JP2008111409A - Failure detection system for differential pressure sensor - Google Patents

Failure detection system for differential pressure sensor Download PDF

Info

Publication number
JP2008111409A
JP2008111409A JP2006296145A JP2006296145A JP2008111409A JP 2008111409 A JP2008111409 A JP 2008111409A JP 2006296145 A JP2006296145 A JP 2006296145A JP 2006296145 A JP2006296145 A JP 2006296145A JP 2008111409 A JP2008111409 A JP 2008111409A
Authority
JP
Japan
Prior art keywords
filter
differential pressure
pressure
pressure sensor
flow rate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006296145A
Other languages
Japanese (ja)
Other versions
JP4760671B2 (en
Inventor
Daisuke Shibata
大介 柴田
Yutaka Sawada
裕 澤田
Keisuke Fukuoka
圭輔 福岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2006296145A priority Critical patent/JP4760671B2/en
Publication of JP2008111409A publication Critical patent/JP2008111409A/en
Application granted granted Critical
Publication of JP4760671B2 publication Critical patent/JP4760671B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/22Safety or indicating devices for abnormal conditions
    • F02D41/222Safety or indicating devices for abnormal conditions relating to the failure of sensors or parameter detection devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/08Exhaust gas treatment apparatus parameters
    • F02D2200/0812Particle filter loading
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Abstract

<P>PROBLEM TO BE SOLVED: To provide technology capable of accurately detecting a failure of a differential pressure sensor. <P>SOLUTION: This system is provided with a PM filter 10 and the differential pressure sensor 19 measuring difference of pressure in an upstream and a downstream of the PM filter 10. The differential pressure sensor 19 includes an atmospheric pressure introduction means 22 introducing atmospheric pressure, is capable of measuring difference of atmospheric pressure and pressure in the upstream of the PM filter and/or difference of atmospheric pressure and pressure in the downstream of the PM filter, and is provided with an exhaust gas flow rate change means 6 changing flow rate of exhaust gas flowing in the PM filter 10 and a failure detection means 20 changing flow rate of exhaust gas flowing into the PM filter by fully opening the exhaust gas flow rate change means 6 and detecting a failure of the differential pressure sensor 19 based on change quantity of difference of atmospheric pressure and pressure in the upstream of the PM filter or difference of atmospheric pressure and pressure in the downstream of the PM filter. The failure of the differential pressure sensor 19 can be accurately detected without being influenced by uncertain factor such as PM accumulation quantity in the PM filter 10. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、差圧センサの故障検知システムに関する。   The present invention relates to a failure detection system for a differential pressure sensor.

内燃機関からの排気中に含まれる粒子状物質(以下「PM」という)を捕集するフィルタを用いる排気浄化システムにおいては、フィルタの前後差圧に基づいて、フィルタにおけるPM捕集量の推定やフィルタの溶損等の故障検知を行うことがある。フィルタの前後差圧はフィルタの上流及び下流の排気の圧力の差を測定する差圧センサによって取得することが一般的である。   In an exhaust gas purification system using a filter that collects particulate matter (hereinafter referred to as “PM”) contained in exhaust gas from an internal combustion engine, the amount of PM collected in the filter is estimated based on the differential pressure across the filter. Failure detection such as filter erosion may be performed. The differential pressure before and after the filter is generally acquired by a differential pressure sensor that measures the difference between the pressures of the exhaust upstream and downstream of the filter.

このような排気浄化システムでは、差圧センサが故障すると、PM捕集量の推定精度が低下して好適なタイミングでフィルタ再生処理が実行できない場合や、フィルタの故障を検出できなかったり誤検出したりする場合が考えられる。   In such an exhaust purification system, if the differential pressure sensor fails, the estimation accuracy of the amount of PM trapped decreases, and the filter regeneration process cannot be executed at a suitable timing, or the filter failure cannot be detected or erroneously detected. There are cases where

それに対し、差圧センサの故障を検知する方法として、フィルタに流入する排気の流量を変化させた時の差圧センサによるフィルタ前後差圧の測定値の変化量が、排気流量の変化量から予想されるフィルタ前後差圧の変化量に対して一定量異なる場合に、差圧センサが故障していると判定する方法が提案されている(特許文献1を参照)。
特開2004−340138号公報 特開2005−307880号公報 特開2004−308492号公報 特開2003−254041号公報
On the other hand, as a method for detecting a failure of the differential pressure sensor, the amount of change in the measured value of the differential pressure across the filter by the differential pressure sensor when the flow rate of the exhaust gas flowing into the filter is changed is expected from the amount of change in the exhaust flow rate. There has been proposed a method for determining that a differential pressure sensor has failed when a certain amount of difference is generated with respect to the amount of change in the differential pressure across the filter (see Patent Document 1).
JP 2004-340138 A JP 2005-307880 A JP 2004-308492 A JP 2003-254041 A

しかし、フィルタの前後差圧はフィルタにおけるPM堆積状態やフィルタの劣化状態等に依存するため、上記の従来技術のように、差圧センサによるフィルタの前後差圧の測定値に基づく差圧センサの故障判定方法では、フィルタの状態による影響を免れ得ず、正確な判定を行えない虞があった。   However, since the differential pressure before and after the filter depends on the PM accumulation state in the filter, the deterioration state of the filter, etc. In the failure determination method, the influence of the filter state cannot be avoided, and there is a possibility that accurate determination cannot be performed.

本発明はこのような問題点に鑑みてなされたものであり、より精度良く差圧センサの故障を検知する技術を提供することを目的とする。   The present invention has been made in view of such problems, and an object thereof is to provide a technique for detecting a failure of a differential pressure sensor with higher accuracy.

上記目的を達成するための本発明に係る差圧センサの故障検知システムは、内燃機関の排気通路の途中に設けられ排気中の微粒子物質を捕集するPMフィルタと、前記PMフィルタの前後差圧を測定可能であるとともに、前記内燃機関の排気系外部における一定圧力(以下「外部圧力」という)を導入する外部圧力導入手段を有し、前記PMフィルタ上流の圧力と前記外部圧力との差圧(以下「フィルタ上流外部間差圧」という)及び/又は前記PMフィルタ下流の圧力と前記外部圧力との差圧(以下「フィルタ下流外部間差圧」という)を測定可能な差圧センサと、前記PMフィルタに流入する排気流量を変化させる排気流量変更手段と、前記排気流量変更手段によって前記PMフィルタに流入する排気流量を変化させるとともに、前記PMフィルタに流入する排気流量の該変化に伴う、フィルタ上流外部間差圧の変化量又はフィルタ下流外部間差圧の変化量に基づいて、前記差圧センサの故障を検知する故障検知手段と、を備えることを特徴とする。   In order to achieve the above object, a differential pressure sensor failure detection system according to the present invention includes a PM filter provided in the middle of an exhaust passage of an internal combustion engine for collecting particulate matter in exhaust gas, and a differential pressure across the PM filter. And an external pressure introducing means for introducing a constant pressure outside the exhaust system of the internal combustion engine (hereinafter referred to as “external pressure”), and a differential pressure between the pressure upstream of the PM filter and the external pressure A differential pressure sensor capable of measuring a differential pressure between a pressure downstream of the PM filter and the external pressure (hereinafter referred to as a “filter downstream external differential pressure”); Exhaust flow rate changing means for changing the exhaust flow rate flowing into the PM filter, and changing the exhaust flow rate flowing into the PM filter by the exhaust flow rate changing means, A failure detection means for detecting a failure of the differential pressure sensor based on a change amount of the differential pressure between the upstream and external sides of the filter or a change amount of the differential pressure between the downstream side and the downstream side of the filter in accordance with the change in the exhaust flow rate flowing into the filter; It is characterized by providing.

ここで、外部圧力とは、PMフィルタや内燃機関の運転状態とは独立した略一定の圧力
であって、例えば大気圧を選ぶことができる。
Here, the external pressure is a substantially constant pressure independent of the operating state of the PM filter or the internal combustion engine, and for example, atmospheric pressure can be selected.

