JP2008115060A - Method for producing water dispersion containing chain silica-based fine particle group, water dispersion of chain silica-based fine particle group, and organic solvent dispersion thereof - Google Patents

Method for producing water dispersion containing chain silica-based fine particle group, water dispersion of chain silica-based fine particle group, and organic solvent dispersion thereof Download PDF

Info

Publication number
JP2008115060A
JP2008115060A JP2006302165A JP2006302165A JP2008115060A JP 2008115060 A JP2008115060 A JP 2008115060A JP 2006302165 A JP2006302165 A JP 2006302165A JP 2006302165 A JP2006302165 A JP 2006302165A JP 2008115060 A JP2008115060 A JP 2008115060A
Authority
JP
Japan
Prior art keywords
silica
based fine
zirconium
fine particle
aqueous solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006302165A
Other languages
Japanese (ja)
Other versions
JP5108279B2 (en
Inventor
Keisuke Otsuka
圭介 大塚
Hirokazu Tanaka
博和 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JGC Catalysts and Chemicals Ltd
Original Assignee
Catalysts and Chemicals Industries Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Catalysts and Chemicals Industries Co Ltd filed Critical Catalysts and Chemicals Industries Co Ltd
Priority to JP2006302165A priority Critical patent/JP5108279B2/en
Publication of JP2008115060A publication Critical patent/JP2008115060A/en
Application granted granted Critical
Publication of JP5108279B2 publication Critical patent/JP5108279B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Silicon Compounds (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for producing a water dispersion containing a chain silica-based fine particle group coated with a metal multiple oxide, and to provide the water dispersion containing the chain silica-based fine particle group and an organic solvent dispersion of the chain silica-based fine particle group. <P>SOLUTION: In the producing method, the water dispersion containing a chain silica-based fine particle group, in which a plurality of silica-based fine particles each covered with a multiple oxide comprising at least zirconium, silicon and oxygen are linked through a coating substance of the silica-based fine particles or a belt-like substance of the multiple oxide extending from the coating substance, is produced. The water dispersion containing the chain silica-based fine particle group and the organic solvent dispersion obtained by solvent substitution are also provided. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、金属複合酸化物で被覆された鎖状シリカ系微粒子群を含有する水分散液の製造方法、および前記シリカ系微粒子群を含有する水分散液並びにその有機溶媒分散液に関する。
The present invention relates to a method for producing an aqueous dispersion containing chain silica-based fine particle groups coated with a metal composite oxide, an aqueous dispersion containing the silica-based fine particle group, and an organic solvent dispersion thereof.

一般に、歯科用充填材には、実際の天然歯と同程度の充分な強度や硬度、更には表面の滑らかさや噛み合わせによる摩耗に対する耐性が必要であるため、その原材料としてシリカ系微粒子が使用されている。また、この歯科用充填材には、天然歯との色調適合性や天然歯と同等の透明性を与えるための屈折率の適合性や治療した箇所と天然歯の歯組織との区別ができる程度のX線不透過性が要求されるため、他の原材料として酸化ジルコニウムが使用されている。   In general, dental fillers need to have sufficient strength and hardness comparable to actual natural teeth, as well as resistance to wear due to surface smoothness and meshing, so silica-based fine particles are used as the raw material. ing. In addition, this dental filler has a color compatibility with natural teeth, a refractive index compatibility to give the same transparency as natural teeth, and a degree that can distinguish between treated sites and natural tooth tissue. Therefore, zirconium oxide is used as another raw material.

このような歯科用充填材については、種々の公知文献に開示されており、例えば、(1)二酸化珪素と少なくとも他の金属酸化物(酸化ジルコニウム等)を凝集させ、その酸化物の結晶化温度未満の温度で熱処理することにより製造した、二酸化珪素と他の金属酸化物が独立した非晶質層を形成してなる歯科用充填材(特許文献1)や、(2) 約100nm未満の平均直径を有する非重金属酸化物粒子(シリカ粒子等)と、重金属酸化物または約100nm未満の平均直径を有する重金属酸化物粒子(酸化ジルコニウム粒子等)とを含む実質的にアモルファス状のクラスタを含む歯科用充填材(特許文献2)などがある。   Such dental fillers are disclosed in various known documents. For example, (1) agglomeration of silicon dioxide and at least other metal oxides (zirconium oxide, etc.), and the crystallization temperature of the oxides Dental filler (Patent Document 1) produced by heat treatment at a temperature lower than that and formed by forming an independent amorphous layer of silicon dioxide and other metal oxides, and (2) an average of less than about 100 nm Dental comprising substantially amorphous clusters comprising non-heavy metal oxide particles having a diameter (such as silica particles) and heavy metal oxides or heavy metal oxide particles having an average diameter of less than about 100 nm (such as zirconium oxide particles). Filler (Patent Document 2).

しかし、これらの方法から得られる歯科用充填材は、シリカゾルとジルコニウム塩水溶液とを混合して、これをスプレイドライヤーなどを用いて乾燥した後、焼成しているため、屈折率などの性状が異なるシリカ微粒子と酸化ジルコニウム成分(微粒子)とが混在するものであった。結果として、得られる歯科用充填材の屈折率などにおいてムラが生じる場合があった。さらに、これらの歯科用充填材では、粒子の細孔容積や粒子の強度を調整することができず、このために透明性を向上させることが難しくなり、更には重合性樹脂との密着性が不十分であるため、治療または修理した歯(義歯を含む)の治療箇所における強度や硬度が低下して、噛み合わせによる摩耗に対する耐性などが不十分となることがあった。 However, the dental filler obtained from these methods is mixed with silica sol and zirconium salt aqueous solution, dried using a spray drier, etc., and then fired, so the properties such as refractive index are different. Silica fine particles and zirconium oxide components (fine particles) were mixed. As a result, unevenness may occur in the refractive index of the obtained dental filler. Furthermore, with these dental fillers, the pore volume of the particles and the strength of the particles cannot be adjusted, which makes it difficult to improve the transparency, and furthermore, the adhesion to the polymerizable resin is reduced. Since it is insufficient, the strength and hardness of the treated or repaired teeth (including dentures) at the treatment site may be reduced, and resistance to wear due to meshing may be insufficient.

そこで、本出願人は、シリカゾル、酸性珪酸液およびジルコニウム塩水溶液を混合して、これをスプレイドライヤーなどを用いて乾燥した後、焼成する歯科用充填材の製造方法(特許文献3)を開発し、これを出願している。これによると、酸性珪酸液に由来するシリカ成分と酸性ジルコニウム成分がよく混じり合った金属酸化物が得られるため、シリカゾルに由来するシリカ微粒子に近づいた性状(例えば、屈折率など)のものになっている。しかし、シリカ微粒子が混在することには変わりないので、上記のような問題点が完全に解消されるものではなかった。   Therefore, the present applicant has developed a method for producing a dental filler (Patent Document 3) in which silica sol, acidic silicic acid solution and zirconium salt aqueous solution are mixed, dried using a spray dryer, and then fired. Have filed this. According to this, since a metal oxide in which a silica component derived from an acidic silicic acid solution and an acidic zirconium component are well mixed is obtained, it becomes a property close to silica fine particles derived from silica sol (for example, refractive index). ing. However, since the silica fine particles are mixed, the above-mentioned problems have not been completely solved.

さらに、本発明者らは、従来の歯科用充填材に付随する上記のような問題を解決するため、ジルコニウムシリケート化合物からなる結晶性の無機酸化物微粒子を含む歯科用充填材を開発し、これを特許文献4に記載の発明として出願している。この歯科用充填材は、天然歯と同程度である強度や硬度、噛み合わせ摩耗に対する耐久性等において優れた特性を有しているが、その使用用途によっては、有機珪素化合物、有機チタニウム化合物、有機ジルコニウム化合物等の有機金属化合物によって前記無機酸化物微粒子の表面を処理(または改質)することが必要となる。しかし、前記無機酸化物微粒子は、結晶性の表面性状を備えているため、その表面を前記有機金属化合物でむらなく処理することは必ずしも容易ではなかった。 Furthermore, the present inventors have developed a dental filler containing crystalline inorganic oxide fine particles made of a zirconium silicate compound in order to solve the above-mentioned problems associated with conventional dental fillers. Has been filed as an invention described in Patent Document 4. This dental filler has excellent properties such as strength and hardness comparable to natural teeth, durability against biting wear, etc., but depending on its usage, organosilicon compounds, organic titanium compounds, It is necessary to treat (or modify) the surface of the inorganic oxide fine particles with an organometallic compound such as an organozirconium compound. However, since the inorganic oxide fine particles have a crystalline surface property, it has not always been easy to uniformly treat the surface with the organometallic compound.

本願発明者らは、これらの問題を解決することを目的として鋭意研究を重ねたところ、シリカ系微粒子の表面を金属複合酸化物で被覆してなる非晶質の無機酸化物微粒子が歯科用充填材として優れた特性を有していることを見い出し、本願と同日付けでこれを特許出願した。しかし、この発明を完成させるためには、前記無機酸化物微粒子、すなわち金属複合酸化物で被覆されたシリカ系微粒子群を含有する水分散液を安定的に製造する方法を開発する必要があった。 The inventors of the present invention have made extensive studies for the purpose of solving these problems, and found that amorphous inorganic oxide fine particles formed by coating the surface of silica-based fine particles with a metal composite oxide are used for dental filling. It was found that it has excellent characteristics as a material, and a patent application was filed on the same date as this application. However, in order to complete this invention, it has been necessary to develop a method for stably producing an aqueous dispersion containing the inorganic oxide fine particles, that is, silica-based fine particles coated with a metal composite oxide. .

特開平7−196428号公報JP-A-7-196428 特表2003−512406号公報(国際公開WO01/030306)Japanese translation of PCT publication No. 2003-512406 (International publication WO01 / 030306) 特開2003−146822号公報JP 2003-146822 A 特願2006−086800号明細書Japanese Patent Application No. 2006-086800

上記のような状況の下で、本願発明者らは、前記無機酸化物微粒子を含有する水分散液を安定的に製造する方法について鋭意研究を重ねたところ、以下に示す新規な方法を見い出し、本発明を完成するに至った。すなわち、本発明は、金属複合酸化物で被覆された鎖状シリカ微粒子群を含有する水分散液を製造するための方法、および前記鎖状シリカ微粒子群を含有する水分散液並びに該分散液を溶媒置換して得られる前記鎖状シリカ微粒子群を含有する有機溶媒分散液を提供することを目的としている。 Under the circumstances as described above, the inventors of the present application have conducted extensive research on a method for stably producing an aqueous dispersion containing the inorganic oxide fine particles, and have found a novel method shown below. The present invention has been completed. That is, the present invention relates to a method for producing an aqueous dispersion containing a chain silica fine particle group coated with a metal composite oxide, an aqueous dispersion containing the chain silica fine particle group, and the dispersion. An object of the present invention is to provide an organic solvent dispersion containing the group of chain silica fine particles obtained by solvent substitution.

本発明に係る鎖状シリカ系微粒子群を含有する水分散液の製造方法は、
シリカ系微粒子の表面を、少なくともジルコニウム、ケイ素および酸素からなる複合酸化物で被覆してなる鎖状シリカ系微粒子群を含有する水分散液を製造する方法であって、
(a)酸化ジルコニウム水和物を含む水溶液に、アルカリ金属の水酸化物と過酸化水素を添加して攪拌することにより、該酸化ジルコニウム水和物を解膠して溶解させた水溶液を調製する工程、
(b)平均粒子径2〜300nmのシリカ系微粒子を水に分散させたシリカゾルに、前記工程(a)で得られた水溶液と珪酸液の水溶液を撹拌しながら添加する工程、
(c)前記工程(b)で得られた水溶液を陽イオン交換樹脂で処理して脱アルカリする工程、および
(d)前記工程(c)で得られた水溶液を反応容器中に入れて、100〜350℃の温度で水熱処理する工程
を含むことを特徴としている。
The method for producing an aqueous dispersion containing the chain silica-based fine particle group according to the present invention,
A method for producing an aqueous dispersion containing a group of chain silica-based fine particles formed by coating the surface of silica-based fine particles with a composite oxide comprising at least zirconium, silicon and oxygen,
(A) By adding an alkali metal hydroxide and hydrogen peroxide to an aqueous solution containing zirconium oxide hydrate and stirring, an aqueous solution in which the zirconium oxide hydrate is peptized and dissolved is prepared. Process,
(B) a step of adding the aqueous solution obtained in the step (a) and an aqueous solution of a silicic acid solution with stirring to a silica sol in which silica-based fine particles having an average particle size of 2 to 300 nm are dispersed in water;
(C) a step of treating the aqueous solution obtained in the step (b) with a cation exchange resin to dealkalize, and (d) placing the aqueous solution obtained in the step (c) in a reaction vessel, It includes a step of hydrothermal treatment at a temperature of ˜350 ° C.

前記工程(a)において酸化ジルコニウム水和物は、オキシ塩化ジルコニウム、オキシ硫酸ジルコニウム、オキシ硝酸ジルコニウム、オキシ酢酸ジルコニウム、オキシ炭酸ジルコニウムおよびアンモニウムオキシ炭酸ジルコニウムから選ばれた1種または2種以上のジルコン酸塩の水溶液にアンモニアまたはアンモニア水を撹拌下で添加して得られる中和反応物を洗浄したものであることが好ましい。
また、前記工程(a)においてアルカリ金属の水酸化物は、水酸化カリウムであることが好ましい。
In the step (a), the zirconium oxide hydrate is one or more kinds of zirconic acid selected from zirconium oxychloride, zirconium oxysulfate, zirconium oxynitrate, zirconium oxyacetate, zirconium oxycarbonate and ammonium zirconium oxycarbonate. A neutralized reaction product obtained by adding ammonia or aqueous ammonia to an aqueous salt solution with stirring is preferably washed.
In the step (a), the alkali metal hydroxide is preferably potassium hydroxide.

前記工程(a)においてアルカリ金属の水酸化物(MOH)の添加量は、前記酸化ジルコニウム水和物(ZrO2・xH2O)に対して、モル比(MOH/ZrO2・xH2O)で1/1〜10/1の範囲にあることが好ましい。
また、前記工程(a)において過酸化水素(H22)の添加量は、前記酸化ジルコニウム水和物(ZrO2・xH2O)に対して、モル比(H22/ZrO2・xH2O)で5/1〜30/1の範囲にあることが好ましい。
さらに、前記工程(a)で調製される水溶液は、ZrO2換算基準で0.3〜5重量%のジルコニウム成分を含むことが好ましい。
An alkali metal hydroxide in the step (a) the addition amount of (MOH), the zirconium oxide hydrate relative (ZrO 2 · xH 2 O) , the molar ratio (MOH / ZrO 2 · xH 2 O) And preferably in the range of 1/1 to 10/1.
In addition, in the step (a), the amount of hydrogen peroxide (H 2 O 2 ) added is the molar ratio (H 2 O 2 / ZrO 2 ) with respect to the zirconium oxide hydrate (ZrO 2 · xH 2 O). XH 2 O) is preferably in the range of 5/1 to 30/1.
Furthermore, the aqueous solution prepared in the step (a) preferably contains 0.3 to 5% by weight of a zirconium component on a ZrO 2 conversion basis.

