), (20b), and (20c) are provided separately.

前記ガスバーナ(12)で加熱される循環用熱交換器(13)は、ガスバーナ(12)からの燃焼排気の顕熱を回収する顕熱熱交換器(13b)と、ガスバーナ(12)からの燃焼排気を露点以下に冷却して潜熱を回収する潜熱熱交換器(13a)とから構成されている。このため、循環用熱交換器(13)とガスバーナ(12)は、上端に排気口(22)が開設された缶体(21)に収納されており、ガスバーナ(12)の上方には、顕熱熱交換器(13b)と潜熱熱交換器(13a)が下方からこの順序で配設されている。又、缶体(21)内には、下方の給気ファン(26)から燃焼用空気が供給されるようになっている。尚、燃焼排気が潜熱熱交換器(13a)で露点以下に冷却されることで生成されるドレン水は、その下方のドレンパン(23)で回収され、排液管(24)に設けられたドレン中和器(25)でPH調整された後に排水される。   The circulation heat exchanger (13) heated by the gas burner (12) includes a sensible heat exchanger (13b) for recovering sensible heat of combustion exhaust from the gas burner (12), and a combustion from the gas burner (12). And a latent heat exchanger (13a) for recovering latent heat by cooling the exhaust gas below the dew point. For this reason, the circulation heat exchanger (13) and the gas burner (12) are housed in a can (21) having an exhaust port (22) opened at the upper end, and above the gas burner (12) The heat heat exchanger (13b) and the latent heat exchanger (13a) are arranged in this order from below. In addition, combustion air is supplied into the can body (21) from a lower air supply fan (26). Drain water generated when the combustion exhaust is cooled below the dew point by the latent heat exchanger (13a) is recovered by the drain pan (23) below it, and is provided in the drain pipe (24). It is drained after the pH is adjusted by the neutralizer (25).

循環加熱回路(2)は、缶体(21)の右横に図示した循環ポンプ(15)→潜熱熱交換器(13a)→顕熱熱交換器(13b)→循環湯温センサ(70)→追焚分配弁(28)→給湯用加熱路(29)→液液熱交換器(10)の一次側→シスターン(59)→循環ポンプ(15)の順序で循環する回路である。   The circulating heating circuit (2) is connected to the circulating pump (15) shown on the right side of the can (21) → latent heat exchanger (13a) → sensible heat exchanger (13b) → circulating hot water temperature sensor (70) → It is a circuit that circulates in the order of the remnant distribution valve (28) → the heating path for hot water supply (29) → the primary side of the liquid-liquid heat exchanger (10) → the system turn (59) → the circulation pump (15).

《給湯回路(3)》
給湯回路(3)は、流量調節器(31)→入水温度Tinを検知する給水温センサ(32)→給湯流量Q1を検知する給水流量計(33)→液液熱交換器(10)の二次側→給湯被加熱回路(39)→バイパスミキシング弁(34)→混合温センサ(35)の順序で繋がる回路である。液液熱交換器(10)はバイパス回路(36)で迂回されており、液液熱交換器(10)で加熱昇温された温水(給湯被加熱回路(39)からの温水)とバイパス回路(36)からの冷水がバイパスミキシング弁(34)で混合され、該混合により、リモコン(6)(図2参照)でセットされた給湯設定温度Tsetの給湯温水が、出湯蛇口(30)側に供給されるようになっている。尚、本実施の形態では、上記バイパスミキシング弁(34)は、請求項5の発明特定事項たる「湯水混合手段」に対応している。
《Hot water supply circuit (3)》
The hot water supply circuit (3) includes a flow rate regulator (31), a feed water temperature sensor (32) for detecting the incoming water temperature Tin, a feed water flow meter (33) for detecting the hot water flow rate Q1, and a liquid / liquid heat exchanger (10). This circuit is connected in the order of secondary side → hot water supply heated circuit (39) → bypass mixing valve (34) → mixed temperature sensor (35). The liquid-liquid heat exchanger (10) is bypassed by the bypass circuit (36), and hot water heated by the liquid-liquid heat exchanger (10) (hot water from the hot water supply heated circuit (39)) and the bypass circuit The cold water from (36) is mixed by the bypass mixing valve (34), and hot water at the hot water set temperature Tset set by the remote controller (6) (see FIG. 2) is fed to the outlet tap (30) side by the mixing. It comes to be supplied. In the present embodiment, the bypass mixing valve (34) corresponds to “hot water mixing means” which is a specific matter of the invention of claim 5.

《暖房回路(5)》
暖房回路(5)は、床暖房マット(110)とファンコンベクタ(111)を備える回路で構成されている。床暖房マット(110)側の回路は、循環加熱回路(2)に於ける潜熱熱交換器(13a)の出口側から分岐した暖房分岐路(54)→暖房分配弁(55)→低温暖房路(56)→床暖房マット(110)→シスターン(59)の順序で繋がっている。一方、ファンコンベクタ(111)側の回路は、顕熱熱交換器(13b)→循環湯温センサ(70)→高温暖房回路(57)→ファンコンベクタ(111)→シスターン(59)の順序で繋がっている。尚、高温暖房回路(57)の途中と既述暖房分配弁(55)は接続されており、必要に応じて、高温暖房回路(57)に供給される高温水の一部を暖房分配弁(55)から低温暖房回路(56)に分配できるようになっている。
《Heating circuit (5)》
The heating circuit (5) is composed of a circuit including a floor heating mat (110) and a fan convector (111). The circuit on the floor heating mat (110) side is the heating branch (54) branched from the outlet side of the latent heat exchanger (13a) in the circulation heating circuit (2) → the heating distribution valve (55) → the low temperature heating path (56) → floor heating mat (110) → sis turn (59). On the other hand, the circuit on the fan convector (111) side is connected in the order of sensible heat exchanger (13b) → circulating water temperature sensor (70) → high temperature heating circuit (57) → fan convector (111) → systern (59). ing. The middle of the high-temperature heating circuit (57) and the above-described heating distribution valve (55) are connected, and if necessary, a part of the high-temperature water supplied to the high-temperature heating circuit (57) is heated to the heating distribution valve ( 55) can be distributed to the low-temperature heating circuit (56).

《風呂回路(4)》
風呂回路(4)は、浴槽(40)→追焚ポンプ(42)→二重管構造の追焚熱交換器(41)の内パイプ(411)→浴槽(40)と循環する回路であり、追焚熱交換器(41)の外パイプ(410)には、追焚分配弁(28)からの高温水が供給され、これが、シスターン(59)に戻されるようになっている。又、風呂回路(4)に於ける追焚熱交換器(41)の内パイプ(41)の上流側には、既述給湯回路(3)から引き出された湯張回路(46)が接続され、該湯張回路(46)に設けられた湯張弁(47)が開弁されると浴槽(40)に湯張りされる構成である。
《Bath circuit (4)》
The bath circuit (4) is a circuit that circulates from the bathtub (40) to the remedy pump (42) to the internal pipe (411) of the remedy heat exchanger (41) with a double pipe structure to the tub (40), High temperature water from the additional distribution valve (28) is supplied to the outer pipe (410) of the additional heat exchanger (41), and this is returned to the systern (59). In addition, the hot water supply circuit (46) drawn from the hot water supply circuit (3) is connected to the upstream side of the inner pipe (41) of the additional heat exchanger (41) in the bath circuit (4). When the hot water valve (47) provided in the hot water circuit (46) is opened, the hot water is filled in the bathtub (40).

《リモコン》
図2に示すように、リモコン(6)には、給湯や暖房等の運転状態や給湯設定温度Tset等を表示する表示画面(60)が設けられており、その下方には、電源投入時に操作する運転スイッチ(61)、床暖房マット(110)等を使用する際に操作する暖房スイッチ(62)、風呂の追焚スイッチ(63)、及び、湯張スイッチ(64)が設けられている。又、リモコン(6)は、給湯設定温度Tsetや風呂の湯張温度等を設定する為の昇温ボタン(65a)及び降温ボタン(65b)からなる給湯温度設定部(65)を備えていると共に、図1の給湯器に組み込まれた制御装置(図示せず)に通信ケーブルで接続されている。
"Remote controller"
As shown in FIG. 2, the remote control (6) is provided with a display screen (60) for displaying the operation state of hot water supply and heating, a hot water supply set temperature Tset, and the like. There are provided an operation switch (61) to perform, a heating switch (62) to be operated when using the floor heating mat (110), etc., a bath retreat switch (63), and a hot water switch (64). The remote controller (6) includes a hot water supply temperature setting unit (65) including a temperature raising button (65a) and a temperature lowering button (65b) for setting the hot water supply set temperature Tset, the hot water temperature of the bath, and the like. 1 is connected to a control device (not shown) incorporated in the water heater of FIG. 1 by a communication cable.

[動作の説明]
次に、上記複合給湯器による給湯動作や暖房動作等の各動作を説明する。
《給湯動作》
先ず、概略の給湯動作を説明する。
リモコン(6)の運転スイッチ(61)が投入された状態で出湯蛇口(30)が開放されて給水流量計(33)が所定の流量を検知すると、給気ファン(26)及び循環ポンプ(15)が作動すると共に、ガスバーナ(12)が燃焼して給湯動作が開始する。
[Description of operation]
Next, each operation | movement, such as a hot water supply operation | movement by the said complex water heater, and heating operation, is demonstrated.
《Hot-water supply operation》
First, a schematic hot water supply operation will be described.
When the hot water tap (30) is opened with the operation switch (61) of the remote control (6) turned on and the feed water flow meter (33) detects a predetermined flow rate, the supply fan (26) and the circulation pump (15 ) Is activated, the gas burner (12) is combusted, and the hot water supply operation is started.

この給湯動作時には、循環加熱回路(2)内の循環温水は潜熱熱交換器(13a)を通過するときにガスバーナ(12)の燃焼排気から潜熱を回収する一方、顕熱熱交換器(13b)を通過するときに前記燃焼排気から顕熱を回収して加熱昇温される。そして、この加熱昇温された循環温水は、循環用熱交換器(13)→循環湯温センサ(70)→追焚分配弁(28)→給湯用加熱路(29)→液液熱交換器(10)の一次側→シスターン(59)→循環ポンプ(15)→循環用熱交換器(13)と繋がる循環加熱回路(2)で循環する。又、液液熱交換器(10)の一次側である循環加熱回路(2)を流れる循環温水と、液液熱交換器(10)の二次側である給湯回路(3)の給湯被加熱回路(39)へ流れる被加熱水が熱交換する。そして、液液熱交換器(10)を通過した前記給湯被加熱回路(39)の高温水とバイパス回路(36)から供給される冷水の混合割合がバイパスミキシング弁(34)の開度により調整され、該混合水の温度が給湯設定温度Tset (リモコン(6)で設定された温度)に調整された後、出湯蛇口(30)側に供給される。   During this hot water supply operation, the circulating hot water in the circulation heating circuit (2) collects latent heat from the combustion exhaust of the gas burner (12) when passing through the latent heat exchanger (13a), while the sensible heat exchanger (13b) When passing through the sensible heat, the sensible heat is recovered from the combustion exhaust and the temperature is raised. And this circulating hot water whose temperature has been heated is the heat exchanger for circulation (13) → circulating water temperature sensor (70) → remnant distribution valve (28) → heating path for hot water supply (29) → liquid-liquid heat exchanger (10) It is circulated in a circulation heating circuit (2) connected to the primary side → systern (59) → circulation pump (15) → circulation heat exchanger (13). Also, circulating hot water flowing through the circulating heating circuit (2) that is the primary side of the liquid-liquid heat exchanger (10) and hot water supply heating of the hot-water supply circuit (3) that is the secondary side of the liquid-liquid heat exchanger (10) Heated water flowing to the circuit (39) exchanges heat. Then, the mixing ratio of the high temperature water of the hot water supply heated circuit (39) that has passed through the liquid-liquid heat exchanger (10) and the cold water supplied from the bypass circuit (36) is adjusted by the opening of the bypass mixing valve (34). Then, the temperature of the mixed water is adjusted to the hot water supply set temperature Tset (temperature set by the remote controller (6)), and then supplied to the hot water tap (30) side.