上記構成において、排気流量変更手段によってPMフィルタに流入する排気流量を変化させると、PMフィルタ上流の圧力やPMフィルタ下流の圧力が変化する。これに伴い、フィルタ上流外部間差圧やフィルタ下流外部間差圧も変化することになる。ここで、フィルタ上流外部間差圧の変化量は、外部圧力が略一定値であることから、PMフィルタ上流の圧力の変化量に略等しくなる。同じ理由により、フィルタ下流外部間差圧の変化量も、PMフィルタ下流の圧力の変化量に略等しくなる。   In the above configuration, when the exhaust flow rate flowing into the PM filter is changed by the exhaust flow rate changing means, the pressure upstream of the PM filter and the pressure downstream of the PM filter change. Accordingly, the differential pressure between the filter upstream and the exterior and the differential pressure between the filter downstream and the exterior also change. Here, the change amount of the differential pressure between the filter upstream and the exterior is substantially equal to the change amount of the pressure upstream of the PM filter because the external pressure is a substantially constant value. For the same reason, the amount of change in the differential pressure between the downstream and downstream sides of the filter is also approximately equal to the amount of change in the pressure downstream of the PM filter.

ここで、PMフィルタ上流の圧力は、PMフィルタにおけるPM堆積状態や溶損等の故障状態等の不確定要因による影響をPMフィルタの前後差圧に比べて受けにくいため、PMフィルタ上流の圧力の変化量は、ほぼPMフィルタに流入する排気流量の変化量にのみ依存している。また、PMフィルタ下流の圧力は、PMフィルタを通過後の排気の圧力であるから、その絶対値はPMフィルタの状態による影響を受けるが、その変化量はPMフィルタの状態によって影響される不確定成分が相殺されてPMフィルタの状態による影響をPMフィルタの前後差圧に比べて受けにくい。従って、PMフィルタ下流の圧力の変化量も、ほぼPMフィルタに流入する排気流量の変化量にのみ依存すると考えられる。   Here, the pressure upstream of the PM filter is less susceptible to the influence of uncertain factors such as the PM accumulation state and the failure state such as melting damage in the PM filter as compared to the differential pressure across the PM filter. The amount of change almost depends only on the amount of change in the exhaust flow rate flowing into the PM filter. Further, since the pressure downstream of the PM filter is the pressure of the exhaust gas after passing through the PM filter, its absolute value is affected by the state of the PM filter, but the amount of change is uncertain affected by the state of the PM filter. The components are offset and the influence of the state of the PM filter is less susceptible to the differential pressure across the PM filter. Accordingly, it is considered that the amount of change in pressure downstream of the PM filter also depends only on the amount of change in the exhaust flow rate flowing into the PM filter.

よって、上記構成によれば、PMフィルタの状態に依存する不確定要素による影響をPMフィルタの前後差圧と比較してほとんど受けない物理量であるフィルタ上流外部間差圧の変化量又はフィルタ下流外部間差圧の変化量に基づいて差圧センサの故障検知が行われるので、非常に精度の高い故障検知が可能になる。   Therefore, according to the above configuration, the amount of change in the differential pressure between the filter upstream and the exterior, which is a physical quantity that is hardly affected by the uncertain factor depending on the state of the PM filter compared with the differential pressure across the PM filter, or the filter downstream external Since the failure detection of the differential pressure sensor is performed based on the change amount of the differential pressure difference, it is possible to detect the failure with very high accuracy.

例えば、フィルタ上流外部間差圧(又はフィルタ下流外部間差圧)の差圧センサによる測定値の変化量が、所定の下限値より少ない場合(例えば略ゼロの場合)、PMフィルタ上流の圧力(又はPMフィルタ下流の圧力)が変化しているにもかかわらず差圧センサの測定値に変化がほとんど現れないことを意味しており、差圧センサにスタック故障が生じていると判定できる。ここで、「所定の下限値」とは、PMフィルタ上流の圧力(又はPMフィルタ下流の圧力)を変化させた時のフィルタ上流外部間差圧(又はフィルタ下流外部間差圧)の変化量を正常な差圧センサによって測定した場合の測定結果の許容下限値であって、予め定められる。   For example, when the amount of change in the measured value by the differential pressure sensor of the differential pressure between the upstream and the downstream of the filter (or the differential pressure between the downstream and the downstream of the filter) is less than a predetermined lower limit (for example, approximately zero), the pressure upstream of the PM filter ( (Or the pressure downstream of the PM filter) is changed, but the measured value of the differential pressure sensor hardly changes, and it can be determined that a stack failure has occurred in the differential pressure sensor. Here, the “predetermined lower limit value” is the amount of change in the differential pressure between the filter upstream and the exterior (or the differential pressure between the filter downstream and the exterior) when the pressure upstream of the PM filter (or the pressure downstream of the PM filter) is changed. The allowable lower limit value of the measurement result when measured by a normal differential pressure sensor, which is determined in advance.

また、フィルタ上流外部間差圧(又はフィルタ下流外部間差圧)の差圧センサによる測定値の変化量と、フィルタ上流外部間差圧(又はフィルタ下流外部間差圧)の変化量のPMフィルタに流入する排気流量の変化量に基づく推定値と、の差が所定の第1上限値(又は第2上限値)より大きい場合、差圧センサの特性に何らかの異常が生じていると考えられるので、差圧センサに故障が生じていると判定できる。ここで、「所定の第1上限値(又は第2上限値)」とは、PMフィルタに流入する排気流量を変化させた時のフィルタ上流外部間差圧(又はフィルタ下流外部間差圧)の変化量を、既知の計算モデルに従って推定した場合の推定値と、差圧センサによって測定した場合の測定値との偏差の許容上限値であって、予め定められる。   Further, the PM filter of the amount of change in the measured value by the differential pressure sensor of the differential pressure between the upstream and external sides of the filter (or the differential pressure between the downstream side and the downstream side of the filter) If the difference from the estimated value based on the change amount of the exhaust flow rate flowing into the exhaust gas is larger than a predetermined first upper limit value (or second upper limit value), it is considered that some abnormality has occurred in the characteristics of the differential pressure sensor. It can be determined that a failure has occurred in the differential pressure sensor. Here, the “predetermined first upper limit value (or second upper limit value)” is the differential pressure between the filter upstream and the exterior (or the differential pressure between the filter downstream and the exterior) when the exhaust flow rate flowing into the PM filter is changed. The allowable upper limit value of the deviation between the estimated value when the change amount is estimated according to a known calculation model and the measured value when measured by the differential pressure sensor, is predetermined.

本発明においては、内燃機関の吸気通路の流路断面積を変更する吸気絞り弁を更に備え、排気流量変更手段は、吸気絞り弁の開度を変更することによってPMフィルタに流入する排気流量を変更するものであってもよい。例えば、吸気絞り弁の開度を大幅に大きくする(開き側の開度にする)ことによって、内燃機関の吸入空気量が増加するので、それに伴って内燃機関からの排気流量も増加し、PMフィルタに流入する排気流量を増加させることができる。   The present invention further includes an intake throttle valve that changes the flow passage cross-sectional area of the intake passage of the internal combustion engine, and the exhaust flow rate changing means changes the exhaust flow rate flowing into the PM filter by changing the opening of the intake throttle valve. It may be changed. For example, since the intake air amount of the internal combustion engine increases by greatly increasing the opening of the intake throttle valve (opening side opening), the exhaust flow rate from the internal combustion engine increases accordingly, and PM The exhaust flow rate flowing into the filter can be increased.

ここで、吸気絞り弁の開度を変更すると、内燃機関の吸入空気量が変動することになる
ため、内燃機関の運転状態によってはトルク変動を招きドライバビリティを悪化させる虞がある。従って、内燃機関の減速運転時(燃料カット時)にPMフィルタに流入する排気流量を変化させることが好ましい。これにより、差圧センサの故障検知のためにPMフィルタに流入する排気流量を変化させた時にドライバビリティが悪化することを抑制できる。
Here, if the opening degree of the intake throttle valve is changed, the intake air amount of the internal combustion engine will fluctuate. Therefore, depending on the operating state of the internal combustion engine, there is a possibility that torque fluctuation will be caused and drivability will be deteriorated. Therefore, it is preferable to change the flow rate of the exhaust gas flowing into the PM filter during the deceleration operation of the internal combustion engine (when the fuel is cut). As a result, it is possible to prevent drivability from deteriorating when the exhaust flow rate flowing into the PM filter is changed to detect a failure of the differential pressure sensor.

