JP2008112972A - Resin paste for die bonding, method for manufacturing semiconductor device, and semiconductor device - Google Patents

Resin paste for die bonding, method for manufacturing semiconductor device, and semiconductor device Download PDF

Info

Publication number
JP2008112972A
JP2008112972A JP2007221507A JP2007221507A JP2008112972A JP 2008112972 A JP2008112972 A JP 2008112972A JP 2007221507 A JP2007221507 A JP 2007221507A JP 2007221507 A JP2007221507 A JP 2007221507A JP 2008112972 A JP2008112972 A JP 2008112972A
Authority
JP
Japan
Prior art keywords
resin
die bonding
semiconductor device
paste
resin paste
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007221507A
Other languages
Japanese (ja)
Inventor
Shuichi Mori
修一 森
Yuji Hasegawa
雄二 長谷川
Minoru Sugiura
実 杉浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko Materials Co Ltd
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP2007221507A priority Critical patent/JP2008112972A/en
Publication of JP2008112972A publication Critical patent/JP2008112972A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/4824Connecting between the body and an opposite side of the item with respect to the body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73201Location after the connecting process on the same surface
    • H01L2224/73215Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/013Alloys
    • H01L2924/0132Binary Alloys
    • H01L2924/01322Eutectic Alloys, i.e. obtained by a liquid transforming into two solid phases
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/102Material of the semiconductor or solid state bodies
    • H01L2924/1025Semiconducting materials
    • H01L2924/10251Elemental semiconductors, i.e. Group IV
    • H01L2924/10253Silicon [Si]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/153Connection portion
    • H01L2924/1531Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface
    • H01L2924/15311Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface being a ball array, e.g. BGA

Abstract

<P>PROBLEM TO BE SOLVED: To provide resin paste for die bonding for easily supplying/applying a semiconductor chip by a print method to a substrate to which a semiconductor chip should be attached at a relatively low temperature, and for achieving the following processes even by saving the hardening process of resin paste after attaching the semiconductor chip, that is, for achieving sufficient thermal resistance and chip adhesive property in the B-stage state and sufficient thermal resistance and chip adhesive property even after the hardening. <P>SOLUTION: This resin paste for die bonding is characterized to contain a silane modification resin, a thermosetting resin, a filler and solvent for printing which are expressed by general form (I). In this case, R in this formula is -CH<SB>3</SB>or -OCH<SB>3</SB>, and X is the resin section, and n is the integers of 1 to 7. Also, a plurality of existing R may be equal or different. <P>COPYRIGHT: (C)2008,JPO&amp;INPIT

Description

本発明は、ダイボンディング用樹脂ペースト、半導体装置の製造方法及び半導体装置に関し、より詳しくは、IC、LSI等の半導体素子とリードフレームや絶縁性支持基板等の支持部材との接合材料(ダイボンディング材)として用いられるダイボンディング用樹脂ペースト、並びに、それを用いた半導体装置の製造方法及び半導体装置に関する。   The present invention relates to a resin paste for die bonding, a method for manufacturing a semiconductor device, and a semiconductor device, and more specifically, a bonding material (die bonding) between a semiconductor element such as IC or LSI and a support member such as a lead frame or an insulating support substrate. The present invention relates to a die bonding resin paste used as a material, a method of manufacturing a semiconductor device using the same, and a semiconductor device.

ICやLSIとリードフレームとの接合材料として、従来から、Au−Si共晶合金、半田あるいは銀ペースト等が知られている。また、特定のポリイミド樹脂を用いた接着フィルム、特定のポリイミド樹脂に導電性フィラーもしくは無機フィラーを加えたダイボンディング用接着フィルムも先に提案されている(特許文献1〜3参照)。   Conventionally, Au—Si eutectic alloy, solder, silver paste, or the like is known as a bonding material between an IC or LSI and a lead frame. Moreover, the adhesive film using a specific polyimide resin and the adhesive film for die bonding which added the electroconductive filler or the inorganic filler to the specific polyimide resin are proposed previously (refer patent documents 1-3).

特開平07−228697号公報Japanese Patent Application Laid-Open No. 07-228697 特開平06−145639号公報Japanese Patent Laid-Open No. 06-145639 特開平06−264035号公報Japanese Patent Laid-Open No. 06-264035

上記Au−Si共晶合金は、耐熱性および耐湿性は高いが、弾性率が大きいために、大型チップに適用した場合に割れやすいという問題がある。また、Au−Si共晶合金は、高価であるという難点もある。一方、半田は安価であるものの、耐熱性に劣り、その弾性率はAu−Si共晶合金と同様に高く、大型チップへの適用は難しい。   Although the Au—Si eutectic alloy has high heat resistance and moisture resistance, it has a problem of being easily broken when applied to a large chip because of its large elastic modulus. In addition, the Au—Si eutectic alloy has a drawback that it is expensive. On the other hand, although solder is cheap, it is inferior in heat resistance, and its elastic modulus is as high as that of an Au—Si eutectic alloy, so that it is difficult to apply it to a large chip.

これに対して銀ペーストは、安価で、耐湿性が高く、弾性率はAu−Si共晶合金や半田よりも低く、350℃の熱圧着型ワイヤボンダーに適用できる程の耐熱性も有する。そのため、現在は、銀ペーストがダイボンディング材の主流となっている。しかし、ICやLSIの高集積化が進み、それに伴ってチップが大型化していくなかで、ICやLSIとリードフレームとを銀ペーストで接合しようとする場合、銀ペーストをチップ全面に広げて塗布するには困難を伴う。   On the other hand, silver paste is inexpensive, has high moisture resistance, has a lower elastic modulus than Au—Si eutectic alloy and solder, and has heat resistance enough to be applied to a thermocompression bonding wire bonder at 350 ° C. Therefore, silver paste is currently the mainstream of die bonding materials. However, as ICs and LSIs become more highly integrated and the size of the chip grows, the silver paste is spread over the entire surface of the chip and applied to the IC or LSI and the lead frame. It is difficult to do.

また、近年のパッケージの小型化及び軽量化に伴い、絶縁性支持基板の使用が広範になっており、また、製造コストの低減を目的として、ダイボンディング材を量産性の高い印刷法で供給しようとする方法が注目されている。こうした状況の中で、上記特許文献1〜3に記載されたような接着フィルムを絶縁性支持基板へ効率的に供給・貼付しようとすると、予めチップサイズに切り出して(または打ち抜いて)接着フィルムを貼り付ける必要がある。   In addition, with the recent miniaturization and weight reduction of packages, the use of insulating support substrates has become widespread, and for the purpose of reducing manufacturing costs, let's supply die bonding materials with a mass-productive printing method. The method has been attracting attention. In such a situation, when an adhesive film as described in Patent Documents 1 to 3 is to be efficiently supplied and pasted to an insulating support substrate, the adhesive film is previously cut (or punched out) into a chip size. It is necessary to paste.

接着フィルムをチップサイズに切り出して基板に貼り付ける方法では、生産効率を上げるための貼付装置が必要となる。また、接着フィルムを打ち抜いて複数個のチップ分を一括で貼り付ける方法では、接着フィルムの無駄が生じやすい。さらに、絶縁性支持基板の大部分は、基板内部に内層配線が形成されているため、接着フィルムを貼り付ける表面には凹凸が多く、接着フィルム貼付時に空隙が生じて、信頼性が低下しやすい。   In the method of cutting the adhesive film into a chip size and sticking it to the substrate, a sticking device for increasing the production efficiency is required. Further, in the method in which the adhesive film is punched and a plurality of chips are pasted together, the adhesive film is likely to be wasted. Furthermore, since most of the insulating support substrate has an inner layer wiring formed inside the substrate, the surface to which the adhesive film is applied has many irregularities, and voids are created when the adhesive film is applied, and the reliability tends to decrease. .

また、予め基板にダイボンディング材を形成し、そこに半導体チップを貼り付ける方法では、半導体チップを貼り付ける前に、基板に塗布したダイボンディング材を乾燥半硬化(Bステージ化)し、そこに半導体チップを圧着し、後硬化としてダイボンディング材を例えば180℃のオーブンで1時間硬化している。しかし、最近、工程管理や組立時間の短縮の点から後硬化工程を省いても、以降の組立工程、すなわち、ワイヤボンディングと封止とが可能なダイボンディング材が求められている。通常、ワイヤボンディングの作業温度は120〜150℃、封止の作業温度は170℃〜190℃であり、その後、封止材の硬化工程として例えば180℃で2〜5時間加熱する。後硬化工程を省いた場合、チップ圧着後のダイボンディング材は、ワイヤボンディングと封止の工程の後、封止材の硬化工程で同時に後硬化される。従って、後硬化工程を省いた組立工程においては、Bステージ状態のダイボンディング材が、180℃程度での耐熱性とチップ接着性とを備えていることが必要である。また、封止材と共に後硬化された後は、半田リフロー工程が入る。この際の最高温度が250℃〜260℃であることから、後硬化後のペーストには、250℃〜260℃での耐熱性とチップ接着力が要求される。   In addition, in the method of previously forming a die bonding material on a substrate and attaching a semiconductor chip thereto, the die bonding material applied to the substrate is dried and semi-cured (B-stage) before attaching the semiconductor chip. The semiconductor chip is pressure-bonded, and the die bonding material is cured in an oven at 180 ° C. for 1 hour as post-curing. However, recently, there has been a demand for a die bonding material that can perform subsequent assembly processes, that is, wire bonding and sealing, even if the post-curing process is omitted from the viewpoint of process management and shortening of assembly time. Usually, the working temperature of wire bonding is 120 to 150 ° C., and the working temperature of sealing is 170 ° C. to 190 ° C. Then, for example, the sealing material is heated at 180 ° C. for 2 to 5 hours as a curing process. When the post-curing process is omitted, the die bonding material after chip pressing is post-cured simultaneously in the sealing material curing process after the wire bonding and sealing processes. Therefore, in the assembly process without the post-curing process, it is necessary that the die bonding material in the B stage state has heat resistance at about 180 ° C. and chip adhesion. In addition, after post-curing with the sealing material, a solder reflow process is performed. Since the maximum temperature at this time is 250 ° C. to 260 ° C., the post-cured paste is required to have heat resistance and chip adhesion at 250 ° C. to 260 ° C.