本実施の形態に係る複合給湯器では、リモコン(6)で設定された給湯設定温度Tsetの温水を得るための必要熱量(出力号数α)が液液熱交換器(10)を介して給湯回路(3)側に取り出せる限度で、循環ポンプ(15)のポンプ回転数を可能な限り低下させるようにすることで、ガスバーナ(12)で生成された燃焼排気の熱が循環用熱交換器(13)で効率的に回収される(循環用熱交換器(13)の熱効率が向上する)ようにしている。又、循環加熱回路(2)に於ける液液熱交換器(10)の入口部の温度(以下、「循環入口温度TX」という。)を85℃の高温に設定することで、燃焼排気の熱が循環用熱交換器(13)で一層効率的に回収されるようにしている。   In the composite water heater according to the present embodiment, the necessary amount of heat (output number α) for obtaining hot water at the hot water set temperature Tset set by the remote controller (6) is supplied via the liquid-liquid heat exchanger (10). By reducing the pump speed of the circulation pump (15) as much as possible to the extent that it can be taken out to the circuit (3) side, the heat of the combustion exhaust gas generated by the gas burner (12) is converted into a circulation heat exchanger ( 13) is efficiently recovered (the heat efficiency of the circulation heat exchanger (13) is improved). Further, by setting the temperature of the inlet of the liquid-liquid heat exchanger (10) in the circulation heating circuit (2) (hereinafter referred to as “circulation inlet temperature TX”) to a high temperature of 85 ° C., Heat is recovered more efficiently by the circulation heat exchanger (13).

ここで、循環ポンプ(15)のポンプ回転数を可能な限り低下させると共に、循環入口温度TXを高温(本実施の形態では85℃)に設定すると、ガスバーナ(12)で生成された燃焼排気の熱が循環用熱交換器(13)で効率的に回収できる理由を説明する。   Here, when the pump rotation speed of the circulation pump (15) is reduced as much as possible, and the circulation inlet temperature TX is set to a high temperature (85 ° C. in the present embodiment), the combustion exhaust generated by the gas burner (12) is reduced. The reason why heat can be efficiently recovered by the circulation heat exchanger (13) will be described.

{循環ポンプ(15)のポンプ回転数を低下させると、燃焼排気の熱が循環用熱交換器(13)で効率的に回収できる理由}
図3は、図1の循環加熱回路(2)と給湯回路(3)の関係を示す略図である。又、図4は、本実施の形態に係る複合給湯器を用いて下記実験をした場合の、循環加熱回路(2)の循環温水の流量(以下、「循環流量Q2」という。)とガスバーナ(12)の燃焼量W等の関係を示すグラフである。具体的には、図4のグラフF1,F2,F3は、循環加熱回路(2)の循環流量Q2と、液液熱交換器(10)から循環用熱交換器(13)に戻る循環温水の温度(以下、「戻り温度TY」という。)との関係を示し、グラフG1は、ガスバーナ(12)の燃焼量Wと前記戻り温度TYとの関係を示している。
{Reason why the heat of combustion exhaust can be efficiently recovered by the circulation heat exchanger (13) by reducing the pump speed of the circulation pump (15)}
FIG. 3 is a schematic diagram showing the relationship between the circulating heating circuit (2) and the hot water supply circuit (3) of FIG. FIG. 4 shows a flow rate of circulating hot water (hereinafter referred to as “circulation flow rate Q2”) and a gas burner (hereinafter referred to as “circulation flow rate Q2”) when the following experiment is performed using the composite water heater according to the present embodiment. It is a graph which shows the relationship of the combustion amount W etc. of 12). Specifically, the graphs F1, F2, and F3 in FIG. 4 show the circulation flow rate Q2 of the circulation heating circuit (2) and the circulating hot water returning from the liquid-liquid heat exchanger (10) to the circulation heat exchanger (13). The relationship between the temperature (hereinafter referred to as “return temperature TY”) and the graph G1 represents the relationship between the combustion amount W of the gas burner (12) and the return temperature TY.

図4の各グラフを求める実験は、次の条件で行った。
給湯回路(3)に於ける給湯流量Q1=12.1L/min
給湯回路(3)の液液熱交換器(10)の一次側に於ける上流側の入水温Tin=17℃,
リモコン(6)でセットした給湯設定温度Tset=60℃
前記実験条件の下、給湯回路(3)に於けるバイパス回路(36)の合流点の下流側(バイパス回路(36)が設けられていないものでは液液熱交換器(10)の出口部)の出湯温度Toutを実質的に給湯設定温度Tsetに維持できる限度で、循環加熱回路(2)の循環流量Q2とガスバーナ(12)の燃焼量Wを変化させた。
The experiment for obtaining each graph in FIG. 4 was performed under the following conditions.
Hot water flow rate Q1 = 12.1L / min in the hot water supply circuit (3)
Incoming water temperature Tin = 17 ° C. on the primary side of the liquid-liquid heat exchanger (10) of the hot water supply circuit (3),
Hot water set temperature set with remote control (6) Tset = 60 ℃
Under the above experimental conditions, downstream of the junction of the bypass circuit (36) in the hot water supply circuit (3) (the outlet of the liquid-liquid heat exchanger (10) if the bypass circuit (36) is not provided) The circulating flow rate Q2 of the circulation heating circuit (2) and the combustion amount W of the gas burner (12) were changed within the limits that the hot water temperature Tout of the circulation heating circuit (2) can be maintained substantially at the hot water supply set temperature Tset.

即ち、液液熱交換器(10)の二次側である給湯回路(3)に、Eout=(60℃―17℃)×12.1L/min÷25≒21号の熱量を取り出しつつ、循環流量Q2とガスバーナ(12)の燃焼量Wを変化させた。   That is, while extracting the heat quantity of Eout = (60 ° C.−17 ° C.) × 12.1 L / min ÷ 25≈21 to the hot water supply circuit (3) which is the secondary side of the liquid-liquid heat exchanger (10), the circulation is performed. The flow rate Q2 and the combustion amount W of the gas burner (12) were changed.

図4のグラフF1,F2,F3は、循環加熱回路(2)に於ける液液熱交換器(10)の循環入口温度TXをパラメータとして変化させた場合の循環流量Q2と戻り温度TYの関係を示しており、
F1は、循環入口温度TX=85℃のグラフ
F2は、循環入口温度TX=76℃のグラフ
F3は、循環入口温度TX=70℃のグラフ
である。
Graphs F1, F2, and F3 in FIG. 4 show the relationship between the circulation flow rate Q2 and the return temperature TY when the circulation inlet temperature TX of the liquid-liquid heat exchanger (10) in the circulation heating circuit (2) is changed as a parameter. And
F1 is a graph of the circulation inlet temperature TX = 85 ° C. F2 is a graph of the circulation inlet temperature TX = 76 ° C. F3 is a graph of the circulation inlet temperature TX = 70 ° C.

又、図4のグラフG1は、「循環入口温度TX=85℃」でのガスバーナ(12)の燃焼量Wと戻り温度TYの関係を示したものであり、図5の表に示した「戻り温度TY」と「燃焼量W」の各組み合わせにより定まる各点を図4のグラフ上にプロットしたものである。   Also, the graph G1 in FIG. 4 shows the relationship between the combustion amount W of the gas burner (12) and the return temperature TY at the “circulation inlet temperature TX = 85 ° C.”, and the “return” shown in the table of FIG. Each point determined by each combination of “temperature TY” and “combustion amount W” is plotted on the graph of FIG.

次に、図4に表れるグラフF1の内容を具体的に説明する。
前述のように、グラフF1は、循環入口温度TX=85℃に固定した場合に於ける、戻り温度TYと循環流量Q2の関係を示している。尚、ガスバーナ(12)で生成される燃焼排気の露点は45℃である。
Next, the contents of the graph F1 appearing in FIG. 4 will be specifically described.
As described above, the graph F1 shows the relationship between the return temperature TY and the circulation flow rate Q2 when the circulation inlet temperature TX is fixed at 85 ° C. In addition, the dew point of the combustion exhaust gas produced | generated with a gas burner (12) is 45 degreeC.

グラフF1において、戻り温度TYが56℃以下で45℃(露点)を超える範囲(点P4〜P5の範囲)では、循環流量Q2が低下するほど、戻り温度TYが低くなっている。これは次の理由による。   In the graph F1, in the range where the return temperature TY is 56 ° C. or less and exceeds 45 ° C. (dew point) (the range of points P4 to P5), the return temperature TY is lower as the circulation flow rate Q2 is lower. This is due to the following reason.

循環流量Q2が低下するほど、循環加熱回路(2)の循環温水が液液熱交換器(10)の一次側を通過する時間が長くなるから、前記循環温水が液液熱交換器(10)の二次側である給湯回路(3)の被加熱水で冷却される時間が長くなる。従って、循環流量Q2が低下すると、循環用熱交換器(13)への戻り温度TYが低くなるのである。   The lower the circulating flow rate Q2, the longer it takes for the circulating hot water in the circulating heating circuit (2) to pass through the primary side of the liquid-liquid heat exchanger (10). The time for cooling with the heated water in the hot water supply circuit (3), which is the secondary side, becomes longer. Accordingly, when the circulation flow rate Q2 is lowered, the return temperature TY to the circulation heat exchanger (13) is lowered.

そして、液液熱交換器(10)の循環入口温度TXが一定の場合、循環用熱交換器(13)への戻り温度TYが低下するほど該循環用熱交換器(13)が冷却され易くなるから、燃焼排気が循環用熱交換器(13)を通過した後の排気温度が低くなり、排気温度が低下する分、ガスバーナ(12)の燃焼排気からの熱を循環用熱交換器(13)で多く回収できる。即ち、戻り温度TYを低下させるべく循環ポンプ(15)の回転数を低下させる(循環流量Q2を小さくする)と、前記燃焼排気の熱が循環用熱交換器(13)で効率的に回収できる。   When the circulation inlet temperature TX of the liquid-liquid heat exchanger (10) is constant, the circulation heat exchanger (13) is easily cooled as the return temperature TY to the circulation heat exchanger (13) decreases. Therefore, the exhaust temperature after the combustion exhaust gas passes through the circulation heat exchanger (13) is lowered, and the heat from the combustion exhaust gas of the gas burner (12) is reduced by the amount that the exhaust temperature is lowered. ) Can be recovered a lot. That is, when the rotational speed of the circulation pump (15) is reduced (the circulation flow rate Q2 is reduced) to reduce the return temperature TY, the heat of the combustion exhaust can be efficiently recovered by the circulation heat exchanger (13). .