上記構成において、外部圧力としては、一定の圧力でなくても、真値が予め判っている圧力や、所定の方法によって高い精度で真値を推定可能な圧力を選ぶことも可能である。   In the above configuration, as the external pressure, it is possible to select a pressure whose true value is known in advance or a pressure capable of estimating the true value with high accuracy by a predetermined method, even if it is not a constant pressure.

本発明により、精度良く差圧センサの故障を検知することが可能になる。   According to the present invention, it is possible to accurately detect a failure of a differential pressure sensor.

以下に図面を参照して、この発明を実施するための最良の形態を例示的に詳しく説明する。本実施例に記載されている構成部品の寸法、材質、形状、その相対配置等は、特に特定的な記載がない限りは、発明の技術的範囲をそれらのみに限定する趣旨のものではない。   The best mode for carrying out the present invention will be exemplarily described in detail below with reference to the drawings. The dimensions, materials, shapes, relative arrangements, and the like of the components described in the present embodiment are not intended to limit the technical scope of the invention to those unless otherwise specified.

図1は、本実施例に係る内燃機関の吸気系及び排気系の概略構成を模式的に示した図である。図1に示す内燃機関1は、4つの気筒2を有する水冷式4サイクルディーゼルエンジンである。   FIG. 1 is a diagram schematically showing a schematic configuration of an intake system and an exhaust system of an internal combustion engine according to the present embodiment. An internal combustion engine 1 shown in FIG. 1 is a water-cooled four-cycle diesel engine having four cylinders 2.

内燃機関1の気筒2には、吸気マニホールド17及び排気マニホールド18が接続されている。吸気マニホールド17には吸気管3が接続されている。吸気マニホールド17と吸気管3との接続部近傍には、吸気管3を流れる吸気の流量を調節する第2吸気絞り弁9が設けられている。第2吸気絞り弁9は、電動アクチュエータによって開閉される。第2吸気絞り弁9より上流の吸気管3には、吸気と外気との間で熱交換を行うことで吸気を冷却するインタークーラ8が設けられている。インタークーラ8より上流の吸気管3には、排気のエネルギーを駆動源として作動するターボチャージャ5のコンプレッサハウジング11が設けられている。コンプレッサハウジング11より上流の吸気管3には、吸気管3を流れる吸気の流量を調節する第1吸気絞り弁6が設けられている。第1吸気絞り弁6は、電動アクチュエータによって開閉される。   An intake manifold 17 and an exhaust manifold 18 are connected to the cylinder 2 of the internal combustion engine 1. An intake pipe 3 is connected to the intake manifold 17. Near the connecting portion between the intake manifold 17 and the intake pipe 3, a second intake throttle valve 9 for adjusting the flow rate of the intake air flowing through the intake pipe 3 is provided. The second intake throttle valve 9 is opened and closed by an electric actuator. The intake pipe 3 upstream of the second intake throttle valve 9 is provided with an intercooler 8 that cools the intake air by exchanging heat between the intake air and the outside air. The intake pipe 3 upstream of the intercooler 8 is provided with a compressor housing 11 of a turbocharger 5 that operates using exhaust energy as a drive source. The intake pipe 3 upstream of the compressor housing 11 is provided with a first intake throttle valve 6 that adjusts the flow rate of intake air flowing through the intake pipe 3. The first intake throttle valve 6 is opened and closed by an electric actuator.

一方、排気マニホールド18には排気管4が接続されている。排気管4の途中には、ターボチャージャ5のタービンハウジング12が設けられている。タービンハウジング12より下流の排気管4には、パティキュレート・フィルタ(以下「フィルタ」という)10が設けられている。フィルタ10は排気中の粒子状物質(以下「PM」という)を捕集する。フィルタ10より下流において排気管4は図示しないマフラーを経て大気に開放されている。   On the other hand, the exhaust manifold 4 is connected to the exhaust manifold 18. A turbine housing 12 of the turbocharger 5 is provided in the middle of the exhaust pipe 4. A particulate filter (hereinafter referred to as “filter”) 10 is provided in the exhaust pipe 4 downstream of the turbine housing 12. The filter 10 collects particulate matter (hereinafter referred to as “PM”) in the exhaust gas. Downstream of the filter 10, the exhaust pipe 4 is opened to the atmosphere through a muffler (not shown).

内燃機関1には、排気管4を流れる排気の一部を吸気管3へ導き気筒2に再循環させるEGR装置40が備えられている。EGR装置40は、EGR通路41、EGR弁42、及びEGRクーラ43を有して構成されている。EGR通路41は、排気マニホールド18と吸気マニホールド17とを接続している。EGR通路41を通って排気が吸気管3へ導かれる。本実施例では、EGR通路41を経由して気筒2に再循環する排気をEGRガスと称している。EGR弁42は、EGR通路41の流路断面積を変更することによりEGR通路41を流れる排気の量を変更可能な流量調節弁である。EGRガスの調量はEGR弁42の開度を調節することによって行われる。EGRクーラ43は、EGRガスと内燃機関1を冷却する冷却水との間で熱交換をすることでEGRガスを冷却する。   The internal combustion engine 1 is provided with an EGR device 40 that guides a part of the exhaust gas flowing through the exhaust pipe 4 to the intake pipe 3 and recirculates it to the cylinder 2. The EGR device 40 includes an EGR passage 41, an EGR valve 42, and an EGR cooler 43. The EGR passage 41 connects the exhaust manifold 18 and the intake manifold 17. Exhaust gas is guided to the intake pipe 3 through the EGR passage 41. In the present embodiment, the exhaust gas recirculated to the cylinder 2 via the EGR passage 41 is referred to as EGR gas. The EGR valve 42 is a flow rate control valve that can change the amount of exhaust gas flowing through the EGR passage 41 by changing the flow passage cross-sectional area of the EGR passage 41. The EGR gas is adjusted by adjusting the opening degree of the EGR valve 42. The EGR cooler 43 cools the EGR gas by exchanging heat between the EGR gas and the cooling water that cools the internal combustion engine 1.

内燃機関1には、機関の制御を行う電子制御装置(ECU)20が併設されている。ECU20は、リードオンリーメモリ(ROM)、ランダムアクセスメモリ(RAM)、中央演算装置(CPU)、入出力ポート、デジタルアナログコンバータ(DAコンバータ)、アナログデジタルコンバータ(ADコンバータ)等を双方向バスで接続した公知の構成を有するマイクロコンピュータとして構成されている。   The internal combustion engine 1 is provided with an electronic control unit (ECU) 20 that controls the engine. The ECU 20 connects a read-only memory (ROM), a random access memory (RAM), a central processing unit (CPU), an input / output port, a digital analog converter (DA converter), an analog digital converter (AD converter), etc. with a bidirectional bus. The microcomputer has a known configuration as described above.

ECU20は、内燃機関1の運転状態や運転者による要求に応じて燃料噴射制御等のディーゼルエンジンにおいて既知の諸基本制御を行う。そのために、本実施例における内燃機関1には、内燃機関1のクランクシャフトの回転位相(クランク角度)を測定するクランクポジションセンサ16、運転者によるアクセルペダル14の踏み込み量(アクセル開度)を測定するアクセル開度センサ15、吸気管3に流入する新気の流量を測定するエアフローメータ7、フィルタ10の上流と下流における排気の圧力差を測定する差圧センサ19、その他ディーゼルエンジンが一般的に備えているセンサ類(図示省略)が設けられている。   The ECU 20 performs various basic controls known in the diesel engine such as fuel injection control in accordance with the operation state of the internal combustion engine 1 or a request from the driver. For this purpose, the internal combustion engine 1 in this embodiment measures the crank position sensor 16 for measuring the rotational phase (crank angle) of the crankshaft of the internal combustion engine 1 and the amount of depression of the accelerator pedal 14 by the driver (accelerator opening). An accelerator opening sensor 15 for performing the measurement, an air flow meter 7 for measuring the flow rate of fresh air flowing into the intake pipe 3, a differential pressure sensor 19 for measuring a pressure difference between exhaust gas upstream and downstream of the filter 10, and other diesel engines are generally used. Provided sensors (not shown) are provided.

