JP2008112902A - Supporting method and supporting structure of substrate - Google Patents

Supporting method and supporting structure of substrate Download PDF

Info

Publication number
JP2008112902A
JP2008112902A JP2006295772A JP2006295772A JP2008112902A JP 2008112902 A JP2008112902 A JP 2008112902A JP 2006295772 A JP2006295772 A JP 2006295772A JP 2006295772 A JP2006295772 A JP 2006295772A JP 2008112902 A JP2008112902 A JP 2008112902A
Authority
JP
Japan
Prior art keywords
glass substrate
support
substrate
supporting
pin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006295772A
Other languages
Japanese (ja)
Inventor
Shigenari Horie
茂斉 堀江
Masaki Kawano
将樹 河野
Yoshikimi Tsumoto
良公 津元
Mitsunori Oizumi
光典 大泉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2006295772A priority Critical patent/JP2008112902A/en
Publication of JP2008112902A publication Critical patent/JP2008112902A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electroluminescent Light Sources (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a supporting method and a supporting structure of a substrate in which high-precision positioning is ensured by reducing warpage of a glass substrate when the periphery of the glass substrate is supported from below. <P>SOLUTION: One supporting pin 4a is arranged on each short side 3a of a rectangular glass substrate 3 while two supporting pins 4b are arranged on each long side 3b of the rectangular glass substrate 3. The supporting structure is constituted by using in total six supporting pins 4a and 4b and arranging the support pins 4a and 4b on the periphery of the glass substrate 3 while avoiding four corners thereof thus supporting the glass substrate 3 from below. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、基板の支持方法及び支持構造に関する。   The present invention relates to a substrate supporting method and a supporting structure.

従来の基板の支持構造について、有機EL(エレクトロルミネセンス)パネル製造装置における基板搬送装置を例にとって説明する。有機ELパネルは、ガラス基板へ種々の蒸着材料の蒸着を行うことによって、製造されている。その際、種々の蒸着材料が蒸着される蒸着面は、ガラス基板の下面であるため、ガラス基板を支持、保持するときには、蒸着されないガラス基板の端部又はガラス基板の上面か、若しくは、ガラス基板の下面の蒸着されない周辺部しか、接触が許されておらず、その部分に接触して、ガラス基板の支持、保持が行われることになる。   A conventional substrate support structure will be described by taking a substrate transfer device in an organic EL (electroluminescence) panel manufacturing apparatus as an example. Organic EL panels are manufactured by depositing various deposition materials on a glass substrate. At this time, since the deposition surface on which various deposition materials are deposited is the lower surface of the glass substrate, when supporting or holding the glass substrate, the end of the glass substrate that is not deposited, the upper surface of the glass substrate, or the glass substrate Only the peripheral portion of the lower surface of the substrate that is not deposited is allowed to contact, and the glass substrate is supported and held in contact with that portion.

特開2003−77977号公報Japanese Patent Laid-Open No. 2003-77777 特許第3725618号公報Japanese Patent No. 3725618 特許第3784887号公報Japanese Patent No. 3778487

有機ELパネルを製造する際の蒸着プロセス中には、蒸着パターンを変更するために蒸着パターンが形成されたマスクを異なるものに変更したり、蒸着材料が異なる蒸着チャンバへ移動するためにガラス基板を保持する基板ホルダを異なるものに変更したりするため、ガラス基板の基板ホルダへの載せ換えが必要となる。ガラス基板の基板ホルダへの載せ換えは、搬送ロボット等による搬送により行われるが、このとき、基板ホルダからガラス基板を浮き上がらせるために、ガラス基板を支持する支持ピンを鉛直上方に上昇させて、ガラス基板のみを支持ピンで支持すると共に、ガラス基板の下面側に搬送ロボットのフォーク部分を差込んで、ガラス基板のみを搬送するようにしている。このとき、ガラス基板に対するフォーク部分の支持範囲も、支持ピンと同様に、ガラス基板の周辺部又は端面の部分に限られることになり、そのために、ガラス基板の水平方向の位置精度として高い精度が要求されていた。   During the vapor deposition process when manufacturing the organic EL panel, the mask on which the vapor deposition pattern is formed is changed to change the vapor deposition pattern, or the glass substrate is moved to move the vapor deposition material to a different vapor deposition chamber. In order to change the holding substrate holder to a different one, it is necessary to replace the glass substrate with the substrate holder. The transfer of the glass substrate to the substrate holder is performed by conveyance by a conveyance robot or the like, but at this time, in order to lift the glass substrate from the substrate holder, the support pins supporting the glass substrate are raised vertically upward, While supporting only a glass substrate with a support pin, the fork part of a conveyance robot is inserted in the lower surface side of a glass substrate, and only a glass substrate is conveyed. At this time, the support range of the fork portion with respect to the glass substrate is limited to the peripheral portion or the end surface portion of the glass substrate in the same manner as the support pins. Therefore, high accuracy is required as the horizontal position accuracy of the glass substrate. It had been.

ところが、支持ピンによりガラス基板を支持する場合、ガラス基板の周辺部又は端面のみ支持するため、ガラス基板の中央が自重により撓むと共に、ガラス基板の角部が跳ね上がるという現象が生じていた。このような撓みが生じている状況では、ガラス基板の水平方向の位置決め精度に悪い影響を与え、ガラス基板に対するフォーク部分の支持範囲がずれると共に、ガラス基板の基板ホルダへの載せ換え時に正しく乗せ換えができないおそれがあった。   However, when the glass substrate is supported by the support pins, only the peripheral portion or the end face of the glass substrate is supported, so that the center of the glass substrate is bent by its own weight and the corner portion of the glass substrate jumps up. In such a situation, the horizontal positioning accuracy of the glass substrate is adversely affected, the support range of the fork portion with respect to the glass substrate is deviated, and the glass substrate is correctly replaced when it is transferred to the substrate holder. There was a risk of not being able to.