本発明はこのような事情に鑑みてなされたものであり、比較的低い温度で半導体チップを貼り付ける必要がある基板に対して、印刷法によって容易に供給・塗布でき、且つ、半導体チップを貼り付けた後の樹脂ペーストの硬化工程を省いても、以降の工程が可能である、すなわち、Bステージ状態で十分な耐熱性とチップ接着性を持ち得るとともに、後硬化後においても十分な耐熱性とチップ接着性を持ち得る、ダイボンディング用樹脂ペーストを提供することを目的とする。また、本発明は、上記ダイボンディング用樹脂ペーストを用いた半導体装置の製造方法、及び、半導体装置を提供することを目的とする。   The present invention has been made in view of such circumstances, and can be easily supplied and applied by a printing method to a substrate on which a semiconductor chip needs to be attached at a relatively low temperature. Even if the curing step of the resin paste after application is omitted, the subsequent steps are possible, that is, sufficient heat resistance and chip adhesion can be obtained in the B-stage state, and sufficient heat resistance even after post-curing. An object of the present invention is to provide a resin paste for die bonding that can have chip adhesiveness. It is another object of the present invention to provide a method for manufacturing a semiconductor device using the die bonding resin paste, and a semiconductor device.

上記目的を達成するために、本発明は、下記一般式(I)で表されるシラン変性樹脂と、熱硬化性樹脂と、フィラーと、印刷用溶剤と、を含有するダイボンディング用樹脂ペーストを提供する。

Figure 2008112972


[式中、Rは、−CH又は−OCHを示し、Xは樹脂部分を示し、nは1〜7の整数を示す。なお、複数存在するRは同一でも異なっていてもよい。] In order to achieve the above object, the present invention provides a die bonding resin paste containing a silane-modified resin represented by the following general formula (I), a thermosetting resin, a filler, and a printing solvent. provide.
Figure 2008112972


[Wherein, R represents a -CH 3 or -OCH 3, X represents a resin portion, n is an integer of 1-7. A plurality of R may be the same or different. ]

かかるダイボンディング用樹脂ペーストによれば、比較的低い温度で半導体チップを貼り付ける必要がある基板に対して、印刷法によって容易に供給・塗布することができるとともに、上記一般式(I)で表されるシラン変性樹脂を含有することにより、Bステージ状態で十分な耐熱性及びチップ接着性を得ることができるため、半導体チップを貼り付けた後の後硬化工程を省いても以降の組立工程が可能であるとともに、後硬化後においても十分な耐熱性とチップ接着性を得ることができるという効果を奏することができる。また、上記ダイボンディング用樹脂ペーストにおいては、熱硬化性樹脂により後硬化後に高い信頼性を得ることができ、フィラーにより印刷時に必要なチキソ性を付与することができ、更に、印刷用溶剤により粘度の調整が可能となる。   According to such a resin paste for die bonding, it can be easily supplied and applied by a printing method to a substrate on which a semiconductor chip needs to be attached at a relatively low temperature, and is represented by the general formula (I). By including the silane-modified resin, sufficient heat resistance and chip adhesion can be obtained in the B-stage state, so that the subsequent assembly process can be performed even if the post-curing process after the semiconductor chip is attached is omitted. In addition, it is possible to obtain an effect that sufficient heat resistance and chip adhesion can be obtained even after post-curing. Moreover, in the above-mentioned resin paste for die bonding, high reliability can be obtained after post-curing with a thermosetting resin, and thixotropy necessary for printing can be imparted with a filler, and further, viscosity can be increased with a printing solvent. Can be adjusted.

また、上記シラン変性樹脂において、上記一般式(I)中のXで示される上記樹脂部分は、ポリイミド樹脂、ポリアミドイミド樹脂、ポリウレタン樹脂、エポキシ樹脂及びフェノール樹脂からなる群より選択される少なくとも一種の樹脂からなる部分であることが好ましい。かかるシラン変性樹脂を用いることにより、ダイボンディング用樹脂ペーストは、Bステージ状態及び後硬化後の両方でより十分な耐熱性及びチップ接着性を得ることができる。   In the silane-modified resin, the resin portion represented by X in the general formula (I) is at least one selected from the group consisting of a polyimide resin, a polyamideimide resin, a polyurethane resin, an epoxy resin, and a phenol resin. A portion made of resin is preferable. By using such a silane-modified resin, the resin paste for die bonding can obtain more sufficient heat resistance and chip adhesion both in the B-stage state and after post-curing.

また、本発明のダイボンディング用樹脂ペーストは、ポリウレタンイミド樹脂を更に含有することが好ましい。これにより、ダイアタッチ工程における良好な流動性を樹脂ペーストに付与することができる。   Moreover, it is preferable that the resin paste for die bonding of this invention further contains a polyurethane imide resin. Thereby, the favorable fluidity | liquidity in a die attach process can be provided to a resin paste.

本発明はまた、基板上に上記本発明のダイボンディング用樹脂ペーストを塗布して塗膜を形成する塗布工程と、上記塗膜上に半導体チップを搭載する半導体チップ搭載工程と、を含む、半導体装置の製造方法を提供する。   The present invention also includes a coating step of coating the die bonding resin paste of the present invention on a substrate to form a coating film, and a semiconductor chip mounting step of mounting a semiconductor chip on the coating film. An apparatus manufacturing method is provided.

かかる半導体装置の製造方法によれば、上記本発明のダイボンディング用樹脂ペーストを用いているため、比較的低い温度で半導体チップを基板上に貼り付けることができ、優れた耐熱性及びチップ接着性を有する半導体装置を得ることができる。   According to such a method for manufacturing a semiconductor device, since the die bonding resin paste of the present invention is used, a semiconductor chip can be attached on a substrate at a relatively low temperature, and excellent heat resistance and chip adhesion. Can be obtained.

また、本発明の半導体装置の製造方法は、上記塗布工程の後に、上記塗膜を乾燥してBステージ化する乾燥工程を更に含み、上記半導体チップ搭載工程において、Bステージ化した上記塗膜上に半導体チップを搭載することが好ましい。   In addition, the method for manufacturing a semiconductor device of the present invention further includes a drying step of drying the coating film to form a B-stage after the coating step, and the B-staged coating film on the coating step of the semiconductor chip. It is preferable to mount a semiconductor chip.

本発明のダイボンディング用樹脂ペーストは、Bステージ状態及び後硬化後の両方で十分な耐熱性及びチップ接着性を得ることができるため、上記乾燥工程を含むことにより、より信頼性に優れた半導体装置を得ることができる。   Since the resin paste for die bonding of the present invention can obtain sufficient heat resistance and chip adhesion both in the B-stage state and after post-curing, it is a more reliable semiconductor by including the drying step. A device can be obtained.

本発明は更に、上記本発明の半導体装置の製造方法により得られる半導体装置を提供する。かかる半導体装置は、上記本発明のダイボンディング用樹脂ペーストを用いて基板上に半導体チップが貼り付けられているため、優れた耐熱性及びチップ接着性を得ることができる。   The present invention further provides a semiconductor device obtained by the method for manufacturing a semiconductor device of the present invention. Such a semiconductor device can obtain excellent heat resistance and chip adhesiveness because the semiconductor chip is bonded onto the substrate using the die bonding resin paste of the present invention.

本発明によれば、比較的低い温度で半導体チップを貼り付ける必要がある基板に対して、印刷法によって容易に供給・塗布できるダイボンディング用樹脂ペーストを提供することができる。また、本発明のダイボンディング用樹脂ペーストは、耐熱性があり、扱いやすく、低応力性および低温接着性に優れている。更に、Bステージ状態での耐熱性に優れるため、半導体チップ圧着後の後硬化工程を省くことができ、半導体装置組立時の工程管理や組立時間の短縮に寄与する。また、後硬化後においても優れた耐熱性及びチップ接着性を得ることができる。本発明のダイボンディング用樹脂ペーストは、ダイボンド用として、有機基板などの絶縁性支持基板や銅リードフレームに好適に使用でき、また、42アロイリードフレームにも使用できる。更に、本発明によれば、上記本発明のダイボンディング用樹脂ペーストを用いた半導体装置の製造方法及びかかる製造方法により製造される半導体装置を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the resin paste for die bonding which can be easily supplied and apply | coated with a printing method with respect to the board | substrate which needs to affix a semiconductor chip at comparatively low temperature can be provided. In addition, the resin paste for die bonding of the present invention has heat resistance, is easy to handle, and is excellent in low stress property and low temperature adhesion property. Furthermore, since the heat resistance in the B-stage state is excellent, the post-curing process after the semiconductor chip pressure bonding can be omitted, which contributes to process management and assembly time reduction during the assembly of the semiconductor device. Further, excellent heat resistance and chip adhesion can be obtained even after post-curing. The resin paste for die bonding of the present invention can be suitably used for an insulating support substrate such as an organic substrate and a copper lead frame for die bonding, and can also be used for a 42 alloy lead frame. Furthermore, according to the present invention, it is possible to provide a semiconductor device manufacturing method using the die bonding resin paste of the present invention and a semiconductor device manufactured by the manufacturing method.

以下、本発明の好適な実施形態について詳細に説明する。   Hereinafter, preferred embodiments of the present invention will be described in detail.