ここで、本実施例における差圧センサ19について詳しく説明する。差圧センサ19には、フィルタ10の上流における排気の圧力を導入するフィルタ上流圧力導入管13と、フィルタ10の下流における排気の圧力を導入するフィルタ下流圧力導入管23とが接続されており、フィルタ10の上流における排気の圧力(以下「フィルタ上流圧力」という)とフィルタ10の下流における排気の圧力(以下「フィルタ下流圧力」という)との差圧を測定できるようになっている。   Here, the differential pressure sensor 19 in the present embodiment will be described in detail. Connected to the differential pressure sensor 19 are a filter upstream pressure introduction pipe 13 for introducing the exhaust pressure upstream of the filter 10 and a filter downstream pressure introduction pipe 23 for introducing the exhaust pressure downstream of the filter 10. The differential pressure between the exhaust pressure upstream of the filter 10 (hereinafter referred to as “filter upstream pressure”) and the exhaust pressure downstream of the filter 10 (hereinafter referred to as “filter downstream pressure”) can be measured.

本実施例の場合、差圧センサ19には更に大気圧を導入する大気圧導入管22が接続されており、フィルタ下流圧力導入管23と大気圧導入管22とは切替弁21によって切り替え可能となっている。そして、切替弁21がフィルタ下流圧力導入管23側に切り替えられた場合は、差圧センサ19はフィルタ上流圧力とフィルタ下流圧力との差圧を測定し、切替弁21が大気圧導入管22側に切り替えられた場合は、差圧センサ19はフィルタ上流圧力と大気圧との差圧を測定するようになっている。   In the case of the present embodiment, an atmospheric pressure introduction pipe 22 for introducing atmospheric pressure is further connected to the differential pressure sensor 19, and the filter downstream pressure introduction pipe 23 and the atmospheric pressure introduction pipe 22 can be switched by a switching valve 21. It has become. When the switching valve 21 is switched to the filter downstream pressure introducing pipe 23 side, the differential pressure sensor 19 measures the differential pressure between the filter upstream pressure and the filter downstream pressure, and the switching valve 21 is connected to the atmospheric pressure introducing pipe 22 side. Is switched, the differential pressure sensor 19 measures the differential pressure between the filter upstream pressure and the atmospheric pressure.

上述した各センサは電気配線を介してECU20に接続され、各センサからの出力信号がECU20に入力されるようになっている。また、ECU20には、第1吸気絞り弁6、第2吸気絞り弁9、切替弁21、EGR弁42を駆動するための駆動装置等の機器が電気配線を介して接続され、ECU20から出力される制御信号に従ってこれらの機器が制御される。   Each sensor described above is connected to the ECU 20 via electrical wiring, and an output signal from each sensor is input to the ECU 20. Further, the ECU 20 is connected to devices such as a driving device for driving the first intake throttle valve 6, the second intake throttle valve 9, the switching valve 21, and the EGR valve 42 via electric wiring, and is output from the ECU 20. These devices are controlled according to the control signal.

ECU20は、各センサによる測定値に基づいて内燃機関1の運転状態や運転者の要求を把握する。例えば、ECU20はクランクポジションセンサ16から入力されるクランク角度から機関回転数を算出するとともに、アクセル開度センサ15から入力されるアクセル開度から機関負荷を算出し、該算出された機関回転数と機関負荷とに基づいて内燃機関1の運転状態を取得する。そして、取得した機関運転状態や運転者の要求に基づいて第1吸気絞り弁6、第2吸気絞り弁9、切替弁21、圧EGR弁42等を制御する。   ECU20 grasps | ascertains the driving | running state of the internal combustion engine 1, and a driver | operator's request | requirement based on the measured value by each sensor. For example, the ECU 20 calculates the engine speed from the crank angle input from the crank position sensor 16, calculates the engine load from the accelerator opening input from the accelerator opening sensor 15, and calculates the calculated engine speed and The operating state of the internal combustion engine 1 is acquired based on the engine load. Then, the first intake throttle valve 6, the second intake throttle valve 9, the switching valve 21, the pressure EGR valve 42, and the like are controlled based on the acquired engine operating state and the driver's request.

本実施例では、フィルタ10に堆積したPMを酸化除去するフィルタ再生処理の実行時期の判定や、フィルタ10における溶損等の故障の検知に、差圧センサ19によって測定されるフィルタ10の前後差圧を利用する。しかし、差圧センサ19に劣化や故障が生じた場合、フィルタ再生処理の実行時期を適切に判定できなかったり、フィルタ10の故障を精度良く検知できなかったりする虞がある。   In the present embodiment, the difference between the front and rear of the filter 10 measured by the differential pressure sensor 19 is used to determine the execution timing of the filter regeneration process for removing the PM accumulated on the filter 10 by oxidation and to detect a failure such as melting damage in the filter 10. Use pressure. However, when the differential pressure sensor 19 is deteriorated or malfunctioned, there is a possibility that the execution time of the filter regeneration process cannot be properly determined, or the malfunction of the filter 10 cannot be detected with high accuracy.

そこで、本実施例では、差圧センサ19の劣化や故障を検知するために、図2に示すよ
うな差圧センサ故障検知制御を実行するようにした。図2は、差圧センサ19の故障検知制御を行うためのルーチンを示すフローチャートである。このルーチンは内燃機関1の運転中、ECU20によって所定時間毎に繰り返し実行される。
Therefore, in this embodiment, in order to detect the deterioration or failure of the differential pressure sensor 19, the differential pressure sensor failure detection control as shown in FIG. 2 is executed. FIG. 2 is a flowchart showing a routine for performing failure detection control of the differential pressure sensor 19. This routine is repeatedly executed at predetermined time intervals by the ECU 20 during operation of the internal combustion engine 1.

ステップS100において、ECU20は、内燃機関1の運転状態を取得する。具体的には、クランクポジションセンサ16によるクランク角度の測定値から機関回転数を算出するとともに、アクセル開度センサ15によるアクセル開度の測定値から機関負荷を算出する。   In step S100, the ECU 20 acquires the operating state of the internal combustion engine 1. Specifically, the engine speed is calculated from the measured value of the crank angle by the crank position sensor 16, and the engine load is calculated from the measured value of the accelerator opening by the accelerator opening sensor 15.

ステップS101において、ECU20は、ステップS100において取得した内燃機関1の運転状態に基づいて、内燃機関1が減速運転中であるか否かを判定する。ステップS101において肯定判定された場合、ECU20はステップS102を実行する。一方、ステップS101において否定判定された場合、ECU20は本ルーチンの実行を一旦終了する。   In step S101, ECU20 determines whether the internal combustion engine 1 is decelerating based on the driving | running state of the internal combustion engine 1 acquired in step S100. When an affirmative determination is made in step S101, the ECU 20 executes step S102. On the other hand, if a negative determination is made in step S101, the ECU 20 once ends the execution of this routine.

ステップS102において、ECU20は、切替弁21を大気圧導入管22側に切り替える。これにより、差圧センサ19はフィルタ上流圧力Pinと大気圧Paとの差圧(以下「フィルタ上流大気間差圧」という)ΔPを測定可能な状態になる。   In step S102, the ECU 20 switches the switching valve 21 to the atmospheric pressure introduction pipe 22 side. As a result, the differential pressure sensor 19 can measure a differential pressure ΔP between the filter upstream pressure Pin and the atmospheric pressure Pa (hereinafter referred to as “filter upstream atmospheric differential pressure”) ΔP.

ステップS103において、ECU20は、減速運転中のフィルタ上流大気圧間差圧ΔP1を測定する。この時のフィルタ上流圧力をPin1とすれば、ΔP1=Pin1−Paとなる。   In step S103, the ECU 20 measures the filter upstream atmospheric pressure differential pressure ΔP1 during the deceleration operation. When the filter upstream pressure at this time is Pin1, ΔP1 = Pin1−Pa.

ステップS104において、ECU20は、第1吸気絞り弁6の開度を全開にする。これにより、吸入空気量が増加し、これに伴って内燃機関1からの排気流量も増加するため、フィルタ上流圧力が上昇する。   In step S104, the ECU 20 fully opens the opening of the first intake throttle valve 6. As a result, the intake air amount increases, and the exhaust flow rate from the internal combustion engine 1 increases accordingly, so the filter upstream pressure increases.