このような問題を解消するため、支持ピンに替えて、図6(a)に示すように、ガラス基板3の4辺の略全部を支持する支持プレート6を用いる支持構造も検討されている。しかしながら、このような支持構造でもガラス基板3の撓みを十分に低減できていない。例えば、ガラス基板(ソーダガラス、550mm×650mm×0.7mm厚)の4辺の端部を支持プレート6で支持する場合、ガラス基板3の中央が沈み込むと共に、ガラス基板3の角部が跳ね上がるため、図6(b)に示すように、最大3.0mm以上の高低差が生じ、又、その最大傾斜は0.043m/mとなっていた。   In order to solve such a problem, a support structure using a support plate 6 that supports substantially all four sides of the glass substrate 3 as shown in FIG. However, even with such a support structure, the bending of the glass substrate 3 cannot be sufficiently reduced. For example, when supporting the edges of four sides of a glass substrate (soda glass, 550 mm × 650 mm × 0.7 mm thick) with the support plate 6, the center of the glass substrate 3 sinks and the corners of the glass substrate 3 jump up. Therefore, as shown in FIG. 6 (b), a maximum height difference of 3.0 mm or more occurred, and the maximum inclination was 0.043 m / m.

本発明は上記課題に鑑みなされたもので、ガラス基板の周辺部を下方から支持する際に、ガラス基板の撓みを低減して、精度良い位置決めが可能となる基板の支持方法及び支持構造を提供することを目的とする。   The present invention has been made in view of the above problems, and provides a substrate support method and a support structure that enable accurate positioning by reducing the deflection of the glass substrate when supporting the peripheral portion of the glass substrate from below. The purpose is to do.

上記課題を解決する第1の発明に係る基板の支持方法は、
矩形状のガラス基板を支持する際、プロセスの対象領域でない該ガラス基板の周辺部を複数の支持ピンで下方から支持する基板の支持方法において、
前記ガラス基板の対向する1対の辺の中央に各々少なくとも1つの第1支持ピンを配置すると共に、前記ガラス基板の他の対向する1対の辺に各々少なくとも2つの第2支持ピンを配置して、前記複数の支持ピンを少なくとも合計6つ以上の支持ピンから構成し、
前記第1支持ピン及び前記第2支持ピンを、前記ガラス基板の4角を避けて、前記ガラス基板の周辺部に配置することを特徴とする。
The substrate supporting method according to the first invention for solving the above-mentioned problems is as follows.
In supporting a rectangular glass substrate, in the substrate supporting method of supporting the peripheral portion of the glass substrate that is not the target region of the process from below with a plurality of support pins,
At least one first support pin is disposed at the center of the pair of opposite sides of the glass substrate, and at least two second support pins are disposed on the other pair of opposite sides of the glass substrate. The plurality of support pins is composed of at least six support pins in total,
The first support pins and the second support pins are arranged around a periphery of the glass substrate, avoiding the four corners of the glass substrate.

上記課題を解決する第2の発明に係る基板の支持方法は、
上記第1の発明に記載の基板の支持方法において、
前記ガラス基板の全面積に対して、前記第1支持ピン及び前記第2支持ピンに囲まれた領域より外側の前記ガラス基板の面積の比が0.25以上となるように、前記第1支持ピン及び前記第2支持ピンを配置することを特徴とする。
The substrate supporting method according to the second invention for solving the above-mentioned problems is as follows.
In the method of supporting a substrate according to the first invention,
The first support so that the ratio of the area of the glass substrate outside the region surrounded by the first support pin and the second support pin is 0.25 or more with respect to the total area of the glass substrate. A pin and the second support pin are arranged.

上記課題を解決する第3の発明に係る基板の支持方法は、
上記第1、第2の発明に記載の基板の支持方法において、
前記第1支持ピン及び前記第2支持ピンの先端部は、半球状であることを特徴とする。
A substrate supporting method according to a third invention for solving the above-mentioned problems is as follows.
In the method for supporting a substrate according to the first and second inventions,
The tip portions of the first support pin and the second support pin are hemispherical.

上記課題を解決する第4の発明に係る基板の支持構造は、
矩形状のガラス基板を支持する際、プロセスの対象領域でない該ガラス基板の周辺部を複数の支持ピンで下方から支持する基板の支持構造において、
前記複数の支持ピンが、前記ガラス基板の対向する1対の辺の中央に各々配置した少なくとも1つの第1支持ピンと前記ガラス基板の他の対向する1対の辺に各々配置した少なくとも2つの第2支持ピンの少なくとも合計6つ以上の支持ピンから構成され、
前記第1支持ピン及び前記第2支持ピンを、前記ガラス基板の4角を避けて、前記ガラス基板の周辺部に配置したことを特徴とする。
A substrate support structure according to a fourth aspect of the present invention for solving the above problems is as follows.
In supporting a rectangular glass substrate, in the support structure of the substrate that supports the periphery of the glass substrate that is not the target region of the process from below with a plurality of support pins,
The plurality of support pins are arranged at the center of a pair of opposite sides of the glass substrate, respectively, and at least two second sides arranged respectively on the other pair of opposite sides of the glass substrate. It is composed of at least six support pins in total of two support pins,
The first support pin and the second support pin are arranged in a peripheral portion of the glass substrate, avoiding the four corners of the glass substrate.

上記課題を解決する第5の発明に係る基板の支持構造は、
上記第4の発明に記載の基板の支持構造において、
前記ガラス基板の全面積に対して、前記第1支持ピン及び前記第2支持ピンに囲まれた領域より外側の前記ガラス基板の面積の比が0.25以上となるように、前記第1支持ピン及び前記第2支持ピンを配置したことを特徴とする。
A substrate support structure according to a fifth aspect of the present invention for solving the above problem is as follows.
In the substrate support structure according to the fourth invention,
The first support so that the ratio of the area of the glass substrate outside the region surrounded by the first support pin and the second support pin is 0.25 or more with respect to the total area of the glass substrate. A pin and the second support pin are arranged.

上記課題を解決する第6の発明に係る基板の支持構造は、
上記第4、第5の発明に記載の基板の支持構造において、
前記第1支持ピン及び前記第2支持ピンの先端部を半球状に形成したことを特徴とする。
A substrate support structure according to a sixth invention for solving the above-mentioned problems is as follows.
In the substrate support structure according to the fourth or fifth invention,
The tip portions of the first support pin and the second support pin are formed in a hemispherical shape.