本発明に係るダイボンディング用樹脂ペースト(以下、場合により単に「樹脂ペースト」と言う)は、(A)下記一般式(I)で表されるシラン変性樹脂(以下、場合により「(A)成分」と言う)を含有するものである。   The resin paste for die bonding according to the present invention (hereinafter, simply referred to as “resin paste” in some cases) is (A) a silane-modified resin represented by the following general formula (I) (hereinafter, “(A) component”) ")").

Figure 2008112972


[式中、Rは、−CH又は−OCHを示し、Xは樹脂部分を示し、nは1〜7の整数を示す。なお、複数存在するRは同一でも異なっていてもよい。]
Figure 2008112972


[Wherein, R represents a -CH 3 or -OCH 3, X represents a resin portion, n is an integer of 1-7. A plurality of R may be the same or different. ]

また、本発明の樹脂ペーストは、上記(A)成分に加え、(B)ポリウレタンイミド樹脂(以下、場合により「(B)成分」と言う)と、(C)カルボン酸末端基を有するブタジエンのポリマー(ホモポリマーまたはコポリマー)(以下、場合により「(C)成分」と言う)とを更に含有することが好ましい。また、本発明の樹脂ペーストは、(D)熱硬化性樹脂(以下、場合により「(D)成分」と言う)と、(E)フィラー(以下、場合により「(E)成分」と言う)と、(F)印刷用溶剤(以下、場合により「(F)成分」と言う)と、を必須成分として含有する。以下、各成分について詳細に説明する。   In addition to the component (A), the resin paste of the present invention comprises (B) polyurethane imide resin (hereinafter sometimes referred to as “component (B)”) and (C) butadiene having a carboxylic acid end group. It is preferable to further contain a polymer (homopolymer or copolymer) (hereinafter sometimes referred to as “component (C)”). The resin paste of the present invention comprises (D) a thermosetting resin (hereinafter sometimes referred to as “(D) component”) and (E) filler (hereinafter sometimes referred to as “(E) component”). And (F) a printing solvent (hereinafter sometimes referred to as “component (F)”) as an essential component. Hereinafter, each component will be described in detail.

(A)シラン変性樹脂は、上記一般式(I)で表されるものであり、Bステージ状態の樹脂ペーストのチップ接着力に大きく寄与する。上記一般式(I)中のXで示される樹脂部分を構成する樹脂としては、例えば、ポリイミド樹脂、ポリアミドイミド樹脂、ポリウレタン樹脂、エポキシ樹脂、フェノール樹脂が好ましいものとして挙げられる。これらの中でも、(D)熱硬化性樹脂との化学的親和性の観点から、フェノール樹脂、エポキシ樹脂が特に好ましい。   (A) The silane-modified resin is represented by the above general formula (I), and greatly contributes to the chip adhesive force of the B-stage resin paste. Preferred examples of the resin constituting the resin portion represented by X in the general formula (I) include a polyimide resin, a polyamideimide resin, a polyurethane resin, an epoxy resin, and a phenol resin. Among these, phenol resin and epoxy resin are particularly preferable from the viewpoint of chemical affinity with (D) thermosetting resin.

上記フェノール樹脂として好ましくは、分子中に少なくとも2個のフェノール性水酸基を有するものが挙げられ、例えば、フェノールノボラック樹脂、クレゾールノボラック樹脂、ビスフェノールAノボラック樹脂、ポリ−p−ビニルフェノール樹脂、フェノールアラルキル樹脂等が挙げられる。フェノール樹脂部分を有する(A)シラン変性樹脂として具体的には、下記一般式(II)で表される化合物が、荒川化学工業(株)より市販されている。   Preferred examples of the phenol resin include those having at least two phenolic hydroxyl groups in the molecule. For example, phenol novolak resin, cresol novolac resin, bisphenol A novolak resin, poly-p-vinylphenol resin, phenol aralkyl resin. Etc. Specifically, as the (A) silane-modified resin having a phenol resin portion, a compound represented by the following general formula (II) is commercially available from Arakawa Chemical Industries, Ltd.

Figure 2008112972


[式中、Rは、−CH又は−OCHを示し、mは2〜8の整数を示す。]
Figure 2008112972


[Wherein, R represents —CH 3 or —OCH 3 , and m represents an integer of 2 to 8. ]

また、上記エポキシ樹脂として好ましくは、分子内に少なくとも2個のエポキシ基を含むものが挙げられ、硬化性や硬化物特性の観点から、フェノールのグリシジルエーテル型のエポキシ樹脂が特に好ましいものとして挙げられる。フェノールのグリシジルエーテル型のエポキシ樹脂としては、例えば、ビスフェノールA、ビスフェノールAD、ビスフェノールS、ビスフェノールF、又は、ハロゲン化ビスフェノールAと、エピクロルヒドリンとの縮合物;フェノールノボラック樹脂のグリシジルエーテル;クレゾールノボラック樹脂のグリシジルエーテル;ビスフェノールAノボラック樹脂のグリシジルエーテル等が挙げられる。   The epoxy resin preferably includes at least two epoxy groups in the molecule, and a phenol glycidyl ether type epoxy resin is particularly preferable from the viewpoint of curability and cured product characteristics. . Examples of phenol glycidyl ether type epoxy resins include bisphenol A, bisphenol AD, bisphenol S, bisphenol F, or a condensate of halogenated bisphenol A and epichlorohydrin; glycidyl ether of phenol novolac resin; cresol novolac resin Examples thereof include glycidyl ether; glycidyl ether of bisphenol A novolak resin, and the like.

樹脂ペーストにおける(A)成分の配合量は、樹脂ペースト中の固形分全量を基準として0.1〜15質量%であることが好ましく、0.5〜10質量%であることがより好ましい。この配合量が15質量%を超えると、樹脂ペーストの吸湿性が高くなり、保管安定性が悪くなる傾向があり、0.1質量%未満であると、Bステージでのチップ接着力が低下する恐れがある。   The blending amount of the component (A) in the resin paste is preferably 0.1 to 15% by mass, more preferably 0.5 to 10% by mass, based on the total solid content in the resin paste. If the blending amount exceeds 15% by mass, the hygroscopicity of the resin paste tends to be high and storage stability tends to be poor, and if it is less than 0.1% by mass, the chip adhesive strength at the B stage decreases. There is a fear.

(B)成分であるポリウレタンイミド樹脂は、好ましくは下記一般式(III)で表されるものである。

Figure 2008112972


[式中、Rは芳香族環又は脂肪族環を含む2価の有機基を示し、Rは分子量100〜10,000の2価の有機基を示し、Rは4個以上の炭素原子を含む4価の有機基を示し、r及びsは各々独立に1〜100の整数を示す。] The polyurethaneimide resin as component (B) is preferably one represented by the following general formula (III).
Figure 2008112972


[Wherein R 1 represents a divalent organic group containing an aromatic ring or an aliphatic ring, R 2 represents a divalent organic group having a molecular weight of 100 to 10,000, and R 3 represents 4 or more carbon atoms. The tetravalent organic group containing an atom is shown, r and s show the integer of 1-100 each independently. ]

上記一般式(III)中、Rで表される芳香族環又は脂肪族環を含む2価の有機基は、ジイソシアネート残基であることが好ましく、下記一般式(IV);

Figure 2008112972


で表される構造を10〜100mol%含むことがより好ましい。 In the general formula (III), the divalent organic group containing an aromatic ring or an aliphatic ring represented by R 1 is preferably a diisocyanate residue, and the following general formula (IV);
Figure 2008112972


It is more preferable that 10-100 mol% of the structure represented by these is included.

また、残りのジイソシアネート残基としては、下記式;

Figure 2008112972


等が挙げられ、これらは1種類あるいは2種類以上を組み合わせて用いることができる。 Further, as the remaining diisocyanate residue, the following formula:
Figure 2008112972


These can be used, and these can be used alone or in combination of two or more.

上記一般式(III)中のRで表される分子量100〜10,000の2価の有機基は、ジオール残基であることが好ましく、下記一般式(V);
−(CH−CH−CH−CH−O)− (V)
で表される繰り返し単位からなる構造を10〜100mol%含むことがより好ましい。
The divalent organic group having a molecular weight of 100 to 10,000 represented by R 2 in the general formula (III) is preferably a diol residue, and the following general formula (V);
- (CH 2 -CH 2 -CH 2 -CH 2 -O) - (V)
It is more preferable that the structure which consists of a repeating unit represented by 10 to 100 mol% is included.

また、残りのジオール残基としては、下記式;

Figure 2008112972


等の繰り返し単位を有するものが挙げられ、これらは1種類あるいは2種類以上を組み合わせて用いることができる。これらの重量平均分子量は100〜10,000であることが好ましく、500〜5,000であることがより好ましい。 Further, as the remaining diol residue, the following formula:
Figure 2008112972


These have repeating units such as, and these can be used alone or in combination of two or more. These weight average molecular weights are preferably 100 to 10,000, and more preferably 500 to 5,000.

上記一般式(III)中のRで表される4個以上の炭素原子を含む4価の有機基は、テトラカルボン酸無水物残基であることが好ましく、下記式;

Figure 2008112972


等が挙げられる。これらは1種類あるいは2種類以上を組み合わせて用いることができる。 The tetravalent organic group containing 4 or more carbon atoms represented by R 3 in the general formula (III) is preferably a tetracarboxylic anhydride residue, and has the following formula:
Figure 2008112972


Etc. These can be used alone or in combination of two or more.

また、上記一般式(III)中のr及びsは各々独立に1〜100の整数である必要があり、1〜50の整数であることがより好ましい。   Moreover, r and s in the said general formula (III) need to be an integer of 1-100 each independently, and it is more preferable that it is an integer of 1-50.

(B)ポリウレタンイミド樹脂は、溶液重合法等の通常の方法で合成することができる。例えば、溶液重合法の場合、生成するポリウレタンイミド樹脂が溶解する溶媒、例えば、N−メチル−2−ピロリドン(NMP)等にジイソシネート及びジオールを溶解し、70℃〜180℃で1時間〜5時間反応させ、ウレタンオリゴマーを合成する。次いで、テトラカルボン酸二無水物を添加し、70℃〜180℃で1時間から10時間反応させてポリウレタンイミド樹脂のNMP溶液を得ることができる。その後、場合により、さらに1価のアルコール、オキシム、アミン、イソシアネート、酸無水物等を添加して反応を続け、ポリウレタンイミド樹脂の末端を修飾することもできる。また、合成の際には、水、アルコール、第3級アミンなどを触媒として用いることもできる。   (B) The polyurethaneimide resin can be synthesized by an ordinary method such as a solution polymerization method. For example, in the case of a solution polymerization method, a diisocyanate and a diol are dissolved in a solvent in which a polyurethaneimide resin to be generated is dissolved, such as N-methyl-2-pyrrolidone (NMP), and the temperature is 70 ° C. to 180 ° C. for 1 hour to 5 hours. React to synthesize urethane oligomer. Next, tetracarboxylic dianhydride is added and reacted at 70 to 180 ° C. for 1 to 10 hours to obtain an NMP solution of a polyurethaneimide resin. Thereafter, in some cases, the terminal of the polyurethane imide resin can be modified by further adding a monohydric alcohol, oxime, amine, isocyanate, acid anhydride or the like to continue the reaction. In the synthesis, water, alcohol, tertiary amine or the like can be used as a catalyst.

得られたポリウレタンイミド樹脂溶液は、目的に応じ、水による再沈澱法等によりポリウレタンイミド樹脂を分離することもできる。ウレタンオリゴマーを構成するジイソシアネートとジオールとの組成比は、ジイソシネート1.0molに対して、ジオール成分を0.1〜1.0molとすることが好ましい。ポリウレタンイミド樹脂を構成するポリウレタンオリゴマーとテトラカルボン酸二無水物との組成比は、ポリウレタンオリゴマー1.0molに対して、テトラカルボン酸二無水物を0.1〜2.0molとすることが好ましい。   The obtained polyurethaneimide resin solution can also be separated from the polyurethaneimide resin by a reprecipitation method with water or the like according to the purpose. The composition ratio of diisocyanate and diol constituting the urethane oligomer is preferably 0.1 to 1.0 mol of the diol component with respect to 1.0 mol of diisocyanate. The composition ratio of the polyurethane oligomer and the tetracarboxylic dianhydride constituting the polyurethaneimide resin is preferably 0.1 to 2.0 mol of tetracarboxylic dianhydride with respect to 1.0 mol of the polyurethane oligomer.

本発明における(B)ポリウレタンイミド樹脂は、テトラヒドロフランを溶媒としたゲルパーミエーションクロマトグラフィーで測定したポリスチレン換算の重量平均分子量が5,000〜500,000であることが好ましく、10,000〜100,000であることがより好ましい。重量平均分子量が5,000未満では樹脂の強度が低くなる傾向があり、500,000を超えると樹脂の溶解性が劣る傾向がある。   The (B) polyurethaneimide resin in the present invention preferably has a polystyrene-equivalent weight average molecular weight of 5,000 to 500,000 as measured by gel permeation chromatography using tetrahydrofuran as a solvent, and is preferably 10,000 to 100,000. More preferably, it is 000. If the weight average molecular weight is less than 5,000, the strength of the resin tends to be low, and if it exceeds 500,000, the solubility of the resin tends to be poor.

樹脂ペーストにおける(B)成分の配合量は、樹脂ペースト中の固形分全量を基準として20〜60質量%であることが好ましい。この配合量が60質量%を超えると、硬化性が低下する傾向があり、20質量%未満であると、Bステージ状態での流動性が低下する恐れがある。   It is preferable that the compounding quantity of (B) component in a resin paste is 20-60 mass% on the basis of the solid content whole quantity in a resin paste. If this amount exceeds 60% by mass, the curability tends to decrease, and if it is less than 20% by mass, the fluidity in the B-stage state may decrease.

(C)成分であるカルボン酸末端基を有するブタジエンのホモポリマー又はコポリマーとしては、例えば、好適に使用できるものとして、主鎖にアクリロニトリルを導入した低分子量液状ポリブタジエンであり末端にカルボン酸を有する、「Hycer CTB−2009×162」、「CTBN−1300×31」、「CTBN−1300×8」、「CTBN−1300×13」、「CTBNX−1300×9」(いずれも宇部興産株式会社製)や、カルボン酸基を有する低分子量液状ポリブタジエンである、「NISSO−PB−C−2000」(日本曹達株式会社製)などが挙げられる。これらは1種を単独で、または2種以上を組み合わせて用いることができる。   The butadiene homopolymer or copolymer having a carboxylic acid end group as the component (C) is, for example, a low molecular weight liquid polybutadiene having acrylonitrile introduced into the main chain and having a carboxylic acid at the end, as one that can be suitably used. “Hycer CTB-2009 × 162”, “CTBN-1300 × 31”, “CTBN-1300 × 8”, “CTBN-1300 × 13”, “CTBNX-1300 × 9” (all manufactured by Ube Industries) And “NISSO-PB-C-2000” (manufactured by Nippon Soda Co., Ltd.), which is a low molecular weight liquid polybutadiene having a carboxylic acid group. These can be used alone or in combination of two or more.

(D)成分である熱硬化性樹脂としては、例えばエポキシ樹脂が好ましいものとして挙げられる。また、(D)成分としては、エポキシ樹脂と、フェノール樹脂又は分子中にフェノール性水酸基を有する化合物と、硬化促進剤と、を含む樹脂混合物を用いてもよい。   As a thermosetting resin which is (D) component, an epoxy resin is mentioned as a preferable thing, for example. Moreover, as (D) component, you may use the resin mixture containing an epoxy resin, a phenol resin or the compound which has a phenolic hydroxyl group in a molecule | numerator, and a hardening accelerator.

エポキシ樹脂は、分子内に少なくとも2個のエポキシ基を含むものであり、硬化性や硬化物特性の点から、フェノールのグリシジルエーテル型のエポキシ樹脂が好ましい。このような樹脂としては、ビスフェノールA、ビスフェノールAD、ビスフェノールS、ビスフェノールF、又は、ハロゲン化ビスフェノールAとエピクロルヒドリンとの縮合物、フェノールノボラック樹脂のグリシジルエーテル、クレゾールノボラック樹脂のグリシジルエーテル、ビスフェノールAノボラック樹脂のグリシジルエーテル等が挙げられる。これらは1種を単独で、または2種以上を組み合わせて用いることができる。   The epoxy resin contains at least two epoxy groups in the molecule, and a phenol glycidyl ether type epoxy resin is preferable from the viewpoint of curability and cured product characteristics. Examples of such resins include bisphenol A, bisphenol AD, bisphenol S, bisphenol F, or a condensate of halogenated bisphenol A and epichlorohydrin, glycidyl ether of phenol novolac resin, glycidyl ether of cresol novolac resin, bisphenol A novolak resin. And glycidyl ether. These can be used alone or in combination of two or more.

(D)成分としてエポキシ樹脂を用いる場合、その配合量は、樹脂ペーストの固形分全量を基準として30質量%以下であることが好ましい。この配合量が30質量%を超えると、樹脂ペーストの保管安定性が低下しやすい傾向がある。   (D) When using an epoxy resin as a component, it is preferable that the compounding quantity is 30 mass% or less on the basis of the solid content whole quantity of a resin paste. When this compounding quantity exceeds 30 mass%, there exists a tendency for the storage stability of a resin paste to fall easily.

フェノール樹脂は、分子中に少なくとも2個のフェノール性水酸基を有するものであり、例えば、フェノールノボラック樹脂、クレゾールノボラック樹脂、ビスフェノールAノボラック樹脂、ポリ−p−ビニルフェノール、フェノールアラルキル樹脂等が挙げられる。これらは1種を単独で、または2種以上を組み合わせて用いることができる。   The phenol resin has at least two phenolic hydroxyl groups in the molecule, and examples thereof include a phenol novolac resin, a cresol novolac resin, a bisphenol A novolac resin, poly-p-vinylphenol, and a phenol aralkyl resin. These can be used alone or in combination of two or more.

(D)成分中、フェノール樹脂又は分子中にフェノール性水酸基を有する化合物の配合量は、上記エポキシ樹脂100質量部に対して0〜150質量部であることが好ましく、0〜120質量部であることがより好ましい。この配合量が150質量部を超えると、硬化性が不十分となる恐れがある。   In the component (D), the compounding amount of the phenol resin or the compound having a phenolic hydroxyl group in the molecule is preferably 0 to 150 parts by mass, and 0 to 120 parts by mass with respect to 100 parts by mass of the epoxy resin. It is more preferable. When this compounding quantity exceeds 150 mass parts, there exists a possibility that sclerosis | hardenability may become inadequate.

硬化促進剤は、エポキシ樹脂を硬化させるために用いられるものであれば特に制限されない。このような硬化促進剤としては、例えば、イミダゾール類、ジシアンジアミド誘導体、ジカルボン酸ジヒドラジド、トリフェニルホスフィン、テトラフェニルホスホニウムテトラフェニルボレート、2−エチル−4−メチルイミダゾール−テトラフェニルボレート、1,8−ジアザビシクロ(5,4,0)ウンデセン−7−テトラフェニルボレート等が挙げられる。これらは、1種を単独で又は2種以上を組み合わせて用いることができる。   The curing accelerator is not particularly limited as long as it is used for curing the epoxy resin. Examples of such a curing accelerator include imidazoles, dicyandiamide derivatives, dicarboxylic acid dihydrazide, triphenylphosphine, tetraphenylphosphonium tetraphenylborate, 2-ethyl-4-methylimidazole-tetraphenylborate, 1,8-diazabicyclo. (5,4,0) undecene-7-tetraphenylborate and the like. These can be used alone or in combination of two or more.