前記工程(b)において使用されるシリカゾルは、SiO2換算基準で0.5〜5重量%のケイ素成分を含むことが好ましい。
また、前記工程(b)において添加される珪酸液の水溶液は、SiO2換算基準で0.5〜5重量%のケイ素成分を含むことが好ましい。
さらに、前記工程(b)において前記ジルコニウム成分を含む水溶液の添加量は、前記シリカゾルに対して、前記ジルコニウム成分をZrO2で表し、また前記シリカゾル中に含まれるケイ素成分をSiO2で表したとき、モル比(SiO2/ZrO2)で1/1〜5/1の範囲にあることが好ましい。
The silica sol used in the step (b) preferably contains 0.5 to 5% by weight of a silicon component on the basis of SiO 2 conversion.
Moreover, it is preferable that the aqueous solution of the silicic acid solution added in the step (b) contains 0.5 to 5% by weight of a silicon component in terms of SiO 2 .
Further, the amount of the aqueous solution containing the zirconium component in the step (b) is such that the zirconium component is represented by ZrO 2 and the silicon component contained in the silica sol is represented by SiO 2 with respect to the silica sol. The molar ratio (SiO 2 / ZrO 2 ) is preferably in the range of 1/1 to 5/1.

前記工程(b)において珪酸液の水溶液の添加量は、同時に添加される前記ジルコニウム成分を含む水溶液に対し、前記珪酸液中に含まれるケイ素成分をSiO2で表し、また前記ジルコニウム成分をZrO2で表したとき、モル比(ZrO2/SiO2)で1/16〜1/1の範囲にあることが好ましい。
また、前記工程(b)において添加される珪酸液の水溶液は、水ガラスを水で希釈した後、陽イオン交換樹脂で処理して脱アルカリしたものであることが好ましい。
さらに、前記工程(b)において前記シリカゾルは、前記ジルコニウム成分を含む水溶液および前記珪酸液の水溶液を添加する前に、70〜95℃の温度に加熱しておくことが好ましい。
さらに、前記工程(b)における添加操作と前記工程(c)における脱アルカリ操作は、複数回、繰り返して行うことが好ましい。
In the step (b), the addition amount of the aqueous solution of the silicic acid solution is such that the silicon component contained in the silicic acid solution is represented by SiO 2 with respect to the aqueous solution containing the zirconium component added at the same time, and the zirconium component is represented by ZrO 2. Is preferably in the range of 1/16 to 1/1 in terms of molar ratio (ZrO 2 / SiO 2 ).
Moreover, it is preferable that the aqueous solution of the silicic acid solution added in the step (b) is obtained by diluting water glass with water and then treating with a cation exchange resin to dealkali.
Furthermore, in the step (b), the silica sol is preferably heated to a temperature of 70 to 95 ° C. before adding the aqueous solution containing the zirconium component and the aqueous solution of the silicic acid solution.
Furthermore, it is preferable to repeat the addition operation in the step (b) and the dealkalization operation in the step (c) a plurality of times.

前記工程(c)における脱アルカリ操作は、前記水溶液のpHが7.0〜10.0の範囲になるように行うことが好ましい。
また、前記工程(d)における水熱処理は、オートクレーブ中で10〜100時間かけて行うことが好ましい。
さらに、前記鎖状シリカ系微粒子群は、少なくともジルコニウム、ケイ素および酸素からなる複合酸化物で被覆されたシリカ系微粒子を、該シリカ系微粒子の被覆物質または該被覆物質から延びた前記複合酸化物の帯状物質を介して複数個、連結させたような形状を有していることが好ましい。
The dealkalization operation in the step (c) is preferably performed so that the pH of the aqueous solution is in the range of 7.0 to 10.0.
Moreover, it is preferable to perform the hydrothermal treatment in the said process (d) over 10 to 100 hours in an autoclave.
Further, the chain silica-based fine particle group includes a silica-based fine particle coated with a composite oxide composed of at least zirconium, silicon, and oxygen, the silica-based fine particle coating material, or the composite oxide extending from the coating material. It is preferable to have a shape in which a plurality of materials are connected via a band-shaped substance.

一方、本発明に係る水分散液は、少なくともジルコニウム、ケイ素および酸素からなる複合酸化物で被覆されたシリカ系微粒子を、該シリカ系微粒子の被覆物質または該被覆物質から延びた前記複合酸化物の帯状物質を介して複数個、連結してなる鎖状シリカ系微粒子群を含有することを特徴としている。
また、本発明に係る有機溶媒分散液は、前記水分散液を溶媒置換工程に供して得られるもので、少なくともジルコニウム、ケイ素および酸素からなる複合酸化物で被覆されたシリカ系微粒子を、該シリカ系微粒子の被覆物質または該被覆物質から延びた前記複合酸化物の帯状物質を介して複数個、連結してなる鎖状シリカ系微粒子群を含有することを特徴としている。
On the other hand, the aqueous dispersion according to the present invention comprises a silica-based fine particle coated with a composite oxide comprising at least zirconium, silicon, and oxygen, the silica-based fine particle coating material or the composite oxide extending from the coating material. It is characterized by containing a group of chain silica-based fine particles connected by a plurality through a band-shaped substance.
Further, the organic solvent dispersion according to the present invention is obtained by subjecting the aqueous dispersion to a solvent substitution step. Silica-based fine particles coated with a composite oxide comprising at least zirconium, silicon and oxygen are used as the silica dispersion. It is characterized in that it contains a group of chain silica-based fine particles formed by connecting a plurality of fine-particle-based coating materials or a band-shaped material of the composite oxide extending from the coating material.

本発明方法によれば、少なくともジルコニウム、ケイ素および酸素からなる複合酸化物で被覆された鎖状シリカ系微粒子群を含有する水分散液を安定的に製造することができる。
この方法から得られる水分散液をスプレイドライヤーなどを用いて乾燥した後、必要に応じて焼成すると、前記複合酸化物で被覆されたシリカ系微粒子を、該シリカ系微粒子の被覆物質または該被覆物質から延びた前記複合酸化物の帯状物質を介して複数個、連結したような特異な形状を有する無機酸化物微粒子群の非晶質乾燥粉体や非晶質焼成粉体が得られる。
According to the method of the present invention, it is possible to stably produce an aqueous dispersion containing a group of chain silica-based fine particles coated with a composite oxide composed of at least zirconium, silicon and oxygen.
When the aqueous dispersion obtained from this method is dried using a spray dryer or the like and then fired as necessary, the silica-based fine particles coated with the composite oxide are converted into the silica-based fine particle coating material or the coating material. Thus, an amorphous dry powder or an amorphous fired powder of inorganic oxide fine particle groups having a unique shape such that a plurality of the complex oxide strips connected from each other are connected to each other can be obtained.

このようにして得られた無機酸化物微粒子群の非晶質乾燥粉体や非晶質焼成粉体は、前記シリカ系微粒子が前記複合酸化物で被覆されているため、得られる非晶質乾燥粉体や非晶質焼成粉体の表面性状は殆ど同じであり、その屈折率などにおいてムラが生じることもない。さらに、前記無機酸化物微粒子群の非晶質乾燥粉体や非晶質焼成粉体は、機械的強度、耐摩耗性、屈折率適合性、X線不透過性などにおいて優れているので、歯科用充填材として好適に使用することができる。 The amorphous dry powder and the amorphous fired powder of the inorganic oxide fine particle group obtained in this manner are obtained by coating the silica-based fine particles with the composite oxide. The surface properties of the powder and the amorphous fired powder are almost the same, and unevenness does not occur in the refractive index. Furthermore, the amorphous dry powder and the amorphous fired powder of the inorganic oxide fine particle group are excellent in mechanical strength, wear resistance, refractive index compatibility, radiopacity, etc. It can be suitably used as a filler.

また、前記水分散液に含まれる前記鎖状シリカ系微粒子群は、耐摩耗性や屈折率適合性などにおいて優れた特質を備えているので、歯科用充填材以外の用途にも好適に使用することができる。すなわち、前記水分散液や前記有機溶媒分散液を含む塗料、例えばハードコート剤や反射防止剤を調製して、これをプラスチック基材や紙などに塗布すると、その表面の耐摩耗性や反射率などを大幅に改善させることができる。なお、これらの用途においては、前記水分散液を使用するより、前記有機溶媒分散液を使用することが望ましい。
In addition, the chain silica-based fine particle group contained in the aqueous dispersion has excellent characteristics such as wear resistance and refractive index adaptability, and is therefore preferably used for applications other than dental fillers. be able to. That is, when a paint containing the aqueous dispersion or the organic solvent dispersion, for example, a hard coating agent or an antireflection agent, is prepared and applied to a plastic substrate or paper, the wear resistance and reflectance of the surface Etc. can be greatly improved. In these applications, it is preferable to use the organic solvent dispersion rather than the water dispersion.

以下、本発明に係る鎖状シリカ系微粒子群を含有する水分散液の製造方法、および前記シリカ系微粒子群を含有する水分散液並びにその有機溶媒分散液について具体的に説明する。   Hereinafter, a method for producing an aqueous dispersion containing chain silica-based fine particle groups according to the present invention, an aqueous dispersion containing the silica-based fine particle groups, and an organic solvent dispersion thereof will be specifically described.

[水分散液の製造方法]
本発明に係る鎖状シリカ系微粒子群を含有する水分散液の製造方法は、
シリカ系微粒子の表面を、少なくともジルコニウム、ケイ素および酸素からなる複合酸化物で被覆してなる鎖状シリカ系微粒子群を含有する水分散液を製造する方法であって、
(a)酸化ジルコニウム水和物を含む水溶液に、アルカリ金属の水酸化物と過酸化水素を添加して攪拌することにより、該酸化ジルコニウム水和物を解膠して溶解させた水溶液を調製する工程、
(b)平均粒子径2〜300nmのシリカ系微粒子を水に分散させたシリカゾルに、前記工程(a)で得られた水溶液と珪酸液の水溶液を撹拌しながら添加する工程、
(c)前記工程(b)で得られた水溶液を陽イオン交換樹脂で処理して脱アルカリする工程、および
(d)前記工程(c)で得られた水溶液を反応容器中に入れて、100〜350℃の温度で水熱処理する工程
を含むものである。
さらに、前記の各工程について詳述すれば、以下の通りである。
[Production method of aqueous dispersion]
The method for producing an aqueous dispersion containing the chain silica-based fine particle group according to the present invention,
A method for producing an aqueous dispersion containing a group of chain silica-based fine particles formed by coating the surface of silica-based fine particles with a composite oxide comprising at least zirconium, silicon and oxygen,
(A) By adding an alkali metal hydroxide and hydrogen peroxide to an aqueous solution containing zirconium oxide hydrate and stirring, an aqueous solution in which the zirconium oxide hydrate is peptized and dissolved is prepared. Process,
(B) a step of adding the aqueous solution obtained in the step (a) and an aqueous solution of a silicic acid solution with stirring to a silica sol in which silica-based fine particles having an average particle size of 2 to 300 nm are dispersed in water;
(C) a step of treating the aqueous solution obtained in the step (b) with a cation exchange resin to dealkalize, and (d) placing the aqueous solution obtained in the step (c) in a reaction vessel, It includes a step of hydrothermal treatment at a temperature of ˜350 ° C.
Furthermore, it will be as follows if said each process is explained in full detail.

工程(a)
本発明でいう前記酸化ジルコニウム水和物は、化学式ZrO2・xH2Oで表され、この中には水酸化ジルコニウム(Zr(OH)n)も含まれるものとする。
また、前記酸化ジルコニウム水和物は、酸または酸を含む水溶液には溶解するが、水またはアルカリを含む水溶液には殆ど溶解しないことが知られている。
そこで、この工程(a)においては、純水または蒸留水中に水酸化ジルコニウムを含む懸濁水溶液を調製し、これにカリウム、ナトリウムなどのアルカリ金属の水酸化物(すなわち、水酸化カリウム、水酸化ナトリウム等)および過酸化水素を添加して攪拌することにより、前記酸化ジルコニウム水和物を解膠して溶解させた混合水溶液(以下、「混合水溶液-(1)」という)を調製する。ここで、前記アルカリ金属水酸化物としては、水酸化カリウムを使用することが好ましい。これは、水酸化カリウムを使用すると、水酸化ナトリウムに比べて前記の解膠が進みやすいためである。
Step (a)
The zirconium oxide hydrate referred to in the present invention is represented by the chemical formula ZrO 2 .xH 2 O, and this includes zirconium hydroxide (Zr (OH) n ).
The zirconium oxide hydrate is known to dissolve in an acid or an aqueous solution containing an acid, but hardly dissolve in an aqueous solution containing water or an alkali.
Therefore, in this step (a), a suspension aqueous solution containing zirconium hydroxide in pure water or distilled water is prepared, and an alkali metal hydroxide such as potassium or sodium (that is, potassium hydroxide, hydroxide) is prepared. Sodium and the like) and hydrogen peroxide are added and stirred to prepare a mixed aqueous solution (hereinafter referred to as “mixed aqueous solution- (1)”) in which the zirconium oxide hydrate is peptized and dissolved. Here, it is preferable to use potassium hydroxide as the alkali metal hydroxide. This is because the use of potassium hydroxide facilitates the aforementioned peptization as compared with sodium hydroxide.

前記アルカリ金属水酸化物(M2O)は、前記前記懸濁水溶液中に含まれる酸化ジルコニウム水和物(ZrO2・xH2O)に対して、モル比(M2O/ZrO2・xH2O)が1/1〜10/1、好ましくは2/1〜5/1となるような割合で添加することが好ましい。ここで、前記モル比が1/1未満であると酸化ジルコニウム水和物の解膠が進まず、また該モル比が10/1を超えると、高い解膠性は得られるものの、過剰なアルカリ金属イオンが水溶液中に含まれることになり、これを後段の工程で除去(陽イオン交換樹脂を使用)する必要があるため、経済的ではない。 The alkali metal hydroxide (M 2 O) is in a molar ratio (M 2 O / ZrO 2 · xH) with respect to zirconium oxide hydrate (ZrO 2 · xH 2 O) contained in the aqueous suspension. 2 O) is preferably added at a rate such that 1/1 to 10/1, preferably 2/1 to 5/1. Here, when the molar ratio is less than 1/1, peptization of zirconium oxide hydrate does not proceed. When the molar ratio exceeds 10/1, high peptization is obtained, but excess alkali Since metal ions are contained in the aqueous solution and need to be removed (using a cation exchange resin) in a subsequent step, it is not economical.