ステップS105において、ECU20は、吸入空気量を増加させた時のフィルタ上流大気圧間差圧ΔP2を測定する。この時のフィルタ上流圧力をPin2とすれば、ΔP2=Pin2−Paとなる。   In step S105, the ECU 20 measures the filter upstream atmospheric pressure differential pressure ΔP2 when the intake air amount is increased. If the filter upstream pressure at this time is Pin2, ΔP2 = Pin2-Pa.

ステップS106において、ECU20は、ステップS103において測定した減速運転中のフィルタ上流大気間差圧ΔP1と、ステップS105において測定した減速運転中において吸入空気量を増加させた場合のフィルタ上流大気間差圧ΔP2と、が等しいか否かを判定する。ここで、本実施例では、ΔP1とΔP2との差の絶対値が所定の小さい値δ未満である時に、ΔP1とΔP2とが等しいと判定する。   In step S106, the ECU 20 determines the differential pressure upstream atmospheric pressure ΔP1 during the deceleration operation measured in step S103, and the differential upstream pressure differential air ΔP2 when the intake air amount is increased during the deceleration operation measured in step S105. Are equal to each other. In this embodiment, when the absolute value of the difference between ΔP1 and ΔP2 is less than a predetermined small value δ, it is determined that ΔP1 and ΔP2 are equal.

ステップS106において肯定判定された場合、フィルタ上流圧力を変化させたにもかかわらずフィルタ上流大気間差圧の測定値がほとんど変化しなかったことを意味する。理論的には、フィルタ上流圧力がPin1からPin2に変化した時のフィルタ上流大気間差圧の変化量は、ΔP2−ΔP1=(Pin2−Pa)−(Pin1−Pa)=Pin2−Pin1となり、フィルタ上流圧力の変化量と等しくなるはずである。それに対して、フィルタ上流大気間差圧の変化量の測定値が略ゼロであれば、差圧センサ19のスタック故障が疑われる。従って、この場合、ECU20は、ステップS107において差圧センサ19が故障していると判定する。そして、ステップS109において差圧センサ19が故障している旨を運転者に通知する警告表示を行う。一方、ステップS106において否定判定された場合、ECU20はステップS108において差圧センサ19は正常であると判断する。ステップS109又はステップS108を実行した後、ECU20はステップS110を実行する。   If the determination in step S106 is affirmative, it means that the measured value of the differential pressure between the upstream of the filter has hardly changed even though the upstream pressure of the filter has been changed. Theoretically, when the filter upstream pressure changes from Pin1 to Pin2, the amount of change in the filter upstream atmospheric differential pressure becomes ΔP2−ΔP1 = (Pin2−Pa) − (Pin1−Pa) = Pin2−Pin1. Should be equal to the upstream pressure change. On the other hand, if the measured value of the change amount of the differential pressure between the upstream of the filter is substantially zero, a stack failure of the differential pressure sensor 19 is suspected. Therefore, in this case, the ECU 20 determines that the differential pressure sensor 19 has failed in step S107. In step S109, a warning is displayed to notify the driver that the differential pressure sensor 19 has failed. On the other hand, if a negative determination is made in step S106, the ECU 20 determines that the differential pressure sensor 19 is normal in step S108. After executing step S109 or step S108, the ECU 20 executes step S110.

ステップS110において、ECU20は、切替弁21をフィルタ下流圧力導入管23側に切り替える。これにより、差圧センサ19はフィルタ10の前後差圧を測定可能な通常の状態に戻る。ステップS110を実行した後、ECU20は本ルーチンの実行を一旦終了する。   In step S110, the ECU 20 switches the switching valve 21 to the filter downstream pressure introduction pipe 23 side. As a result, the differential pressure sensor 19 returns to a normal state where the differential pressure across the filter 10 can be measured. After executing step S110, the ECU 20 once ends the execution of this routine.

以上説明した差圧センサ故障検知ルーチンによれば、フィルタ10に流入する排気の流量変化に伴うフィルタ上流圧力の変化のみに起因する差圧センサ19の出力変化に基づいて差圧センサ19の故障検知が行われるので、フィルタ10におけるPM堆積状態や溶損などの故障状態等の不確定要因に左右されることなく、高精度の差圧センサ19の故障検知を行うことができる。   According to the differential pressure sensor failure detection routine described above, the failure detection of the differential pressure sensor 19 is based on the output change of the differential pressure sensor 19 caused only by the change in the upstream pressure of the filter accompanying the change in the flow rate of the exhaust gas flowing into the filter 10. Therefore, the failure of the differential pressure sensor 19 can be detected with high accuracy without being influenced by uncertain factors such as a failure state such as a PM accumulation state or melting damage in the filter 10.

図3に上記差圧センサ故障検知ルーチンを実行する時の車速、フィルタ上流大気間差圧、及び吸入空気量の時間推移を示す。図3(A)の縦軸は車速を表し、横軸は時間を表す。図3(B)の縦軸はフィルタ上流大気間差圧を表し、横軸は時間を表す。図3(C)の縦軸は吸入空気量を表し、横軸は時間を表す。   FIG. 3 shows time transitions of the vehicle speed, the filter upstream atmospheric differential pressure, and the intake air amount when the differential pressure sensor failure detection routine is executed. In FIG. 3A, the vertical axis represents vehicle speed, and the horizontal axis represents time. In FIG. 3B, the vertical axis represents the differential pressure between the air upstream of the filter, and the horizontal axis represents time. In FIG. 3C, the vertical axis represents the intake air amount, and the horizontal axis represents time.

図3(A)に示すように、時刻t1において内燃機関1が減速運転状態になり、これに伴って車速が減少し始める。この時、切替弁21がフィルタ下流圧力導入管23側から大気圧導入管22側に切り替えられ、差圧センサ19がフィルタ上流大気間差圧を測定可能な状態になる。図3(B)に示すように、この時内燃機関1からの排気の流量が急激に減少しているため、フィルタ上流大気間差圧ΔP1は小さい値となる。ここで、時刻t2において第1吸気絞り弁6を全開にすると、図3(C)に示すように、吸入空気量が急激に上昇し、これに伴ってフィルタ上流圧力が上昇するため、図3(B)に示すように、フィルタ上流大気間差圧も増大してΔP2になる。このように、フィルタ上流大気間差圧を変化させるとともに、その変化量を差圧センサ19によって測定することによって、差圧センサ19の故障を検知することが可能になる。   As shown in FIG. 3A, the internal combustion engine 1 enters a decelerating operation state at a time t1, and the vehicle speed starts to decrease accordingly. At this time, the switching valve 21 is switched from the filter downstream pressure introduction pipe 23 side to the atmospheric pressure introduction pipe 22 side, so that the differential pressure sensor 19 can measure the differential pressure between the filters upstream. As shown in FIG. 3B, at this time, the flow rate of the exhaust gas from the internal combustion engine 1 is rapidly decreasing, so the filter upstream atmospheric pressure difference ΔP1 is a small value. Here, when the first intake throttle valve 6 is fully opened at time t2, as shown in FIG. 3 (C), the intake air amount increases rapidly, and the filter upstream pressure increases accordingly. As shown in (B), the differential pressure between the air upstream of the filter also increases to ΔP2. In this way, it is possible to detect a failure of the differential pressure sensor 19 by changing the differential pressure between the upstream air of the filter and measuring the change amount by the differential pressure sensor 19.

なお、上記実施例ではフィルタ上流圧力を変化させた場合にフィルタ上流大気間差圧の測定値が変化するか否かに基づいて差圧センサ19のスタック故障を検知しているが、フィルタ上流圧力を変化させた場合に予想されるフィルタ上流大気間差圧の変化量の理論値(又は推定値)と、実際に差圧センサ19によって測定されたフィルタ上流大気間差圧の測定値とを比較し、その比較結果に基づいて差圧センサ19の故障を検知するようにしても良い。この検知方法によれば、差圧センサ19のスタック故障だけでなく、差圧センサ19の特性ずれ等の微妙な故障や異常を検知することも可能となる。この検知方法を採用する場合、フィルタ上流大気間差圧の測定値の比較対象としては、正常な差圧センサ19でフィルタ上流大気間差圧の変化量を測定した場合に許容される測定値を用いても良い。   In the above embodiment, the stack failure of the differential pressure sensor 19 is detected based on whether or not the measured value of the differential pressure across the atmosphere upstream of the filter changes when the upstream pressure of the filter is changed. The theoretical value (or estimated value) of the amount of change in the differential pressure between the upstream of the filter that is expected when the pressure is changed is compared with the measured value of the differential pressure between the upstream of the filter actually measured by the differential pressure sensor 19 Then, a failure of the differential pressure sensor 19 may be detected based on the comparison result. According to this detection method, not only a stack failure of the differential pressure sensor 19 but also a subtle failure or abnormality such as a characteristic deviation of the differential pressure sensor 19 can be detected. When this detection method is employed, the measurement value allowed when the change amount of the filter upstream atmospheric differential pressure is measured by a normal differential pressure sensor 19 is used as a comparison target of the measured value of the filter upstream atmospheric differential pressure. It may be used.