(D)成分中、硬化促進剤の配合量は、上記エポキシ樹脂100質量部に対して0〜50質量部であることが好ましく、0〜20質量部であることがより好ましい。この配合量が50質量部を超えると、樹脂ペーストの保管安定性が低下する恐れがある。   In the component (D), the blending amount of the curing accelerator is preferably 0 to 50 parts by mass, and more preferably 0 to 20 parts by mass with respect to 100 parts by mass of the epoxy resin. When this compounding quantity exceeds 50 mass parts, there exists a possibility that the storage stability of a resin paste may fall.

また、(D)熱硬化性樹脂としては、1分子中に少なくとも2個の熱硬化性イミド基を有するイミド化合物を使用することもできる。そのような化合物の例としては、オルトビスマレイミドベンゼン、メタビスマレイミドベンゼン、パラビスマレイミドベンゼン、1,4−ビス(p−マレイミドクミル)ベンゼン、1,4−ビス(m−マレイミドクミル)ベンゼン等が挙げられる。これらは1種を単独で、または2種以上を組み合わせて用いることができる。さらに、イミド化合物としては、下記一般式(VI)〜(VIII)で表されるイミド化合物等を用いることも好ましい。   Moreover, as (D) thermosetting resin, the imide compound which has at least 2 thermosetting imide group in 1 molecule can also be used. Examples of such compounds include orthobismaleimide benzene, metabismaleimide benzene, parabismaleimide benzene, 1,4-bis (p-maleimidocumyl) benzene, 1,4-bis (m-maleimidocumyl). Examples include benzene. These can be used alone or in combination of two or more. Furthermore, as the imide compound, it is also preferable to use imide compounds represented by the following general formulas (VI) to (VIII).

Figure 2008112972
Figure 2008112972

Figure 2008112972
Figure 2008112972

Figure 2008112972
Figure 2008112972

上記式(VI)〜(VIII)中、Y及びZは各々独立に、−O−、−CH−、−CF−、−SO−、−S−、−CO−、−C(CH−または−C(CF−を示し、R11、R12、R13、R14、R15、R16、R17及びR18は、各々独立に、水素原子、低級アルキル基、低級アルコキシ基、フッ素原子、塩素原子又は臭素原子を示し、Dはエチレン性不飽和二重結合を有するジカルボン酸残基を示し、pは0〜4の整数を示す。 In the above formulas (VI) to (VIII), Y and Z are each independently —O—, —CH 2 —, —CF 2 —, —SO 2 —, —S—, —CO—, —C (CH 3 ) 2 -or -C (CF 3 ) 2- , wherein R 11 , R 12 , R 13 , R 14 , R 15 , R 16 , R 17 and R 18 are each independently a hydrogen atom, lower alkyl A group, a lower alkoxy group, a fluorine atom, a chlorine atom or a bromine atom, D represents a dicarboxylic acid residue having an ethylenically unsaturated double bond, and p represents an integer of 0 to 4.

(E)成分であるフィラーとしては、例えば、銀粉、金粉、銅粉等の導電性(金属)フィラー;シリカ、アルミナ、チタニア、ガラス、酸化鉄、セラミック等の無機物質フィラー等が挙げられる。   Examples of the filler that is the component (E) include conductive (metal) fillers such as silver powder, gold powder, and copper powder; inorganic fillers such as silica, alumina, titania, glass, iron oxide, and ceramic.

フィラーのうち、銀粉、金粉、銅粉等の導電性(金属)フィラーは、接着剤に導電性、伝熱性またはチキソトロピー性を付与する目的で添加される。また、シリカ、アルミナ、チタニア、ガラス、酸化鉄、セラミック等の無機物質フィラーは、接着剤に低熱膨張性、低吸湿率、チキソトロピー性を付与する目的で添加される。これらは1種を単独で、または2種以上を組み合わせて用いることができる。   Among the fillers, conductive (metal) fillers such as silver powder, gold powder, and copper powder are added for the purpose of imparting conductivity, heat conductivity, or thixotropy to the adhesive. Further, inorganic fillers such as silica, alumina, titania, glass, iron oxide, and ceramic are added for the purpose of imparting low thermal expansion, low moisture absorption, and thixotropy to the adhesive. These can be used alone or in combination of two or more.

また、半導体装置の電気的信頼性を向上させるフィラーとして、無機イオン交換体を加えてもよい。無機イオン交換体としては、ペースト硬化物を熱水中で抽出したとき、水溶液中に抽出されるイオン、例えば、Na、K、Cl、F、RCOO、Br等のイオン捕捉作用が認められるものが有効である。このようなイオン交換体の例としては、天然に産出されるゼオライト、沸石類、酸性白土、白雲石、ハイドロタルサイト類などの天然鉱物、人工的に合成された合成ゼオライトなどが挙げられる。 Moreover, you may add an inorganic ion exchanger as a filler which improves the electrical reliability of a semiconductor device. As the inorganic ion exchanger, ions extracted from an aqueous solution when the paste cured product is extracted in hot water, for example, ion traps such as Na + , K + , Cl , F , RCOO , Br −, etc. Those whose action is recognized are effective. Examples of such ion exchangers include naturally produced zeolites, natural minerals such as zeolites, acid clay, dolomite, hydrotalcites, and artificially synthesized synthetic zeolites.

これらの導電性フィラーまたは無機物質フィラーは、それぞれ1種を単独で又は2種以上を混合して用いることができる。また、物性を損なわない範囲で、導電性フィラーの1種以上と無機物質フィラーの1種以上とを混合して用いてもよい。   These conductive fillers or inorganic fillers can be used singly or in combination of two or more. In addition, one or more kinds of conductive fillers and one or more kinds of inorganic fillers may be mixed and used as long as the physical properties are not impaired.

(E)フィラーの配合量は、上記(D)成分100質量部に対して300質量部以下であることが好ましく、200質量部以下であることがより好ましい。このフィラーの配合量は、樹脂ペーストに十分なチキソトロピー性(例えば、チキソトロピー指数:1.5以上)を付与する観点から、10質量部以上であることが好ましい。さらにこのフィラーの配合量は、接着性の観点から300質量部以下であることが好ましく、配合量が300質量部を超えると、硬化物の弾性率が高くなり、その結果、ダイボンディング材の応力緩和能が低下し、半導体装置の実装信頼性が低下する恐れがある。   (E) It is preferable that the compounding quantity of a filler is 300 mass parts or less with respect to 100 mass parts of said (D) component, and it is more preferable that it is 200 mass parts or less. The blending amount of the filler is preferably 10 parts by mass or more from the viewpoint of imparting sufficient thixotropy (for example, thixotropy index: 1.5 or more) to the resin paste. Furthermore, the blending amount of the filler is preferably 300 parts by mass or less from the viewpoint of adhesiveness. When the blending amount exceeds 300 parts by mass, the elastic modulus of the cured product is increased, and as a result, the stress of the die bonding material is increased. There is a possibility that the relaxation ability is lowered and the mounting reliability of the semiconductor device is lowered.

(E)フィラーの混合・混練は、通常の攪拌機、らいかい機、三本ロール、ボールミルなどの分散機を適宜組み合わせて行う。   (E) Mixing and kneading of the filler is performed by appropriately combining dispersers such as a normal stirrer, a raking machine, a triple roll, and a ball mill.

(F)成分である印刷用溶剤は、(E)フィラーを均一に混練または分散できる溶剤のなかから選択することが好ましい。また、印刷時の溶剤の揮散防止を考えて、沸点100℃以上の溶剤を選ぶことが好ましい。   The printing solvent as component (F) is preferably selected from solvents that can uniformly knead or disperse filler (E). In view of preventing solvent volatilization during printing, it is preferable to select a solvent having a boiling point of 100 ° C. or higher.

上記印刷用溶剤としては、例えば、N−メチル−2−ピロリジノン、ジエチレングリコールジメチルエーテル(ジグライムともいう)、トリエチレングリコールジメチルエーテル(トリグライムともいう)、ジエチレングリコールジエチルエーテル、2−(2−メトキシエトキシ)エタノール、γ−ブチロラクトン、イソホロン、カルビトール、カルビトールアセテート、1,3−ジメチル−2−イミダゾリジノン、酢酸2−(2−ブトキシエトキシ)エチル、エチルセロソルブ、エチルセロソルブアセテート、ブチルセロソルブ、ジオキサン、シクロヘキサノン、アニソールの他、印刷用インキの溶剤として使われる石油蒸留物を主体とした溶剤などが挙げられる。これらは1種を単独で又は2種以上を混合して用いることができる。   Examples of the printing solvent include N-methyl-2-pyrrolidinone, diethylene glycol dimethyl ether (also referred to as diglyme), triethylene glycol dimethyl ether (also referred to as triglyme), diethylene glycol diethyl ether, 2- (2-methoxyethoxy) ethanol, γ -Butyrolactone, isophorone, carbitol, carbitol acetate, 1,3-dimethyl-2-imidazolidinone, 2- (2-butoxyethoxy) ethyl acetate, ethyl cellosolve, ethyl cellosolve acetate, butyl cellosolve, dioxane, cyclohexanone, anisole Other examples include solvents mainly composed of petroleum distillates used as solvents for printing inks. These can be used individually by 1 type or in mixture of 2 or more types.

上記(F)印刷用溶剤の配合量は、樹脂ペーストの固形分が40〜90質量%となるように配合することが好ましい。上記固形分が40質量%以上であると、ペースト乾燥後の体積減少に基づく形状変化抑制の観点から好ましく、90質量%以下であると、ペーストの流動性および印刷作業性向上の観点から好ましい。   The blending amount of the (F) printing solvent is preferably blended so that the solid content of the resin paste is 40 to 90% by mass. When the solid content is 40% by mass or more, it is preferable from the viewpoint of shape change suppression based on volume reduction after drying the paste, and when it is 90% by mass or less, it is preferable from the viewpoint of improving the fluidity of the paste and printing workability.

樹脂ペーストの印刷中に泡、ボイドの発生が目立つ場合は、上記(F)印刷用溶剤中に脱泡剤、破泡剤、抑泡剤等の添加剤を添加することが効果的である。それらの添加量は、抑泡効果を発揮させる観点から、(F)印刷用溶剤と添加剤との総量を基準として0.01質量%以上であることが好ましく、接着性やペーストの粘度安定性の観点から、10質量%以下であることが好ましい。   When bubbles and voids are noticeable during the printing of the resin paste, it is effective to add additives such as a defoaming agent, a defoaming agent, and a defoaming agent to the above-mentioned (F) printing solvent. From the viewpoint of exerting the foam suppression effect, the amount added is preferably 0.01% by mass or more based on the total amount of the printing solvent and the additive, and adhesiveness and viscosity stability of the paste. In view of the above, it is preferably 10% by mass or less.

また、接着力を向上させるため、樹脂ペースト中には、シランカップリング剤、チタン系カップリング剤、ノニオン系界面活性剤、フッ素系界面活性剤、シリコーン系添加剤等を適宜加えてもよい。   Moreover, in order to improve adhesive force, you may add a silane coupling agent, a titanium coupling agent, a nonionic surfactant, a fluorine-type surfactant, a silicone type additive etc. in a resin paste suitably.

樹脂ペーストのチキソトロピー指数は、1.0〜8.0であることが好ましい。樹脂ペーストのチキソトロピー指数が1.0以上であると、印刷法によって供給・塗布されたペーストにおけるダレ等の発生を抑制して、印刷形状を良好に保つことができる傾向がある。さらに、このチキソトロピー指数が8.0以下であると、印刷法によって供給・塗布されたペーストにおける「欠け」やカスレ等の発生を抑制できる傾向がある。   The thixotropy index of the resin paste is preferably 1.0 to 8.0. When the thixotropy index of the resin paste is 1.0 or more, the occurrence of sagging or the like in the paste supplied and applied by the printing method tends to be suppressed, and the printed shape tends to be kept good. Furthermore, when the thixotropy index is 8.0 or less, it tends to be possible to suppress the occurrence of “chips” or scumming in the paste supplied and applied by the printing method.

樹脂ペーストの粘度(25℃)は、5〜1000Pa・sであることが好ましい。樹脂ペーストの粘度が5〜1000Pa・sであると、印刷作業性の観点から好適である。なお、樹脂ペーストの粘度は、印刷法の種類により適宜調整することが好ましく、例えば、スクリーンメッシュ版等のようにマスク開口部にメッシュ等が張ってある場合は、メッシュ部の抜け性を考慮して5〜100Pa・sの範囲に調整されていることが好ましく、ステンシル版等の場合は20〜500Pa・sの範囲に調整されていることが好ましい。また、乾燥後のペーストに残存するボイドが多く見られる場合は、150Pa・s以下の粘度に調整することが有効である。   The viscosity (25 ° C.) of the resin paste is preferably 5 to 1000 Pa · s. It is suitable from the viewpoint of printing workability that the viscosity of the resin paste is 5 to 1000 Pa · s. The viscosity of the resin paste is preferably adjusted as appropriate depending on the type of printing method.For example, when a mesh or the like is stretched on the mask opening, such as a screen mesh plate, the removal of the mesh portion is taken into consideration. In the case of a stencil plate or the like, it is preferably adjusted in the range of 20 to 500 Pa · s. Moreover, when many voids remain in the paste after drying, it is effective to adjust the viscosity to 150 Pa · s or less.

上記粘度は、E型回転粘度計を用いて、25℃、回転数0.5rpmの条件で測定したときの値とする。チキソトロピー指数は、E型回転粘度計で、25℃、回転数1rpmの条件で測定したときの値と、25℃、回転数10rpmの条件で測定したときの値との比で定義する(チキソトロピー指数=(1rpmでの粘度)/(10rpmでの粘度))。   The said viscosity shall be a value when it measures on 25 degreeC and rotation speed 0.5rpm conditions using an E-type rotational viscometer. The thixotropy index is defined by a ratio between a value measured with an E-type rotational viscometer at 25 ° C. and a rotational speed of 1 rpm and a value measured at 25 ° C. and a rotational speed of 10 rpm (thixotropic index). = (Viscosity at 1 rpm) / (viscosity at 10 rpm)).

得られたダイボンディング用樹脂ペーストは、42アロイリードフレームや銅リードフレーム等のリードフレーム;または、ポリイミド樹脂、エポキシ樹脂、ポリイミド系樹脂等のプラスチックフィルム;さらには、ガラス不織布等の基材にポリイミド樹脂、エポキシ樹脂、ポリイミド系樹脂等のプラスチックを含浸・硬化させたもの;あるいは、アルミナ等のセラミックス製の支持部材に、印刷法によって供給・塗布し、Bステージ化することができる。それにより、Bステージ接着剤付き支持基板が得られる。このBステージ接着剤付き支持基板に、IC、LSI等の半導体素子(チップ)を貼り付け、加熱してチップを支持基板に接合する。その後、樹脂ペーストを後硬化させる工程により、チップが支持基板に搭載される。この樹脂ペーストの後硬化は、実装組立工程での問題がない場合は、封止材の後硬化工程の際に併せて行ってもよい。   The resulting resin paste for die bonding includes a lead frame such as a 42 alloy lead frame or a copper lead frame; or a plastic film such as a polyimide resin, an epoxy resin, or a polyimide resin; A resin, epoxy resin, polyimide resin or other plastic impregnated and cured; or a ceramic support member such as alumina can be supplied and applied by a printing method to form a B stage. Thereby, a support substrate with a B stage adhesive is obtained. A semiconductor element (chip) such as an IC or LSI is attached to the support substrate with the B stage adhesive, and the chip is bonded to the support substrate by heating. Thereafter, the chip is mounted on the support substrate by a step of post-curing the resin paste. This post-curing of the resin paste may be performed together with the post-curing process of the sealing material when there is no problem in the mounting assembly process.

本発明に係る半導体装置の製造方法は、基板上に樹脂ペーストを塗布して塗膜を形成する塗布工程と、該塗膜上に半導体チップを搭載する半導体チップ搭載工程と、を少なくとも含み、好ましくは塗布工程後に塗膜を乾燥してBステージ化する乾燥工程を更に含む方法であるが、より具体的には上述した各工程を含むものである。また、本発明に係る半導体装置は、以上の各工程を含む製造方法により製造されるものである。   The method for manufacturing a semiconductor device according to the present invention preferably includes at least a coating step of applying a resin paste on a substrate to form a coating film, and a semiconductor chip mounting step of mounting a semiconductor chip on the coating film. Is a method that further includes a drying step of drying the coating film to form a B-stage after the coating step, and more specifically includes the above-described steps. The semiconductor device according to the present invention is manufactured by a manufacturing method including the above steps.

上記ダイボンディング用樹脂ペーストは溶剤を含有しているが、半導体装置の製造方法に用いる際には、乾燥工程にてBステージ化することにより溶剤の大部分が揮発するため、ダイボンディング層にボイドの少ない、良好な実装信頼性をもつ半導体装置を組み立てることができる。   The die bonding resin paste contains a solvent, but when used in a semiconductor device manufacturing method, most of the solvent is volatilized by forming a B stage in the drying process. It is possible to assemble a semiconductor device with a small amount and good mounting reliability.

一方、樹脂ペーストを印刷法によって供給・塗布した後に、パッケージ信頼性に影響が無ければ、乾燥半硬化させることなく半導体素子を貼り付け、その後、加熱してチップを支持基板に接合することもできる。   On the other hand, after supplying and applying the resin paste by the printing method, if there is no effect on the package reliability, the semiconductor element can be attached without drying and semi-curing, and then the chip can be bonded to the support substrate by heating. .

したがって、別の本発明に係る半導体装置の製造方法は、基板上に所定量の上記ダイボンディング用樹脂ペーストを塗布し、樹脂ペーストに半導体チップを搭載する各工程を含むものであり、別の本発明に係る半導体装置は、以上の各工程を含む製造方法により製造されるものである。   Therefore, another method of manufacturing a semiconductor device according to the present invention includes the steps of applying a predetermined amount of the above-mentioned die bonding resin paste on a substrate and mounting the semiconductor chip on the resin paste. The semiconductor device according to the invention is manufactured by a manufacturing method including the above steps.

ここで、図1は、本発明の半導体装置(メモリ用BOC構造の基板)の一実施形態を示す模式断面図である。図1に示す半導体装置100においては、ICチップ等の半導体チップ2が、本発明のダイボンディング用樹脂ペーストからなる接着剤4を介して、はんだボール8を備える基板6に接着されている。ここで、はんだボール8は、基板6の表面に形成された回路層14上に形成されている。また、回路層14上にはレジスト層16が形成されている。そして、半導体装置100は、半導体チップ2の接続端子が金ワイヤ等のワイヤ10を介して基板6と電気的に接続され、更に、封止樹脂12によって封止された構成を有している。   Here, FIG. 1 is a schematic cross-sectional view showing an embodiment of a semiconductor device (substrate having a memory BOC structure) according to the present invention. In the semiconductor device 100 shown in FIG. 1, a semiconductor chip 2 such as an IC chip is bonded to a substrate 6 having solder balls 8 via an adhesive 4 made of a resin paste for die bonding of the present invention. Here, the solder balls 8 are formed on the circuit layer 14 formed on the surface of the substrate 6. A resist layer 16 is formed on the circuit layer 14. The semiconductor device 100 has a configuration in which the connection terminal of the semiconductor chip 2 is electrically connected to the substrate 6 via a wire 10 such as a gold wire and is further sealed with a sealing resin 12.

以下、実施例及び比較例に基づいて、本発明をさらに具体的に説明する。   Hereinafter, based on an Example and a comparative example, this invention is demonstrated further more concretely.

(実施例1〜7及び比較例1〜9)
ジフェニルメタン−4,4’−ジイソシアネート(1.0mol)、ジフェニルメタン−2,4’−ジイソシアネート(1.0mol)、及び、重量平均分子量1,000のポリテトラメチレングリコール(0.8mol)を、1−メチル−2−ピロリドン中で窒素雰囲気下、100℃で1時間反応させた後、そこに、4,4’−オキシジフタル酸無水物(1.0mol)、及び、1−メチル−2−ピロリドン(60.0mol)を添加し、さらに100℃で3時間攪拌した。次いで、さらにベンジルアルコール(0.49mol)を添加して100℃で1時間攪拌し、反応を終了した。得られた溶液を激しく攪拌させた水に入れ、生成した沈殿物を濾別し、それを真空中、80℃で8時間乾燥させ、ポリウレタンイミド樹脂を得た。得られたポリウレタンイミド樹脂を、GPCを用いて測定した結果、ポリスチレン換算で、Mw=93,700、Mn=38,800であった。また、得られたポリウレタンイミド樹脂を固形分濃度40質量%でカルビトールアセテート(CA)に溶解し、ポリウレタンイミド樹脂溶液を得た。
(Examples 1-7 and Comparative Examples 1-9)
Diphenylmethane-4,4′-diisocyanate (1.0 mol), diphenylmethane-2,4′-diisocyanate (1.0 mol), and polytetramethylene glycol (0.8 mol) having a weight average molecular weight of 1,000 After reacting in methyl-2-pyrrolidone at 100 ° C. for 1 hour in a nitrogen atmosphere, 4,4′-oxydiphthalic anhydride (1.0 mol) and 1-methyl-2-pyrrolidone (60 0.0 mol) was added, and the mixture was further stirred at 100 ° C. for 3 hours. Subsequently, benzyl alcohol (0.49 mol) was further added and stirred at 100 ° C. for 1 hour to complete the reaction. The obtained solution was put into vigorously stirred water, and the produced precipitate was filtered off and dried in vacuum at 80 ° C. for 8 hours to obtain a polyurethaneimide resin. As a result of measuring the obtained polyurethane imide resin using GPC, it was Mw = 93,700 and Mn = 38,800 in terms of polystyrene. Moreover, the obtained polyurethane imide resin was melt | dissolved in carbitol acetate (CA) by solid content concentration of 40 mass%, and the polyurethane imide resin solution was obtained.

また、クレゾールノボラック型エポキシ樹脂(商品名:YDCN−702S、東都化成(株)製、エポキシ当量200)14.08質量部、ビスフェノールAノボラック樹脂(商品名:VH−4170、大日本インキ化学工業(株)製、OH当量118)9.92質量部のカルビトールアセテート(36質量部)溶液を用意した。同様に、クレゾールノボラック型エポキシ樹脂(YDCN−702S)11.73質量部、ビスフェノールAノボラック樹脂(VH−4170)8.27質量部のカルビトールアセテート(30質量部)溶液を用意した。更に、カルボン酸末端液状ポリブタジエン(商品名:CTBNX−1300×9、宇部興産(株)製、官能基数2.3/mol)、テトラフェニルホスホニウムテトラフェニルボラート(商品名:TPPK、東京化成工業(株)製)、アエロジル(商品名:AEROSIL 50、商品名:AEROSIL 380、日本アエロジル(株)製、シリカの微粉末)、並びに、シランカップリング剤としてKBM−403、603、903、573、803、KBE−403(以上、信越化学工業(株)製、商品名)、A174(日本ユニカー(株)製、商品名)、及び、P501(荒川化学工業(株)製、商品名、シラン変性フェノール樹脂、OH当量270)をそれぞれ用意した。   In addition, 14.08 parts by mass of cresol novolac type epoxy resin (trade name: YDCN-702S, manufactured by Toto Kasei Co., Ltd., epoxy equivalent 200), bisphenol A novolac resin (trade name: VH-4170, Dainippon Ink & Chemicals, Inc.) Co., Ltd., OH equivalent 118) 9.92 parts by mass of a carbitol acetate (36 parts by mass) solution was prepared. Similarly, a carbitol acetate (30 parts by mass) solution containing 11.73 parts by mass of a cresol novolac type epoxy resin (YDCN-702S) and 8.27 parts by mass of a bisphenol A novolac resin (VH-4170) was prepared. Furthermore, carboxylic acid-terminated liquid polybutadiene (trade name: CTBNX-1300 × 9, Ube Industries, Ltd., functional group number 2.3 / mol), tetraphenylphosphonium tetraphenylborate (trade name: TPPK, Tokyo Chemical Industry ( ), Aerosil (trade name: AEROSIL 50, trade name: AEROSIL 380, Nippon Aerosil Co., Ltd., fine powder of silica), and KBM-403, 603, 903, 573, 803 as silane coupling agents , KBE-403 (manufactured by Shin-Etsu Chemical Co., Ltd., trade name), A174 (manufactured by Nihon Unicar Co., Ltd., trade name), and P501 (trade name, silane-modified phenol, manufactured by Arakawa Chemical Industries, Ltd.) Resin and OH equivalent (270) were prepared.

これらの材料を、固形質量比で下記表1〜3に示す割合となるようにらいかい機に入れ、混練した後、5Torr以下で1時間脱泡混練を行い、実施例1〜7及び比較例1〜9のダイボンディング用樹脂ペーストを得た。なお、表1〜3中のカルビトールアセテート(CA)の配合量は、ポリウレタンイミド樹脂溶液中、並びに、エポキシ樹脂及びフェノール樹脂のカルビトールアセテート溶液中に溶剤として含まれているカルビトールアセテートの量を示している。   These materials were put in a rough machine so as to have the ratio shown in the following Tables 1 to 3 in terms of solid mass ratio, kneaded, and then defoamed and kneaded for 1 hour at 5 Torr or less. Examples 1 to 7 and Comparative Examples 1-9 resin pastes for die bonding were obtained. In addition, the compounding quantity of the carbitol acetate (CA) in Tables 1-3 is the quantity of the carbitol acetate contained as a solvent in the polyurethane imide resin solution and the carbitol acetate solution of the epoxy resin and the phenol resin. Is shown.

また、この樹脂ペーストの特性として、半導体チップ圧着後の180℃における熱時ダイシェア強度と、半導体チップ圧着及び樹脂ペーストの後硬化後の250℃における熱時ダイシェア強度とを測定した。   Further, as the characteristics of the resin paste, the hot die shear strength at 180 ° C. after the semiconductor chip press-bonding and the hot die shear strength at 250 ° C. after the semiconductor chip press-bonding and post-curing of the resin paste were measured.

180℃における熱時ダイシェア強度の測定方法は以下の通りである。樹脂ペーストを42アロイリードフレーム上に印刷し、150℃のオーブンで70分間乾燥して、Bステージ状態の塗膜(ダイボンディング層)を形成した。その後、ダイボンディング層上に5×5mmのシリコンチップ(厚さ0.5mm)を、180℃の熱盤上で1.5kgの荷重を掛けて1秒間圧着させた。これを、自動接着力試験機(商品名:serie−4000、デイジ社製)を用い、180℃におけるせん断強さ(kgf/チップ)を測定した。その結果を表1〜3に示す。   The method for measuring the die shear strength during heating at 180 ° C. is as follows. The resin paste was printed on a 42 alloy lead frame and dried in an oven at 150 ° C. for 70 minutes to form a B-stage coating film (die bonding layer). Thereafter, a 5 × 5 mm silicon chip (thickness 0.5 mm) was pressure-bonded on the die bonding layer for 1 second on a 180 ° C. hot platen under a load of 1.5 kg. This was measured for shear strength (kgf / chip) at 180 ° C. using an automatic adhesive strength tester (trade name: series-4000, manufactured by Daisy). The results are shown in Tables 1-3.

250℃における熱時ダイシェア強度の測定方法は以下の通りである。樹脂ペーストを42アロイリードフレーム上に印刷し、120℃のオーブンで60分間乾燥して、Bステージ状態の塗膜(ダイボンディング層)を形成した。その後、ダイボンディング層上に5×5mmのシリコンチップ(厚さ0.5mm)を180℃の熱盤上で1.5kgの荷重を掛けて1秒間圧着させた。次いで、180℃のオーブンで60分間加熱し、後硬化させた。これを、自動接着力試験機(商品名:serie−4000、デイジ社製)を用い、250℃におけるせん断強さ(kgf/チップ)を測定した。その結果を表1〜3に示す。   The method for measuring the hot die shear strength at 250 ° C. is as follows. The resin paste was printed on a 42 alloy lead frame and dried in an oven at 120 ° C. for 60 minutes to form a B-stage coating film (die bonding layer). Thereafter, a 5 × 5 mm silicon chip (thickness 0.5 mm) was pressure-bonded on the die bonding layer for 1 second on a 180 ° C. hot platen under a load of 1.5 kg. Subsequently, it was heated in an oven at 180 ° C. for 60 minutes and post-cured. This was measured for shear strength (kgf / chip) at 250 ° C. using an automatic adhesive strength tester (trade name: series-4000, manufactured by Daisy). The results are shown in Tables 1-3.

Figure 2008112972
Figure 2008112972

Figure 2008112972
Figure 2008112972

Figure 2008112972
Figure 2008112972

表1〜3に示す通り、本発明の樹脂ペースト(実施例1〜7)は、印刷、Bステージ化、及びチップ圧着後の熱時ダイシェア強度(180℃)において、従来の樹脂ペースト(比較例1、2)、及び種々のシランカップリング剤を用いた樹脂ペースト(比較例3〜9)と比較して、高いチップ接着力を示した。また、後硬化後の250℃での熱時ダイシェア強度においても、比較例と同等以上の高い耐熱性を保持しており、Bステージ化後と後硬化後の両方において、高いチップ接着力と耐熱性とを有していることが確認された。   As shown in Tables 1 to 3, the resin pastes of the present invention (Examples 1 to 7) are the conventional resin pastes (comparative examples) in the hot die shear strength (180 ° C.) after printing, B-staging, and chip pressing. 1, 2) and a resin paste using various silane coupling agents (Comparative Examples 3 to 9) showed high chip adhesion. In addition, the heat-resistant die shear strength at 250 ° C. after post-curing maintains high heat resistance equivalent to or higher than that of the comparative example, and has high chip adhesion and heat resistance both after B-stage and after post-curing. It was confirmed that it has sex.

本発明の半導体装置の一実施形態を示す模式断面図である。It is a schematic cross section showing one embodiment of a semiconductor device of the present invention.

符号の説明Explanation of symbols

2…半導体チップ、4…接着剤、6…基板、8…はんだボール、10…ワイヤ、12…封止樹脂、100…半導体装置。   DESCRIPTION OF SYMBOLS 2 ... Semiconductor chip, 4 ... Adhesive, 6 ... Board | substrate, 8 ... Solder ball, 10 ... Wire, 12 ... Sealing resin, 100 ... Semiconductor device.

Claims (6)

下記一般式(I)で表されるシラン変性樹脂と、熱硬化性樹脂と、フィラーと、印刷用溶剤と、を含有するダイボンディング用樹脂ペースト。
Figure 2008112972


[式中、Rは、−CH又は−OCHを示し、Xは樹脂部分を示し、nは1〜7の整数を示す。なお、複数存在するRは同一でも異なっていてもよい。]
A resin paste for die bonding containing a silane-modified resin represented by the following general formula (I), a thermosetting resin, a filler, and a printing solvent.
Figure 2008112972


[Wherein, R represents a -CH 3 or -OCH 3, X represents a resin portion, n is an integer of 1-7. A plurality of R may be the same or different. ]
前記Xで示される前記樹脂部分は、ポリイミド樹脂、ポリアミドイミド樹脂、ポリウレタン樹脂、エポキシ樹脂及びフェノール樹脂からなる群より選択される少なくとも一種の樹脂からなる部分である、請求項1に記載のダイボンディング用樹脂ペースト。   2. The die bonding according to claim 1, wherein the resin portion represented by X is a portion made of at least one resin selected from the group consisting of a polyimide resin, a polyamideimide resin, a polyurethane resin, an epoxy resin, and a phenol resin. Resin paste. ポリウレタンイミド樹脂を更に含有する、請求項1又は2に記載のダイボンディング用樹脂ペースト。   The resin paste for die bonding according to claim 1 or 2, further comprising a polyurethaneimide resin. 基板上に請求項1〜3のいずれか一項に記載のダイボンディング用樹脂ペーストを塗布して塗膜を形成する塗布工程と、
前記塗膜上に半導体チップを搭載する半導体チップ搭載工程と、
を含む、半導体装置の製造方法。
An application step of applying the resin paste for die bonding according to any one of claims 1 to 3 on the substrate to form a coating film;
A semiconductor chip mounting step of mounting a semiconductor chip on the coating film;
A method for manufacturing a semiconductor device, comprising:
前記塗布工程の後に、前記塗膜を乾燥してBステージ化する乾燥工程を更に含み、
前記半導体チップ搭載工程において、Bステージ化した前記塗膜上に半導体チップを搭載する、請求項4に記載の半導体装置の製造方法。
After the coating step, further includes a drying step of drying the coating film to make a B-stage,
The method for manufacturing a semiconductor device according to claim 4, wherein in the semiconductor chip mounting step, a semiconductor chip is mounted on the B-staged coating film.
請求項4又は5に記載の半導体装置の製造方法により得られる半導体装置。   A semiconductor device obtained by the method for manufacturing a semiconductor device according to claim 4.
JP2007221507A 2006-10-06 2007-08-28 Resin paste for die bonding, method for manufacturing semiconductor device, and semiconductor device Pending JP2008112972A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007221507A JP2008112972A (en) 2006-10-06 2007-08-28 Resin paste for die bonding, method for manufacturing semiconductor device, and semiconductor device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006275081 2006-10-06
JP2007221507A JP2008112972A (en) 2006-10-06 2007-08-28 Resin paste for die bonding, method for manufacturing semiconductor device, and semiconductor device

Publications (1)

Publication Number Publication Date
JP2008112972A true JP2008112972A (en) 2008-05-15

Family

ID=39445306

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007221507A Pending JP2008112972A (en) 2006-10-06 2007-08-28 Resin paste for die bonding, method for manufacturing semiconductor device, and semiconductor device

Country Status (1)

Country Link
JP (1) JP2008112972A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013010932A (en) * 2011-05-31 2013-01-17 Ajinomoto Co Inc Resin composition
CN106753215A (en) * 2017-01-11 2017-05-31 宁波聚力新材料科技有限公司 Low stress thermal conductive silicon gel combination

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04300984A (en) * 1991-03-29 1992-10-23 Hitachi Chem Co Ltd Electrically conductive resin paste and semiconductor device
JP2000017246A (en) * 1998-07-06 2000-01-18 Lintec Corp Hardenable pressure-sensitive adhesive composition and hardenable pressure-sensitive adhesive sheet
JP2005220340A (en) * 2004-01-08 2005-08-18 Hitachi Chem Co Ltd Polyurethane imide resin and adhesive composition using this
JP2006002035A (en) * 2004-06-17 2006-01-05 Shin Etsu Chem Co Ltd Adhesive composition and adhesive film
JP2006032936A (en) * 2004-06-18 2006-02-02 Hitachi Chem Co Ltd Resin paste for die bonding, and its use

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04300984A (en) * 1991-03-29 1992-10-23 Hitachi Chem Co Ltd Electrically conductive resin paste and semiconductor device
JP2000017246A (en) * 1998-07-06 2000-01-18 Lintec Corp Hardenable pressure-sensitive adhesive composition and hardenable pressure-sensitive adhesive sheet
JP2005220340A (en) * 2004-01-08 2005-08-18 Hitachi Chem Co Ltd Polyurethane imide resin and adhesive composition using this
JP2006002035A (en) * 2004-06-17 2006-01-05 Shin Etsu Chem Co Ltd Adhesive composition and adhesive film
JP2006032936A (en) * 2004-06-18 2006-02-02 Hitachi Chem Co Ltd Resin paste for die bonding, and its use

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013010932A (en) * 2011-05-31 2013-01-17 Ajinomoto Co Inc Resin composition
TWI609917B (en) * 2011-05-31 2018-01-01 Ajinomoto Co., Inc. Resin composition
KR101888697B1 (en) * 2011-05-31 2018-09-20 아지노모토 가부시키가이샤 Resin composition
CN106753215A (en) * 2017-01-11 2017-05-31 宁波聚力新材料科技有限公司 Low stress thermal conductive silicon gel combination
CN106753215B (en) * 2017-01-11 2020-08-11 宁波聚力新材料科技有限公司 Low stress thermally conductive silicone gel composition

Similar Documents

Publication Publication Date Title
KR100893992B1 (en) Resin paste for die bonding and its use
JP4602970B2 (en) Electrically stable and impact resistant conductive adhesive composition for electronic devices
JP5225853B2 (en) Resin paste for die bonding, semiconductor device manufacturing method, and semiconductor device
JP4816876B2 (en) Resin paste for die bonding and manufacturing method of semiconductor device
JP5157938B2 (en) Resin paste for die bonding, semiconductor device manufacturing method using the resin paste, and semiconductor device obtained by the manufacturing method
WO2010070947A1 (en) Resin paste for die bonding, method for producing semiconductor device, and semiconductor device
JP2000178342A (en) Insulation paste
JP2013093564A (en) Resin paste for die bonding, semiconductor device manufacturing method, and semiconductor device
WO2010110069A1 (en) Resin paste for die bonding, process for producing semiconductor device using the resin paste, and semiconductor device
JP5130682B2 (en) Resin paste for die bonding, semiconductor device manufacturing method using the resin paste, and semiconductor device obtained by the manufacturing method
JP2008112972A (en) Resin paste for die bonding, method for manufacturing semiconductor device, and semiconductor device
JP2008277803A (en) Resin paste composition for die bonding, manufacturing method for semiconductor device using it, and semiconductor device
JP2008509241A (en) Low porosity non-flowing fluxing underfill for electronic devices
JP2013170254A (en) Die bonding resin paste, method for manufacturing semiconductor device, and semiconductor device
JP2008270717A (en) Resin paste composition for die bonding, semiconductoer device, and manufacturing method therefor using the composition
JP2005298677A (en) Liquid sealing resin composition and electronic part device and method for producing the same
JP2007110099A (en) Die-bonding material and resin paste thereof
JP2006342300A (en) Adhesive film and semiconductor device given by using the same
JPH11199850A (en) Insulating paste

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100723

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110624

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120315

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120410

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120828