そして、戻り温度TYが低下すると(循環ポンプ(15)の回転数が低下すると)、前記燃焼排気の熱が循環用熱交換器(13)で効率的に回収できる(循環用熱交換器(13)の熱効率が向上する)ことは、図4のグラフG1からも確認できる。即ち、戻り温度TYが56℃から45℃(燃焼排気の露点)まで低下する範囲(循環流量Q2が約18L/minから約13L/minに低下する範囲)を見ると、ガスバーナ(12)の燃焼量WをグラフG1のW1〜W2の間の曲線に従って減少させても、液液熱交換器(10)の二次側(給湯回路(3))に取り出す熱量Eoutを一定に保ち得ることが確認できる。このように、ガスバーナ(12)の燃焼量Wを減少させても前記熱量Eoutを一定に保てるのは、戻り温度TYの低下に伴って(循環ポンプ(15)の回転数の低下に伴って)、前記燃焼排気の熱が循環用熱交換器(13)で効率的に回収できることの証左にほかならない。
このように、戻り温度TYを低くすべく循環流量Q2を低下させれば、循環用熱交換器(13)の熱効率を高くすることができる。
When the return temperature TY decreases (when the rotational speed of the circulation pump (15) decreases), the heat of the combustion exhaust can be efficiently recovered by the circulation heat exchanger (13) (circulation heat exchanger (13 It can be confirmed from the graph G1 in FIG. That is, when the range in which the return temperature TY decreases from 56 ° C. to 45 ° C. (dew point of combustion exhaust) (the range in which the circulation flow rate Q2 decreases from about 18 L / min to about 13 L / min) is seen, the combustion of the gas burner (12) It is confirmed that even if the amount W is decreased according to the curve between W1 and W2 in the graph G1, the amount of heat Eout taken out to the secondary side (hot water supply circuit (3)) of the liquid-liquid heat exchanger (10) can be kept constant. it can. In this way, the amount of heat Eout can be kept constant even when the combustion amount W of the gas burner (12) is decreased, as the return temperature TY decreases (with the decrease in the rotational speed of the circulation pump (15)). This is nothing but evidence that the heat of the combustion exhaust can be efficiently recovered by the circulation heat exchanger (13).
Thus, if the circulating flow rate Q2 is lowered to lower the return temperature TY, the thermal efficiency of the circulating heat exchanger (13) can be increased.

次に、戻り温度TYが45℃(露点)以下の領域に入ると、潜熱熱交換器(13a)での潜熱回収が始まり、循環用熱交換器(13)の熱効率が顕著に高くなる。又、戻り温度TYが45℃以下の領域で循環流量Q2が低下すると、既述と同様の理由により、戻り温度TYが低くなる。そして、戻り温度TYが45℃以下の領域で次第に温度低下してゆくと、既述したように循環用熱交換器(13)が冷却され易くなり、これにより、潜熱回収量が次第に増大する。即ち、戻り温度TYが45℃以下の領域に於いても、戻り温度TYを低下させるべく循環ポンプ(15)の回転数を低下させる(循環流量Q2を小さくする)と、前記燃焼排気の熱が循環用熱交換器(13)で効率的に回収できるのである。
このことは、図4のグラフG1からも確認できる。即ち、戻り温度TYが45℃以下の範囲(循環流量Q2が約13L/min以下の範囲)を見ると、ガスバーナ(12)の燃焼量WをグラフG1のW2〜W3の間の曲線に従って減少させても、液液熱交換器(10)の二次側(給湯回路(3))に取り出す熱量Eoutを一定に保ち得ることが確認できる。
Next, when the return temperature TY enters an area of 45 ° C. (dew point) or less, the latent heat recovery in the latent heat exchanger (13a) starts, and the thermal efficiency of the circulating heat exchanger (13) is significantly increased. Further, when the circulating flow rate Q2 is reduced in the region where the return temperature TY is 45 ° C. or lower, the return temperature TY is lowered for the same reason as described above. When the temperature gradually decreases in the region where the return temperature TY is 45 ° C. or lower, the circulation heat exchanger (13) is easily cooled as described above, and thereby the latent heat recovery amount gradually increases. That is, even in the region where the return temperature TY is 45 ° C. or less, if the rotational speed of the circulation pump 15 is reduced (the circulation flow rate Q2 is reduced) to reduce the return temperature TY, the heat of the combustion exhaust is increased. It can be efficiently recovered by the circulation heat exchanger (13).
This can also be confirmed from the graph G1 in FIG. That is, when the return temperature TY is in the range of 45 ° C. or less (the circulation flow rate Q2 is in the range of about 13 L / min or less), the combustion amount W of the gas burner (12) is decreased according to the curve between W2 and W3 in the graph G1. However, it can be confirmed that the amount of heat Eout taken out to the secondary side (the hot water supply circuit (3)) of the liquid-liquid heat exchanger (10) can be kept constant.

以上より、給湯回路(3)に同じEout=21号の熱量を取り出す場合、循環流量Q2を低下させて戻り温度TYを低くする方がガスバーナ(12)の燃焼量を少なくすることが出来、これにより、燃焼排気の熱が循環用熱交換器(13)で効率的に回収できる。即ち、循環用熱交換器(13)の熱効率を高くすることができる。又、戻り温度TYがガスバーナ(12)の燃焼排気の露点(45℃)以下になった場合は前記効果が顕著になる。   From the above, when the same amount of heat of Eout = 21 is taken out to the hot water supply circuit (3), the combustion amount of the gas burner (12) can be reduced by lowering the circulation flow rate Q2 and lowering the return temperature TY. Thus, the heat of the combustion exhaust can be efficiently recovered by the circulation heat exchanger (13). That is, the heat efficiency of the circulation heat exchanger (13) can be increased. Further, when the return temperature TY is lower than the dew point (45 ° C.) of the combustion exhaust of the gas burner (12), the above effect becomes remarkable.

次に、循環入口温度TXが76℃である場合のグラフF2と、循環入口温度TXが70℃である場合のグラフF3を見ると、この場合も前記グラフF1と同様、循環流量Q2を低下させることで戻り温度TYを低くすれば、燃焼排気の熱を循環用熱交換器(13)で効率的に回収できる。即ち、熱効率が高くなることが理解できる。   Next, when looking at the graph F2 when the circulation inlet temperature TX is 76 ° C. and the graph F3 when the circulation inlet temperature TX is 70 ° C., the circulation flow rate Q2 is decreased in this case as well as the graph F1. Thus, if the return temperature TY is lowered, the heat of the combustion exhaust can be efficiently recovered by the circulation heat exchanger (13). That is, it can be understood that the thermal efficiency is increased.

{循環入口温度TXを高温に設定すると、燃焼排気の熱を循環用熱交換器(13)で効率的に回収できる理由}
図4から明らかなように、循環入口温度TX=85℃のグラフF1の下端P1に対応する戻り温度TY1、循環入口温度TX=76℃のグラフF2の下端P2に対応する戻り温度TY2、及び、循環入口温度TX=70℃のグラフF3の下端P3に対応する戻り温度TY3は、TY1<TY2<TY3の関係にある。又、後述するように、点P1は、液液熱交換器(10)の二次側である給湯回路(3)からEout=21号の熱量を取り出し得る循環流量Q2の下限値である。換言すれば、循環流量Q2未満になれば、給湯回路(3)からの熱量がEout=21号未満になる。これと同様に、点P2、P3も、TX=76℃、TX=70℃の場合の循環流量Q2の下限値である。このことから、同じ21号の熱量を液液熱交換器(10)の二次側に取り出す場合、循環入口温度TX=85℃の高温に設定すれば、これより低温(TX=76℃、70℃)の場合に比べ、戻り温度をTY1まで低くすることが出来、これにより、ガスバーナ(12)の燃焼排気の熱を循環用熱交換器(13)で効率的に回収できることが理解できる。
{Reason why the heat of combustion exhaust can be efficiently recovered by the heat exchanger for circulation (13) when the circulation inlet temperature TX is set to a high temperature}
As is apparent from FIG. 4, the return temperature TY1 corresponding to the lower end P1 of the graph F1 with the circulation inlet temperature TX = 85 ° C., the return temperature TY2 corresponding to the lower end P2 of the graph F2 with the circulation inlet temperature TX = 76 ° C., and The return temperature TY3 corresponding to the lower end P3 of the graph F3 with the circulation inlet temperature TX = 70 ° C. has a relationship of TY1 <TY2 <TY3. As will be described later, the point P1 is a lower limit value of the circulation flow rate Q2 at which the amount of heat of Eout = 21 can be extracted from the hot water supply circuit (3) which is the secondary side of the liquid-liquid heat exchanger (10). In other words, if the circulating flow rate is less than Q2, the amount of heat from the hot water supply circuit (3) becomes less than Eout = 21. Similarly, the points P2 and P3 are lower limit values of the circulation flow rate Q2 when TX = 76 ° C. and TX = 70 ° C. From this, when taking out the heat quantity of the same No. 21 to the secondary side of the liquid-liquid heat exchanger (10), if the circulation inlet temperature TX is set to a high temperature of 85 ° C., the temperature becomes lower (TX = 76 ° C., 70 ° C.). It can be understood that the return temperature can be lowered to TY1 compared to the case of (° C.), whereby the heat of the combustion exhaust gas of the gas burner (12) can be efficiently recovered by the circulation heat exchanger (13).

以上より、循環加熱回路(2)の循環用熱交換器(13)への戻り温度を可能な限り低く抑える(循環流量Q2を小さくする)と共に、循環加熱回路(2)に於ける液液熱交換器(10)の循環入口温度TXを高温に設定すれば、ガスバーナ(12)で生成された燃焼排気の熱が循環用熱交換器(13)で効率的に回収できることが理解できる。即ち、循環用熱交換器(13)の熱効率が向上し、その結果、複合給湯器全体の熱効率も向上するのである。   As described above, the return temperature of the circulation heating circuit (2) to the circulation heat exchanger (13) is kept as low as possible (decreasing the circulation flow rate Q2), and the liquid-liquid heat in the circulation heating circuit (2). It can be understood that if the circulation inlet temperature TX of the exchanger (10) is set to a high temperature, the heat of the combustion exhaust generated by the gas burner (12) can be efficiently recovered by the circulation heat exchanger (13). That is, the thermal efficiency of the circulation heat exchanger (13) is improved, and as a result, the thermal efficiency of the entire composite water heater is also improved.

{循環流量Q2の下限値について}
循環加熱回路(2)の循環流量Q2を低下させて戻り温度TYを低くすると、燃焼排気の熱が循環用熱交換器(13)で効率的に回収できることは前述の通りであるが、給湯設定温度Tsetの給湯温水を得る為には前記循環流量Q2の下限値が存在する。
{About the lower limit of circulating flow Q2}
As described above, the heat of the combustion exhaust can be efficiently recovered by the circulation heat exchanger (13) by lowering the return flow rate TY by lowering the circulation flow rate Q2 of the circulation heating circuit (2). In order to obtain the hot water supply hot water having the temperature Tset, there is a lower limit value of the circulation flow rate Q2.

次に、給湯設定温度Tsetの給湯温水を得るために必要な循環流量Q2の下限値について説明する。
この下限値は、給湯回路(3)の入口から液液熱交換器(10)の二次側に流入する被加熱水の入水温度Tinと、リモコン(6)でセットされた給湯設定温度Tsetによって決まる。
Next, the lower limit value of the circulation flow rate Q2 necessary for obtaining hot water supply hot water at the hot water supply set temperature Tset will be described.
This lower limit is determined by the incoming water temperature Tin of the heated water flowing from the inlet of the hot water supply circuit (3) to the secondary side of the liquid-liquid heat exchanger (10) and the hot water supply set temperature Tset set by the remote controller (6). Determined.