また、上記実施例では差圧センサ19に大気圧を導入するようにしているが、一定値の圧力であれば大気圧でなくても良い。また、その真値が明確に判っている圧力であれば、一定値でない圧力を導入するようにしても良い。すなわち、差圧センサ19による測定値と比較対象となる値が理論計算又は推定により正確に算出可能な値であればどのような圧力を用いることもできる。   In the above embodiment, the atmospheric pressure is introduced into the differential pressure sensor 19, but it may not be atmospheric pressure as long as the pressure is constant. Further, if the true value is a clearly known pressure, a non-constant pressure may be introduced. That is, any pressure can be used as long as the value measured by the differential pressure sensor 19 and the value to be compared can be accurately calculated by theoretical calculation or estimation.

また、上記実施例では内燃機関1の減速運転中に差圧センサ19の故障検知ルーチンを実行するようにしているが、上記の故障検知ルーチンにおけるステップS102からステップS110の故障検知制御部は、内燃機関1が減速運転中でなくても実行することは可能である。但し、減速運転中に限定的に実行するようにすれば、差圧センサ19の故障を検知するための吸入空気量の増量に起因するトルク変動等によってドライバビリティが悪化してしまうことを回避できるという利点がある。   In the above-described embodiment, the failure detection routine of the differential pressure sensor 19 is executed during the deceleration operation of the internal combustion engine 1. However, the failure detection control unit from step S102 to step S110 in the failure detection routine described above is an internal combustion engine. It can be executed even when the engine 1 is not decelerating. However, if it is executed in a limited manner during the deceleration operation, it is possible to avoid that the drivability is deteriorated due to the torque fluctuation caused by the increase in the intake air amount for detecting the failure of the differential pressure sensor 19. There is an advantage.

また、上記実施例ではフィルタ上流圧力を変化させるために第1吸気絞り弁を全開させることによって吸入空気量を変化させているが、フィルタ上流圧力を変化させる方法はこれに限られない。例えば、EGR弁42を全閉にしても良いし、ターボチャージャ5がノズルベーンを備えた可変容量型のターボチャージャの場合には、ノズルベーンを全開にしても良い。また、第1吸気絞り弁開度は全開でなくても、減速運転中の開度より開き側の開度であればどのような開度であっても良い。但し、フィルタ上流圧力の変化量が大きくなるほど理論値との比較精度が高くなるので、全開とすることが好ましい。EGR弁の開度、ノズルベーンの開度についても同様である。   In the above embodiment, the intake air amount is changed by fully opening the first intake throttle valve in order to change the filter upstream pressure. However, the method of changing the filter upstream pressure is not limited to this. For example, the EGR valve 42 may be fully closed, or when the turbocharger 5 is a variable capacity turbocharger provided with nozzle vanes, the nozzle vanes may be fully opened. Further, the first intake throttle valve opening may not be fully open, but may be any opening as long as the opening is closer to the opening than during the deceleration operation. However, since the comparison accuracy with the theoretical value increases as the amount of change in the filter upstream pressure increases, it is preferable to fully open the filter. The same applies to the opening degree of the EGR valve and the opening degree of the nozzle vane.

また、上記実施例では差圧センサ19の故障検知のためにフィルタ上流圧力と大気圧との差圧を測定するようにしているが、フィルタ下流圧力と大気圧との差圧を測定するようにしても良い。この場合、フィルタ上流圧力導入管13と大気圧導入管22とを切り替える切替弁を設けて、差圧センサ19の通常使用時には切替弁をフィルタ上流圧力導入管13側に切り替えることでフィルタ10の前後差圧を測定可能な状態とし、差圧センサ19の故障検知を行う時には切替弁を大気圧導入管22側に切り替えることでフィルタ下流大気圧間差圧を測定可能な状態とすればよい。   In the above embodiment, the differential pressure between the filter upstream pressure and the atmospheric pressure is measured to detect a failure of the differential pressure sensor 19, but the differential pressure between the filter downstream pressure and the atmospheric pressure is measured. May be. In this case, a switching valve that switches between the filter upstream pressure introduction pipe 13 and the atmospheric pressure introduction pipe 22 is provided, and when the differential pressure sensor 19 is normally used, the switching valve is switched to the filter upstream pressure introduction pipe 13 side so that The differential pressure can be measured, and when the failure of the differential pressure sensor 19 is detected, the switching valve is switched to the atmospheric pressure introduction pipe 22 side so that the differential pressure between the atmospheric pressure downstream of the filter can be measured.

また、図4に示すように、フィルタ上流大気圧間差圧とフィルタ下流大気間差圧との両方を測定可能な構成としても良い。図4はそのような構成を実現するための差圧センサ及びフィルタ周辺の概略構成を示す図である。図4において図1と共通の構成要素には同一の符号を付し、また図1と共通の内燃機関や吸気系、EGR系は図示を省略してある。図4において、排気管4に描かれている矢印は排気の流れを示している。この構成では、差圧センサ19には、フィルタ10の上流における排気の圧力を導入するフィルタ上流圧力導入管13と、フィルタ上流圧力導入管13と切り替えられて大気圧を導入する第2大気圧導入管24と、フィルタ上流圧力導入管13と第2大気圧導入管24とを切り替える第2切替弁25と、フィルタ10の下流における排気の圧力を導入するフィルタ下流圧力導入管23と、フィルタ下流圧力導入管23と切り替えられて大気圧を導入する大気圧導入管22と、フィルタ下流圧力導入管23と大気圧導入管22とを切り替える切替弁21とが接続されている。切替弁21、第2切替弁25、差圧センサ19はそれぞれ電気配線を介してECU20に接続される。   Moreover, as shown in FIG. 4, it is good also as a structure which can measure both a filter upstream atmospheric differential pressure and a filter downstream atmospheric differential pressure. FIG. 4 is a diagram showing a schematic configuration around a differential pressure sensor and a filter for realizing such a configuration. In FIG. 4, the same reference numerals are given to the same components as in FIG. 1, and the internal combustion engine, intake system, and EGR system that are common to FIG. In FIG. 4, the arrows drawn on the exhaust pipe 4 indicate the flow of exhaust. In this configuration, the differential pressure sensor 19 is switched to the filter upstream pressure introduction pipe 13 that introduces the pressure of the exhaust gas upstream of the filter 10, and the second atmospheric pressure introduction that is switched to the filter upstream pressure introduction pipe 13 to introduce the atmospheric pressure. A pipe 24, a second switching valve 25 that switches between the filter upstream pressure introduction pipe 13 and the second atmospheric pressure introduction pipe 24, a filter downstream pressure introduction pipe 23 that introduces exhaust pressure downstream of the filter 10, and a filter downstream pressure An atmospheric pressure introduction pipe 22 that is switched to the introduction pipe 23 to introduce atmospheric pressure, and a switching valve 21 that switches between the filter downstream pressure introduction pipe 23 and the atmospheric pressure introduction pipe 22 are connected. The switching valve 21, the second switching valve 25, and the differential pressure sensor 19 are each connected to the ECU 20 via electric wiring.