本発明によれば、ガラス基板の周辺部を下方から支持する際に、少なくとも6本以上の支持ピンを用い、ガラス基板の4角を避けて配置するので、自重によりガラス基板が撓んでも、ガラス基板の角部を跳ね上がらなくして、支持した際のガラス基板全体の変形量を小さくすることができる。その結果、ガラス基板を搬送する際のガラス基板の位置精度が向上し、精度良い位置決めが可能となる。   According to the present invention, when supporting the peripheral part of the glass substrate from below, using at least six support pins and avoiding the four corners of the glass substrate, even if the glass substrate is bent by its own weight, It is possible to reduce the amount of deformation of the entire glass substrate when supported by preventing the corner of the glass substrate from jumping up. As a result, the positional accuracy of the glass substrate when transporting the glass substrate is improved, and accurate positioning is possible.

以下、図1、図2を用いて、本発明に係る基板の支持構造及び支持方法を説明する。又、本発明時に評価を行なった他の基板の支持構造とその測定結果を図3〜図6及び表1〜表5に示す。   Hereinafter, a substrate support structure and a support method according to the present invention will be described with reference to FIGS. Moreover, the support structure of the other board | substrate evaluated at the time of this invention and its measurement result are shown in FIGS. 3-6 and Tables 1-5.

図1は、本発明に係る基板の支持構造を示す図であり、図1(a)は、その側面図、図1(b)は、その平面図を示すものである。   1A and 1B are diagrams showing a substrate support structure according to the present invention. FIG. 1A is a side view thereof, and FIG. 1B is a plan view thereof.

本実施例の基板の支持構造は、図示しない真空装置やガス供給系により内部を真空状態や所望のガス雰囲気にすることができるチャンバ2と、チャンバ2の底面側に設けられ、矩形状のガラス基板3の周辺部を下面側から支持する複数の支持ピン4a、4bと、同じく、チャンバ2の底面側に設けられ、支持ピン4a、4bを昇降させる昇降装置5とを有するものである。   The substrate support structure of the present embodiment includes a chamber 2 in which the inside can be brought into a vacuum state or a desired gas atmosphere by a vacuum device or a gas supply system (not shown), and a rectangular glass provided on the bottom surface side of the chamber 2. The plurality of support pins 4a and 4b that support the peripheral portion of the substrate 3 from the lower surface side, and the lifting device 5 that is provided on the bottom surface side of the chamber 2 and lifts and lowers the support pins 4a and 4b.

昇降装置5は、支持ピン4a、4b自体を昇降させるものであるが、これは、チャンバ2内へガラス基板3を搬入、搬出する際に使用するものである。   The elevating device 5 elevates and lowers the support pins 4 a and 4 b itself, and this is used when the glass substrate 3 is carried into and out of the chamber 2.

具体的には、図示しない搬送ロボットのフォーク部分が、ガラス基板3の下面を保持してチャンバ2内へガラス基板3を搬入する際には、予め、支持ピン4a、4bを降下させておき、フォーク部分がガラス基板3を所定の位置まで搬入した後、支持ピン4a、4bを上昇させることにより、フォーク部分からガラス基板3を持ち上げて、支持ピン4a、4bのみでガラス基板3を支持するようにする。このことにより、フォーク部分をガラス基板3の下から引く抜くことが可能となる。   Specifically, when the fork portion of the transfer robot (not shown) holds the lower surface of the glass substrate 3 and carries the glass substrate 3 into the chamber 2, the support pins 4a and 4b are lowered in advance, After the fork portion carries the glass substrate 3 to a predetermined position, the support pins 4a and 4b are lifted to lift the glass substrate 3 from the fork portion so that the glass substrate 3 is supported only by the support pins 4a and 4b. To. As a result, the fork portion can be pulled out from under the glass substrate 3.

そして、チャンバ2からガラス基板を搬出する際には、支持ピン4a、4bのみで支持されたガラス基板3の下方にフォーク部分を移動させ、支持ピン4a、4bを降下させることにより、支持ピン4a、4bからフォーク部分へガラス基板3を乗せ換えることになる。その後、フォーク部分に支持されたガラス基板3は、チャンバ2から搬出されることになる。   When the glass substrate is unloaded from the chamber 2, the fork portion is moved below the glass substrate 3 supported only by the support pins 4a and 4b, and the support pins 4a and 4b are lowered, thereby supporting pins 4a. The glass substrate 3 is transferred from 4b to the fork portion. Thereafter, the glass substrate 3 supported by the fork portion is carried out of the chamber 2.

支持ピン4a、4bに支持されたガラス基板3を搬送ロボットのフォーク部分に乗せ換える際には、ガラス基板3の撓みを低減した状態で行うことが望ましい。そのため、本発明では、支持ピン4a、4bの数、配置位置を工夫することにより、ガラス基板3の撓みを低減している。   When the glass substrate 3 supported by the support pins 4a and 4b is transferred to the fork portion of the transfer robot, it is desirable to perform the state in which the bending of the glass substrate 3 is reduced. Therefore, in this invention, the bending of the glass substrate 3 is reduced by devising the number and arrangement position of the support pins 4a and 4b.

支持ピン4a、4bは、基本的には、ガラス基板3の蒸着面への不純物の付着を防止するため、蒸着が行われないガラス基板3の周辺部、即ち、ガラス基板3の端部から1〜5mm幅の範囲を支持するように配置され(なお、図1では、一例として、ガラス基板3の端部から5mmの位置としている。)、又、ガラス基板3の自重による撓みをできるだけ低減するため、複数の支持ピン4a、4bで支持する構成である。なお、支持ピン4の先端部は、Rを取って、半球状に形成されている。   The support pins 4a and 4b are basically 1 from the periphery of the glass substrate 3 where vapor deposition is not performed, that is, from the end of the glass substrate 3 in order to prevent impurities from adhering to the vapor deposition surface of the glass substrate 3. It arrange | positions so that the range of -5mm width may be supported (In addition, in FIG. 1, it is set as a 5-mm position from the edge part of the glass substrate 3 as an example.) Moreover, the bending by the dead weight of the glass substrate 3 is reduced as much as possible. Therefore, it is the structure which supports with the some support pin 4a, 4b. In addition, the front-end | tip part of the support pin 4 takes R and is formed in the hemispherical shape.