前記過酸化水素(H22)は、前記懸濁水溶液中に含まれる酸化ジルコニウム水和物(ZrO2・xH2O)に対して、モル比(H22/ZrO2・xH2O)が5/1〜30/1、好ましくは10/1〜25/1となるような割合で添加することが好ましい。ここで、前記モル比が5/1未満であると、酸化ジルコニウム水和物の解膠が進まず、また該モル比が30/1を超えると、酸化ジルコニウム水和物の溶解が早くなって溶解に要する時間は短くなるものの、未反応の過酸化水素が系内に大量に残存することになるので、経済的に好ましくない。
さらに、前記過酸化水素は、18〜35重量%濃度の過酸化水素水として添加することが望ましい。
The hydrogen peroxide (H 2 O 2 ) is in a molar ratio (H 2 O 2 / ZrO 2 .xH 2 ) with respect to zirconium oxide hydrate (ZrO 2 .xH 2 O) contained in the aqueous suspension. O) is preferably added at a ratio of 5/1 to 30/1, preferably 10/1 to 25/1. Here, when the molar ratio is less than 5/1, the peptization of the zirconium oxide hydrate does not progress, and when the molar ratio exceeds 30/1, the dissolution of the zirconium oxide hydrate is accelerated. Although the time required for dissolution is shortened, a large amount of unreacted hydrogen peroxide remains in the system, which is not economically preferable.
Furthermore, the hydrogen peroxide is preferably added as a hydrogen peroxide solution having a concentration of 18 to 35% by weight.

なお、前記酸化ジルコニウム水和物は、ジルコニウム塩を水溶液中で加水分解あるいは該水溶液中にアルカリまたはアンモニアを添加して中和反応を起こさせる等、従来公知の方法で調製することができる。しかし、本発明においては、純水または蒸留水にオキシ塩化ジルコニウム(ZrOCl2・xH2O)、オキシ硫酸ジルコニウム(ZrOSO4・xH2O)、オキシ硝酸ジルコニウム(ZrO(NO32・xH2O)、オキシ酢酸ジルコニウム(ZrO(C2322)、オキシ炭酸ジルコニウム(ZrOCO3・xH2O)およびアンモニウムオキシ炭酸ジルコニウム((NH42ZrO(CO32)から選ばれた1種または2種以上のジルコン酸塩を溶解させた水溶液にアンモニアまたはアンモニア水を撹拌下で添加して中和反応を起こさせることによって得られる中和反応物(酸化ジルコニウム水和物)を、純水または蒸留水で十分に洗浄したものを使用することが好ましい。また、前記ジルコン酸塩としては、オキシ塩化ジルコニウム(ZrOCl2・8H2O)を使用することが望ましい。なお、前記オキシ塩化ジルコニウム、前記オキシ硫酸ジルコニウム、前記オキシ硝酸ジルコニウム、前記オキシ酢酸ジルコニウムおよび前記オキシ炭酸ジルコニウムは、それぞれ塩酸ジルコニル、硫酸ジルコニル、硝酸ジルコニル、酢酸ジルコニルおよび炭酸ジルコニルと称されることもある。 The zirconium oxide hydrate can be prepared by a conventionally known method such as hydrolysis of a zirconium salt in an aqueous solution or addition of alkali or ammonia to the aqueous solution to cause a neutralization reaction. In the present invention, however, zirconium oxychloride (ZrOCl 2 · xH 2 O), zirconium oxysulfate (ZrOSO 4 · xH 2 O), zirconium oxynitrate (ZrO (NO 3 ) 2 · xH 2 ) is added to pure water or distilled water. O), zirconium oxyacetate (ZrO (C 2 H 3 O 2 ) 2 ), zirconium oxycarbonate (ZrOCO 3 · xH 2 O) and ammonium oxycarbonate ((NH 4 ) 2 ZrO (CO 3 ) 2 ) Neutralization reaction product (zirconium oxide hydrate) obtained by adding ammonia or aqueous ammonia to an aqueous solution in which one or more zirconate salts are dissolved under stirring to cause a neutralization reaction It is preferable to use one that has been sufficiently washed with pure water or distilled water. Further, it is desirable to use zirconium oxychloride (ZrOCl 2 .8H 2 O) as the zirconate. The zirconium oxychloride, the zirconium oxysulfate, the zirconium oxynitrate, the zirconium oxyacetate and the zirconium oxycarbonate are sometimes referred to as zirconyl hydrochloride, zirconyl sulfate, zirconyl nitrate, zirconyl acetate and zirconyl carbonate, respectively. .

さらに、前記ジルコン酸塩の代わりに、炭酸ジルコニウム(ZrCO4・ZrO2・xH2O)、硫酸ジルコニウム(Zr(SO4)2・xH2O)、塩化ジルコニウム(ZrCl2、ZrCl3またはZrCl4)および硝酸ジルコニウム(Zr(NO34・xH2O)から選ばれた1種または2種以上のジルコン酸塩を使用することもできる。
前記水溶液中における前記ジルコン酸塩の含有量は、10〜20重量%、好ましくは13〜17重量%の範囲にあることが好ましい。
Further, instead of the zirconate, zirconium carbonate (ZrCO 4 · ZrO 2 · xH 2 O), zirconium sulfate (Zr (SO 4 ) 2 · xH 2 O), zirconium chloride (ZrCl 2 , ZrCl 3 or ZrCl 4). ) And zirconium nitrate (Zr (NO 3 ) 4 .xH 2 O) may be used, or one or more zirconates may be used.
The content of the zirconate salt in the aqueous solution is preferably 10 to 20% by weight, preferably 13 to 17% by weight.

前記アンモニア(NH3)またはアンモニア水(NH4OH)は、前記水溶液中に含まれるジルコン酸塩(ZrOXn)に対して、モル比(NH3/ZrOXnまたはNH4OH/ZrOXn)が13/7〜13/2、好ましくは13/5〜13/4となるような割合で添加することが好ましい。ここで、前記モル比が13/7未満であると、ジルコン酸塩の中和が十分でないため該ジルコン酸塩の一部がそのまま残り、また該モル比が13/2を超えると、アンモニアが過剰に添加されるためその残存アンモニアの洗浄に時間がかかることになるので、好ましくない。
さらに、前記アンモニア水は、5〜15重量%濃度のアンモニア水として添加することが望ましい。
The ammonia (NH 3 ) or aqueous ammonia (NH 4 OH) has a molar ratio (NH 3 / ZrOX n or NH 4 OH / ZrOX n ) with respect to the zirconate salt (ZrOX n ) contained in the aqueous solution. It is preferable to add at a ratio of 13/7 to 13/2, preferably 13/5 to 13/4. Here, when the molar ratio is less than 13/7, neutralization of the zirconate is not sufficient, so that a part of the zirconate remains as it is, and when the molar ratio exceeds 13/2, ammonia is removed. Since it is added excessively, it takes time to clean the residual ammonia, which is not preferable.
Further, the ammonia water is preferably added as ammonia water having a concentration of 5 to 15% by weight.

また、前記中和反応は、5〜20℃、好ましくは10〜15℃の温度で行うことが好ましい。ここで前記温度が20℃を超えると、ジルコン酸塩の中和により生成した酸化ジルコニウム水和物(例えば、水酸化ジルコニウム等)が経時的に変化していくため好ましくない。 Moreover, it is preferable to perform the said neutralization reaction at the temperature of 5-20 degreeC, Preferably it is 10-15 degreeC. Here, when the temperature exceeds 20 ° C., zirconium oxide hydrate (for example, zirconium hydroxide and the like) generated by neutralization of the zirconate salt changes with time, which is not preferable.

前記中和反応から得られる酸化ジルコニウム水和物は、濾過分離した後、純水または蒸留水で十分に洗浄して、前記中和反応における未反応物(ZrOXn等)や反応副生物(NH4X等)をできるだけ除去しておく必要がある。
このようにして得られる混合水溶液-(1)中に溶解して含まれるジルコニウム成分(酸化ジルコニウム水和物の解膠物)は、特にこれに制限されるものではないが、ZrO2換算基準で0.3〜5重量%の範囲にあることが望ましい。
Zirconium oxide hydrate obtained from the neutralization reaction is separated by filtration, and then sufficiently washed with pure water or distilled water, and unreacted substances (such as ZrOX n ) and reaction by-products (NH in the neutralization reaction) are obtained. 4 X etc.) should be removed as much as possible.
Zirconium component (zirconia of zirconium oxide hydrate) contained by dissolving in the mixed aqueous solution- (1) thus obtained is not particularly limited, but is based on ZrO 2 conversion standard. It is desirable to be in the range of 0.3 to 5% by weight.

工程(b)
この工程(b)では、平均粒子径2〜300nmのシリカ系微粒子を水に分散させたシリカゾル中に、該ゾルを撹拌しながら前記工程(a)で得られた混合水溶液-(1)と珪酸液の水溶液をそれぞれ添加する。
ここで、前記シリカゾルとしては、平均粒子径が2〜300nmのシリカ系微粒子を含むものであれば、市販のもの(例えば、触媒化成工業(株)製SI-30等)を使用することができる。ここで、平均粒子径が2nm未満であると、該粒子を用いた歯科用充填材の機械的強度、特に圧縮強度や曲げ強度が低下し、また平均粒子径が300nmを超えると、該粒子を含む歯科用充填材を用いて歯を修復した場合、その研磨面の滑沢性が十分でなくなるので、好ましくない。なお、ここでいう平均粒子径は、レーザー回折散乱法を用いて測定した結果を示すものである。
また、前記シリカゾル中に含まれるシリカ系微粒子の濃度は、0.5〜5重量%の範囲にあることが好ましい。ここで、前記濃度が0.5重量%未満であると、経済的に前記無機酸化物微粒子を得ることが難しくなり、また前記濃度が5重量%を超えると、前記混合水溶液-(1)および前記珪酸液の水溶液を添加した場合、その混合液が不安定となって粒子の凝集が起こってしまうため、鎖状の無機酸化物微粒子を得ることが難しくなるので、好ましくない。
Step (b)
In this step (b), the mixed aqueous solution- (1) and silicic acid obtained in the step (a) are stirred in a silica sol in which silica-based fine particles having an average particle size of 2 to 300 nm are dispersed in water. Each of the aqueous solutions is added.
Here, as the silica sol, a commercially available product (for example, SI-30 manufactured by Catalyst Chemical Industry Co., Ltd.) can be used as long as it contains silica-based fine particles having an average particle diameter of 2 to 300 nm. . Here, when the average particle diameter is less than 2 nm, the mechanical strength of the dental filler using the particles, particularly the compressive strength and bending strength are lowered, and when the average particle diameter exceeds 300 nm, the particles When a tooth is restored by using the dental filler containing it, the smoothness of the polished surface becomes insufficient, which is not preferable. In addition, the average particle diameter here shows the result measured using the laser diffraction scattering method.
The concentration of the silica-based fine particles contained in the silica sol is preferably in the range of 0.5 to 5% by weight. Here, when the concentration is less than 0.5% by weight, it is difficult to economically obtain the inorganic oxide fine particles, and when the concentration exceeds 5% by weight, the mixed aqueous solution- (1) and When an aqueous solution of the silicic acid solution is added, the mixed solution becomes unstable and particle aggregation occurs, which makes it difficult to obtain chain-like inorganic oxide fine particles.

さらに、前記混合水溶液-(1)中に含まれるジルコニウム成分は、前記シリカゾル中に含まれるシリカ系微粒子の濃度のほか、この工程で別途添加される珪酸液の性状や濃度などによっても異なるが、ZrO2換算基準で0.3〜5重量%、好ましくは0.5〜3重量%の範囲となるように調整してから添加することが好ましい。ここで、前記含有量が0.3重量%未満であると、経済的に前記無機酸化物微粒子を得ることが難しくなり、また該含有量が5重量%を超えると、前記混合水溶液の安定性が悪く、しかも該水溶液の粘度が増加してしまう傾向にあるので、好ましくない。 Furthermore, the zirconium component contained in the mixed aqueous solution- (1) varies depending on the concentration of the silica-based fine particles contained in the silica sol, as well as the nature and concentration of the silicic acid solution added separately in this step, It is preferable to add after adjusting to 0.3 to 5% by weight, preferably 0.5 to 3% by weight on the basis of ZrO 2 conversion. Here, when the content is less than 0.3% by weight, it becomes difficult to obtain the inorganic oxide fine particles economically, and when the content exceeds 5% by weight, the stability of the mixed aqueous solution is increased. Is unfavorable, and the viscosity of the aqueous solution tends to increase.

一方、前記珪酸液の水溶液(以下、単に「珪酸液」という場合もある)としては、アルカリ金属珪酸塩、有機塩基の珪酸塩等の珪酸塩水溶液を陽イオン交換樹脂で処理して脱アルカリしたものが使用される。また、これらの珪酸塩としては、珪酸ナトリウム(水ガラス)、珪酸カリウム等のアルカリ金属珪酸塩、第4級アンモニウムシリケート等の有機塩基の珪酸塩などが挙げられる。
この珪酸液の水溶液の中でも、pHが2〜4、好ましくは2〜3の範囲にあり、珪素成分の含有量がSiO2換算基準で0.5〜5重量%、好ましくは3〜4重量%の範囲にあるものを使用することが好ましい。ここで、前記pHが2未満であると、その処理に要する陽イオン交換樹脂の量と処理時間が必要以上に多くなって経済的ではなくなり、また前記pHが4を超えると、脱アルカリの度合いが低いため、得られる珪酸液の安定性が悪くなるので好ましくない。さらに、前記含有量が0.5重量%未満であると、経済的に前記無機酸化物微粒子を得ることが難しくなり、また前記含有量が5重量%を超えると、珪酸液の安定性が悪くなるので好ましくない。
このような性状を有する珪酸液の水溶液としては、水ガラス(珪酸ナトリウム)を水で希釈した後、陽イオン交換樹脂で処理して脱アルカリしたものを使用することが好ましい。
On the other hand, the aqueous solution of the silicic acid solution (hereinafter sometimes simply referred to as “silicic acid solution”) was dealkalized by treating a silicate aqueous solution such as an alkali metal silicate or an organic base silicate with a cation exchange resin. Things are used. Examples of these silicates include alkali metal silicates such as sodium silicate (water glass) and potassium silicate, and silicates of organic bases such as quaternary ammonium silicate.
Among the aqueous solutions of the silicic acid solution, the pH is in the range of 2 to 4, preferably 2 to 3, and the content of the silicon component is 0.5 to 5% by weight, preferably 3 to 4% by weight on the basis of SiO 2 conversion. It is preferable to use the thing in the range. Here, when the pH is less than 2, the amount of the cation exchange resin required for the treatment and the treatment time are more than necessary, which is not economical, and when the pH exceeds 4, the degree of dealkalization. Is not preferable since the stability of the resulting silicic acid solution is deteriorated. Furthermore, when the content is less than 0.5% by weight, it becomes difficult to obtain the inorganic oxide fine particles economically, and when the content exceeds 5% by weight, the stability of the silicic acid solution is poor. This is not preferable.
As an aqueous solution of the silicic acid solution having such properties, it is preferable to use a solution obtained by diluting water glass (sodium silicate) with water and then treating it with a cation exchange resin to dealkalize.