この構成によれば、切替弁21を大気圧導入管22側に切り替えるとともに、第2切替弁25をフィルタ上流圧力導入管13側に切り替えることで、差圧センサ19はフィルタ上流大気間差圧を測定可能となる。一方、切替弁21をフィルタ下流圧力導入管23側に切り替えるとともに、第2切替弁25を第2大気圧導入管24側に切り替えることで、差圧センサ19はフィルタ下流大気間差圧を測定可能となる。また、切替弁21をフィルタ下流圧力導入管23側に切り替えるとともに、第2切替弁25をフィルタ上流圧力導入管13側に切り替えることで、差圧センサ19はフィルタ10の前後差圧を測定可能となる。さらに、切替弁21を大気圧導入管22側に切り替えるとともに、第2切替弁25を第2大気圧導入管24側に切り替えることで、差圧センサ19には等しい圧力が導入されることになるので、差圧センサ19のゼロ点補正を行うことができる。この構成によれば、ゼロ点補正を内燃機関1の任意の運転状態において実行できるという利点がある。   According to this configuration, the switching valve 21 is switched to the atmospheric pressure introduction pipe 22 side, and the second switching valve 25 is switched to the filter upstream pressure introduction pipe 13 side, so that the differential pressure sensor 19 changes the filter upstream atmospheric differential pressure. It becomes possible to measure. On the other hand, by switching the switching valve 21 to the filter downstream pressure introduction pipe 23 side and switching the second switching valve 25 to the second atmospheric pressure introduction pipe 24 side, the differential pressure sensor 19 can measure the filter downstream atmospheric pressure difference. It becomes. Further, the differential pressure sensor 19 can measure the differential pressure across the filter 10 by switching the switching valve 21 to the filter downstream pressure introduction pipe 23 side and switching the second switching valve 25 to the filter upstream pressure introduction pipe 13 side. Become. Furthermore, by switching the switching valve 21 to the atmospheric pressure introduction pipe 22 side and switching the second switching valve 25 to the second atmospheric pressure introduction pipe 24 side, equal pressure is introduced into the differential pressure sensor 19. Therefore, the zero point correction of the differential pressure sensor 19 can be performed. According to this configuration, there is an advantage that the zero point correction can be executed in an arbitrary operation state of the internal combustion engine 1.

以上述べた各実施例は本発明を説明するための一例であって、本発明の本旨を逸脱しない範囲内において可能な限り組み合わせたり変形を加えることが可能である。   Each embodiment described above is an example for explaining the present invention, and can be combined and modified as much as possible without departing from the spirit of the present invention.

実施例1における内燃機関の吸気系及び排気系の概略構成を示す図である。1 is a diagram showing a schematic configuration of an intake system and an exhaust system of an internal combustion engine in Embodiment 1. FIG. 実施例1における差圧センサの故障検知制御ルーチンを示すフローチャートである。3 is a flowchart illustrating a failure detection control routine for a differential pressure sensor in the first embodiment. 実施例1における差圧センサの故障検知制御ルーチンを実行する場合の車速、フィルタ上流大気間差圧、及び吸入空気量の時間推移を示すタイムチャートである。6 is a time chart showing time transitions of the vehicle speed, the filter upstream atmospheric differential pressure, and the intake air amount when executing the differential pressure sensor failure detection control routine in the first embodiment. 実施例1における差圧センサの構成の変形例を示す図である。It is a figure which shows the modification of a structure of the differential pressure sensor in Example 1. FIG.

符号の説明Explanation of symbols

1 内燃機関
2 気筒
3 吸気管
4 排気管
5 ターボチャージャ
6 第1吸気絞り弁
7 エアフローメータ
8 インタークーラ
9 第2吸気絞り弁
10 フィルタ
11 コンプレッサハウジング
12 タービンハウジング
13 フィルタ上流圧力導入管
14 アクセルペダル
15 アクセル開度センサ
16 クランクポジションセンサ
17 吸気マニホールド
18 排気マニホールド
19 差圧センサ
20 ECU
21 切替弁
22 大気圧導入管
23 フィルタ下流圧力導入管
24 第2大気圧導入管
25 第2切替弁
40 EGR装置
41 EGR通路
42 EGR弁
43 EGRクーラ
1 Internal combustion engine 2 Cylinder 3 Intake pipe 4 Exhaust pipe 5 Turbocharger 6 First intake throttle valve 7 Air flow meter 8 Intercooler 9 Second intake throttle valve 10 Filter 11 Compressor housing 12 Turbine housing 13 Filter upstream pressure introduction pipe 14 Accelerator pedal 15 Accelerator opening sensor 16 Crank position sensor 17 Intake manifold 18 Exhaust manifold 19 Differential pressure sensor 20 ECU
21 switching valve 22 atmospheric pressure introduction pipe 23 filter downstream pressure introduction pipe 24 second atmospheric pressure introduction pipe 25 second switching valve 40 EGR device 41 EGR passage 42 EGR valve 43 EGR cooler

Claims (6)

内燃機関の排気通路の途中に設けられ排気中の微粒子物質を捕集するPMフィルタと、
前記PMフィルタの前後差圧を測定可能であるとともに、前記内燃機関の排気系外部における一定圧力を導入する外部圧力導入手段を有し、前記PMフィルタ上流の圧力と前記排気系外部の一定圧力との差圧及び/又は前記PMフィルタ下流の圧力と前記排気系外部の一定圧力との差圧を測定可能な差圧センサと、
前記PMフィルタに流入する排気流量を変化させる排気流量変更手段と、
前記排気流量変更手段によって前記PMフィルタに流入する排気流量を変化させるとともに、前記PMフィルタに流入する排気流量の該変化に伴う、前記PMフィルタ上流の圧力と前記排気系外部の一定圧力との差圧の変化量、又は、前記PMフィルタ下流の圧力と前記排気系外部の一定圧力との差圧の変化量に基づいて、前記差圧センサの故障を検知する故障検知手段と、
を備えることを特徴とする差圧センサの故障検知システム。
A PM filter provided in the exhaust passage of the internal combustion engine for collecting particulate matter in the exhaust;
An external pressure introducing means for introducing a constant pressure outside the exhaust system of the internal combustion engine, capable of measuring a differential pressure across the PM filter, and a pressure upstream of the PM filter and a constant pressure outside the exhaust system, And / or a differential pressure sensor capable of measuring a differential pressure between a pressure downstream of the PM filter and a constant pressure outside the exhaust system;
Exhaust flow rate changing means for changing the exhaust flow rate flowing into the PM filter;
The exhaust flow rate changing means changes the exhaust flow rate flowing into the PM filter, and the difference between the pressure upstream of the PM filter and a constant pressure outside the exhaust system due to the change in the exhaust flow rate flowing into the PM filter. A failure detecting means for detecting a failure of the differential pressure sensor based on an amount of change in pressure, or an amount of change in differential pressure between a pressure downstream of the PM filter and a constant pressure outside the exhaust system;
A fault detection system for a differential pressure sensor.
請求項1において、
前記故障検知手段は、前記排気流量変更手段によって前記PMフィルタに流入する排気流量を変化させた時の、前記PMフィルタ上流の圧力と前記排気系外部の一定圧力との差圧の前記差圧センサによる測定値の変化量、又は、前記PMフィルタ下流の圧力と前記排気系外部の一定圧力との差圧の前記差圧センサによる測定値の変化量が、所定の下限値より少ない場合に、前記差圧センサが故障していると判定する差圧センサの故障検知システム。
In claim 1,
The failure detecting means is the differential pressure sensor for the differential pressure between the pressure upstream of the PM filter and a constant pressure outside the exhaust system when the exhaust flow rate flowing into the PM filter is changed by the exhaust flow rate changing means. Or when the change amount of the measured value by the differential pressure sensor of the differential pressure between the pressure downstream of the PM filter and the constant pressure outside the exhaust system is less than a predetermined lower limit value, A differential pressure sensor failure detection system that determines that a differential pressure sensor has failed.
請求項1において、
前記故障検知手段は、前記排気流量変更手段によって前記PMフィルタに流入する排気流量を変化させた時の、
前記PMフィルタ上流の圧力と前記排気系外部の一定圧力との差圧の前記差圧センサによる測定値の変化量と、
前記PMフィルタ上流の圧力と前記排気系外部の一定圧力との差圧の変化量の前記PMフィルタに流入する排気流量の変化量に基づく推定値と、の差が所定の第1上限値より大きい場合、
又は、
前記PMフィルタ下流の圧力と前記排気系外部の一定圧力との差圧の前記差圧センサによる測定値の変化量と、
前記PMフィルタ下流の圧力と前記排気系外部の一定圧力との差圧の変化量の前記PMフィルタに流入する排気流量の変化量に基づく推定値と、の差が所定の第2上限値より大きい場合に、
前記差圧センサが故障していると判定する差圧センサの故障検知システム。
In claim 1,
The failure detection means, when the exhaust flow rate flowing into the PM filter is changed by the exhaust flow rate change means,
The amount of change in the measured value by the differential pressure sensor of the differential pressure between the pressure upstream of the PM filter and the constant pressure outside the exhaust system;
The difference between the change amount of the differential pressure between the pressure upstream of the PM filter and the constant pressure outside the exhaust system and the estimated value based on the change amount of the exhaust flow rate flowing into the PM filter is larger than a predetermined first upper limit value. If
Or
The amount of change in the measured value by the differential pressure sensor of the differential pressure between the pressure downstream of the PM filter and the constant pressure outside the exhaust system;
The difference between the change amount of the differential pressure between the pressure downstream of the PM filter and the constant pressure outside the exhaust system and the estimated value based on the change amount of the exhaust flow rate flowing into the PM filter is larger than a predetermined second upper limit value. In case,
A differential pressure sensor failure detection system for determining that the differential pressure sensor has failed.
請求項1〜3のいずれか1項において、
前記外部圧力導入手段は、前記差圧センサに大気圧を導入する差圧センサの故障検知システム。
In any one of Claims 1-3,
The external pressure introduction means is a differential pressure sensor failure detection system for introducing atmospheric pressure to the differential pressure sensor.
請求項1〜4のいずれか1項において、
前記内燃機関の吸気通路の流路断面積を変更する吸気絞り弁を更に備え、
前記排気流量変更手段は、前記吸気絞り弁の開度を変更することによって、前記PMフィルタに流入する排気流量を変化させる差圧センサの故障検知システム。
In any one of Claims 1-4,
An intake throttle valve for changing the cross-sectional area of the intake passage of the internal combustion engine,
The exhaust pressure change means is a differential pressure sensor failure detection system that changes an exhaust flow rate flowing into the PM filter by changing an opening of the intake throttle valve.
請求項1〜5のいずれか1項において、
前記故障検知手段は、前記内燃機関の減速運転時に、前記差圧センサの故障判定を実行
する差圧センサの故障検知システム。
In any one of Claims 1-5,
The failure detection means is a differential pressure sensor failure detection system that performs failure determination of the differential pressure sensor during deceleration operation of the internal combustion engine.
JP2006296145A 2006-10-31 2006-10-31 Fault detection system for differential pressure sensor Expired - Fee Related JP4760671B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006296145A JP4760671B2 (en) 2006-10-31 2006-10-31 Fault detection system for differential pressure sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006296145A JP4760671B2 (en) 2006-10-31 2006-10-31 Fault detection system for differential pressure sensor