又、支持ピン4a、4bは、ガラス基板3の短辺3a側の中央に配置した各々1本の支持ピン4aと、長辺3b側に配置した各々2本の支持ピン4bの合計6本からなり、これらの支持ピン4a、4bを、ガラス基板3の周辺部であり、かつ、ガラス基板3の4角を除いた位置に配置している。換言すると、ガラス基板3の4辺のうち、向かい合う1対の短辺3aは、その中央に配置された1本の支持ピン4aで必ず支持されており、残りの向かい合う1対の長辺3bは、2本の支持ピン4bで支持されている。   Further, the support pins 4a and 4b are composed of a total of six support pins 4a arranged at the center on the short side 3a side of the glass substrate 3 and two support pins 4b arranged on the long side 3b side. Thus, these support pins 4 a and 4 b are arranged in the peripheral portion of the glass substrate 3 and at positions excluding the four corners of the glass substrate 3. In other words, out of the four sides of the glass substrate 3, the pair of opposing short sides 3a is always supported by the single support pin 4a disposed at the center thereof, and the remaining pair of opposing long sides 3b is It is supported by two support pins 4b.

そして、支持ピン4a、4bは、後述する表1〜5からわかるように、ガラス基板3の全面積に対して、支持ピン4a、4bに囲まれた領域より外側のガラス基板3の面積の比が0.25以上となるように、配置することが望ましい。   And as can be seen from Tables 1 to 5 described later, the support pins 4a and 4b are in a ratio of the area of the glass substrate 3 outside the region surrounded by the support pins 4a and 4b to the total area of the glass substrate 3. It is desirable to arrange so that becomes 0.25 or more.

次に、本実施例を含めて、本願発明者等が比較を行った他の測定実験の結果も示して、本実施例の基板の支持構造の優位性を説明する。   Next, the superiority of the substrate support structure of this embodiment will be described by showing the results of other measurement experiments in which the inventors of the present application compared with this embodiment.

(測定実験1)
本測定実験は、基本的には、図1に示した基板の支持構造の構成に基づいて、下記表1に示すように、間隔B、間隔Cの条件を変更して、支持ピンの位置を各々変更し、各条件下において、ガラス基板の変形量を測定すると共に、その代表的な計測値として、最大高低差及び最大傾斜を求めたものである。
(Measurement experiment 1)
In this measurement experiment, basically, based on the structure of the substrate support structure shown in FIG. 1, the conditions of the distance B and the distance C are changed as shown in Table 1 below, and the positions of the support pins are changed. Each change is made, and the deformation amount of the glass substrate is measured under each condition, and the maximum height difference and the maximum inclination are obtained as typical measurement values.

なお、本測定実験において、間隔Aは、支持ピン4aと支持ピン4bの短辺3aに平行な方向における間隔、間隔Bは、支持ピン4aと支持ピン4bの長辺3bに平行な方向における間隔の短い方の間隔、間隔Cは、2つの支持ピン4b間の長辺3bに平行な方向における間隔である。又、本測定実験においては、下記測定実験2〜5を含めて、ガラス基板として、ソーダガラス、550mm×650mm×0.7mm厚を用い、又、支持ピンとして、直径3mmのものを用いている。又、表1〜5における間隔A、B、C、D及び最大高低差の単位はmmであり、最大傾斜の単位はm/mである。   In this measurement experiment, the interval A is the interval in the direction parallel to the short side 3a of the support pin 4a and the support pin 4b, and the interval B is the interval in the direction parallel to the long side 3b of the support pin 4a and the support pin 4b. The shorter interval, interval C, is the interval in the direction parallel to the long side 3b between the two support pins 4b. In this measurement experiment, including the following measurement experiments 2 to 5, soda glass, 550 mm × 650 mm × 0.7 mm thickness is used as the glass substrate, and a support pin having a diameter of 3 mm is used. . In Tables 1 to 5, the units of intervals A, B, C, D and the maximum height difference are mm, and the unit of maximum inclination is m / m.

なお、上記実験の代表例として、実験1−4の条件下におけるガラス基板全面の変形量の3Dグラフを図2に示した。   As a representative example of the experiment, FIG. 2 shows a 3D graph of the deformation amount of the entire glass substrate under the conditions of Experiment 1-4.

上記条件の基板の支持構造において、面積比R(支持ピンより外側のガラス基板の面積/ガラス基板の全面積)を計算すると、表1に示す結果からわかるように、面積比Rが0.25以上を満たす実験1−3、1−4の場合、最大高低差及び最大傾斜が抑制されており、ガラス基板3の撓みが低減されたことがわかる。このような支持ピン4a、4bの配置構成の場合、ガラス基板3自体の撓みを低減できるため、ガラス基板の位置精度をより向上させることが可能であり、搬送ロボットによる搬送の位置精度を向上させることができる。   When the area ratio R (area of the glass substrate outside the support pins / total area of the glass substrate) is calculated in the substrate support structure under the above conditions, as can be seen from the results shown in Table 1, the area ratio R is 0.25. In Experiments 1-3 and 1-4 satisfying the above, the maximum height difference and the maximum inclination are suppressed, and it can be seen that the bending of the glass substrate 3 is reduced. In the case of such an arrangement configuration of the support pins 4a and 4b, since the bending of the glass substrate 3 itself can be reduced, the positional accuracy of the glass substrate can be further improved, and the positional accuracy of the transport by the transport robot is improved. be able to.

これは、ガラス基板3の4角を支持ピン4a、4bであえて支持せず、自由に変形可能とすることにより、ガラス基板3の4角では、その部分での自重により鉛直下方側に撓み、ガラス基板3の4角が鉛直上方へ跳ね上がる量が抑制されると共に、ガラス基板3の4角での鉛直下方側の撓みの影響で、ガラス基板3の中央部においては、鉛直下方へ撓む変位量も抑制されて、ガラス基板3全体の変形量が低減されたからであると考えられる。   This is because the four corners of the glass substrate 3 are not supported by the support pins 4a and 4b, and can be freely deformed, so that the four corners of the glass substrate 3 bend vertically downward by its own weight, The amount by which the four corners of the glass substrate 3 jump upward in the vertical direction is suppressed, and in the central portion of the glass substrate 3, the displacement that bends vertically downward due to the influence of the vertical downward side deflection at the four corners of the glass substrate 3. This is considered to be because the amount of deformation was suppressed and the amount of deformation of the entire glass substrate 3 was reduced.