*循環流量Q2の下限値が入水温度Tinで決まる理由
循環入口温度TX=85℃のグラフF1(図4参照)を求める前記実験によれば、循環流量Q2が9L/min(点P1)以下になると、Eout=21号の熱量を確保できないことが確認された。具体的には、循環流量Q2を8L/minにすると、戻り温度TYは22℃程度となり、20.2号の熱量しか確保できず、給湯設定温度Tset=60℃に維持できなくなることが分った。
* Reason why the lower limit value of the circulation flow rate Q2 is determined by the incoming water temperature Tin According to the above-mentioned experiment for obtaining the graph F1 (see FIG. 4) of the circulation inlet temperature TX = 85 ° C., the circulation flow rate Q2 is 9 L / min (point P1) or less. Then, it was confirmed that the heat quantity of Eout = 21 could not be secured. Specifically, when the circulation flow rate Q2 is set to 8 L / min, the return temperature TY is about 22 ° C., and only the amount of heat of No. 20.2 can be secured and the hot water supply set temperature Tset = 60 ° C. cannot be maintained. It was.

これは、循環流量Q2を低下させると、液液熱交換器(10)の伝熱壁(循環加熱回路(2)と給湯回路(3)の境界壁)と循環加熱回路(2)の循環温水との間の熱伝達率β2(循環流量Q2の関数)が低下して液液熱交換器(10)の性能が悪化し、その結果、給湯設定温度Tsetの温水が得られなくなるからと考えられる。   This is because when the circulation flow Q2 is reduced, the heat transfer wall of the liquid-liquid heat exchanger (10) (boundary wall of the circulation heating circuit (2) and the hot water supply circuit (3)) and the circulation hot water of the circulation heating circuit (2) It is considered that the heat transfer rate β2 (a function of the circulation flow rate Q2) decreases with the deterioration of the performance of the liquid-liquid heat exchanger (10), and as a result, hot water at the hot water supply set temperature Tset cannot be obtained. .

次に、循環流量Q2を低下させた場合、上記のように液液熱交換器(10)の性能が悪化する理由を更に詳述する。
図6(イ)の下限流量グラフY1〜Y3は、図3の(Tout−Tin)=ΔTと、給湯流量Q1を一定に保った実験での、循環流量Q2と液液熱交換器(10)の出力号数α(液液熱交換器(10)の二次側である給湯回路(3)に取り出せる熱量)との関係を示すグラフである。
Next, the reason why the performance of the liquid-liquid heat exchanger (10) deteriorates as described above when the circulating flow rate Q2 is reduced will be described in detail.
The lower limit flow rate graphs Y1 to Y3 in FIG. 6 (a) show the circulation flow rate Q2 and the liquid-liquid heat exchanger (10) in the experiment in which (Tout−Tin) = ΔT in FIG. 3 and the hot water supply flow rate Q1 are kept constant. Is a graph showing the relationship between the output number α and the amount of heat that can be taken out by the hot water supply circuit (3) on the secondary side of the liquid-liquid heat exchanger (10).

入水温度Tinをパラメータとし、Y1は、入水温度Tinを25℃に設定した実験での下限流量グラフであり、Y2は、入水温度Tinを15℃に設定した実験での下限流量グラフであり、T3は、入水温度Tinを5℃に設定した実験での下限流量グラフである。この下限流量グラフから、液液熱交換器(10)から給湯回路(3)側に取り出す熱量たる出力号数α1が一定である場合には、次のことが理解できる。   Y1 is a lower limit flow rate graph in an experiment in which the incoming water temperature Tin is set to 25 ° C., Y2 is a lower limit flow rate graph in an experiment in which the incoming water temperature Tin is set to 15 ° C., and T3. These are lower limit flow rate graphs in an experiment in which the incoming water temperature Tin is set to 5 ° C. From this lower limit flow rate graph, the following can be understood when the output number α1, which is the amount of heat extracted from the liquid-liquid heat exchanger (10) to the hot water supply circuit (3) side, is constant.

即ち、入水温度Tinが低い下限流量グラフY3(Tin=5℃)では循環流量Q2を比較的小さな下限値Qcにしても出力号数α1の熱量を取り出すことができるが、入水温度Tinが高い下限流量グラフY2(Tin=15℃)では循環流量Q2を下限値Qdまで増加させなければ出力号数α1の熱量を取り出すことができない。更に、入水温度Tinが一層高い下限流量グラフY1(Tin=25℃)では循環流量Q2を更に下限値Qeまで増加させなければ出力号数α1の熱量を取り出すことができない。このことから、同一の出力号数α1の熱量を取り出そうとすると、入水温度Tinが高くなるに従って循環流量Q2を増加させる必要があることが理解できる。   That is, in the lower limit flow rate graph Y3 (Tin = 5 ° C.) where the incoming water temperature Tin is low, the heat quantity of the output number α1 can be taken out even if the circulating flow rate Q2 is set to a relatively small lower limit value Qc. In the flow rate graph Y2 (Tin = 15 ° C.), the heat quantity of the output number α1 cannot be taken out unless the circulating flow rate Q2 is increased to the lower limit value Qd. Further, in the lower limit flow rate graph Y1 (Tin = 25 ° C.) where the incoming water temperature Tin is higher, the heat quantity of the output number α1 cannot be extracted unless the circulation flow rate Q2 is further increased to the lower limit value Qe. From this, it can be understood that when the heat quantity of the same output number α1 is taken out, it is necessary to increase the circulation flow rate Q2 as the incoming water temperature Tin increases.

その理由は次の通りである。
入水温度Tinが低い下限流量グラフY3(Tin=5℃)の場合は、液液熱交換器(10)部分での循環加熱回路(2)と給湯回路(3)の温度差Δtが大きいことから、液液熱交換器(10)部分での循環加熱回路(2)の循環温水と給湯回路(3)の被加熱水の単位時間当たりの熱交換量Φは、液液熱交換器(10)の熱通過率kを小さくしても、確保することができる。このことは、
熱交換量Φ=(k×A×Δt) ・・・式1
からも理解できる。式1は、温度差Δtが大きいと熱通過率kが小さくなっても熱交換量Φを維持できることを示しているからである。
ここで、kは液液熱交換器(10)の性能を表す熱通過率で、既述熱伝達率β1,β2を用いて、
1/k=(1/β1)+(1/β2) ・・・式2
で表される。
尚、β1=a1×Q1b
β2=a2×Q2b
である。(但し、a1、a2、bは定数)
又、Aは、液液熱交換器(10)での、循環加熱回路(2)と給湯回路(3)との境界壁(伝熱壁)の熱交換面積である。
The reason is as follows.
In the case of the lower limit flow rate graph Y3 (Tin = 5 ° C) where the incoming water temperature Tin is low, the temperature difference Δt between the circulating heating circuit (2) and the hot water supply circuit (3) in the liquid-liquid heat exchanger (10) is large. The heat exchange amount Φ per unit time of the circulating hot water in the circulating heating circuit (2) and the heated water in the hot water supply circuit (3) in the liquid-liquid heat exchanger (10) portion is the liquid-liquid heat exchanger (10) Even if the heat transfer rate k is reduced, it can be ensured. This means
Heat exchange amount Φ = (k × A × Δt) Equation 1
It can be understood from. This is because Equation 1 indicates that if the temperature difference Δt is large, the heat exchange amount Φ can be maintained even if the heat passage rate k decreases.
Here, k is a heat transmission rate representing the performance of the liquid-liquid heat exchanger (10), and using the heat transfer coefficients β1 and β2 described above,
1 / k = (1 / β1) + (1 / β2) Equation 2
It is represented by
Β1 = a1 × Q1 b
β2 = a2 × Q2 b
It is. (However, a1, a2, and b are constants.)
A is the heat exchange area of the boundary wall (heat transfer wall) between the circulation heating circuit (2) and the hot water supply circuit (3) in the liquid-liquid heat exchanger (10).

一方、入水温度Tinが高温の場合(下限流量グラフY1、Y2の場合)は液液熱交換器(10)部分での循環加熱回路(2)と給湯回路(3)の温度差Δtが小さいから、液液熱交換器(10)での循環加熱回路(2)の循環温水と給湯回路(3)の被加熱水の単位時間当たりの熱交換量Φは、液液熱交換器(10)の熱通過率kを大きくしなければ確保できない(式1参照)。   On the other hand, when the incoming water temperature Tin is high (in the case of the lower limit flow rate graphs Y1 and Y2), the temperature difference Δt between the circulating heating circuit (2) and the hot water supply circuit (3) in the liquid-liquid heat exchanger (10) is small. The heat exchange amount Φ per unit time of the circulating hot water in the circulating heating circuit (2) and the heated water in the hot water supply circuit (3) in the liquid-liquid heat exchanger (10) is It cannot be ensured unless the heat passage rate k is increased (see Equation 1).

従って、同一出力号数α1の熱量を二次側(給湯回路(3)側)に取り出そうとすると、入水温度Tinが高い場合は低い場合に比べて、液液熱交換器(10)での循環加熱回路(2)から給湯回路(3)への既述熱通過率kを増大させる必要がある。この場合、液液熱交換器(10)部分に於ける給湯回路(3)の流量Q1が一定とすると、液液熱交換器(10)での循環加熱回路(2)と給湯回路(3)の境界壁(伝熱壁)と、給湯回路(3)の間の熱伝達率β1は一定である。既述したように、熱伝達率β1は流量Q1の関数だからである。従って、液液熱交換器(10)の性能を表す前記熱通過率kを増大させるためには、循環加熱回路(2)の循環流量Q2を大きくすることにより、前記伝熱壁(液液熱交換器(10)での循環加熱回路(2)と給湯回路(3)の境界壁)と循環加熱回路(2)の間の熱伝達率β2を大きくする必要がある(式2参照)。   Therefore, when trying to extract the amount of heat of the same output number α1 to the secondary side (hot water supply circuit (3) side), the circulation in the liquid-liquid heat exchanger (10) is higher when the incoming water temperature Tin is higher than when it is low. It is necessary to increase the heat transfer rate k described above from the heating circuit (2) to the hot water supply circuit (3). In this case, assuming that the flow rate Q1 of the hot water supply circuit (3) in the liquid-liquid heat exchanger (10) is constant, the circulation heating circuit (2) and the hot water supply circuit (3) in the liquid-liquid heat exchanger (10) The heat transfer coefficient β1 between the boundary wall (heat transfer wall) and the hot water supply circuit (3) is constant. This is because the heat transfer coefficient β1 is a function of the flow rate Q1 as described above. Therefore, in order to increase the heat transfer rate k representing the performance of the liquid-liquid heat exchanger (10), the heat transfer wall (liquid-liquid heat) is increased by increasing the circulation flow rate Q2 of the circulation heating circuit (2). It is necessary to increase the heat transfer coefficient β2 between the circulation heating circuit (2) and the hot water supply circuit (3) in the exchanger (10) and the circulation heating circuit (2) (see Equation 2).

このように、同一の出力号数α1の熱量を取り出そうとすると、入水温度Tinが高くなるに従って、熱伝達率β2を大きくするべく、循環流量Q2を増加させる必要があることが理解できる。   Thus, it can be understood that if the heat quantity with the same output number α1 is taken out, it is necessary to increase the circulation flow rate Q2 in order to increase the heat transfer coefficient β2 as the incoming water temperature Tin increases.