前記混合水溶液-(1)および前記珪酸液の水溶液は、該混合水溶液-(1)中に含まれるジルコニウム成分をZrO2で表し、さらに該珪酸液中に含まれる珪素成分をSiO2-(1)で表したとき、モル比(ZrO2/SiO2-(1))が1/16〜1/1、好ましくは1/8〜1/2となるようにそれぞれ調整して、前記シリカゾル中に共にゆっくりと添加することが好ましい。ここで、前記モル比が1/16未満であると、鎖状の無機酸化物微粒子を得ることが難しくなり、また前記モル比が1/1を超えると、前記シリカゾル中に添加している間にその混合液が不安定となって粒子の凝集が起こってしまうので、好ましくない。
また、前記シリカゾル中へのこれらの添加量は、該シリカゾル中に含まれるシリカ系微粒子上への被覆度合いによっても異なるが、該シリカ系微粒子をSiO2-(2)で表したとき、重量比{(ZrO2/SiO2-(1))/SiO2-(2)}が7/100〜15/10、好ましくは5/10〜1/1の範囲にあることが好ましい。ここで、前記重量比が7/100未満であると、鎖状の無機酸化物微粒子を得ることが難しくなり、また前記重量比が15/10を超えると、前記シリカゾル中に添加している間にその混合液が不安定となって粒子の凝集が起こってしまうので、好ましくない。
In the mixed aqueous solution- (1) and the aqueous solution of the silicic acid solution, the zirconium component contained in the mixed aqueous solution- (1) is represented by ZrO 2 , and the silicon component contained in the silicic acid solution is represented by SiO 2- (1 ), The molar ratio (ZrO 2 / SiO 2- (1)) is adjusted to 1/16 to 1/1, preferably 1/8 to 1/2. It is preferred to add both slowly. Here, when the molar ratio is less than 1/16, it is difficult to obtain chain-like inorganic oxide fine particles, and when the molar ratio exceeds 1/1, while being added to the silica sol In addition, the liquid mixture becomes unstable and the particles are aggregated, which is not preferable.
Further, the amount of addition to the silica sol varies depending on the degree of coating on the silica-based fine particles contained in the silica sol, but when the silica-based fine particles are represented by SiO 2- (2), the weight ratio It is preferable that {(ZrO 2 / SiO 2- (1)) / SiO 2- (2)} is in the range of 7/100 to 15/10, preferably 5/10 to 1/1. Here, when the weight ratio is less than 7/100, it becomes difficult to obtain chain-like inorganic oxide fine particles, and when the weight ratio exceeds 15/10, while being added to the silica sol In addition, the liquid mixture becomes unstable and the particles are aggregated, which is not preferable.

前記シリカゾルは、前記混合水溶液-(1)および前記珪酸液の水溶液を添加する前に、70〜95℃、好ましくは80〜90℃の温度に加熱しておくことが好ましい。ここで、前記温度が70℃未満では、前記ジルコニウム成分および前記珪酸液成分の加水分解反応が進まず、また前記温度が95℃を超えると、シリカゾル中の水分が蒸発し始めるので好ましくない。なお、前記混合水溶液-(1)および前記珪酸液の水溶液は、加熱してから使用してもよいが、室温の状態にあるものをそのまま使用することができる。
また、前記混合水溶液-(1)および前記珪酸液の水溶液の添加は、これらの水溶液中に含まれる前記成分の濃度やその添加量(総量)によっても異なるが、それぞれ4〜24時間かけてゆっくりと行うことが好ましい。
The silica sol is preferably heated to a temperature of 70 to 95 ° C., preferably 80 to 90 ° C. before adding the mixed aqueous solution- (1) and the aqueous solution of the silicic acid solution. Here, when the temperature is less than 70 ° C., the hydrolysis reaction of the zirconium component and the silicic acid liquid component does not proceed, and when the temperature exceeds 95 ° C., moisture in the silica sol starts to evaporate. The mixed aqueous solution- (1) and the aqueous solution of the silicic acid solution may be used after being heated, but can be used as they are at room temperature.
Further, the addition of the aqueous solution of the mixed aqueous solution- (1) and the silicic acid solution varies depending on the concentration of the components contained in these aqueous solutions and the addition amount (total amount), but each of them slowly takes 4 to 24 hours. It is preferable to carry out.

このようにして、前記シリカゾル中に前記混合水溶液-(1)および前記珪酸液の水溶液を撹拌しながら添加すると、この混合水溶液-(2)中で前記ジルコニウム成分と前記珪素成分の加水分解反応が起こって、前記シリカゾル中に含まれるシリカ系微粒子の表面が、前記成分の部分加水分解物や加水分解物で被覆される。
強いアルカリ性を呈する前記混合水溶液-(1)の添加に伴い、前記混合水溶液-(2)中のpHは経時的に高まるので、該混合水溶液のpHが11、好ましくは10.5となった段階で、前記混合水溶液-(1)と前記珪酸液の添加を中止することが望ましい。ここで、前記pHが11を超えると、前記シリカゾル中に含まれるシリカ系微粒子がアルカリにより混合水溶液-(2)中に溶解し始めるので、好ましくない。
よって、pHが11になった段階で前記混合水溶液-(2)および前記珪酸液の添加が完了していない場合は、以下に述べる工程(c)に処して脱アルカリした後、この操作を再度または繰り返して行うことが好ましい。
In this way, when the mixed aqueous solution- (1) and the aqueous solution of the silicic acid solution are added to the silica sol while stirring, the hydrolysis reaction of the zirconium component and the silicon component is carried out in the mixed aqueous solution- (2). Occurring, the surface of the silica-based fine particles contained in the silica sol is coated with the partial hydrolyzate or hydrolyzate of the component.
With the addition of the mixed aqueous solution- (1) exhibiting strong alkalinity, the pH of the mixed aqueous solution- (2) increases with time, so that the pH of the mixed aqueous solution becomes 11, preferably 10.5. Therefore, it is desirable to stop the addition of the mixed aqueous solution- (1) and the silicic acid solution. Here, when the pH exceeds 11, the silica-based fine particles contained in the silica sol start to dissolve in the mixed aqueous solution- (2) due to alkali, which is not preferable.
Therefore, when the addition of the mixed aqueous solution- (2) and the silicic acid solution is not completed at the stage when the pH reaches 11, after performing dealkalization in the step (c) described below, this operation is performed again. Or it is preferable to repeat.

また、前記シリカ系微粒子の表面を、必要に応じてチタニウムやアルミニウムなどを含む複合酸化物で被覆する場合には、上記の成分に加えて、加水分解能を有するテトラメチルチタネート、テトライソプロピルチタネート、テトラn−ブチルチタネート、ブチルチタネートダイマー、テトラ(2−エチルヘキシル)チタネート等のチタニウム化合物水溶液やアルミン酸ナトリウム等のアルミニウム化合物水溶液を適宜、添加することによって行うことができる。   In addition, when the surface of the silica-based fine particles is coated with a complex oxide containing titanium or aluminum as necessary, in addition to the above components, tetramethyl titanate, tetraisopropyl titanate, tetra It can be carried out by appropriately adding an aqueous solution of a titanium compound such as n-butyl titanate, butyl titanate dimer, tetra (2-ethylhexyl) titanate or an aqueous aluminum compound such as sodium aluminate.

工程(c)
この工程(c)では、前記工程(b)で得られた混合水溶液-(2)を陽イオン交換樹脂で処理して脱アルカリする。
ここで使用される陽イオン交換樹脂としては、特に制限されるものではないが、三菱化学(株)製のSK1BH等の陽イオン交換樹脂を使用することが好ましい。
また、この工程では、前記混合水溶液-(2)を該混合水溶液のpHが7.0〜10.0、好ましくは8.5〜9.5となるように脱アルカリ処理することが好ましい。ここで、前記pHが7.0未満であると、混合液中の脱アルカリが進みすぎて、その混合液が不安定となって粒子の凝集などが起こり、また前記pHが10.0を超えると、前記混合水溶液-(1) および前記珪酸液を添加している間に前記シリカゾル中に含まれるシリカ系微粒子がアルカリによって溶け始めて前記混合水溶液-(2)中に溶解するので、好ましくない。
Step (c)
In this step (c), the mixed aqueous solution- (2) obtained in the step (b) is treated with a cation exchange resin to be dealkalized.
Although it does not restrict | limit especially as a cation exchange resin used here, It is preferable to use cation exchange resins, such as SK1BH made from Mitsubishi Chemical Corporation.
In this step, the mixed aqueous solution- (2) is preferably dealkalized so that the pH of the mixed aqueous solution is 7.0 to 10.0, preferably 8.5 to 9.5. Here, when the pH is less than 7.0, dealkalization in the mixed solution proceeds excessively, the mixed solution becomes unstable, causing aggregation of particles, and the pH exceeds 10.0. In addition, since the silica-based fine particles contained in the silica sol begin to be dissolved by alkali during the addition of the mixed aqueous solution- (1) and the silicic acid solution, the mixed aqueous solution- (2) is not preferable.

この工程から得られる混合水溶液-(3)は、該混合水溶液中に前記混合水溶液-(2)および前記珪酸液をさらに添加する必要がある場合は、上記のように前記工程(b)に戻って再度、同工程における操作を行い、またその必要がない場合は、以下に述べる工程(d)に供される。なお、前記工程(b)と前記工程(c)の操作は、必要に応じて繰り返し行ってもよい。   The mixed aqueous solution- (3) obtained from this step returns to the step (b) as described above when it is necessary to further add the mixed aqueous solution- (2) and the silicic acid solution to the mixed aqueous solution. Then, the operation in the same process is performed again, and when it is not necessary, it is subjected to the process (d) described below. In addition, you may perform the operation of the said process (b) and the said process (c) repeatedly as needed.

工程(d)
この工程(d)では、前記工程(c)で得られた混合水溶液-(3)を反応容器中に入れて、100〜350℃の温度で水熱処理する。
ここで、前記反応器としては、0.5〜16.5Mpaの圧力に耐える耐圧・耐熱容器であれば特に制限されるものではないが、ステンレススチール製のオートクレーブを用いることが好ましい。
Step (d)
In this step (d), the mixed aqueous solution- (3) obtained in the step (c) is put in a reaction vessel and hydrothermally treated at a temperature of 100 to 350 ° C.
Here, the reactor is not particularly limited as long as it is a pressure-resistant and heat-resistant container that can withstand a pressure of 0.5 to 16.5 MPa, but it is preferable to use a stainless steel autoclave.

また、前記水熱処理は、100〜350℃、好ましくは150〜200℃の温度条件下で、10〜100時間、好ましくは20〜40時間かけて行うことが好ましい。ここで、前記水熱温度が100℃未満であると、前記混合水溶液中に含まれる前記ジルコニウム成分と前記珪素成分の加水分解反応から得られる部分加水分解物および/または加水分解物の縮合反応が充分に進まないため、少なくともジルコニウム、ケイ素および酸素からなる複合酸化物で被覆されたシリカ微粒子群(鎖状無機酸化物微粒子群)を得ることが難しくなる。また、350℃以上の温度で水熱処理を行うためには16.5Mpa以上の圧力に耐える耐圧・耐熱容器が必要となり、さらにはエネルギー消費の面からも経済的でなくなる。
さらに、前記水熱時間が10時間未満であると、前記ジルコニウム成分と前記珪素成分の加水分解反応から得られる部分加水分解物および/または加水分解物の縮合反応が充分に進まないため、少なくともジルコニウム、ケイ素および酸素からなる複合酸化物で被覆されたシリカ微粒子群(鎖状無機酸化物微粒子群)を得ることが難しくなる。また、前記水熱時間が100時間を超えても、前記複合酸化物で被覆されたシリカ微粒子群(鎖状無機酸化物微粒子群)を形成する上では余り影響しないので、これ以上の時間をかけることは得策でない。
The hydrothermal treatment is preferably performed at a temperature of 100 to 350 ° C., preferably 150 to 200 ° C., for 10 to 100 hours, preferably 20 to 40 hours. Here, when the hydrothermal temperature is less than 100 ° C., a partial hydrolyzate and / or a hydrolyzate condensation reaction obtained from a hydrolysis reaction of the zirconium component and the silicon component contained in the mixed aqueous solution Since it does not proceed sufficiently, it is difficult to obtain a silica fine particle group (chain inorganic oxide fine particle group) covered with a composite oxide composed of at least zirconium, silicon and oxygen. In addition, in order to perform hydrothermal treatment at a temperature of 350 ° C. or higher, a pressure-resistant and heat-resistant container that can withstand a pressure of 16.5 Mpa or more is required, and further, it is not economical in terms of energy consumption.
Furthermore, if the hydrothermal time is less than 10 hours, the partial hydrolyzate obtained from the hydrolysis reaction of the zirconium component and the silicon component and / or the condensation reaction of the hydrolyzate does not proceed sufficiently. It becomes difficult to obtain a silica fine particle group (chain inorganic oxide fine particle group) coated with a composite oxide composed of silicon and oxygen. Further, even if the hydrothermal time exceeds 100 hours, there is not much influence in forming the silica fine particle group (chain inorganic oxide fine particle group) coated with the composite oxide, so more time is taken. That is not a good idea.

このようにして、少なくともジルコニウム、ケイ素および酸素からなる複合酸化物で被覆されたシリカ微粒子群(鎖状無機酸化物微粒子群)を含む混合水溶液-(4)が得られる。すなわち、前記混合水溶液-(4)は、本発明に係る鎖状無機酸化物微粒子群を含有する水分散液であり、さらに詳述すれば、少なくともジルコニウム、ケイ素および酸素からなる複合酸化物で被覆されたシリカ系微粒子を、該シリカ系微粒子の被覆物質または該被覆物質から延びた前記複合酸化物の帯状物質を介して複数個、連結してなる鎖状シリカ系微粒子群を含有する水分散液である。   In this way, a mixed aqueous solution- (4) containing silica fine particle groups (chain inorganic oxide fine particle groups) coated with a composite oxide composed of at least zirconium, silicon and oxygen is obtained. That is, the mixed aqueous solution- (4) is an aqueous dispersion containing the chain inorganic oxide fine particle group according to the present invention. More specifically, the mixed aqueous solution is coated with a composite oxide composed of at least zirconium, silicon and oxygen. An aqueous dispersion containing a group of chain silica-based fine particles obtained by connecting a plurality of the silica-based fine particles via a coating material of the silica-based fine particles or a band-shaped material of the composite oxide extending from the coating material It is.