(測定実験2)
本測定実験は、支持ピン4a、4bを、ガラス基板3の周辺部(ガラス基板3の端部から5mmの位置)であり、かつ、ガラス基板3の4角を除いた位置に配置しているが、図1に示した基板の支持構造とは異なり、図3(a)に示すように、ガラス基板3の短辺3a側に各々2本の支持ピン4aを、長辺3b側の中央に各々1本の支持ピン4bを、合計6本配置したものである。そして、この構成に基づいて、下記表2に示すように、間隔A、間隔Bの条件を変更して、支持ピン4a、4bの位置を各々変更し、各条件下において、ガラス基板の変形量を測定すると共に、その代表的な計測値として、最大高低差及び最大傾斜を求めたものである。
(Measurement experiment 2)
In this measurement experiment, the support pins 4a and 4b are arranged at a peripheral portion of the glass substrate 3 (a position 5 mm from the end of the glass substrate 3) and at a position excluding the four corners of the glass substrate 3. However, unlike the substrate support structure shown in FIG. 1, two support pins 4a are respectively provided on the short side 3a side of the glass substrate 3 and the center on the long side 3b side, as shown in FIG. A total of six support pins 4b are arranged for each. Based on this configuration, as shown in Table 2 below, the conditions of the distance A and the distance B are changed, and the positions of the support pins 4a and 4b are changed. And the maximum height difference and the maximum inclination are obtained as typical measurement values.

なお、本測定実験において、間隔Aは、支持ピン4aと支持ピン4bの短辺3aに平行な方向における間隔の短い方の間隔、間隔Bは、2つの支持ピン4a間の短辺3aに平行な方向における間隔、間隔Cは、支持ピン4aと支持ピン4bの長辺3bに平行な方向における間隔である。   In this measurement experiment, the interval A is the shorter interval in the direction parallel to the short sides 3a of the support pins 4a and 4b, and the interval B is parallel to the short side 3a between the two support pins 4a. The interval C in this direction, the interval C, is an interval in a direction parallel to the long sides 3b of the support pins 4a and 4b.

なお、上記実験の代表例として、実験2−4の条件下におけるガラス基板全面の変形量の3Dグラフを図3(b)に示した。   As a representative example of the experiment, a 3D graph of the deformation amount of the entire glass substrate under the conditions of Experiment 2-4 is shown in FIG.

上記条件の基板の支持構造において、面積比R(支持ピンより外側のガラス基板の面積/ガラス基板の全面積)を計算すると、表2に示す結果からわかるように、面積比Rが0.25以上を満たす実験2−4の場合、最大高低差及び最大傾斜が抑制されており、ガラス基板3の撓みが低減されたことがわかる。このような支持ピン4a、4bの配置構成の場合、ガラス基板3自体の撓みを低減できるため、ガラス基板の位置精度をより向上させることが可能であり、搬送ロボットによる搬送の位置精度を向上させることができる。   In the substrate support structure under the above conditions, when the area ratio R (area of the glass substrate outside the support pins / total area of the glass substrate) is calculated, as can be seen from the results shown in Table 2, the area ratio R is 0.25. In Experiment 2-4 that satisfies the above conditions, the maximum height difference and the maximum inclination are suppressed, and it can be seen that the bending of the glass substrate 3 is reduced. In the case of such an arrangement configuration of the support pins 4a and 4b, since the bending of the glass substrate 3 itself can be reduced, the positional accuracy of the glass substrate can be further improved, and the positional accuracy of the transport by the transport robot is improved. be able to.

(測定実験3)
本測定実験は、支持ピン4a、4bを、ガラス基板3の周辺部(ガラス基板3の端部から5mmの位置)であり、かつ、ガラス基板3の4角を除いた位置に配置しているが、図1に示した基板の支持構造とは異なり、図4(a)に示すように、ガラス基板3の短辺3a側に各々2本の支持ピン4aを、長辺3b側の中央に各々2本の支持ピン4bを、合計8本配置したものである。そして、この構成に基づいて、下記表3に示すように、間隔A、間隔B、間隔C、間隔Dの条件を変更して、支持ピン4a、4bの位置を各々変更し、各条件下において、ガラス基板の変形量を測定すると共に、その代表的な計測値として、最大高低差及び最大傾斜を求めたものである。
(Measurement experiment 3)
In this measurement experiment, the support pins 4a and 4b are arranged at a peripheral portion of the glass substrate 3 (a position 5 mm from the end of the glass substrate 3) and at a position excluding the four corners of the glass substrate 3. However, unlike the substrate support structure shown in FIG. 1, as shown in FIG. 4 (a), two support pins 4a are provided on the short side 3a side of the glass substrate 3, and the long side 3b side is centered. A total of eight support pins 4b are arranged for each two. Then, based on this configuration, as shown in Table 3 below, the conditions of the interval A, the interval B, the interval C, and the interval D are changed, and the positions of the support pins 4a and 4b are changed. In addition to measuring the deformation amount of the glass substrate, the maximum height difference and the maximum inclination are obtained as typical measurement values.

なお、本測定実験において、間隔Aは、支持ピン4aと支持ピン4bの短辺3aに平行な方向における間隔の短い方の間隔、間隔Bは、2つの支持ピン4a間の短辺3aに平行な方向における間隔、間隔Cは、支持ピン4aと支持ピン4bの長辺3bに平行な方向における間隔の短い方の間隔、間隔Dは、2つの支持ピン4b間の長辺3bに平行な方向における間隔である。   In this measurement experiment, the interval A is the shorter interval in the direction parallel to the short sides 3a of the support pins 4a and 4b, and the interval B is parallel to the short side 3a between the two support pins 4a. The distance C in this direction, the distance C, is the shorter distance in the direction parallel to the long side 3b of the support pins 4a and 4b, and the distance D is the direction parallel to the long side 3b between the two support pins 4b. The interval at.

なお、上記実験の代表例として、実験3−4の条件下におけるガラス基板全面の変形量の3Dグラフを図4(b)に示した。   As a representative example of the experiment, FIG. 4B shows a 3D graph of the deformation amount of the entire glass substrate under the conditions of Experiment 3-4.

上記条件の基板の支持構造において、面積比R(支持ピンより外側のガラス基板の面積/ガラス基板の全面積)を計算すると、表3に示す結果からわかるように、面積比Rが0.25以上を満たすものはなく、最大高低差及び最大傾斜が抑制されておらず、ガラス基板3の撓みが改善できていないことがわかる。   When the area ratio R (area of the glass substrate outside the support pin / total area of the glass substrate) is calculated in the substrate support structure under the above conditions, as can be seen from the results shown in Table 3, the area ratio R is 0.25. There is nothing satisfying the above, the maximum height difference and the maximum inclination are not suppressed, and it is understood that the bending of the glass substrate 3 cannot be improved.

(測定実験4)
本測定実験は、合計4本の支持ピン4a、4bを、ガラス基板3の周辺部(ガラス基板3の端部から5mmの位置)であり、かつ、ガラス基板3の4角に配置したもの(実験4−1)と、合計4本の支持ピン4a、4bを、ガラス基板3の周辺部(ガラス基板3の端部から5mmの位置)であり、かつ、ガラス基板3の4角を除いた位置に配置したもの(実験4−2)である。例えば、実験4−2は、図5(a)に示すように、ガラス基板3の短辺3a側の中央に各々1本の支持ピン4aを、長辺3b側の中央に各々1本の支持ピン4bを、合計4本配置した。そして、各条件下において、ガラス基板の変形量を測定すると共に、その代表的な計測値として、最大高低差及び最大傾斜を求めたものである。
(Measurement experiment 4)
In this measurement experiment, a total of four support pins 4a and 4b are arranged in the periphery of the glass substrate 3 (position 5 mm from the end of the glass substrate 3) and at the four corners of the glass substrate 3 ( Experiment 4-1) and a total of four support pins 4a and 4b are the peripheral part of the glass substrate 3 (position 5 mm from the edge part of the glass substrate 3), and the four corners of the glass substrate 3 were removed. This is the one arranged at the position (Experiment 4-2). For example, in Experiment 4-2, as shown in FIG. 5A, one support pin 4a is provided at the center on the short side 3a side of the glass substrate 3, and one support is provided at the center on the long side 3b side. A total of four pins 4b are arranged. And while measuring the deformation amount of a glass substrate on each condition, the maximum height difference and the maximum inclination were calculated | required as the typical measured value.

なお、本測定実験において、間隔Aは、支持ピン4aと支持ピン4bの短辺3aに平行な方向における間隔、間隔Bは、支持ピン4aと支持ピン4bの長辺3bに平行な方向における間隔である。   In this measurement experiment, the interval A is the interval in the direction parallel to the short side 3a of the support pin 4a and the support pin 4b, and the interval B is the interval in the direction parallel to the long side 3b of the support pin 4a and the support pin 4b. It is.

なお、上記実験の代表例として、実験4−2の条件下におけるガラス基板全面の変形量の3Dグラフを図5(b)に示した。   As a representative example of the experiment, a 3D graph of the deformation amount of the entire glass substrate under the conditions of Experiment 4-2 is shown in FIG.

上記条件の基板の支持構造において、面積比R(支持ピンより外側のガラス基板の面積/ガラス基板の全面積)を計算すると、表4に示す結果からわかるように、面積比Rが0.25以上を満たしていない実験4−1は、最大高低差及び最大傾斜が抑制されておらず、ガラス基板3の撓みが改善できていないことがわかる。なお、面積比Rが0.25以上を満たす実験4−2においては、最大高低差及び最大傾斜の抑制が見られ、ガラス基板3の撓みが多少改善できているようであり、面積比Rとしては、0.5程度が上限であると考えられる。   When the area ratio R (area of the glass substrate outside the support pins / total area of the glass substrate) is calculated in the substrate support structure under the above conditions, as can be seen from the results shown in Table 4, the area ratio R is 0.25. In Experiment 4-1, which does not satisfy the above, the maximum height difference and the maximum inclination are not suppressed, and it is understood that the bending of the glass substrate 3 cannot be improved. In Experiment 4-2 where the area ratio R satisfies 0.25 or more, the maximum height difference and the maximum inclination are suppressed, and the bending of the glass substrate 3 seems to be somewhat improved. Is considered to be about 0.5.

(測定実験5)
本測定実験は、支持ピンに替えて、図6(a)に示すように、ガラス基板3の4辺の略全部を支持する支持プレート6を用い、ガラス基板3の周辺部を、その端部から5mm内側まで支持するものである。そして、その条件下において、ガラス基板の変形量を測定すると共に、その代表的な計測値として、最大高低差及び最大傾斜を求めたものである。
(Measurement experiment 5)
In this measurement experiment, instead of the support pins, as shown in FIG. 6A, a support plate 6 that supports substantially all of the four sides of the glass substrate 3 is used, and the peripheral portion of the glass substrate 3 is arranged at its end. To 5 mm inside. And while measuring the deformation amount of a glass substrate on the conditions, the maximum height difference and the maximum inclination were calculated | required as the typical measured value.

なお、上記実験におけるガラス基板全面の変形量の3Dグラフを図6(b)に示した。   FIG. 6B shows a 3D graph of the deformation amount of the entire glass substrate in the above experiment.

上記基板の支持構造においては、ガラス基板3の4辺の端部略全てを支持プレート6で支持しているが、ガラス基板3の中央部の沈み込み及びガラス基板3の角部の跳ね上がりの抑制が十分ではなく、表5に示す結果からわかるように、ガラス基板3の撓みが改善できていないことがわかる。   In the substrate support structure, almost all of the four edge portions of the glass substrate 3 are supported by the support plate 6, but suppression of sinking of the central portion of the glass substrate 3 and jumping of corner portions of the glass substrate 3 is suppressed. Is not sufficient, and as can be seen from the results shown in Table 5, it can be seen that the deflection of the glass substrate 3 has not been improved.