そして、循環流量Q2を増加させると、液液熱交換器(10)の熱通過率kが増大して性能が向上する一方、これとは逆に、循環流量Q2を低下させると液液熱交換器(10)の熱通過率kが低下して性能が悪化するのである。   When the circulation flow rate Q2 is increased, the heat transmission rate k of the liquid-liquid heat exchanger (10) is increased and the performance is improved. On the contrary, when the circulation flow rate Q2 is decreased, the liquid-liquid heat exchange is performed. The heat transfer rate k of the vessel (10) is lowered and the performance is deteriorated.

そして、液液熱交換器(10)の性能が悪化すると、給湯設定温度Tsetの温水が得られなくなる。
即ち、液液熱交換器(10)から同一の出力号数α1の熱量を取り出そうとすると、入水温度Tinが高くなるに従って循環流量Q2を増加させる必要があり、循環流量Q2の下限値が入水温度Tinで決まるのである。
尚、上記から明らかなように、給湯設定温度Tsetの給湯温水を得るためには、循環流量Q2を上記下限値を表す下限流量グラフY1,Y2、Y3以上にする必要がある。
If the performance of the liquid-liquid heat exchanger (10) deteriorates, hot water at the hot water supply set temperature Tset cannot be obtained.
That is, if it is going to take out the calorie | heat amount of the same output number (alpha) 1 from a liquid-liquid heat exchanger (10), it is necessary to increase the circulating flow rate Q2 as the incoming water temperature Tin becomes high, and the lower limit of the circulating flow rate Q2 is the incoming water temperature. It is determined by Tin.
As is clear from the above, in order to obtain hot water supply hot water at the hot water supply set temperature Tset, the circulation flow rate Q2 needs to be equal to or higher than the lower limit flow rate graphs Y1, Y2, and Y3 representing the lower limit values.

*循環流量Q2の下限値が給湯設定温度Tsetで決まる理由
次に、循環流量Q2の下限値が給湯設定温度Tsetで決まる理由を説明する。
図6の(ロ)の下限流量グラフZ1〜Z3は、(イ)の場合と同一条件で実験した場合の、循循環流量Q2と液液熱交換器(10)の出力号数αとの関係を示すグラフである。
* Reason why the lower limit value of the circulating flow rate Q2 is determined by the hot water supply set temperature Tset Next, the reason why the lower limit value of the circulating flow rate Q2 is determined by the hot water supply set temperature Tset will be described.
The lower limit flow rate graphs Z1 to Z3 in (b) of FIG. 6 show the relationship between the circulation flow rate Q2 and the output number α of the liquid-liquid heat exchanger (10) when the experiment is performed under the same conditions as in (b). It is a graph which shows.

給湯設定温度Tsetをパラメータとし、Z1は、給湯設定温度Tsetを60℃に設定した実験での下限流量グラフであり、Z2は、給湯設定温度Tsetを50℃に設定した実験での下限流量グラフであり、Z3は、給湯設定温度Tsetを37℃に設定した実験での下限流量グラフである。この下限流量グラフから、液液熱交換器(10)から給湯回路(3)側に取り出す熱量たる出力号数α3が一定である場合には、次のことが理解できる。   The hot water supply set temperature Tset is a parameter, Z1 is a lower limit flow rate graph in an experiment in which the hot water supply set temperature Tset is set to 60 ° C., and Z2 is a lower limit flow rate graph in an experiment in which the hot water supply set temperature Tset is set to 50 ° C. Yes, Z3 is a lower limit flow rate graph in an experiment in which the hot water supply set temperature Tset is set to 37 ° C. From this lower limit flow rate graph, the following can be understood when the output number α3, which is the amount of heat extracted from the liquid-liquid heat exchanger (10) to the hot water supply circuit (3) side, is constant.

即ち、給湯設定温度Tsetが低い下限流量グラフZ3(Tset=37℃)では循環流量Q2を比較的小さな下限値Qfにしても出力号数α3の熱量を取り出すことができるが、給湯設定温度Tsetが高い下限流量グラフZ2(Tset=50℃)では循環流量Q2を下限値Qgまで増加させなければ出力号数α3の熱量を取り出すことができない。更に、給湯設定温度Tsetが一層高い下限流量グラフZ1(Tset=60℃)では循環流量Q2を更に下限値Qhまで増加させなければ出力号数α3の熱量を取り出すことができない。このことから、同一の出力号数α3の熱量を取り出そうとすると、給湯設定温度Tsetが高くなるに従って循環流量Q2を増加させる必要があることが理解できる。   That is, in the lower limit flow rate graph Z3 (Tset = 37 ° C.) where the hot water supply set temperature Tset is low, the heat quantity of the output number α3 can be taken out even if the circulation flow rate Q2 is set to a relatively small lower limit value Qf. In the high lower limit flow graph Z2 (Tset = 50 ° C.), the heat quantity of the output number α3 cannot be taken out unless the circulating flow rate Q2 is increased to the lower limit value Qg. Further, in the lower limit flow rate graph Z1 (Tset = 60 ° C.) where the hot water supply set temperature Tset is higher, the heat quantity of the output number α3 cannot be extracted unless the circulation flow rate Q2 is further increased to the lower limit value Qh. From this, it can be understood that if it is attempted to extract the amount of heat of the same output number α3, it is necessary to increase the circulation flow rate Q2 as the hot water supply set temperature Tset increases.

その理由は次の通りである。
先ず、給湯設定温度Tsetの上昇に伴って液液熱交換器(10)の出口温度T’outも上昇させる必要がある。
すると、前記入水温度Tinについて説明したのと同様の理由により、出口温度T’outが低い場合は、液液熱交換器(10)の一次側である循環加熱回路(2)と二次側である給湯回路(3)の温度差Δtが大きいことから、液液熱交換器(10)部分での循環加熱回路(2)の循環温水と給湯回路(3)の被加熱水の単位時間当たりの交換熱量Φは大きくなり易い。
The reason is as follows.
First, it is necessary to increase the outlet temperature T′out of the liquid-liquid heat exchanger (10) as the hot water supply set temperature Tset increases.
Then, for the same reason as described for the incoming water temperature Tin, when the outlet temperature T′out is low, the circulation heating circuit (2) which is the primary side of the liquid-liquid heat exchanger (10) and the secondary side Since the temperature difference Δt of the hot water supply circuit (3) is large, per unit time of the circulating hot water of the circulating heating circuit (2) and the heated water of the hot water supply circuit (3) in the liquid-liquid heat exchanger (10) part The amount of exchange heat Φ tends to increase.

一方、出口温度T’outが高温の場合(下限流量グラフZ1、Z2の場合)は液液熱交換器(10)の一次側である循環加熱回路(2)と二次側である給湯回路(3)の温度差Δtが小さいから、液液熱交換器(10)部分での循環加熱回路(2)の循環温水と給湯回路(3)の被加熱水の単位時間当たりの熱交換量Φは小さくなり易い。従って、同一出力号数α3の熱量を二次側(給湯回路(3)側)に取り出そうとすると、出口温度T’outが高い場合は低い場合に比べて、液液熱交換器(10)での循環加熱回路(2)から給湯回路(3)への既述熱通過率kを増大させる必要がある。そして、液液熱交換器(10)の性能を表す熱通過率kを増大させるためには、前述のように、循環加熱回路(2)の循環流量Q2を増加させなければならない。   On the other hand, when the outlet temperature T′out is high (in the case of the lower limit flow rate graphs Z1 and Z2), the circulating heating circuit (2) which is the primary side of the liquid-liquid heat exchanger (10) and the hot water supply circuit which is the secondary side ( Since the temperature difference Δt of 3) is small, the heat exchange amount Φ per unit time of the circulating hot water in the circulating heating circuit (2) and the heated water in the hot water supply circuit (3) in the liquid-liquid heat exchanger (10) is It tends to be small. Therefore, when trying to extract the amount of heat of the same output number α3 to the secondary side (hot water supply circuit (3) side), the liquid-liquid heat exchanger (10) is higher when the outlet temperature T'out is higher than when it is low. It is necessary to increase the heat transfer rate k described above from the circulating heating circuit (2) to the hot water supply circuit (3). In order to increase the heat transfer rate k representing the performance of the liquid-liquid heat exchanger (10), the circulation flow rate Q2 of the circulation heating circuit (2) must be increased as described above.

従って、液液熱交換器(10)から同一の出力号数α3の熱量を取り出そうとすると、給湯設定温度Tsetが高くなるに従って循環流量Q2を増加させる必要があり、循環流量Q2の下限値が給湯設定温度Tsetで決まるのである。   Therefore, if it is going to take out the calorie | heat amount of the same output number (alpha) 3 from a liquid-liquid heat exchanger (10), it is necessary to increase the circulation flow rate Q2 as the hot water supply setting temperature Tset becomes high, and the lower limit of the circulation flow rate Q2 is a hot water supply. It is determined by the set temperature Tset.

次に、給湯設定温度Tsetが高くなっても、バイパスミキシング弁(34)で湯水の混合割合を調整することにより出口温度T’outを一定に保つ場合でも、循環流量Q2の下限値が給湯設定温度Tsetで決まる理由を説明する。   Next, even when the hot water supply set temperature Tset becomes high, the lower limit value of the circulation flow rate Q2 is set to the hot water supply set even when the outlet temperature T'out is kept constant by adjusting the mixing ratio of hot water with the bypass mixing valve (34). The reason determined by the temperature Tset will be described.

給湯設定温度Tsetが高くなっても、出口温度T’outを一定に保つ場合には、バイパスミキシング弁(34)による湯の混合割合を多くする必要がある。従って、給湯設定温度Tsetが高くなると、液液熱交換器(10)を流れる被加熱水(給湯被加熱回路(39)の水)の流量を増加させる必要がある。これにより、液液熱交換器(10)の給湯被加熱回路(39)側の熱需要が増大するから、これに見合う量の熱を循環加熱回路(2)から供給すべく、循環流量Q2を増加させる必要がある。
従って、バイパスミキシング弁(34)で湯水の混合割合を調整することにより出口温度T’outを一定に保つ場合でも、循環流量Q2の下限値が給湯設定温度Tsetで決まる。
In order to keep the outlet temperature T'out constant even when the hot water supply set temperature Tset becomes high, it is necessary to increase the mixing ratio of hot water by the bypass mixing valve (34). Therefore, when the hot water supply set temperature Tset increases, it is necessary to increase the flow rate of the heated water (water in the hot water heated circuit (39)) flowing through the liquid-liquid heat exchanger (10). As a result, the heat demand on the hot water supply heated circuit (39) side of the liquid-liquid heat exchanger (10) increases, so that the circulation flow rate Q2 is set so as to supply an amount of heat corresponding to this from the circulation heating circuit (2). Need to increase.
Therefore, even when the outlet temperature T′out is kept constant by adjusting the mixing ratio of hot water with the bypass mixing valve (34), the lower limit value of the circulation flow rate Q2 is determined by the hot water supply set temperature Tset.

そして、所定の給湯設定温度Tsetで所望の出力号数αの熱量を循環加熱回路(2)から給湯回路(3)に取り出そうとすると、循環加熱回路(2)の循環流量Q2を下限流量グラフZ1、Z2、Z3より上方の領域に設定する必要があることが分る。   Then, when it is attempted to take out a heat amount of a desired output number α from the circulation heating circuit (2) to the hot water supply circuit (3) at a predetermined hot water supply set temperature Tset, the circulation flow rate Q2 of the circulation heating circuit (2) is expressed as a lower limit flow graph Z1. , Z2 and Z3 need to be set in the region above.

*循環流量Q2の下限値と入水温度Tin及び給湯設定温度Tsetとの関係
以上のように、図6(イ)(ロ)によれば、入水温度Tinで且つ給湯設定温度Tsetの場合に出力号数αの熱量を循環加熱回路(2)から給湯回路(3)に取り出そうとすると、入水温度Tinと給湯設定温度Tsetによって決まる下限流量グラフY1、Y2、Y3と下限流量グラフZ1、Z2、Z3の両者の上方領域に循環流量Q2を設定すればよいことが分る。
* Relationship between the lower limit value of the circulation flow rate Q2 and the incoming water temperature Tin and the hot water supply set temperature Tset As described above, according to FIGS. When an amount of heat of several α is to be taken from the circulation heating circuit (2) to the hot water supply circuit (3), the lower limit flow rate graphs Y1, Y2, Y3 and the lower limit flow rate graphs Z1, Z2, Z3 determined by the incoming water temperature Tin and the hot water supply set temperature Tset It can be seen that the circulation flow rate Q2 may be set in the upper region of both.

図7のグラフX2は、既述図6(イ)の下限流量グラフY2と(ロ)の下限流量グラフZ2を合成したものであり、交点Rより出力号数αが小さい領域では下限流量グラフY2を採用し、交点Pより大きい領域では下限流量グラフZ2を採用した場合のグラフである。このグラフX2は、入水温度Tin=15℃、給湯設定温度Tset=50℃の条件下で所望の出力号数αの熱量を給湯回路(3)に取り出そうとすると、循環加熱回路(2)の循環流量Q2をグラフX2より上方の領域に設定すればよいことを示している。即ち、出湯号数αが交点Rより小さい領域では、入水温度Tinに依存する下限流量グラフY2より上方の領域に循環流量Q2を設定し、出湯号数αが交点Rより大きい領域では、給湯設定温度Tsetに依存する下限流量グラフZ2より上方の領域に循環流量Q2を設定すればよいのである。
以上により、所望の出力号数αの熱量を給湯回路(3)に取り出せる範囲で、循環用熱交換器(13)の熱効率を高くする為には、次の条件を満たせばよい。
A graph X2 in FIG. 7 is a combination of the lower limit flow rate graph Y2 in FIG. 6 (A) and the lower limit flow rate graph Z2 in (B), and the lower limit flow rate graph Y2 in the region where the output number α is smaller than the intersection R. And the lower limit flow rate graph Z2 is used in a region larger than the intersection point P. This graph X2 shows the circulation of the circulation heating circuit (2) when the heat quantity of the desired output number α is taken out to the hot water supply circuit (3) under the conditions of the incoming water temperature Tin = 15 ° C. and the hot water supply set temperature Tset = 50 ° C. It shows that the flow rate Q2 may be set in a region above the graph X2. That is, in the region where the hot water number α is smaller than the intersection point R, the circulating flow rate Q2 is set in the region above the lower limit flow rate graph Y2 depending on the incoming water temperature Tin, and in the region where the hot water number α is larger than the intersection point R, the hot water supply setting is set. The circulation flow rate Q2 may be set in a region above the lower limit flow rate graph Z2 depending on the temperature Tset.
As described above, in order to increase the thermal efficiency of the circulation heat exchanger (13) within a range in which the heat quantity of the desired output number α can be taken out to the hot water supply circuit (3), the following condition may be satisfied.

(ア).所望の出力号数αの熱量を給湯回路(3)に取り出すため、図7のグラフX2、又は、これより上方の直線状の近似グラフX2’より上方の領域に循環流量Q2を設定する。
(イ).循環加熱回路(2)の循環用熱交換器(13)への戻り温度TYを可能な限り低く抑えるため、循環ポンプ(15)のポンプ回転数を小さくする。
そこで、本実施の形態では、上記(ア)(イ)の条件を満たすため、本実施の形態に係る複合給湯器では、図8のフローチャートに従った給湯制御を実行するようにしている。
(A). In order to extract the amount of heat of the desired output number α to the hot water supply circuit (3), the circulation flow rate Q2 is set in the region above the graph X2 in FIG. 7 or the linear approximate graph X2 ′ above this.
(I). In order to keep the return temperature TY of the circulating heating circuit (2) to the circulating heat exchanger (13) as low as possible, the pump rotational speed of the circulating pump (15) is reduced.
Therefore, in the present embodiment, in order to satisfy the conditions (a) and (b) above, the hot water supply control according to the flowchart of FIG. 8 is executed in the composite water heater according to the present embodiment.

次に、図1に示す複合給湯器の給湯動作の説明に戻る。
尚、本実施の形態では、図7の近似グラフX2’を、複数の給湯設定温度Tset及び入水温Tinの組み合わせ毎に作成した、図9のグラフ(以下、「制御グラフXi」という。)を用いて給湯制御するようになっている。
Next, the description returns to the hot water supply operation of the composite water heater shown in FIG.
In the present embodiment, the graph of FIG. 9 (hereinafter referred to as “control graph Xi”) in which the approximate graph X2 ′ of FIG. 7 is created for each combination of a plurality of hot water supply set temperatures Tset and incoming water temperatures Tin. It is designed to control hot water supply.

図8のフローチャートに示す給湯制御が開始すると、先ず、ステップ(ST1)で給水流量計(33)が給湯開始流量を検知したか(出湯蛇口(30)が開放されたか)否かを判断する。
給水流量計(33)が給湯開始流量を検知すると、ステップ(ST2)でリモコン(6)にセットされた給湯設定温度Tset、給湯回路(3)から液液熱交換器(10)に流入する被加熱水の流量Q1及び入水温Tinを読み込む。
When the hot water supply control shown in the flowchart of FIG. 8 is started, it is first determined in step (ST1) whether the hot water flow meter (33) has detected a hot water supply start flow rate (whether the hot water tap (30) has been opened).
When the hot water supply flow meter (33) detects the hot water supply start flow rate, the hot water supply set temperature Tset set in the remote control (6) in step (ST2), and the flow into the liquid-liquid heat exchanger (10) flowing from the hot water supply circuit (3). The flow rate Q1 of the heating water and the incoming water temperature Tin are read.

次に、ステップ(ST3)で給湯設定温度Tset の給湯温水を加熱生成する為に必要なガスバーナ(12)の燃焼量αaを演算し、その後、ステップ(ST4)で入水温Tinと給湯設定温度Tsetに基づき、図9中の制御グラフXiから使用すべき特定の制御グラフXiを選択する。尚、制御グラフXiは、制御装置のマイコンに関数として記憶させてもよい。又、制御グラフXiで特定される入水温Tinや給湯設定温度Tsetの具体的な値を、テーブルとして記憶させてもよい。   Next, in step (ST3), the combustion amount αa of the gas burner (12) necessary for heating and generating hot water at the hot water supply set temperature Tset is calculated, and then in step (ST4), the incoming water temperature Tin and the hot water set temperature Tset are calculated. Based on the above, a specific control graph Xi to be used is selected from the control graph Xi in FIG. The control graph Xi may be stored as a function in the microcomputer of the control device. Further, specific values of the incoming water temperature Tin and the hot water supply set temperature Tset specified by the control graph Xi may be stored as a table.

次に、ステップ(ST5)を実行し、前記ガスバーナ(12)の燃焼量αaに対応する暫定的な循環流量Q2(図9参照)を求め、その後、ステップ(ST6)で循環ポンプ(15)を作動させる。
ステップ(ST7)で給気ファン(26)を作動させると共に、ガスバーナ(12)を前記燃焼量αaで燃焼させる。
Next, step (ST5) is executed to obtain a provisional circulation flow rate Q2 (see FIG. 9) corresponding to the combustion amount αa of the gas burner (12), and then the circulation pump (15) is turned on in step (ST6). Operate.
In step (ST7), the air supply fan (26) is operated, and the gas burner (12) is combusted with the combustion amount αa.

その後、ステップ(ST8)を実行し、循環加熱回路(2)の液液熱交換器(10)への循環入口温度TXが85℃の高温になるように循環ポンプ(15)の回転数を調整する。具体的には、循環入口温度TXが85℃より低い場合は、循環ポンプ(15)のポンプ回転数を減少させる(ステップ(ST10))ことにより、循環入口温度TXを上昇させる。ガスバーナ(12)の燃焼量αa=(Δt’×Q2)は一定(但し、Δt’は循環用熱交換器(13)の出入り口の温度差)であることから、ポンプ回転数を低下させて循環用熱交換器(13)部分での循環流量Q2を小さくすると、循環用熱交換器(13)の出口温度が高くなって循環入口温度TXを上昇するからである。上記とは逆に、循環入口温度TXが85℃より高い場合は、循環ポンプ(15)のポンプ回転数を増加させる(ステップ(ST9))ことにより、循環入口温度TXを低下させ、これにより、循環入口温度TXを85℃に調整する。これにより、以後の給湯制御と時には、図4のグラフF1に沿って循環流量Q2及び戻り温度TYが変化するようにする。   After that, execute step (ST8) and adjust the rotation speed of the circulation pump (15) so that the circulation inlet temperature TX to the liquid-liquid heat exchanger (10) of the circulation heating circuit (2) is as high as 85 ° C. To do. Specifically, when the circulation inlet temperature TX is lower than 85 ° C., the circulation inlet temperature TX is increased by decreasing the pump rotation speed of the circulation pump (15) (step (ST10)). The combustion amount αa = (Δt ′ × Q2) of the gas burner (12) is constant (where Δt ′ is the temperature difference between the inlet and outlet of the circulation heat exchanger (13)). This is because if the circulation flow rate Q2 in the heat exchanger (13) portion is reduced, the outlet temperature of the circulation heat exchanger (13) is increased and the circulation inlet temperature TX is increased. Contrary to the above, when the circulation inlet temperature TX is higher than 85 ° C., the circulation inlet temperature TX is decreased by increasing the pump rotation speed of the circulation pump (15) (step (ST9)). The circulation inlet temperature TX is adjusted to 85 ° C. As a result, during the subsequent hot water supply control, the circulating flow rate Q2 and the return temperature TY change along the graph F1 in FIG.

次に、ステップ(ST11)を実行し、循環ポンプ(15)のポンプ回転数から判断される循環加熱回路(2)の実流量QRが制御グラフXiから求めた既述循環流量Q2a(図9参照)より大きいと判断される場合は、ステップ(ST12)で前記ポンプ回転数とガスバーナ(12)の燃焼量を減少させる。一方、循環加熱回路(2)の実流量QRが制御グラフXiから求めた既述循環流量Q2aより小さいと判断される場合は、ステップ(ST13)で前記ポンプ回転数とガスバーナ(12)の燃焼量を増加させる。これにより、実流量QRを制御グラフXiから求めた循環流量Q2a(図9参照)に合致させて、給湯設定温度Tsetの温水が得られる範囲で循環ポンプ(15)のポンプ回転数を可能な限り低く抑え、これにより、燃焼排気の熱を循環用熱交換器(13)で効率的に回収できるようにする。即ち、循環用熱交換器(13)の熱効率を高くする。   Next, step (ST11) is executed, and the actual flow rate QR of the circulation heating circuit (2) determined from the pump rotational speed of the circulation pump (15) is calculated from the circulation flow rate Q2a (see FIG. 9) obtained from the control graph Xi. If it is determined that the value is greater than (), the pump rotational speed and the combustion amount of the gas burner (12) are decreased in step (ST12). On the other hand, if it is determined that the actual flow rate QR of the circulation heating circuit (2) is smaller than the above-described circulation flow rate Q2a obtained from the control graph Xi, the pump rotational speed and the combustion amount of the gas burner (12) are determined in step (ST13). Increase. As a result, the actual flow rate QR is matched with the circulation flow rate Q2a obtained from the control graph Xi (see FIG. 9), and the pump rotational speed of the circulation pump (15) is set as much as possible within the range where hot water at the hot water supply set temperature Tset is obtained. The heat of the combustion exhaust gas can be efficiently recovered by the circulation heat exchanger (13). That is, the heat efficiency of the circulation heat exchanger (13) is increased.

次に、ステップ(ST14)〜(ST16)を実行し、出湯蛇口(30)に供給する給湯温水の温度を微調整するフィードバック制御を行う。具体的には、ステップ(ST14)を実行し、混合温センサ(35)が検知する出湯温度が給湯設定温度Tsetより低い場合はステップ(ST16)でガスバーナ(12)の燃焼量を増加させる一方、出湯温度が給湯設定温度Tsetより高い場合はステップ(ST15)でガスバーナ(12)の燃焼量を減少させる。   Next, steps (ST14) to (ST16) are executed, and feedback control is performed to finely adjust the temperature of hot water supply hot water supplied to the hot water tap (30). Specifically, step (ST14) is executed, and when the hot water temperature detected by the mixed temperature sensor (35) is lower than the hot water supply set temperature Tset, the combustion amount of the gas burner (12) is increased in step (ST16), When the hot water temperature is higher than the hot water supply set temperature Tset, the combustion amount of the gas burner (12) is decreased in step (ST15).

これにより、出湯蛇口(30)に供給される温水の温度が給湯設定温度Tsetに一致する。
尚、本実施の形態では、液液熱交換器(10)で加熱昇温された温水とバイパス回路(36)からの冷水がバイパスミキシング弁(34)で混合され、該混合により、リモコン(6)(図2参照)等でセットされた給湯設定温度Tsetの給湯温水が得られるようになっていることは既述した通りである。この場合、バイパスミキシング弁(34)による湯水混合割合を調整し、これにより、給湯被加熱回路(39)に於ける液液熱交換器(10)の出口温度T’outが、給湯設定温度Tsetより10℃低い温度になるように制御する。そして、本実施の形態では、上記のように、液液熱交換器(10)で加熱昇温された温水とバイパス回路(36)からの冷水をバイパスミキシング弁(34)で混合するから、蛇口等へ供給する給湯温水の温度がフラツキそうになっても、液液熱交換器(10)側の前記流量Q1とバイパス回路(36)側の流量の比率を調整することにより、安定した給湯温制御が行える。
Thereby, the temperature of the hot water supplied to the hot water tap (30) matches the hot water supply set temperature Tset.
In this embodiment, the hot water heated by the liquid-liquid heat exchanger (10) and the cold water from the bypass circuit (36) are mixed by the bypass mixing valve (34), and the remote controller (6 ) (See FIG. 2) etc. As described above, hot water hot water having a hot water supply set temperature Tset that is set is obtained. In this case, the hot water mixing ratio by the bypass mixing valve (34) is adjusted, whereby the outlet temperature T'out of the liquid-liquid heat exchanger (10) in the hot water heated circuit (39) becomes the hot water supply set temperature Tset. The temperature is controlled to be 10 ° C. lower. In the present embodiment, as described above, the hot water heated by the liquid-liquid heat exchanger (10) and the cold water from the bypass circuit (36) are mixed by the bypass mixing valve (34). Even if the temperature of the hot water supplied to the water etc. seems to fluctuate, a stable hot water temperature can be obtained by adjusting the ratio of the flow rate Q1 on the liquid-liquid heat exchanger (10) side and the flow rate on the bypass circuit (36) side. Control is possible.

《暖房動作》
次に、暖房動作について説明する。
ステップ(ST1)を実行したときに給水流量計(33)が給湯開始流量を検知しない場合において、ステップ(ST18)でリモコン(6)の暖房スイッチ(62)の投入が確認されると暖房動作が開始される。
《Heating operation》
Next, the heating operation will be described.
When the water supply flow meter (33) does not detect the hot water supply start flow rate when step (ST1) is executed, the heating operation is started when the heating switch (62) of the remote control (6) is confirmed to be turned on in step (ST18). Be started.

ファンコンベクタ(111)による室内暖房時には、循環用熱交換器(13)の潜熱熱交換器(13a)及び顕熱熱交換器(13b)の両者で加熱された比較的高温の循環温水が、循環湯温センサ(70)の配設部→高温暖房路(57)→ファンコンベクタ(111)→シスターン(59)の経路で流れ、前記ファンコンベクタ(111)で室内暖房が行われる。   During room heating by the fan convector (111), the relatively hot circulating hot water heated by both the latent heat exchanger (13a) and the sensible heat exchanger (13b) of the circulation heat exchanger (13) is circulated. The hot water temperature sensor (70) flows in the following sequence: arrangement portion → high temperature heating path (57) → fan convector (111) → systern (59), and indoor heating is performed in the fan convector (111).

又、床暖房時には、循環用熱交換器(13)の潜熱熱交換器(13a)のみによって加熱せれた比較的低温の循環温水が、暖房分岐路(54)→暖房分配弁(55)→低温暖房路(56)→床暖房マット(110)→シスターン(59)の経路で流れ、前記床暖房マット(110)で床暖房が行われる。この場合、潜熱熱交換器(13a)及び顕熱熱交換器(13b)で加熱された比較的高温の循環温水が、必要に応じて高温暖房路(57)から分岐して暖房分配弁(55)に取り入れられ、該取り入れられた循環温水と、暖房分岐路(54)からの比較的低温の循環温水が暖房分配弁(55)で混合されて床暖房マット(110)に供給される。   Also, during floor heating, the relatively low-temperature circulating hot water heated only by the latent heat exchanger (13a) of the circulation heat exchanger (13) is the heating branch (54) → heating distribution valve (55) → low temperature. It flows along the route of heating path (56) → floor heating mat (110) → systern (59), and floor heating is performed by the floor heating mat (110). In this case, the relatively high-temperature circulating hot water heated by the latent heat exchanger (13a) and the sensible heat exchanger (13b) is branched from the high-temperature heating path (57) as necessary, and the heating distribution valve (55 ) And the relatively hot circulating water from the heating branch (54) is mixed by the heating distribution valve (55) and supplied to the floor heating mat (110).

《追焚き動作》
上記暖房動作で説明したステップ(ST18)で暖房スイッチ(62)の投入が確認されない場合、ステップ(ST19)でリモコン(6)の追焚スイッチ(63)の投入が確認されると、風呂の追焚き動作が開始される。
《Cheiling operation》
If turning on the heating switch (62) is not confirmed in step (ST18) described in the heating operation above, turning on the additional switch (63) of the remote control (6) is confirmed in step (ST19). The whispering operation is started.

追焚き時には、循環加熱回路(2)の循環温水の一部が追焚分配弁(28)→追焚熱交換器(41)→シスターン(59)の経路で流れ、追焚熱交換器(41)が加熱される。一方、追焚ポンプ(42)が作動し、浴槽(40)の入浴水が追焚熱交換器(41)を具備する風呂回路(4)で循環する。これにより、追焚熱交換器(41)で入浴水が加熱されて風呂の追焚きが行われる。   During reheating, a part of the circulating hot water in the recirculation heating circuit (2) flows through the recirculation distribution valve (28) → recuperation heat exchanger (41) → systern (59), and the recuperation heat exchanger (41 ) Is heated. On the other hand, the remedy pump (42) operates, and the bath water in the bathtub (40) circulates in the bath circuit (4) including the remedy heat exchanger (41). As a result, the bath water is heated in the recuperation heat exchanger (41) and the bath is refurbished.

《湯張り動作》
上記追焚き動作で説明したステップ(ST19)で追焚スイッチ(63)の投入が確認されない場合、ステップ(ST20)でリモコン(6)の湯張スイッチ(64)の投入が確認されると、浴槽(40)への湯張り動作が開始される。
湯張り時には、既述給湯動作で説明した給湯回路(3)から流出する温水が、バイパスミキシング弁(34)の下流側で分岐して湯張弁(47)→湯張回路(46)→追焚ポンプ(42)→風呂回路(4)→浴槽(40)の経路で供給されて湯張りされる。
<Water filling operation>
If it is not confirmed in step (ST19) described above in the reheating operation that the reheating switch (63) is turned on, if the hot water switch (64) on the remote control (6) is confirmed to be turned on in step (ST20), The filling operation to (40) is started.
During hot water filling, the hot water flowing out of the hot water supply circuit (3) described in the hot water supply operation described above branches downstream of the bypass mixing valve (34) and enters the hot water valve (47) → hot water supply circuit (46) → additional It is supplied by the path of the dredging pump (42) → bath circuit (4) → bathtub (40) and filled with hot water.

B.実施形態2
次に、本発明の実施形態2の複合給湯器による給湯動作を図10のフローチャートに従って説明する。
循環加熱回路(2)の液液熱交換器(10)への循環入口温度TXが85℃の高温になるように循環ポンプ(15)の回転数を調整するまでは、図8と同様に制御される。本実施の形態では、図8のステップ(ST8)に相当する制御を出ると、図10のステップ(ST30)を実行し、混合温センサ(35)が検知する出湯温度が給湯設定温度Tsetより低い場合はステップ(ST31)で循環ポンプ(15)のポンプ回転数を増加させた後、ステップ(ST32)でガスバーナ(12)の燃焼量を増加させる。一方、前記出湯温度が給湯設定温度Tset以上の場合は、ステップ(ST30)からステップ(ST33)に分岐し、循環ポンプ(15)のポンプ回転数を減少させた後、ステップ(ST34)でガスバーナ(12)の燃焼量を低下させる。
B. Embodiment 2
Next, the hot water supply operation by the composite water heater of Embodiment 2 of the present invention will be described with reference to the flowchart of FIG.
Control is performed in the same manner as in FIG. 8 until the rotational speed of the circulation pump (15) is adjusted so that the circulation inlet temperature TX to the liquid-liquid heat exchanger (10) of the circulation heating circuit (2) is as high as 85 ° C. Is done. In the present embodiment, when the control corresponding to step (ST8) in FIG. 8 is exited, step (ST30) in FIG. 10 is executed, and the hot water temperature detected by the mixed temperature sensor (35) is lower than the hot water supply set temperature Tset. In this case, after increasing the pump rotational speed of the circulation pump (15) in step (ST31), the combustion amount of the gas burner (12) is increased in step (ST32). On the other hand, when the tapping temperature is equal to or higher than the hot water supply set temperature Tset, the process branches from step (ST30) to step (ST33), and after reducing the pump rotational speed of the circulation pump (15), the gas burner ( Reduce the combustion amount of 12).

このものでは、ステップ(ST30)(ST33)(ST34)の制御により、給湯回路(3)の給湯温度を給湯設定温度Tsetに維持できる範囲で、循環ポンプ(15)のポンプ回転数を可能な限り低下させることができる。従って、循環加熱回路(2)の循環温水の循環流量Q2が低くなって循環用熱交換器(13)への戻り温度TYが低下するから、既述したように、ガスバーナ(12)の燃焼排気の熱を循環用熱交換器(13)で効率的に回収できる。即ち、循環用熱交換器(13)の熱効率が向上し、その結果、複合給湯器全体の熱効率も向上する。
尚、上記各実施の形態では、循環加熱回路(2)に於ける液液熱交換器(10)の循環入口温度TXを85℃に設定したが、該温度未満であっても70℃以上であれば、ガスバーナ(12)の燃焼排気の熱を循環用熱交換器(13)で効率的に回収できる。
In this case, the pump rotation speed of the circulation pump (15) is set as much as possible within the range in which the hot water supply temperature of the hot water supply circuit (3) can be maintained at the hot water supply set temperature Tset by the control of the steps (ST30) (ST33) (ST34) Can be reduced. Accordingly, the circulating flow rate Q2 of the circulating hot water in the circulating heating circuit (2) is lowered and the return temperature TY to the circulating heat exchanger (13) is decreased. As described above, the combustion exhaust of the gas burner (12) Can be efficiently recovered by the circulation heat exchanger (13). That is, the thermal efficiency of the circulation heat exchanger (13) is improved, and as a result, the thermal efficiency of the entire composite water heater is also improved.
In each of the above embodiments, the circulation inlet temperature TX of the liquid-liquid heat exchanger (10) in the circulation heating circuit (2) is set to 85 ° C. If so, the heat of the combustion exhaust from the gas burner (12) can be efficiently recovered by the circulation heat exchanger (13).

本発明の実施の形態に係る複合給湯器の全体構成図Overall configuration diagram of a composite water heater according to an embodiment of the present invention 本発明の実施の形態に係る複合給湯器に使用される循環加熱回路(2)の正面図The front view of the circulation heating circuit (2) used for the composite water heater which concerns on embodiment of this invention 図1の循環加熱回路(2)と給湯回路(3)の関係を示す概略図Schematic showing the relationship between the circulating heating circuit (2) and hot water supply circuit (3) in FIG. 本実施の形態に係る複合給湯器を用いて実験した場合の、循環流量Q2とガスバーナ(12)の燃焼量W等の関係を示すグラフA graph showing the relationship between the circulation flow rate Q2 and the combustion amount W of the gas burner (12) in the experiment using the combined water heater according to the present embodiment 本実施の形態に係る複合給湯器を用いて実験した場合の、循環流量Q2とガスバーナ(12)の燃焼量Wの関係を示した表Table showing the relationship between the circulation flow rate Q2 and the combustion amount W of the gas burner (12) in the experiment using the composite water heater according to the present embodiment 循環流量Q2と液液熱交換器(10)の出力号数αとの関係を示すグラフであり、(イ)は入水温度Tinが変化した場合のグラフ、(ロ)は給湯設定温度Tsetが変化した場合のグラフである。It is a graph showing the relationship between the circulation flow rate Q2 and the output number α of the liquid-liquid heat exchanger (10). (A) is a graph when the incoming water temperature Tin changes, (b) is the hot water supply set temperature Tset. It is a graph when doing. 図6(イ)の下限流量グラフY2と(ロ)の下限流量グラフZ2を合成したグラフA graph that combines the lower limit flow rate graph Y2 of FIG. 6 (a) and the lower limit flow rate graph Z2 of (b). 本発明の実施の形態に係る複合給湯器の動作を説明するフローチャートThe flowchart explaining operation | movement of the composite water heater which concerns on embodiment of this invention. 図7の近似グラフX2’を、複数の給湯設定温度Tset及び入水温Tinの組み合わせ毎に作成した近似グラフThe approximate graph X2 'shown in FIG. 7 is created for each combination of a plurality of hot water supply set temperatures Tset and incoming water temperatures Tin. 本発明の第2実施形態に係る複合給湯器の給湯動作の要部を説明するフローチャートThe flowchart explaining the principal part of the hot water supply operation | movement of the composite water heater which concerns on 2nd Embodiment of this invention. 従来例の説明図Illustration of conventional example

符号の説明Explanation of symbols

(2)・・・循環加熱回路
(3)・・・給湯回路
(10)・・・液液熱交換器
(12)・・・ガスバーナ
(13)・・・循環用熱交換器
(15)・・・循環ポンプ
(32)・・・給水温度センサ
(36)・・・バイパス回路
(2) ・ ・ ・ Circulating heating circuit
(3) ... Hot water supply circuit
(10) ... Liquid-liquid heat exchanger
(12) ・ ・ ・ Gas burner
(13) ・ ・ ・ Circulating heat exchanger
(15) ・ ・ ・ Circulating pump
(32) ... Water supply temperature sensor
(36) ... Bypass circuit

Claims (5)

ガスバーナ(12)で加熱される循環用熱交換器(13)と循環ポンプ(15)を備えた循環加熱回路(2)と、
給湯回路(3)を流れる被加熱水と前記循環加熱回路(2)を流れる循環温水の熱交換を行う液液熱交換器(10)と、
前記給湯回路(3)に於いて前記液液熱交換器(10)に流入する被加熱水の入水温Tinを検知する給水温センサ(32)と、
前記給湯回路(3)から取り出す給湯温水の給湯設定温度Tsetを設定する為の給湯温度設定部(65)と、
前記給湯温水の流量Q1を判定する流量センサ(33)を具備し、
前記循環ポンプ(15)で循環される前記循環加熱回路(2)内の循環温水と前記給湯回路(3)の被加熱水を前記液液熱交換器(10)で熱交換させることにより、前記被加熱水を前記給湯設定温度Tsetまで昇温させる、給湯器に於いて、
前記給湯温水の温度を前記給湯設定温度Tsetに維持できる限度で、循環ポンプ(15)のポンプ回転数を低下させる、給湯器。
A circulation heating circuit (2) having a circulation heat exchanger (13) and a circulation pump (15) heated by a gas burner (12);
A liquid-liquid heat exchanger (10) for performing heat exchange between heated water flowing through the hot water supply circuit (3) and circulating hot water flowing through the circulation heating circuit (2);
A water supply temperature sensor (32) for detecting an incoming temperature Tin of heated water flowing into the liquid-liquid heat exchanger (10) in the hot water supply circuit (3);
A hot water supply temperature setting section (65) for setting a hot water supply set temperature Tset of hot water and hot water to be taken out from the hot water supply circuit (3);
A flow rate sensor (33) for determining a flow rate Q1 of the hot water supply hot water;
By exchanging heat between the circulating hot water in the circulation heating circuit (2) circulated by the circulation pump (15) and the heated water in the hot water supply circuit (3) in the liquid-liquid heat exchanger (10), In a water heater that raises the temperature of water to be heated to the hot water supply set temperature Tset,
A water heater that reduces the pump rotation speed of the circulation pump (15) as long as the temperature of the hot water supply hot water can be maintained at the hot water supply set temperature Tset.
請求項1に記載の給湯器に於いて、
前記ポンプ回転数は、前記入水温Tinの低下に伴って低下する、給湯器。
In the water heater according to claim 1,
The water heater in which the pump rotational speed decreases as the incoming water temperature Tin decreases.
請求項1又は請求項2に記載の給湯器に於いて、
前記ポンプ回転数は、前記給湯設定温度Tsetの低下に伴って低下する、給湯器。
In the water heater according to claim 1 or 2,
The water heater in which the pump rotation speed decreases as the hot water supply set temperature Tset decreases.
請求項1から請求項3の何れかに記載の給湯器に於いて、
前記液液熱交換器(10)の循環加熱回路(2)側の入口温度を70℃以上、85℃以下に設定する、給湯器。
In the water heater according to any one of claims 1 to 3,
A water heater in which the inlet temperature on the circulating heating circuit (2) side of the liquid-liquid heat exchanger (10) is set to 70 ° C or higher and 85 ° C or lower.
請求項1から請求項4の何れかに記載の給湯器に於いて、
前記給湯回路(3)に於ける前記液液熱交換器(10)を迂回するバイパス回路(36)が設けられ、
前記給湯回路(3)に於ける前記液液熱交換器(10)を介する温水と前記バイパス回路(36)を介する冷水とを混合することにより前記給湯設定温度Tsetの温水にする湯水混合手段が設けられている、給湯器。
In the water heater according to any one of claims 1 to 4,
A bypass circuit (36) for bypassing the liquid-liquid heat exchanger (10) in the hot water supply circuit (3) is provided,
Hot water mixing means for mixing hot water through the liquid-liquid heat exchanger (10) in the hot water supply circuit (3) and cold water through the bypass circuit (36) to make the hot water at the hot water supply set temperature Tset. A water heater is provided.
JP2006300792A 2006-11-06 2006-11-06 Water heater Pending JP2008116148A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006300792A JP2008116148A (en) 2006-11-06 2006-11-06 Water heater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006300792A JP2008116148A (en) 2006-11-06 2006-11-06 Water heater

Publications (1)

Publication Number Publication Date
JP2008116148A true JP2008116148A (en) 2008-05-22

Family

ID=39502217

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006300792A Pending JP2008116148A (en) 2006-11-06 2006-11-06 Water heater

Country Status (1)

Country Link
JP (1) JP2008116148A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012233628A (en) * 2011-04-28 2012-11-29 Tokyo Gas Co Ltd Hot-water supply heating device
JP2016173219A (en) * 2015-03-18 2016-09-29 パーパス株式会社 Heat source device, heat exchange method and heat exchanger
KR101769838B1 (en) * 2015-09-14 2017-08-22 린나이코리아 주식회사 Circulation pump flow control method for preventing overheating of the boiler
CN115289692A (en) * 2022-03-23 2022-11-04 广东万和新电气股份有限公司 Mode switching control method for gas water heater
JP7315438B2 (en) 2019-11-22 2023-07-26 三菱重工サーマルシステムズ株式会社 Heating system and its control method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012233628A (en) * 2011-04-28 2012-11-29 Tokyo Gas Co Ltd Hot-water supply heating device
JP2016173219A (en) * 2015-03-18 2016-09-29 パーパス株式会社 Heat source device, heat exchange method and heat exchanger
KR101769838B1 (en) * 2015-09-14 2017-08-22 린나이코리아 주식회사 Circulation pump flow control method for preventing overheating of the boiler
JP7315438B2 (en) 2019-11-22 2023-07-26 三菱重工サーマルシステムズ株式会社 Heating system and its control method
CN115289692A (en) * 2022-03-23 2022-11-04 广东万和新电气股份有限公司 Mode switching control method for gas water heater

Similar Documents

Publication Publication Date Title
JP5171410B2 (en) Hot water supply system
JP2008116148A (en) Water heater
KR101436246B1 (en) Thermal apparatus
JP5793450B2 (en) Heat pump heat source system
JP5311128B2 (en) Hot water storage hot water supply system
JP4546273B2 (en) Hot water system
JP4889472B2 (en) Thermal storage water heater
JP2018173228A (en) Heat source device
JP3966031B2 (en) Multi-function water heater
JP2014139496A (en) Heat source machine and freezing prevention control method
JP2007303786A (en) Hot water storage type hot water supply system
JP4488884B2 (en) Hot water system
JP2007271237A (en) Hot water storage type water heater
JP4091046B2 (en) Cogeneration system
JP6088771B2 (en) Heat source equipment
JP6228881B2 (en) Heat source equipment
JP6147541B2 (en) Heat source equipment
JP2016191512A (en) Water heating device
JP6403631B2 (en) Hot water storage unit
JP5470422B2 (en) Thermal equipment
JP6403630B2 (en) Hot water storage unit
JP2008128527A (en) Hot water supply system and method
JP5094217B2 (en) Heat pump water heater
JP4382309B2 (en) Hot water storage water heater
JP2012052751A (en) Heat source device