溶媒置換工程
前記工程(d)より得られる水分散液は、さらに必要に応じて該水分散液中に含まれる水を有機溶媒と溶媒置換して、鎖状無機酸化物微粒子群を含有する有機溶媒分散液とすることができる。
前記有機溶媒としては、その使用用途によっても異なるが、メタノール、エタノール、プロパノール、ブタノール、ジアセトンアルコール、フルフリルアルコール、テトラヒドルフルフリルアルコール、エチレングリール、ヘキシレングリコールなどのアルコール類、酢酸メチルエステル、酢酸エチルエステルなどのエステル類、ジエチルエーテル、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノブチルエーテル、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテルなどのエーテル類、アセトン、メチルエチルケトン、アセチルアセトン、アセト酢酸エステルなどのケトン類などを挙げることができる。また、これらの有機溶媒は、単独または2種以上を混合して用いることもできる。
Solvent replacement step The aqueous dispersion obtained from the step (d) further contains an organic solvent containing chain-like inorganic oxide fine particles by replacing the water contained in the aqueous dispersion with an organic solvent as necessary. A solvent dispersion can be obtained.
The organic solvent varies depending on the application, but alcohols such as methanol, ethanol, propanol, butanol, diacetone alcohol, furfuryl alcohol, tetrahydrfurfuryl alcohol, ethylene glycol, hexylene glycol, acetic acid Esters such as methyl ester and acetic acid ethyl ester, diethyl ether, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol monobutyl ether, diethylene glycol monomethyl ether, diethylene glycol monoethyl ether and other ethers, acetone, methyl ethyl ketone, acetyl acetone, aceto Mention may be made of ketones such as acetates. Moreover, these organic solvents can also be used individually or in mixture of 2 or more types.

さらに、前記の溶媒置換を行う方法としては、従来公知の方法を採用することができ、例えばロータリーエバポレーターを使用する方法や、限外濾過膜を使用する方法などがある。これらの方法について、その事例を簡単に述べれば、以下の通りである。
a)ロータリエバポレーター法
前記水分散液を、ロータリーエバポレーターのフラスコ中に入れ、さらに有機溶媒(例えば、メチルエチルケトン)をフラスコ中に入れる。次いで、ロータリーエバポレーターを駆動して、50〜90℃の温度条件下、−0.05〜−0.1MPaの減圧条件下で、前記フラスコを30〜120rpmの速度で回転させる。すると、前記水分散液中に含まれる水が蒸発してくるので、これを冷却して系外に排出する。
さらに、前記操作を必要時間、続けて行うことにより、前記水と有機溶媒とが溶媒置換された有機溶媒分散液が得られる。
Furthermore, as a method for performing the solvent substitution, a conventionally known method can be employed, for example, a method using a rotary evaporator or a method using an ultrafiltration membrane. A simple example of these methods is as follows.
a) Rotary evaporator method The aqueous dispersion is put into a rotary evaporator flask, and an organic solvent (for example, methyl ethyl ketone) is put into the flask. Next, the rotary evaporator is driven to rotate the flask at a speed of 30 to 120 rpm under a temperature condition of 50 to 90 ° C. and a reduced pressure condition of −0.05 to −0.1 MPa. Then, since water contained in the aqueous dispersion evaporates, it is cooled and discharged out of the system.
Furthermore, an organic solvent dispersion in which the water and the organic solvent are replaced by a solvent is obtained by continuously performing the above operation for a necessary time.

b)限外濾過膜法
前記水分散液と有機溶媒(例えば、メタノール)とを同量混合し、これを市販の限外濾過膜装置(旭化成ケミカルズ(株)製、マイクローザUF等)にかけて、濾過分離された濾水(水および有機溶媒を含む)を系外へ排出する。この操作を連続的に行い、前記混合液の液量が半分になった時点で、前記有機溶媒をさらに同量混合する。さらに、前記の操作を繰り返し行うことにより、前記水と有機溶媒とが溶媒置換された有機溶媒分散液が得られる。
b) Ultrafiltration membrane method The same amount of the aqueous dispersion and the organic solvent (for example, methanol) are mixed, and this is applied to a commercially available ultrafiltration membrane device (Asahi Kasei Chemicals Co., Ltd., Microza UF). The filtered water (including water and organic solvent) separated by filtration is discharged out of the system. This operation is continuously performed, and when the amount of the mixed solution becomes half, the same amount of the organic solvent is further mixed. Further, by repeating the above operation, an organic solvent dispersion in which the water and the organic solvent are replaced with a solvent can be obtained.

[鎖状シリカ系微粒子群を含有する水分散液]
本発明に係る鎖状シリカ系微粒子群を含有する水分散液は、
少なくともジルコニウム、ケイ素および酸素からなる複合酸化物で被覆されたシリカ系微粒子を、該シリカ系微粒子の被覆物質または該被覆物質から延びた前記複合酸化物の帯状物質を介して複数個、連結してなる鎖状シリカ系微粒子群を含有するものである。
ここで、前記シリカ系微粒子を被覆している複合酸化物は、少なくともジルコニウム、ケイ素および酸素からなる複合酸化物であり、その構造式の一部を示せば、以下の通りである。

| |
―O―Zr―O―Si―O― (I)
| |

また、本発明に係る分散液中に含まれる前記鎖状無機酸化物微粒子群は、概ね図1の電子顕微鏡写真に示すような形状を有している。
[Aqueous dispersion containing chain silica fine particles]
The aqueous dispersion containing the chain silica-based fine particle group according to the present invention,
A plurality of silica-based fine particles coated with a composite oxide comprising at least zirconium, silicon and oxygen are connected via a coating material of the silica-based fine particles or a band-shaped material of the composite oxide extending from the coating material. It contains a chain silica-based fine particle group.
Here, the composite oxide covering the silica-based fine particles is a composite oxide composed of at least zirconium, silicon and oxygen, and a part of the structural formula is as follows.

| |
-O-Zr-O-Si-O- (I)
| |

In addition, the chain-like inorganic oxide fine particle group contained in the dispersion according to the present invention has a shape generally shown in the electron micrograph of FIG.

[鎖状シリカ系微粒子群を含有する有機溶媒分散液]
本発明に係る鎖状シリカ系微粒子群を含有する有機溶媒分散液は、
少なくともジルコニウム、ケイ素および酸素からなる複合酸化物で被覆されたシリカ系微粒子を、該シリカ系微粒子の被覆物質または該被覆物質から延びた前記複合酸化物の帯状物質を介して複数個、連結してなる鎖状シリカ系微粒子群を含有するものである。
この有機溶媒分散液は、分散媒として水の代わりに有機溶媒を使用している以外は、前記水分散液と同じであるので、ここではその説明を省略する。
[Organic solvent dispersion containing chain silica fine particles]
The organic solvent dispersion containing the chain silica-based fine particle group according to the present invention,
A plurality of silica-based fine particles coated with a composite oxide comprising at least zirconium, silicon and oxygen are connected via a coating material of the silica-based fine particles or a band-shaped material of the composite oxide extending from the coating material. It contains a chain silica-based fine particle group.
Since this organic solvent dispersion is the same as the aqueous dispersion except that an organic solvent is used instead of water as a dispersion medium, the description thereof is omitted here.

以下、本発明を実施例に基づき詳細に説明するが、本発明はこれらの実施例に限定されるものではない。 EXAMPLES Hereinafter, although this invention is demonstrated in detail based on an Example, this invention is not limited to these Examples.

[調製例1]
酸化ジルコニウム水和物の調製
オキシ塩化ジルコニウム250kg(ZrOCl2・8H2O、太陽鉱工(株)製)を温度15℃の純水4375kgに加えて攪拌し、オキシ塩化ジルコニウムを溶解させた。
さらに、このオキシ塩化ジルコニウム水溶液に、15重量%濃度のアンモニア水250 Lを攪拌下でゆっくりと添加して、15℃の温度条件下で前記オキシ塩化ジルコニウムの中和反応を行い、酸化ジルコニウム水和物の沈殿を含むスラリーを得た。このスラリーのpHは8.5であった。
次いで、このスラリーを濾過し、得られたケーキ状物質を純水で繰り返し洗浄して、前記中和反応での副生物や未反応物などを除去した。
その結果、酸化ジルコニウム水和物をZrO2換算基準で10重量%含み、残余物が水分であるケーキ状物質860kgを得た。
[Preparation Example 1]
Preparation of Zirconium Oxide Hydrate 250 kg of zirconium oxychloride (ZrOCl 2 .8H 2 O, manufactured by Taiyo Mining Co., Ltd.) was added to 4375 kg of pure water at a temperature of 15 ° C. and stirred to dissolve the zirconium oxychloride.
Further, in this aqueous solution of zirconium oxychloride, ammonia water having a concentration of 15% by weight is added. L was slowly added under stirring, and the zirconium oxychloride was neutralized under a temperature condition of 15 ° C. to obtain a slurry containing zirconium oxide hydrate precipitates. The pH of this slurry was 8.5.
Subsequently, this slurry was filtered, and the obtained cake-like substance was repeatedly washed with pure water to remove by-products and unreacted substances in the neutralization reaction.
As a result, 860 kg of a cake-like substance containing 10% by weight of zirconium oxide hydrate on a ZrO 2 conversion basis and the remainder being moisture was obtained.

[調製例2]
珪酸液の調製
市販の水ガラス10kg(旭硝子エスアイテック(株)製)を純水38kgで希釈した後、陽イオン交換樹脂(三菱化学(株)製)を用いて脱アルカリして、pHが3で、SiO2濃度が4重量%の珪酸液9kgを調製した。その後、この珪酸液10768gと純水14860gを混合し、2重量%の珪酸液25628gを調製した。
[Preparation Example 2]
Preparation of silicic acid solution After diluting 10 kg of commercially available water glass (Asahi Glass S-Tech Co., Ltd.) with 38 kg of pure water, it is dealkalized using a cation exchange resin (Mitsubishi Chemical Corporation). 9 kg of a silicic acid solution having a pH of 3 and a SiO 2 concentration of 4% by weight was prepared. Thereafter, 10768 g of this silicic acid solution and 14860 g of pure water were mixed to prepare 25628 g of a 2 wt% silicic acid solution.

水分散液の調製
[実施例1]
調製例1で調製された酸化ジルコニウム水和物を含むケーキ状物質5416gに純水45800gを加え、さらに攪拌しながら水酸化カリウム(関東化学(株)製)を85重量%含む水酸化カリウム1024gを添加してアルカリ性にした後、過酸化水素(林純薬工業(株)製)を35重量%含む過酸化水素水10248gを添加した。
さらに、この混合水溶液を攪拌しながら1時間、放置し、前記酸化ジルコニウム水和物を解膠して水溶液中に溶解させた。次いで、純水を冷凍して得られた氷水39991gを加えて、発熱反応によって温度が上昇した前記水溶液を30℃以下の温度に冷却した。これにより、ZrO2換算基準でジルコニウム成分を0.5重量%含み、pHが約11の混合水溶液102400g(以下、実施例調製液1Aという)を得た。
Preparation of aqueous dispersion [Example 1]
45800 g of pure water was added to 5416 g of the cake-like substance containing zirconium oxide hydrate prepared in Preparation Example 1, and 1024 g of potassium hydroxide containing 85% by weight of potassium hydroxide (manufactured by Kanto Chemical Co., Ltd.) was further stirred. After making it alkaline by adding, 10248 g of hydrogen peroxide containing 35% by weight of hydrogen peroxide (manufactured by Hayashi Pure Chemical Industries, Ltd.) was added.
Furthermore, this mixed aqueous solution was allowed to stand for 1 hour with stirring, and the zirconium oxide hydrate was peptized and dissolved in the aqueous solution. Next, 39991 g of ice water obtained by freezing pure water was added, and the aqueous solution whose temperature was increased by an exothermic reaction was cooled to a temperature of 30 ° C. or lower. As a result, 102400 g of a mixed aqueous solution (hereinafter referred to as Example Preparation Solution 1A) containing 0.5% by weight of the zirconium component on the basis of ZrO 2 and having a pH of about 11 was obtained.

平均粒子径12nmのシリカ微粒子を30重量%含むシリカゾル3336g(触媒化成工業(株)製 SI-30)に純水47900gを加えて十分に撹拌し、シリカ微粒子濃度2重量%のシリカゾル51236gを得た。
次に、前記シリカゾルを90℃に加熱し、これを撹拌しながら、これに調製例2で調製された珪酸液の水溶液12814gと前記実施例調製液1A51200gを10 時間かけてゆっくりと添加した。これにより、pHが約11の混合水溶液115250g(以下、実施例調製液1B-(1)という)を得た。
次いで、前記実施例調製液1B-(1)を陽イオン交換樹脂(三菱化学(株)製、SK1BH)で処理して脱アルカリした。これにより、pHが約9.5の混合水溶液117250g(以下、実施例調製液1C-(1)という)を得た。
47,900 g of pure water was added to 3336 g of silica sol containing 30% by weight of silica fine particles having an average particle size of 12 nm (SI-30 manufactured by Catalyst Kasei Kogyo Co., Ltd.) and stirred sufficiently to obtain 51236 g of silica sol having a silica fine particle concentration of 2 wt%. .
Next, the silica sol was heated to 90 ° C., and while stirring it, 12814 g of an aqueous solution of the silicic acid solution prepared in Preparation Example 2 and 51200 g of the Example Preparation Solution 1A were slowly added over 10 hours. As a result, 115250 g of a mixed aqueous solution having a pH of about 11 (hereinafter referred to as Example Preparation Solution 1B- (1)) was obtained.
Next, the Example preparation solution 1B- (1) was treated with a cation exchange resin (SK1BH, manufactured by Mitsubishi Chemical Corporation) to dealkalize. As a result, 117250 g of a mixed aqueous solution having a pH of about 9.5 (hereinafter referred to as Example Preparation Solution 1C- (1)) was obtained.

さらに、前記実施例調製液1C-(1)を90℃に加熱し、これを撹拌しながら、これに調製例2で調製された珪酸液の水溶液12814gと前記実施例調製液1A51200gを 10 時間かけてゆっくりと添加した。これにより、pHが約11の混合水溶液181264g(以下、実施例調製液1B-(2)という)を得た。
次に、前記実施例調製液1B-(2)を陽イオン交換樹脂(三菱化学(株)製、SK1BH)で処理して脱アルカリした。これにより、pHが約9.5の混合水溶液182264g(以下、実施例調製液1C-(2)という)を得た。
Furthermore, while heating Example Preparation Solution 1C- (1) to 90 ° C. and stirring it, 12814 g of the aqueous solution of silicic acid solution prepared in Preparation Example 2 and 51200 g of Example Preparation Solution 1A were taken for 10 hours. Slowly added. As a result, 181264 g of a mixed aqueous solution having a pH of about 11 (hereinafter referred to as Example Preparation Solution 1B- (2)) was obtained.
Next, the Example preparation solution 1B- (2) was treated with a cation exchange resin (SK1BH, manufactured by Mitsubishi Chemical Corporation) to dealkalize. As a result, 182264 g of a mixed aqueous solution having a pH of about 9.5 (hereinafter referred to as Example Preparation Solution 1C- (2)) was obtained.

次いで、前記実施例調製液1C-(2)100200gをステンレススチール製のオートクレーブ(耐圧ガラス工業(株)製)の中に入れ、165℃の温度で18時間、水熱処理を行った。これにより、表面被覆された無機酸化物微粒子群の固形分を含む混合水溶液 99750g(以下、実施例調製液1Dという)を得た。 Next, 100200 g of Example Preparation Solution 1C- (2) was placed in a stainless steel autoclave (manufactured by Pressure Glass Industrial Co., Ltd.) and hydrothermally treated at a temperature of 165 ° C. for 18 hours. Thereby, a mixed aqueous solution containing the solid content of the surface-coated inorganic oxide fine particle group 99750 g (hereinafter referred to as Example Preparation Solution 1D) was obtained.

このようにして得られた前記実施例調製液1D中から無機酸化物微粒子群のサンプルを取り出し、これを電解放出型走査電子顕微鏡(日立ハイテクノロジーズ(株)製 FE-SEM)を用いて倍率25万倍の電子顕微鏡写真を撮ったところ、図1に示す通りであった。
この結果、前記無機酸化物微粒子群は、前記複合酸化物で被覆されたシリカ系微粒子を、該シリカ系微粒子の被覆物質または該被覆物質から延びた前記複合酸化物の帯状物質を介して複数個、連結してなる鎖状形状を有していることがわかった。
A sample of the inorganic oxide fine particle group was taken out from the Example preparation liquid 1D thus obtained, and this was taken out using a field emission scanning electron microscope (FE-SEM manufactured by Hitachi High-Technologies Corporation) at a magnification of 25. The result of taking an electron micrograph at a magnification of 10,000 was as shown in FIG.
As a result, the inorganic oxide fine particle group includes a plurality of silica-based fine particles coated with the composite oxide via a coating material of the silica-based fine particles or a band-shaped material of the composite oxide extending from the coating material. , It was found to have a chain shape formed by linking.

さらに、前記無機酸化物微粒子群のサンプルをX線回折装置(RINT-1400、X線回折法)でX線回折ピークを測定したところ、共に結晶性ピークは認められず、非晶質の無機酸化物微粒子群であることがわかった。これらのサンプルを電解放出型透過電子顕微鏡(日立ハイテクノロジーズ(株)製 FE-TEM)を用いて、前記被覆物質(シリカ系微粒子間に延びた帯状物質を選択)の組成を測定・分析したところ、該被覆物質はジルコニウム、ケイ素および酸素からなる複合酸化物であることがわかった。
なお、比較を容易にするため、これらの測定結果を表1に示す。
Further, when the X-ray diffraction peak of the sample of the inorganic oxide fine particle group was measured with an X-ray diffractometer (RINT-1400, X-ray diffraction method), no crystalline peak was observed and amorphous inorganic oxidation was not observed. It was found to be a fine particle group. Using these field emission electron microscopes (Hitachi High-Technologies Corporation's FE-TEM), these samples were measured and analyzed for the composition of the coating material (select a band-shaped material extending between silica-based fine particles). The coating material was found to be a complex oxide composed of zirconium, silicon and oxygen.
These measurement results are shown in Table 1 for easy comparison.

[実施例2および比較例1]
実施例1で前記実施例調製液1C-(2)を調製した方法と同じ方法で、調製液2C-(2) 15000gを調製した。
次いで、前記調製液2C-(2)の中から4800gずつを取り出し、ステンレススチール製のオートクレーブ(耐圧ガラス工業(株)製)の中に入れて、それぞれ90℃、110℃、300℃の温度で18時間、水熱処理を行った。これにより、表面被覆された無機酸化物微粒子群からなる固形分を含む混合水溶液(以下、それぞれ比較例調製液1D、実施例調製液2D-(1)および実施例調製液2D-(2)という)を得た。
[Example 2 and Comparative Example 1]
In Example 1, 15000 g of Preparation Solution 2C- (2) was prepared in the same manner as in Example 1 Preparation Solution 1C- (2).
Next, 4800 g of each of the preparation solutions 2C- (2) was taken out and placed in a stainless steel autoclave (manufactured by Pressure Glass Industry Co., Ltd.) at temperatures of 90 ° C., 110 ° C., and 300 ° C., respectively. Hydrothermal treatment was performed for 18 hours. As a result, mixed aqueous solutions containing solids composed of surface-coated inorganic oxide fine particle groups (hereinafter referred to as Comparative Example Preparation Solution 1D, Example Preparation Solution 2D- (1) and Example Preparation Solution 2D- (2), respectively). )

このようにして得られた比較例調製液1D、実施例調製液2D-(1)および実施例調製液2D-(2)の中から無機酸化物微粒子群のサンプルを取り出し、これを電解放出型走査電子顕微鏡(日立ハイテクノロジーズ(株)製 FE-SEM)を用いて倍率25万倍の電子顕微鏡写真を撮った無機酸化物微粒子群の形状を観察した。さらに、前記比較例調製液1D、実施例調製液2D-(1)および実施例調製液2D-(2)の中から無機酸化物微粒子群のサンプルを取り出し、実施例1の場合と同様に、これらをX線回折装置(RINT-1400、X線回折法)でX線回折ピークを測定し、得られた無機酸化物微粒子群が非晶質であるかどうかを調べた。また、実施例1の場合と同様に、これらのサンプルを電解放出型透過電子顕微鏡(日立ハイテクノロジーズ(株)製 FE-TEM)を用いて、前記被覆物質(シリカ系微粒子間に延びた帯状物質を選択)の組成を測定・分析して、該被覆物質中にジルコニウム、ケイ素および酸素からなる複合酸化物が存在するかどうかを調べた。その結果を表1に示す。   A sample of the inorganic oxide fine particle group is taken out from the comparative example preparation liquid 1D, the example preparation liquid 2D- (1) and the example preparation liquid 2D- (2) thus obtained, and this is electrolytically released. Using a scanning electron microscope (FE-SEM manufactured by Hitachi High-Technologies Corporation), the shape of the inorganic oxide fine particle group obtained by taking an electron micrograph at a magnification of 250,000 times was observed. Further, a sample of the inorganic oxide fine particle group was taken out from the comparative preparation liquid 1D, the exemplary preparation liquid 2D- (1), and the exemplary preparation liquid 2D- (2). These were measured with an X-ray diffractometer (RINT-1400, X-ray diffractometry) to determine whether or not the resulting inorganic oxide fine particle group was amorphous. In the same manner as in Example 1, these samples were subjected to the above-mentioned coating material (a band-shaped material extending between silica-based fine particles) using a field emission transmission electron microscope (FE-TEM manufactured by Hitachi High-Technologies Corporation). The composition was measured and analyzed to determine whether a composite oxide composed of zirconium, silicon and oxygen was present in the coating material. The results are shown in Table 1.

[実施例3および比較例2]
実施例1で前記実施例調製液1Aを調製した方法と同じ方法で、調製液2A98kgを調製した。
次に、調製例2で調製された珪酸液と前記調製液2Aを以下に示す割合にて、実施例1と同様な方法で、90℃に加熱されたシリカゾル13480g中に2回に分けて添加すると共に、脱アルカリ処理を行った。なお、下記のモル比は、前記珪酸液中に含まれる珪素成分をSiO2で表し、さらに前記水溶液中に含まれるジルコニウム成分をZrO2で表したときのものを示す。
[Example 3 and Comparative Example 2]
In Example 1, 98 kg of Preparation Solution 2A was prepared in the same manner as in Example 1 Preparation Solution 1A.
Next, the silicic acid solution prepared in Preparation Example 2 and the preparation solution 2A were added in two portions to 13480 g of silica sol heated to 90 ° C. in the same manner as in Example 1 in the following ratio. In addition, dealkalization treatment was performed. The molar ratio of below represents the silicon components contained in the silicic acid solution with SiO 2, showing a further obtained when the zirconium components contained in the aqueous solution, expressed in ZrO 2.

珪酸液(g) 調製液2A(g) モル比(SiO 2 /ZrO 2
混合水溶液1 10784.0 43136.0 2/1
混合水溶液2 5055.0 20200.0 2/1
混合水溶液3 8087.5 32350.0 2/1
混合水溶液4 337.0 1348.0 2/1
Silicic acid solution (g) Preparation solution 2A (g) molar ratio (SiO 2 / ZrO 2 )
Mixed aqueous solution 1 10784.0 41336.0 2/1
Mixed aqueous solution 2 5055.0 20200.0 2/1
Mixed aqueous solution 3 8087.5 32350.0 2/1
Mixed aqueous solution 4 337.0 1348.0 2/1

次いで、前記混合水溶液1〜4(すなわち、それぞれ比較例調製液2C-(1)、実施例調製液3C-(1)、実施例調製液3C-(2)および比較例調製液2C-(2)である。)から2000gずつを取り出し、ステンレススチール製のオートクレーブ(耐圧ガラス工業(株)製)の中に入れ、それぞれ160℃の温度で16時間、水熱処理を行った。これにより、表面被覆された無機酸化物微粒子群からなる固形分を含む混合水溶液(以下、それぞれ比較例調製液2D-(1)、実施例調製液3D-(1)、実施例調製液3D-(2)および比較例調製液2D-(2)という)を得た。   Subsequently, the mixed aqueous solutions 1 to 4 (that is, Comparative Example Preparation Solution 2C- (1), Example Preparation Solution 3C- (1), Example Preparation Solution 3C- (2), and Comparative Example Preparation Solution 2C- (2 2000 g each was taken out from the sample and placed in a stainless steel autoclave (manufactured by Pressure Glass Industrial Co., Ltd.), and hydrothermally treated at a temperature of 160 ° C. for 16 hours. As a result, mixed aqueous solutions containing solids composed of surface-coated inorganic oxide fine particle groups (hereinafter referred to as Comparative Example Preparation Solution 2D- (1), Example Preparation Solution 3D- (1), and Example Preparation Solution 3D-, respectively). (2) and Comparative Example Preparation Solution 2D- (2)).

このようにして得られた比較例調製液2D-(1)、実施例調製液3D-(1)、実施例調製液3D-(2)および比較例調製液2D-(2)の中から無機酸化物微粒子群のサンプルを取り出し、これを電解放出型走査電子顕微鏡(日立ハイテクノロジーズ(株)製 FE-SEM)を用いて倍率25万倍の電子顕微鏡写真を撮った無機酸化物微粒子群の形状を観察した。さらに、前記比較例調製液2D-(1)、実施例調製液3D-(1)、実施例調製液3D-(2)および比較例調製液2D-(2)の中から無機酸化物微粒子群のサンプルを取り出し、実施例1の場合と同様に、これらをX線回折装置(RINT-1400、X線回折法)でX線回折ピークを測定し、得られた無機酸化物微粒子群が非晶質であるかどうかを調べた。また、実施例1の場合と同様に、これらのサンプルを電解放出型透過電子顕微鏡(日立ハイテクノロジーズ(株)製 FE-TEM)を用いて、前記被覆物質(シリカ系微粒子間に延びた帯状物質を選択)の組成を測定・分析して、該被覆物質中にジルコニウム、ケイ素および酸素からなる複合酸化物が存在するかどうかを調べた。その結果を表1に示す。 Of the thus-obtained Comparative Example Preparation Solution 2D- (1), Example Preparation Solution 3D- (1), Example Preparation Solution 3D- (2), and Comparative Example Preparation Solution 2D- (2) A sample of oxide fine particle group was taken out and the shape of inorganic oxide fine particle group obtained by taking an electron micrograph of 250,000 times magnification using a field emission scanning electron microscope (FE-SEM manufactured by Hitachi High-Technologies Corporation) Was observed. Further, inorganic oxide fine particles from the above-mentioned Comparative Example Preparation Solution 2D- (1), Example Preparation Solution 3D- (1), Example Preparation Solution 3D- (2) and Comparative Example Preparation Solution 2D- (2) As in Example 1, these samples were measured for X-ray diffraction peaks with an X-ray diffractometer (RINT-1400, X-ray diffraction method), and the resulting inorganic oxide fine particle group was amorphous. We checked whether it was quality. In the same manner as in Example 1, these samples were subjected to the above-mentioned coating material (a band-shaped material extending between silica-based fine particles) using a field emission transmission electron microscope (FE-TEM manufactured by Hitachi High-Technologies Corporation). The composition was measured and analyzed to determine whether a composite oxide composed of zirconium, silicon and oxygen was present in the coating material. The results are shown in Table 1.

[実施例4および比較例3]
実施例1で前記実施例調製液1Aを調製した方法と同じ方法で、調製液3A60.0kgを調製した。
次に、調製例2で調製された珪酸液6740gと前記調製液3A26960gを、実施例1と同様な方法で、50℃および80℃に加熱されたシリカゾル13480g中に2回に分けて添加すると共に、脱アルカリ処理を行った。
次いで、得られた混合水溶液(すなわち、それぞれ比較例調製液3Cおよび実施例調製液4Cである。)を、ステンレススチール製のオートクレーブ(耐圧ガラス工業(株)製)の中に入れて、それぞれ160℃の温度で16時間、水熱処理を行った。これにより、表面被覆された無機酸化物微粒子群からなる固形分を含む混合水溶液(以下、それぞれ比較例調製液3Dおよび実施例調製液4Dという)を得た。
[Example 4 and Comparative Example 3]
In Example 1, 60.0 kg of Preparation Solution 3A was prepared in the same manner as in Example 1 Preparation Solution 1A.
Next, 6740 g of the silicic acid solution prepared in Preparation Example 2 and 26960 g of the above-mentioned Preparation Solution 3A are added in two portions to 13480 g of silica sol heated to 50 ° C. and 80 ° C. in the same manner as in Example 1. Then, dealkalization treatment was performed.
Next, the obtained mixed aqueous solutions (that is, Comparative Preparation Liquid 3C and Example Preparation Liquid 4C, respectively) were put in a stainless steel autoclave (manufactured by Pressure Glass Industry Co., Ltd.), and each 160 Hydrothermal treatment was performed at a temperature of ° C for 16 hours. As a result, mixed aqueous solutions containing the solid content of the surface-coated inorganic oxide fine particle groups (hereinafter referred to as Comparative Example Preparation Solution 3D and Example Preparation Solution 4D, respectively) were obtained.

このようにして得られた比較例調製液3Dおよび実施例調製液4Dの中から無機酸化物微粒子群のサンプルを取り出し、これを電解放出型走査電子顕微鏡(日立ハイテクノロジーズ(株)製 FE-SEM)を用いて倍率25万倍の電子顕微鏡写真を撮った無機酸化物微粒子群の形状を観察した。さらに、前記比較例調製液3Dおよび実施例調製液4Dの中から無機酸化物微粒子群のサンプルを取り出し、実施例1の場合と同様に、これらをX線回折装置(RINT-1400、X線回折法)でX線回折ピークを測定し、得られた無機酸化物微粒子群が非晶質であるかどうかを調べた。また、実施例1の場合と同様に、これらのサンプルを電解放出型透過電子顕微鏡(日立ハイテクノロジーズ(株)製 FE-TEM)を用いて、前記被覆物質(シリカ系微粒子間に延びた帯状物質を選択)の組成を測定・分析して、該被覆物質中にジルコニウム、ケイ素および酸素からなる複合酸化物が存在するかどうかを調べた。その結果を表1に示す。 A sample of the inorganic oxide fine particle group was taken out from the comparative example preparation liquid 3D and the example preparation liquid 4D thus obtained, and this was taken out by using a field emission scanning electron microscope (FE-SEM manufactured by Hitachi High-Technologies Corporation). ) Was used to observe the shape of the inorganic oxide fine particle group obtained by taking an electron micrograph at a magnification of 250,000 times. Further, samples of the inorganic oxide fine particle group are taken out from the comparative preparation liquid 3D and the exemplary preparation liquid 4D, and in the same manner as in the first embodiment, these samples are obtained by using an X-ray diffractometer (RINT-1400, X-ray diffraction). The X-ray diffraction peak was measured by (Method), and it was examined whether the obtained inorganic oxide fine particle group was amorphous. In the same manner as in Example 1, these samples were subjected to the above-mentioned coating material (a band-shaped material extending between silica-based fine particles) using a field emission transmission electron microscope (FE-TEM manufactured by Hitachi High-Technologies Corporation). The composition was measured and analyzed to determine whether a composite oxide composed of zirconium, silicon and oxygen was present in the coating material. The results are shown in Table 1.

[比較例4]
実施例1で前記実施例調製液1Aを調製した方法と同じ方法で、調製液4A28kgを調製した。
次に、調製例2で調製された珪酸液6740gと前記調製液4A26960gを、90℃に加熱されたシリカゾル13480g中に1回で添加し、脱アルカリ処理を行った。
次いで、得られた混合水溶液(すなわち、比較例調製液4Cである。)を、ステンレススチール製のオートクレーブ(耐圧ガラス工業(株)製)の中に入れて、それぞれ160℃の温度で16時間、水熱処理を行った。これにより、無機酸化物微粒子群からなる固形分を含む混合水溶液(以下、比較例調製液4Dという)を得た。
[Comparative Example 4]
28 kg of the preparation liquid 4A was prepared in the same manner as the preparation liquid 1A of the example in Example 1.
Next, 6740 g of the silicic acid solution prepared in Preparation Example 2 and 26960 g of the preparation solution 4A were added at once to 13480 g of silica sol heated to 90 ° C., and dealkalized.
Next, the obtained mixed aqueous solution (that is, Comparative Example Preparation Solution 4C) was put into a stainless steel autoclave (manufactured by Pressure Glass Industry Co., Ltd.), and each was at a temperature of 160 ° C. for 16 hours. Hydrothermal treatment was performed. This obtained the mixed aqueous solution (henceforth the comparative example preparation liquid 4D) containing the solid content which consists of inorganic oxide fine particle groups.

このようにして得られた比較例調製液4Dの中から無機酸化物微粒子群のサンプルを取り出し、これを電解放出型走査電子顕微鏡(日立ハイテクノロジーズ(株)製 FE-SEM)を用いて倍率25万倍の電子顕微鏡写真を撮った無機酸化物微粒子群の形状を観察した。さらに、前記比較例調製液4Dの中から無機酸化物微粒子群のサンプルを取り出し、実施例1の場合と同様に、これらをX線回折装置(RINT-1400、X線回折法)でX線回折ピークを測定し、得られた無機酸化物微粒子群が非晶質であるかどうかを調べた。また、実施例1の場合と同様に、これらのサンプルを電解放出型透過電子顕微鏡(日立ハイテクノロジーズ(株)製 FE-TEM)を用いて、前記被覆物質(シリカ系微粒子間に延びた帯状物質を選択)の組成を測定・分析して、該被覆物質中にジルコニウム、ケイ素および酸素からなる複合酸化物が存在するかどうかを調べた。その結果を表1に示す。 A sample of the inorganic oxide fine particle group was taken out from the comparative preparation liquid 4D obtained in this way, and this was taken out using a field emission scanning electron microscope (FE-SEM manufactured by Hitachi High-Technologies Corporation) at a magnification of 25. The shape of the inorganic oxide fine particle group which took the electron micrograph of 10,000 times was observed. Further, a sample of the inorganic oxide fine particle group is taken out from the comparative preparation liquid 4D, and X-ray diffraction is performed using an X-ray diffractometer (RINT-1400, X-ray diffractometry) in the same manner as in Example 1. The peak was measured and it was investigated whether the obtained inorganic oxide fine particle group was amorphous. In the same manner as in Example 1, these samples were subjected to the above-mentioned coating material (a band-shaped material extending between silica-based fine particles) using a field emission transmission electron microscope (FE-TEM manufactured by Hitachi High-Technologies Corporation). The composition was measured and analyzed to determine whether a composite oxide composed of zirconium, silicon and oxygen was present in the coating material. The results are shown in Table 1.

[比較例5]
平均粒子径17nmのシリカ微粒子をSiO2基準で10重量%含むシリカゾル(触媒化成工業(株)製、カタロイドS−20L)を蒸留水で希釈して、3重量%のシリカ微粒子を含むシリカゾル1867gを得た。これに、濃度3重量%のNaOH水溶液12gと、ジルコニウム成分をZrO2基準で4重量%含む炭酸ジルコニルアンモニウム水溶液407g(第一稀元素化学工業(株)製、ジルコゾールAC−7)を添加した後、15分間攪拌してこれらの混合スラリー液(以下、比較例調製液5Dという)2286gを調製した。
[Comparative Example 5]
A silica sol containing 10% by weight of silica fine particles having an average particle diameter of 17 nm on a basis of SiO 2 (catalyst S-20L, manufactured by Catalyst Chemical Industry Co., Ltd.) was diluted with distilled water to obtain 1867 g of silica sol containing 3% by weight of silica fine particles. Obtained. After adding 12 g of NaOH aqueous solution having a concentration of 3 wt% and 407 g of zirconyl ammonium carbonate aqueous solution containing 4 wt% of zirconium component based on ZrO 2 (Zircosol AC-7, manufactured by Daiichi Elemental Chemical Co., Ltd.) Then, 2286 g of these mixed slurry liquids (hereinafter referred to as Comparative Example Preparation Liquid 5D) were prepared by stirring for 15 minutes.

このようにして得られた比較例調製液5Dの中から無機酸化物微粒子群のサンプルを取り出し、これを電解放出型走査電子顕微鏡(日立ハイテクノロジーズ(株)製 FE-SEM)を用いて倍率25万倍の電子顕微鏡写真を撮った無機酸化物微粒子群の形状を観察した。さらに、前記比較例調製液5Dの中から無機酸化物微粒子群のサンプルを取り出し、実施例1の場合と同様に、これらをX線回折装置(RINT-1400、X線回折法)でX線回折ピークを測定し、得られた無機酸化物微粒子群が非晶質であるかどうかを調べた。また、実施例1の場合と同様に、これらのサンプルを電解放出型透過電子顕微鏡(日立ハイテクノロジーズ(株)製 FE-TEM)を用いて、前記被覆物質(シリカ系微粒子間に延びた帯状物質を選択)の組成を測定・分析して、該被覆物質中にジルコニウム、ケイ素および酸素からなる複合酸化物が存在するかどうかを調べた。その結果を表1に示す。 A sample of the inorganic oxide fine particle group was taken out of the comparative preparation liquid 5D thus obtained, and this was taken using a field emission scanning electron microscope (FE-SEM manufactured by Hitachi High-Technologies Corporation) at a magnification of 25. The shape of the inorganic oxide fine particle group which took the electron micrograph of 10,000 times was observed. Further, a sample of the inorganic oxide fine particle group is taken out from the comparative preparation liquid 5D, and X-ray diffraction is performed using an X-ray diffractometer (RINT-1400, X-ray diffraction method) in the same manner as in Example 1. The peak was measured and it was investigated whether the obtained inorganic oxide fine particle group was amorphous. In the same manner as in Example 1, these samples were subjected to the above-mentioned coating material (a band-shaped material extending between silica-based fine particles) using a field emission transmission electron microscope (FE-TEM manufactured by Hitachi High-Technologies Corporation). The composition was measured and analyzed to determine whether a composite oxide composed of zirconium, silicon and oxygen was present in the coating material. The results are shown in Table 1.

上記の表1において、○印は、その大部分がジルコニウム、ケイ素および酸素からなる複合酸化物になっており、△印は、その一部分が前記複合酸化物になっており、また×印は、その殆どが前記複合酸化物になっていないことを意味する。 In Table 1 above, a circle mark is a complex oxide composed mostly of zirconium, silicon and oxygen, a triangle mark is a part of the complex oxide, and a cross mark is It means that most of them are not the complex oxide.

[実施例5]
実施例1で前記実施例調製液1Dを調製した方法と同じ方法で、調製液5D12kgを調製した。
次に、前記調製液5Dを限外濾過膜装置(旭化成ケミカルズ(株)製、マイクローザUF)にかけて、該調製液中に含まれる水をメタノール(有機溶媒)に溶媒置換した。その具体的な方法を述べれば、以下の通りである。
(1)前記調製液5D10kgとメタノール10kgとを混合し、この混合液を限外濾過膜装置にかけて、濾過分離された濾水(水およびメタノールを含む)を系外へ排出した。この操作を連続的に行い、前記混合液の量が約10kgになった時点で、該混合液にメタノール10kgを加えて、さらに同様な操作を行った。
(2)前記混合液中に含まれる水分濃度が0.5重量%になるまで、前記の操作を繰り返し行った。
これにより、無機酸化物微粒子群からなる固形分を含む混合メタノール液(以下、実施例調製液5Dという)を得た。
[Example 5]
In the same manner as in Example 1, the preparation liquid 5D (12D) was prepared in the same manner as the above-mentioned preparation liquid 1D.
Next, the prepared solution 5D was applied to an ultrafiltration membrane device (manufactured by Asahi Kasei Chemicals Corporation, Microza UF), and the water contained in the prepared solution was solvent-substituted with methanol (organic solvent). The specific method is described as follows.
(1) The prepared solution 5D (10 kg) and methanol (10 kg) were mixed, and this mixed solution was applied to an ultrafiltration membrane device, and filtrated water (including water and methanol) was discharged out of the system. This operation was continuously performed, and when the amount of the mixed solution reached about 10 kg, 10 kg of methanol was added to the mixed solution, and the same operation was further performed.
(2) The above operation was repeated until the water concentration contained in the mixed solution reached 0.5% by weight.
This obtained the mixed methanol liquid (henceforth Example preparation liquid 5D) containing the solid content which consists of inorganic oxide fine particle groups.

実施例1で製造した実施例粉体1A-(1)の中から無機酸化物微粒子群のサンプルを電解放出型走査電子顕微鏡(日立ハイテクノロジーズ(株)製 FE-SEM)を用いて電子顕微鏡写真(倍率25万倍)を撮った結果を示す。An electron micrograph of a sample of inorganic oxide fine particles from Example Powder 1A- (1) produced in Example 1 using a field emission scanning electron microscope (FE-SEM manufactured by Hitachi High-Technologies Corporation). The result of taking (magnification 250,000 times) is shown.

Claims (18)

シリカ系微粒子の表面を、少なくともジルコニウム、ケイ素および酸素からなる複合酸化物で被覆してなる鎖状シリカ系微粒子群を含有する水分散液を製造する方法であって、
(a)酸化ジルコニウム水和物を含む水溶液に、アルカリ金属の水酸化物と過酸化水素を添加して攪拌することにより、該酸化ジルコニウム水和物を解膠して溶解させた水溶液を調製する工程、
(b)平均粒子径2〜300nmのシリカ系微粒子を水に分散させたシリカゾルに、前記工程(a)で得られた水溶液と珪酸液の水溶液を撹拌しながら添加する工程、
(c)前記工程(b)で得られた水溶液を陽イオン交換樹脂で処理して脱アルカリする工程、および
(d)前記工程(c)で得られた水溶液を反応容器中に入れて、100〜350℃の温度で水熱処理する工程
を含むことを特徴とする鎖状シリカ系微粒子群を含有する水分散液の製造方法。
A method for producing an aqueous dispersion containing a group of chain silica-based fine particles formed by coating the surface of silica-based fine particles with a composite oxide comprising at least zirconium, silicon and oxygen,
(A) By adding an alkali metal hydroxide and hydrogen peroxide to an aqueous solution containing zirconium oxide hydrate and stirring, an aqueous solution in which the zirconium oxide hydrate is peptized and dissolved is prepared. Process,
(B) a step of adding the aqueous solution obtained in the step (a) and an aqueous solution of a silicic acid solution with stirring to a silica sol in which silica-based fine particles having an average particle size of 2 to 300 nm are dispersed in water;
(C) a step of treating the aqueous solution obtained in the step (b) with a cation exchange resin to dealkalize, and (d) placing the aqueous solution obtained in the step (c) in a reaction vessel, A method for producing an aqueous dispersion containing chain silica-based fine particle groups, comprising a step of hydrothermal treatment at a temperature of ˜350 ° C.
前記工程(a)において酸化ジルコニウム水和物が、オキシ塩化ジルコニウム、オキシ硫酸ジルコニウム、オキシ硝酸ジルコニウム、オキシ酢酸ジルコニウム、オキシ炭酸ジルコニウムおよびアンモニウムオキシ炭酸ジルコニウムから選ばれた1種または2種以上のジルコン酸塩の水溶液にアンモニアまたはアンモニア水を撹拌下で添加して得られる中和反応物を洗浄したものであることを特徴とする請求項1に記載の鎖状シリカ系微粒子群を含有する水分散液の製造方法。   In the step (a), the zirconium oxide hydrate is selected from the group consisting of zirconium oxychloride, zirconium oxysulfate, zirconium oxynitrate, zirconium oxyacetate, zirconium oxycarbonate, and ammonium zirconium oxycarbonate. The aqueous dispersion containing chain silica-based fine particle groups according to claim 1, wherein a neutralized reaction product obtained by adding ammonia or aqueous ammonia to an aqueous salt solution with stirring is washed. Manufacturing method. 前記工程(a)においてアルカリ金属の水酸化物が、水酸化カリウムであることを特徴とする請求項1〜2のいずれかに記載の鎖状シリカ系微粒子群を含有する水分散液の製造方法。   The method for producing an aqueous dispersion containing chain silica-based fine particle groups according to any one of claims 1 to 2, wherein the alkali metal hydroxide in the step (a) is potassium hydroxide. . 前記工程(a)においてアルカリ金属の水酸化物(MOH)の添加量が、前記酸化ジルコニウム水和物(ZrO2・xH2O)に対して、モル比(MOH/ZrO2・xH2O)で1/1〜10/1の範囲にあることを特徴とする請求項1〜3のいずれかに記載の鎖状シリカ系微粒子群を含有する水分散液の製造方法。 The addition amount of the alkali metal hydroxide (MOH) in the step (a) the zirconium oxide hydrate relative (ZrO 2 · xH 2 O) , the molar ratio (MOH / ZrO 2 · xH 2 O) The method for producing an aqueous dispersion containing the chain silica-based fine particle group according to any one of claims 1 to 3, wherein the range is 1/1 to 10/1. 前記工程(a)において過酸化水素(H22)の添加量が、前記酸化ジルコニウム水和物(ZrO2・xH2O)に対して、モル比(H22/ZrO2・xH2O)で5/1〜30/1の範囲にあることを特徴とする請求項1〜4のいずれかに記載の鎖状シリカ系微粒子群を含有する水分散液の製造方法。 In the step (a), the amount of hydrogen peroxide (H 2 O 2 ) added to the zirconium oxide hydrate (ZrO 2 · xH 2 O) is a molar ratio (H 2 O 2 / ZrO 2 · xH). The method for producing an aqueous dispersion containing chain silica-based fine particle groups according to any one of claims 1 to 4, wherein 2 O) is in the range of 5/1 to 30/1. 前記工程(a)で調製される水溶液が、ZrO2換算基準で0.3〜5.0重量%のジルコニウム成分を含むことを特徴とする請求項1〜5のいずれかに記載の鎖状シリカ系微粒子群を含有する水分散液の製造方法。 The chain silica according to any one of claims 1 to 5, wherein the aqueous solution prepared in the step (a) contains 0.3 to 5.0% by weight of a zirconium component on a ZrO 2 conversion basis. A method for producing an aqueous dispersion containing fine particle groups. 前記工程(b)において使用されるシリカゾルが、SiO2換算基準で0.5〜5重量%のケイ素成分を含むことを特徴とする請求項1〜6のいずれかに記載の鎖状シリカ系微粒子群を含有する水分散液の製造方法。 The chain silica-based fine particles according to any one of claims 1 to 6, wherein the silica sol used in the step (b) contains 0.5 to 5% by weight of a silicon component on the basis of SiO 2 conversion. A method for producing an aqueous dispersion containing a group. 前記工程(b)において添加される珪酸液の水溶液が、SiO2換算基準で0.5〜5重量%のケイ素成分を含むことを特徴とする請求項1〜7のいずれかに記載の鎖状シリカ系微粒子群を含有する水分散液の製造方法。 The chain-like structure according to any one of claims 1 to 7, wherein the aqueous solution of the silicic acid solution added in the step (b) contains 0.5 to 5% by weight of a silicon component on the basis of SiO 2 conversion. A method for producing an aqueous dispersion containing a group of silica-based fine particles. 前記工程(b)において前記ジルコニウム成分を含む水溶液の添加量が、前記シリカゾルに対して、前記ジルコニウム成分をZrO2で表し、また前記シリカゾル中に含まれるケイ素成分をSiO2で表したとき、モル比(SiO2/ZrO2)で1/1〜5/1の範囲にあることを特徴とする請求項1〜8のいずれかに記載の鎖状シリカ系微粒子群を含有する水分散液の製造方法。 The addition amount of the aqueous solution containing the zirconium component in the step (b) is such that the zirconium component is represented by ZrO 2 and the silicon component contained in the silica sol is represented by SiO 2 with respect to the silica sol. The ratio (SiO 2 / ZrO 2 ) is in the range of 1/1 to 5/1, The production of an aqueous dispersion containing chain silica-based fine particle groups according to any one of claims 1 to 8 Method. 前記工程(b)において珪酸液の水溶液の添加量が、同時に添加される前記ジルコニウム成分を含む水溶液に対し、前記珪酸液中に含まれるケイ素成分をSiO2で表し、また前記ジルコニウム成分をZrO2で表したとき、モル比(ZrO2/SiO2)で1/16〜1/1の範囲にあることを特徴とする請求項1〜9のいずれかに記載の鎖状シリカ系微粒子群を含有する水分散液の製造方法。 In the step (b), with respect to the aqueous solution containing the zirconium component added at the same time, the silicon component contained in the silicic acid solution is represented by SiO 2 and the zirconium component is represented by ZrO 2. when expressed in a molar ratio containing a chain silica fine particles group according to any one of claims 1 to 9, characterized in that in the range of 1 / 16-1 / 1 (ZrO 2 / SiO 2) A method for producing an aqueous dispersion. 前記工程(b)において添加される珪酸液の水溶液が、水ガラスを水で希釈した後、陽イオン交換樹脂で処理して脱アルカリしたものであることを特徴とする請求項1〜10のいずれかに記載の鎖状シリカ系微粒子群を含有する水分散液の製造方法。   11. The aqueous solution of silicic acid solution added in the step (b) is obtained by diluting water glass with water and then treating with a cation exchange resin to remove alkali. A method for producing an aqueous dispersion containing the chain silica-based fine particle group described above. 前記工程(b)において、前記ジルコニウム成分を含む水溶液および前記珪酸液の水溶液を添加する前に、前記シリカゾルを70〜95℃の温度に加熱しておくことを特徴とする請求項1〜11のいずれかに記載の鎖状シリカ系微粒子群を含有する水分散液の製造方法。   In the step (b), the silica sol is heated to a temperature of 70 to 95 ° C before adding the aqueous solution containing the zirconium component and the aqueous solution of the silicic acid solution. A method for producing an aqueous dispersion containing the chain silica-based fine particle group according to any one of the above. 前記工程(b)における添加操作と前記工程(c)における脱アルカリ操作を複数回、繰り返して行うことを特徴とする請求項1〜12のいずれかに記載の鎖状シリカ系微粒子群を含有する水分散液の製造方法。   The chain silica-based fine particle group according to claim 1, wherein the addition operation in the step (b) and the dealkalization operation in the step (c) are repeated a plurality of times. A method for producing an aqueous dispersion. 前記工程(c)における脱アルカリ操作を、前記水溶液のpHが7.0〜10.0の範囲になるように行うことを特徴とする請求項1〜13のいずれかに記載の鎖状シリカ系微粒子群を含有する水分散液の製造方法。   The chain silica system according to any one of claims 1 to 13, wherein the dealkalization operation in the step (c) is performed so that the pH of the aqueous solution is in a range of 7.0 to 10.0. A method for producing an aqueous dispersion containing fine particle groups. 前記工程(d)における水熱処理を、オートクレーブ中で10〜100時間かけて行うことを特徴とする請求項1〜14のいずれかに記載の鎖状シリカ系微粒子群を含有する水分散液の製造方法。   The hydrothermal treatment in the step (d) is performed in an autoclave for 10 to 100 hours, and the aqueous dispersion containing chain silica-based fine particle groups according to any one of claims 1 to 14 is produced. Method. 前記鎖状シリカ系微粒子群が、少なくともジルコニウム、ケイ素および酸素からなる複合酸化物で被覆されたシリカ系微粒子を、該シリカ系微粒子の被覆物質または該被覆物質から延びた前記複合酸化物の帯状物質を介して複数個、連結させたような形状を有していることを特徴とする請求項1〜15のいずれかに記載の鎖状シリカ系微粒子群を含有する水分散液の製造方法。   The silica-based fine particles in which the chain silica-based fine particles are coated with a composite oxide composed of at least zirconium, silicon, and oxygen are coated with the silica-based fine particles or the band-shaped material of the composite oxide extending from the coating material. The method for producing an aqueous dispersion containing chain silica-based fine particle groups according to any one of claims 1 to 15, wherein a plurality of such shapes are connected via each other. 少なくともジルコニウム、ケイ素および酸素からなる複合酸化物で被覆されたシリカ系微粒子を、該シリカ系微粒子の被覆物質または該被覆物質から延びた前記複合酸化物の帯状物質を介して複数個、連結してなる鎖状シリカ系微粒子群を含有する水分散液。   A plurality of silica-based fine particles coated with a composite oxide comprising at least zirconium, silicon and oxygen are connected via a coating material of the silica-based fine particles or a band-shaped material of the composite oxide extending from the coating material. An aqueous dispersion containing the chain silica-based fine particle group. 前記請求項17に記載の水分散液を溶媒置換工程に供して得られる、少なくともジルコニウム、ケイ素および酸素からなる複合酸化物で被覆されたシリカ系微粒子を、該シリカ系微粒子の被覆物質または該被覆物質から延びた前記複合酸化物の帯状物質を介して複数個、連結してなる鎖状シリカ系微粒子群を含有する有機溶媒分散液。   A silica-based fine particle coated with a composite oxide composed of at least zirconium, silicon and oxygen, obtained by subjecting the aqueous dispersion according to claim 17 to a solvent substitution step, a coating material for the silica-based fine particle or the coating An organic solvent dispersion containing a group of chain silica-based fine particles connected by a plurality of strips of the complex oxide extending from the material.
JP2006302165A 2006-11-07 2006-11-07 Method for producing aqueous dispersion containing chain silica-based fine particle group, aqueous dispersion of chain silica-based fine particle group, and organic solvent dispersion thereof Active JP5108279B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006302165A JP5108279B2 (en) 2006-11-07 2006-11-07 Method for producing aqueous dispersion containing chain silica-based fine particle group, aqueous dispersion of chain silica-based fine particle group, and organic solvent dispersion thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006302165A JP5108279B2 (en) 2006-11-07 2006-11-07 Method for producing aqueous dispersion containing chain silica-based fine particle group, aqueous dispersion of chain silica-based fine particle group, and organic solvent dispersion thereof

Publications (2)

Publication Number Publication Date
JP2008115060A true JP2008115060A (en) 2008-05-22
JP5108279B2 JP5108279B2 (en) 2012-12-26

Family

ID=39501316

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006302165A Active JP5108279B2 (en) 2006-11-07 2006-11-07 Method for producing aqueous dispersion containing chain silica-based fine particle group, aqueous dispersion of chain silica-based fine particle group, and organic solvent dispersion thereof

Country Status (1)

Country Link
JP (1) JP5108279B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7981513B2 (en) * 2006-11-07 2011-07-19 Jgc Catalysts And Chemicals Ltd. Dental filler
WO2014104312A1 (en) * 2012-12-28 2014-07-03 日揮触媒化成株式会社 Water and/or organic solvent dispersion fluid that include linked crystalline inorganic oxide particle groups, production method therefor, optical base coating fluid including said linked crystalline inorganic oxide particle groups
CN110203969A (en) * 2019-06-28 2019-09-06 河南科技大学 A kind of high dispersive cubic phase nano zirconium oxide and preparation method thereof
CN112661205A (en) * 2020-12-31 2021-04-16 格林美股份有限公司 Multi-oxide-coated ternary lithium ion battery positive electrode material and preparation method thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000204301A (en) * 1999-01-14 2000-07-25 Catalysts & Chem Ind Co Ltd Coating solution for forming covered film and lens made of synthetic resin
JP2003146822A (en) * 2001-11-13 2003-05-21 Catalysts & Chem Ind Co Ltd Inorganic particle for dental material and method for producing the same
JP2006052128A (en) * 2004-07-13 2006-02-23 Tokuyama Corp Inorganic oxide particle
JP2007261841A (en) * 2006-03-28 2007-10-11 Catalysts & Chem Ind Co Ltd Method for producing zirconium trisilicate compound and zirconium trisilicate compound obtained by the method
JP2008115136A (en) * 2006-11-07 2008-05-22 Catalysts & Chem Ind Co Ltd Dental filling material, its manufacturing method and dental composite material

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000204301A (en) * 1999-01-14 2000-07-25 Catalysts & Chem Ind Co Ltd Coating solution for forming covered film and lens made of synthetic resin
JP2003146822A (en) * 2001-11-13 2003-05-21 Catalysts & Chem Ind Co Ltd Inorganic particle for dental material and method for producing the same
JP2006052128A (en) * 2004-07-13 2006-02-23 Tokuyama Corp Inorganic oxide particle
JP2007261841A (en) * 2006-03-28 2007-10-11 Catalysts & Chem Ind Co Ltd Method for producing zirconium trisilicate compound and zirconium trisilicate compound obtained by the method
JP2008115136A (en) * 2006-11-07 2008-05-22 Catalysts & Chem Ind Co Ltd Dental filling material, its manufacturing method and dental composite material

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7981513B2 (en) * 2006-11-07 2011-07-19 Jgc Catalysts And Chemicals Ltd. Dental filler
WO2014104312A1 (en) * 2012-12-28 2014-07-03 日揮触媒化成株式会社 Water and/or organic solvent dispersion fluid that include linked crystalline inorganic oxide particle groups, production method therefor, optical base coating fluid including said linked crystalline inorganic oxide particle groups
JPWO2014104312A1 (en) * 2012-12-28 2017-01-19 日揮触媒化成株式会社 Water and / or organic solvent dispersion containing linked crystalline inorganic oxide fine particle group, method for producing the same, and coating solution for optical substrate containing linked crystalline inorganic oxide fine particle group
CN110203969A (en) * 2019-06-28 2019-09-06 河南科技大学 A kind of high dispersive cubic phase nano zirconium oxide and preparation method thereof
CN112661205A (en) * 2020-12-31 2021-04-16 格林美股份有限公司 Multi-oxide-coated ternary lithium ion battery positive electrode material and preparation method thereof

Also Published As

Publication number Publication date
JP5108279B2 (en) 2012-12-26

Similar Documents

Publication Publication Date Title
JP5068979B2 (en) Dental filler, method for producing the same, and dental composite material
CN101311121B (en) Preparation of zirconia sol
GB2108097A (en) Improved pigments and their preparation
WO2008048765A2 (en) Improved depolluting coating composition
KR20110082625A (en) Titanium oxide sol manufacturing method
GB2048923A (en) Process for preparing a stable inorganic pigment composition
JP5108279B2 (en) Method for producing aqueous dispersion containing chain silica-based fine particle group, aqueous dispersion of chain silica-based fine particle group, and organic solvent dispersion thereof
JP5054321B2 (en) Dental filler, method for producing the same, and dental composite material
JP4051726B2 (en) Method for producing acidic aqueous alumina sol
JP5253095B2 (en) Method for producing zirconia sol
US20120103911A1 (en) Synthesis of sodium titanate
JP2007070212A (en) SOL CONTAINING Zr-O-BASED PARTICLE AS DISPERSOID AND METHOD FOR PRODUCING THE SAME
JP2005179111A (en) Method for manufacturing zirconia sol
JP4022970B2 (en) Method for producing titanium oxide-zirconium oxide-tin oxide composite sol
JP5051978B2 (en) Method for manufacturing titanic acid film coated resin substrate
JP6300313B2 (en) Rutile-type titanium oxide sol and method for producing the same
KR101048340B1 (en) Transparent film forming composition
JP2006176392A (en) Process for producing modified stannic oxide sol and stannic oxide/zirconium oxide composite sol
CN1235677C (en) Aqueous colloidal dispersion based on at least metal compound and complexing agent preparation method and use
TW201544556A (en) Zirconium treated sodium aluminosilicates and methods of making same
CA2816795A1 (en) Method for producing small size titanium oxide particles
JP5051743B2 (en) Method for producing zirconium trisilicate compound and zirconium trisilicate compound obtained from the method
KR100509562B1 (en) Waterborne photocatalytic inorganic coating compositions comprising TiCl4 of nano particle
JP3738401B2 (en) Alkaline alumina hydrate sol and process for producing the same
JP5120530B2 (en) Basic aluminum nitrate aqueous solution and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091023

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20100930

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20110314

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20110315

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110811

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120703

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120831

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121002

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121005

R150 Certificate of patent or registration of utility model

Ref document number: 5108279

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151012

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250