以上の測定実験からわかるように、矩形状のガラス基板を支持ピンで支持する際、その周辺部しか支持できない制約がある場合には、使用する支持ピンの数、配置位置が適切でないと、ガラス基板が自重により大きく撓んでしまい、搬送ロボットによる搬送時の位置精度に大きな影響を与えてしまう。しかしながら、測定実験1〜5の結果を参照すると、上述したように、ガラス基板3の対向する辺の中央に各々1本、残りの対向する辺に各々2本、合計6本の支持ピンを用い、ガラス基板3の周辺部であり、かつ、ガラス基板3の4角を除いた位置に配置すると共に、ガラス基板の全面積に対して、支持ピンに囲まれた領域より外側のガラス基板の面積の比が0.25以上となるように、6本の支持ピンを配置すると、ガラス基板の撓みを低減することができた。   As can be seen from the above measurement experiments, when supporting a rectangular glass substrate with support pins, there is a restriction that only the peripheral part can be supported. The substrate is greatly bent due to its own weight, which greatly affects the position accuracy during transfer by the transfer robot. However, referring to the results of the measurement experiments 1 to 5, as described above, a total of six support pins are used, one at the center of the opposite sides of the glass substrate 3 and two at the remaining opposite sides. The area of the glass substrate 3 that is a peripheral portion of the glass substrate 3 and is disposed at a position excluding the four corners of the glass substrate 3 and outside the region surrounded by the support pins with respect to the total area of the glass substrate When the six support pins are arranged so that the ratio of the above becomes 0.25 or more, the bending of the glass substrate can be reduced.

なお、ガラス基板3の大きさが、上記測定実験で用いたものより大きくなる場合には、支持ピン4bより更に角部に近い位置ではなく、支持ピン4b間の間隔C(図1(b)参照)の中間の位置に更に支持ピンを設けて、ガラス基板を支持することが望ましいと思われる。   In addition, when the magnitude | size of the glass substrate 3 becomes larger than what was used in the said measurement experiment, it is not the position nearer to a corner | angular part than the support pin 4b, but the space | interval C between the support pins 4b (FIG.1 (b)). It may be desirable to support the glass substrate by further providing support pins in the middle position of the reference).

本発明に係る基板の支持構造及び支持方法は、有機EL製造装置に限らず、真空蒸着装置等の基板搬送装置にも適用可能なものである。   The substrate support structure and support method according to the present invention are not limited to an organic EL manufacturing apparatus, but can also be applied to a substrate transport apparatus such as a vacuum vapor deposition apparatus.

本発明に係る基板の支持構造の実施形態の一例を示す図であり、(a)は、その側面図、(b)は、その平面図である。It is a figure which shows an example of embodiment of the support structure of the board | substrate which concerns on this invention, (a) is the side view, (b) is the top view. 本発明に係る基板の支持構造を用いた場合のガラス基板の撓みを示すグラフである。It is a graph which shows the bending of the glass substrate at the time of using the support structure of the board | substrate which concerns on this invention. (a)は、本発明に係る基板の支持構造の実施形態の他の一例を示す平面図であり、(b)は、その支持構造を用いた場合のガラス基板の撓みを示すグラフである。(A) is a top view which shows another example of embodiment of the support structure of the board | substrate which concerns on this invention, (b) is a graph which shows the bending of the glass substrate at the time of using the support structure. (a)は、本発明と比較検討した他の基板の支持構造を示す平面図であり、(b)は、その支持構造を用いた場合のガラス基板の撓みを示すグラフである。(A) is a top view which shows the support structure of the other board | substrate compared with this invention, (b) is a graph which shows the bending of the glass substrate at the time of using the support structure. (a)は、本発明と比較検討した他の基板の支持構造を示す平面図であり、(b)は、その支持構造を用いた場合のガラス基板の撓みを示すグラフである。(A) is a top view which shows the support structure of the other board | substrate compared with this invention, (b) is a graph which shows the bending of the glass substrate at the time of using the support structure. (a)は、本発明と比較検討した他の基板の支持構造を示す平面図であり、(b)は、その支持構造を用いた場合のガラス基板の撓みを示すグラフである。(A) is a top view which shows the support structure of the other board | substrate compared with this invention, (b) is a graph which shows the bending of the glass substrate at the time of using the support structure.

符号の説明Explanation of symbols

2 チャンバ
3 ガラス基板
4 支持ピン
5 昇降装置
2 Chamber 3 Glass substrate 4 Support pin 5 Lifting device

Claims (6)

矩形状のガラス基板を支持する際、プロセスの対象領域でない該ガラス基板の周辺部を複数の支持ピンで下方から支持する基板の支持方法において、
前記ガラス基板の対向する1対の辺の中央に各々少なくとも1つの第1支持ピンを配置すると共に、前記ガラス基板の他の対向する1対の辺に各々少なくとも2つの第2支持ピンを配置して、前記複数の支持ピンを少なくとも合計6つ以上の支持ピンから構成し、
前記第1支持ピン及び前記第2支持ピンを、前記ガラス基板の4角を避けて、前記ガラス基板の周辺部に配置することを特徴とする基板の支持方法。
In supporting a rectangular glass substrate, in the substrate supporting method of supporting the peripheral portion of the glass substrate that is not the target region of the process from below with a plurality of support pins,
At least one first support pin is disposed at the center of the pair of opposite sides of the glass substrate, and at least two second support pins are disposed on the other pair of opposite sides of the glass substrate. The plurality of support pins is composed of at least six support pins in total,
The substrate support method, wherein the first support pin and the second support pin are arranged in a peripheral portion of the glass substrate so as to avoid four corners of the glass substrate.
請求項1に記載の基板の支持方法において、
前記ガラス基板の全面積に対して、前記第1支持ピン及び前記第2支持ピンに囲まれた領域より外側の前記ガラス基板の面積の比が0.25以上となるように、前記第1支持ピン及び前記第2支持ピンを配置することを特徴とする基板の支持方法。
The method for supporting a substrate according to claim 1,
The first support so that the ratio of the area of the glass substrate outside the region surrounded by the first support pin and the second support pin is 0.25 or more with respect to the total area of the glass substrate. A method for supporting a substrate, comprising arranging a pin and the second support pin.
請求項2又は請求項3に記載の基板の支持方法において、
前記第1支持ピン及び前記第2支持ピンの先端部は、半球状であることを特徴とする基板の支持方法。
In the support method of the board | substrate of Claim 2 or Claim 3,
The substrate supporting method according to claim 1, wherein tip portions of the first supporting pin and the second supporting pin are hemispherical.
矩形状のガラス基板を支持する際、プロセスの対象領域でない該ガラス基板の周辺部を複数の支持ピンで下方から支持する基板の支持構造において、
前記複数の支持ピンが、前記ガラス基板の対向する1対の辺の中央に各々配置した少なくとも1つの第1支持ピンと前記ガラス基板の他の対向する1対の辺に各々配置した少なくとも2つの第2支持ピンの少なくとも合計6つ以上の支持ピンから構成され、
前記第1支持ピン及び前記第2支持ピンを、前記ガラス基板の4角を避けて、前記ガラス基板の周辺部に配置したことを特徴とする基板の支持構造。
In supporting a rectangular glass substrate, in the support structure of the substrate that supports the periphery of the glass substrate that is not the target region of the process from below with a plurality of support pins,
The plurality of support pins are arranged at the center of a pair of opposite sides of the glass substrate, respectively, and at least two second sides arranged respectively on the other pair of opposite sides of the glass substrate. It is composed of at least six support pins in total of two support pins,
A substrate support structure, wherein the first support pin and the second support pin are arranged in a peripheral portion of the glass substrate, avoiding the four corners of the glass substrate.
請求項4に記載の基板の支持構造において、
前記ガラス基板の全面積に対して、前記第1支持ピン及び前記第2支持ピンに囲まれた領域より外側の前記ガラス基板の面積の比が0.25以上となるように、前記第1支持ピン及び前記第2支持ピンを配置したことを特徴とする基板の支持構造。
In the support structure of the board | substrate of Claim 4,
The first support so that the ratio of the area of the glass substrate outside the region surrounded by the first support pin and the second support pin is 0.25 or more with respect to the total area of the glass substrate. A support structure for a substrate, comprising a pin and the second support pin.
請求項4又は請求項5に記載の基板の支持構造において、
前記第1支持ピン及び前記第2支持ピンの先端部を半球状に形成したことを特徴とする基板の支持構造。
In the support structure of the board | substrate of Claim 4 or Claim 5,
A substrate support structure, wherein tip portions of the first support pin and the second support pin are formed in a hemispherical shape.
JP2006295772A 2006-10-31 2006-10-31 Supporting method and supporting structure of substrate Pending JP2008112902A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006295772A JP2008112902A (en) 2006-10-31 2006-10-31 Supporting method and supporting structure of substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006295772A JP2008112902A (en) 2006-10-31 2006-10-31 Supporting method and supporting structure of substrate

Publications (1)

Publication Number Publication Date
JP2008112902A true JP2008112902A (en) 2008-05-15

Family

ID=39445248

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006295772A Pending JP2008112902A (en) 2006-10-31 2006-10-31 Supporting method and supporting structure of substrate

Country Status (1)

Country Link
JP (1) JP2008112902A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103247564A (en) * 2012-02-06 2013-08-14 东京毅力科创株式会社 Substrate processing apparatus and substrate processing method
JP2015167159A (en) * 2014-03-03 2015-09-24 東京エレクトロン株式会社 Board mounting device and board treatment device
KR20170031504A (en) * 2015-09-11 2017-03-21 주식회사 선익시스템 A Support Method for a Glass Substrate

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003017545A (en) * 2001-07-04 2003-01-17 Matsushita Electric Ind Co Ltd Method and apparatus for positioning substrate
JP2006196862A (en) * 2004-12-16 2006-07-27 Tokyo Ohka Kogyo Co Ltd Supporting pin for substrate

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003017545A (en) * 2001-07-04 2003-01-17 Matsushita Electric Ind Co Ltd Method and apparatus for positioning substrate
JP2006196862A (en) * 2004-12-16 2006-07-27 Tokyo Ohka Kogyo Co Ltd Supporting pin for substrate

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103247564A (en) * 2012-02-06 2013-08-14 东京毅力科创株式会社 Substrate processing apparatus and substrate processing method
JP2013161946A (en) * 2012-02-06 2013-08-19 Tokyo Electron Ltd Substrate processing apparatus and substrate processing method
JP2015167159A (en) * 2014-03-03 2015-09-24 東京エレクトロン株式会社 Board mounting device and board treatment device
KR20170031504A (en) * 2015-09-11 2017-03-21 주식회사 선익시스템 A Support Method for a Glass Substrate
KR101719176B1 (en) 2015-09-11 2017-03-23 주식회사 선익시스템 A Support Method for a Glass Substrate

Similar Documents

Publication Publication Date Title
JP4711770B2 (en) Conveying apparatus, vacuum processing apparatus, and conveying method
JP6461235B2 (en) Substrate mounting apparatus, film forming apparatus, substrate mounting method, film forming method, and electronic device manufacturing method
JP5506921B2 (en) Vacuum processing apparatus, substrate and alignment mask moving method, alignment method, and film forming method
US9371584B2 (en) Processing chamber and method for centering a substrate therein
KR102120521B1 (en) Wafer boat support table and heat treatment apparatus using the same
JP2013214739A (en) Method of peeling semiconductor chip from metal foil
KR20080062820A (en) Glass surport pin, and carrier surface plate
JP2007008700A (en) Flat material conveying method and its device
JP2018056339A (en) Substrate arrangement device and substrate transfer method
TW201814813A (en) Posture changing device
TW202032623A (en) Substrate processing device and substrate processing method to reliably prevent the interference between a correction member and a detection unit
JP2008112902A (en) Supporting method and supporting structure of substrate
JP2000237983A (en) Board chuck device
JP4719124B2 (en) Substrate positioning method, substrate positioning device, transfer device, and process device
JP4711771B2 (en) Conveying device and vacuum processing device
JP2010195571A (en) Carrying device
KR101761597B1 (en) Substrate processing apparatus
KR101989322B1 (en) Robot hand for transporting film
JP2005170682A (en) Retrieving mechanism for display substrate and retrieving method for display substrate
CN104425335A (en) Equipment used for holding substrate
JP2010190985A (en) Charged particle beam drawing device
JP5118560B2 (en) Wafer storage carrier
KR100646963B1 (en) End effector and substrate fabricating apparatus using the same
JP2005075663A (en) Substrate mount
JP3145424U (en) Substrate processing equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090603

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100806

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100810

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20101214