Publications (2)

Publication Number Publication Date
JP2008111409A true JP2008111409A (en) 2008-05-15
JP4760671B2 JP4760671B2 (en) 2011-08-31

Family

ID=39444052

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006296145A Expired - Fee Related JP4760671B2 (en) 2006-10-31 2006-10-31 Fault detection system for differential pressure sensor

Country Status (1)

Country Link
JP (1) JP4760671B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9389146B2 (en) 2014-02-26 2016-07-12 Komatsu Ltd. Malfunction-determining device for exhaust gas purifying device and malfunction-determining method for exhaust gas purifying device
EP3061937A1 (en) 2015-02-26 2016-08-31 Toyota Jidosha Kabushiki Kaisha Abnormality determination system for an exhaust device
US20200025054A1 (en) * 2018-07-19 2020-01-23 Cummins Emission Solutions Inc. Systems and methods for determining differential and relative pressure using a controller
JP2021032197A (en) * 2019-08-28 2021-03-01 トヨタ自動車株式会社 Engine device
CN114441095A (en) * 2022-04-11 2022-05-06 潍柴动力股份有限公司 Detection method and device of sensor
CN115217683A (en) * 2021-11-30 2022-10-21 广州汽车集团股份有限公司 Method and system for monitoring pressure difference of EGR valve and detecting pipeline fault

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1077825A (en) * 1996-08-30 1998-03-24 Fujitsu Ten Ltd Regenerating device for exhaust gas filter
JP2003214146A (en) * 2002-01-23 2003-07-30 Toyota Motor Corp Exhaust emission control device for internal combustion engine
JP2004518869A (en) * 2001-03-14 2004-06-24 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Method and apparatus for monitoring signals

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1077825A (en) * 1996-08-30 1998-03-24 Fujitsu Ten Ltd Regenerating device for exhaust gas filter
JP2004518869A (en) * 2001-03-14 2004-06-24 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Method and apparatus for monitoring signals
JP2003214146A (en) * 2002-01-23 2003-07-30 Toyota Motor Corp Exhaust emission control device for internal combustion engine

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9389146B2 (en) 2014-02-26 2016-07-12 Komatsu Ltd. Malfunction-determining device for exhaust gas purifying device and malfunction-determining method for exhaust gas purifying device
DE112014000017B4 (en) 2014-02-26 2021-07-22 Komatsu Ltd. Malfunction detection device for exhaust gas purification device and malfunction detection method for exhaust gas purification device
EP3061937A1 (en) 2015-02-26 2016-08-31 Toyota Jidosha Kabushiki Kaisha Abnormality determination system for an exhaust device
US20200025054A1 (en) * 2018-07-19 2020-01-23 Cummins Emission Solutions Inc. Systems and methods for determining differential and relative pressure using a controller
US10697344B2 (en) * 2018-07-19 2020-06-30 Cummins Emission Solutions Inc. Systems and methods for determining differential and relative pressure using a controller
JP2021032197A (en) * 2019-08-28 2021-03-01 トヨタ自動車株式会社 Engine device
JP7207236B2 (en) 2019-08-28 2023-01-18 トヨタ自動車株式会社 engine device
CN115217683A (en) * 2021-11-30 2022-10-21 广州汽车集团股份有限公司 Method and system for monitoring pressure difference of EGR valve and detecting pipeline fault
CN115217683B (en) * 2021-11-30 2023-08-15 广州汽车集团股份有限公司 Method and system for detecting pipeline faults by monitoring differential pressure of EGR valve
CN114441095A (en) * 2022-04-11 2022-05-06 潍柴动力股份有限公司 Detection method and device of sensor
CN114441095B (en) * 2022-04-11 2022-08-05 潍柴动力股份有限公司 Detection method and device of sensor

Also Published As

Publication number Publication date
JP4760671B2 (en) 2011-08-31

Similar Documents

Publication Publication Date Title
JP4225322B2 (en) Exhaust gas recirculation device for internal combustion engine
JP4506724B2 (en) PM trapper failure detection system
WO2011099173A1 (en) Control device for engine with turbocharger
JP5282848B2 (en) EGR device abnormality detection device
JP4760671B2 (en) Fault detection system for differential pressure sensor
JP2008240576A (en) Failure diagnosis device for turbocharging system
JP5376051B2 (en) Abnormality detection apparatus and abnormality detection method for EGR system
JP2009287409A (en) Exhaust temperature detection device of engine with turbocharger and its deterioration diagnostic system
JP2008133779A (en) Diagnosis device for differential pressure sensor
JP2005307880A (en) Differential pressure sensor abnormality detecting device for exhaust emission control filter
JP2008274836A (en) Failure diagnostic device for intake air flow rate sensor
JP4893383B2 (en) Exhaust gas recirculation device for internal combustion engine
WO2010067579A1 (en) Egr device for internal combustion engine
JP4311071B2 (en) Defect determination method of exhaust purification system
JP2010242617A (en) Abnormality detection system for internal combustion engine
US11536209B2 (en) Control device, engine, and control method of engine
JP2007040269A (en) Back pressure control device of engine
JP5206601B2 (en) Exhaust gas recirculation control device
JP2007303380A (en) Exhaust gas control device for internal combustion engine
JP2010169008A (en) Abnormality detector for pressure sensor
JP5004036B2 (en) Exhaust gas purification device for internal combustion engine
JP2011226438A (en) Abnormality detection apparatus and method for egr system
JP2010190176A (en) Abnormality determination device for internal combustion engine
JP4827758B2 (en) Fault diagnosis device for variable valve timing control device
JP2007162502A (en) Control device for internal combustion engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090820

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110131

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110215

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110407

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110510

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110523

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140617

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4760671

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140617

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees