JP2008110306A - Membrane module, water treating apparatus and membrane separation system - Google Patents

Membrane module, water treating apparatus and membrane separation system Download PDF

Info

Publication number
JP2008110306A
JP2008110306A JP2006295440A JP2006295440A JP2008110306A JP 2008110306 A JP2008110306 A JP 2008110306A JP 2006295440 A JP2006295440 A JP 2006295440A JP 2006295440 A JP2006295440 A JP 2006295440A JP 2008110306 A JP2008110306 A JP 2008110306A
Authority
JP
Japan
Prior art keywords
hollow fiber
tank
membrane module
fiber bundle
membrane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006295440A
Other languages
Japanese (ja)
Other versions
JP4899794B2 (en
Inventor
Shigeo Sato
茂雄 佐藤
Tetsufumi Watanabe
哲文 渡辺
Norimasa Yoshino
徳正 吉野
Miyoko Kusumi
美代子 久住
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Original Assignee
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp, Meidensha Electric Manufacturing Co Ltd filed Critical Meidensha Corp
Priority to JP2006295440A priority Critical patent/JP4899794B2/en
Publication of JP2008110306A publication Critical patent/JP2008110306A/en
Application granted granted Critical
Publication of JP4899794B2 publication Critical patent/JP4899794B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Activated Sludge Processes (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To keep the filtration flow rate of a membrane module to a prescribed value for a long period and to secure the stable operation of the membrane module by suppressing the clinging of foreign substances to the hollow fibers of the membrane module and preventing the falling down of hollow fiber bundle comprising the hollow fibers. <P>SOLUTION: The membrane module 1 is provided with the hollow fiber bundle 11 comprising a plurality of the hollow fibers being in contact with water to be treated. In the hollow fiber bundle 11, the upper end is a fixed end and the lower end is a free end. The hollow fiber bundle 11 is arranged in the downward stream. A fixing part for fixing the upper end of the hollow fiber bundle 11 to be the fixed end is preferably connected to a pipe for introducing air for scrubbing the hollow fiber 12. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は膜分離活性汚泥法に適用される中空糸型の膜モジュール及びこれを備えた水処理装置並びに膜分離システムに関する。   The present invention relates to a hollow fiber type membrane module applied to a membrane separation activated sludge method, a water treatment apparatus equipped with the same, and a membrane separation system.

図6は膜分離活性汚泥法が適用された水処理装置(以下、MBRプロセスと称する)の構成例を示したフロー図である。図7(a)はMBRプロセスに適用された中空糸型の膜モジュール(以下、膜モジュールと称する)の平面図である。また、図7(b)はMBRプロセスに適用された膜モジュールの概略構成を示した断面図である。   FIG. 6 is a flow diagram showing a configuration example of a water treatment apparatus (hereinafter referred to as an MBR process) to which the membrane separation activated sludge method is applied. FIG. 7A is a plan view of a hollow fiber membrane module (hereinafter referred to as a membrane module) applied to the MBR process. FIG. 7B is a cross-sectional view showing a schematic configuration of the membrane module applied to the MBR process.

MBRプロセス6に供された下水はスクリーン除塵機(1mm)61を介して原水槽62内に導入される。原水槽62内の下水はポンプP1によって生物反応槽63に供給される。生物反応槽63は無酸素槽64と好気槽65とから成る。無酸素槽64は主に脱窒処理を行う。無酸素槽64内には水中攪拌機Mが設置されている。好気槽65は主に硝化処理を行う。好気槽65内には散気装置66と膜モジュール67が設置されている。散気装置66は曝気ブロワB1から空気の供給を受ける。好気槽65内の液相はポンプP2によって吸引されて膜モジュール67の中空糸膜の外側から内側に導入されてろ過される。ろ過された下水は放流槽68に移送される。以上のMBRプロセスは非特許文献1に例示されている。   Sewage supplied to the MBR process 6 is introduced into the raw water tank 62 through a screen dust remover (1 mm) 61. The sewage in the raw water tank 62 is supplied to the biological reaction tank 63 by the pump P1. The biological reaction tank 63 includes an oxygen-free tank 64 and an aerobic tank 65. The anaerobic tank 64 mainly performs a denitrification process. An underwater stirrer M is installed in the anoxic tank 64. The aerobic tank 65 mainly performs nitrification treatment. A diffuser 66 and a membrane module 67 are installed in the aerobic tank 65. The air diffuser 66 is supplied with air from the aeration blower B1. The liquid phase in the aerobic tank 65 is sucked by the pump P2, introduced from the outside to the inside of the hollow fiber membrane of the membrane module 67, and filtered. The filtered sewage is transferred to the discharge tank 68. The above MBR process is exemplified in Non-Patent Document 1.

膜モジュール67としては例えば特許文献1に開示された中空糸型の膜モジュールがある。図7(a)及び図7(b)に例示された膜モジュール7は特許文献1の中空糸膜モジュールと同類のものである。膜モジュール7は複数の中空糸71からなる中空糸束72を円筒状の外筒73に収納して成る。中空糸束72は外筒73の上端及び下端にそれぞれ設置された上部キャップ74及び下部キャップ75によって固定されている。上部キャップ74は接続部77によって外筒73と同軸に接続されている。下部キャップ75も図示省略された接続部77によって外筒73と同軸に接続されている。外筒73の上端及び下端の開口部から流入してきた原水は中空糸71によってろ過される。ろ過処理水は上部キャップ74に接続されたろ過水吸引管76から排出される。   An example of the membrane module 67 is a hollow fiber type membrane module disclosed in Patent Document 1. The membrane module 7 illustrated in FIGS. 7A and 7B is similar to the hollow fiber membrane module of Patent Document 1. The membrane module 7 is configured by housing a hollow fiber bundle 72 composed of a plurality of hollow fibers 71 in a cylindrical outer cylinder 73. The hollow fiber bundle 72 is fixed by an upper cap 74 and a lower cap 75 installed at the upper end and the lower end of the outer cylinder 73, respectively. The upper cap 74 is connected to the outer cylinder 73 coaxially by a connecting portion 77. The lower cap 75 is also connected to the outer cylinder 73 coaxially by a connection part 77 (not shown). The raw water flowing in from the upper and lower openings of the outer cylinder 73 is filtered by the hollow fiber 71. The filtered water is discharged from the filtered water suction pipe 76 connected to the upper cap 74.

膜モジュール7は中空糸71の外側から原水(図6のMBRプロセスでは好気槽63内の液相)を導入しているので、中空糸膜の外側に有機または無機の物質が経時的に付着そして閉塞する。したがって、経時的にろ過能力が低下する。ろ過能力の低下を防ぐために、通常以下のような対策が採られている。   Since the membrane module 7 introduces raw water (liquid phase in the aerobic tank 63 in the MBR process of FIG. 6) from the outside of the hollow fiber 71, organic or inorganic substances adhere to the outside of the hollow fiber membrane over time. Then it closes. Therefore, the filtration capacity decreases with time. In order to prevent a decrease in filtration capacity, the following measures are usually taken.

(1)ろ過時間中、膜モジュール67の底部に設置された散気装置671から空気を供給し、比較的大きな径の気泡を上昇させ、中空糸膜を揺さぶるスクラビングを行なう(特許文献1参照)。前記空気は膜洗浄ブロワB2から供給される。   (1) During the filtration time, scrubbing is performed by supplying air from an air diffuser 671 installed at the bottom of the membrane module 67, raising bubbles of a relatively large diameter, and shaking the hollow fiber membrane (see Patent Document 1). . The air is supplied from the membrane cleaning blower B2.

(2)一定時間間隔で一定時間(例えば10分間のうち30秒間)ろ過処理水を用いて逆洗を行なう。   (2) Backwashing is performed using filtered water for a fixed time interval (for example, 30 seconds out of 10 minutes).

(3)一定期間毎(例えば1ヶ月に1回)に次亜塩素酸ナトリウム液等の洗浄液を洗浄液タンク69からポンプP3によって膜モジュール67の中空糸内に供給して薬液洗浄を行なう。   (3) A cleaning solution such as a sodium hypochlorite solution is supplied from the cleaning solution tank 69 into the hollow fiber of the membrane module 67 by a pump P3 at regular intervals (for example, once a month) to perform chemical cleaning.

(4)一定期間毎(例えば1年に1回)に次亜塩素酸ナトリウム液等を含んだ洗浄水を貯留した洗浄液槽に移送して前記洗浄水に一定時間例えば一昼夜程度浸漬させて中空糸膜の付着物を除去している。   (4) Hollow fibers that are transferred to a cleaning liquid tank in which cleaning water containing sodium hypochlorite liquid or the like is stored every predetermined period (for example, once a year) and immersed in the cleaning water for a predetermined time, for example, one day or night The deposit on the film is removed.

(5)繊維や毛髪等の絡み付きや夾雑物による中空糸膜の破損等を防ぐために細目スクリーンが生物反応槽63の手前に設けられる。
第41回下水道研究発表会講演集pp.762(2004) 特開平06−039249
(5) A fine screen is provided in front of the biological reaction tank 63 in order to prevent entanglement of fibers, hair, etc. and damage of the hollow fiber membrane due to foreign substances.
41st Sewerage Research Presentation Lecture pp. 762 (2004) JP 06-039249

しかしながら、細目スクリーンが設けられても、毛髪等の繊維状の夾雑物を全て除去することは困難である。そのため、MBRプロセスが長期間稼動すると、繊維状の夾雑物が徐々に中空糸に絡み、スクラビング用の気泡による上昇流等により膜モジュール67の上部に集まる。さらに、絡んだ繊維状の夾雑物を核として微生物膜や他の夾雑物が付着し成長する。このような付着が発生すると付着した部分のろ過効率が低下する。さらに付着が増大すると膜モジュール67のろ過能力も低下する。また、この付着の増大は中空糸の切断の要因となる。このような付着物は前述の(2)の逆洗や(3)の薬液逆洗では除去できず、膜モジュール67を洗浄液槽から取り出して人手により除去することになる。   However, even if a fine screen is provided, it is difficult to remove all fibrous impurities such as hair. Therefore, when the MBR process is operated for a long period of time, fibrous contaminants are gradually entangled with the hollow fiber and gathered on the upper part of the membrane module 67 due to an upward flow caused by scrubbing bubbles. Furthermore, microbial membranes and other contaminants adhere and grow using the entangled fibrous contaminants as the core. When such adhesion occurs, the filtration efficiency of the adhered part decreases. Further, when the adhesion increases, the filtration capacity of the membrane module 67 also decreases. In addition, this increase in adhesion becomes a factor in cutting the hollow fiber. Such deposits cannot be removed by the above-described backwashing (2) or chemical solution backwashing (3), and the membrane module 67 is removed from the washing solution tank and removed manually.

したがって、前記夾雑物の付着現象はろ過効率を低下させると共に煩雑な保守作業を必要とするため、長時間の稼働に供するためには解決しなければならない。また、小規模の水処理施設に適用されるMBRには無人化運転が求められており、前記付着現象の解決は必須である。   Therefore, the adhesion phenomenon of the foreign matter lowers the filtration efficiency and requires complicated maintenance work. Therefore, it must be solved for long-time operation. Further, unmanned operation is required for MBR applied to a small-scale water treatment facility, and the solution of the adhesion phenomenon is essential.

この付着現象を防ぐ方法として膜モジュール67の上端でそれぞれ中空糸を自由端とし、上昇した繊維状の夾雑物が中空糸の上端からすり抜ける構造が考えられるが、現状では、中空糸の上端を自由端にすると、中空糸を確実に自立させることができず、ろ過運転中や逆洗中に中空糸が倒れるなどの状況が生じる。これは中空糸の破損に繋がる。   As a method of preventing this adhesion phenomenon, a structure in which the hollow fiber is made free at the upper end of the membrane module 67 and the raised fibrous contaminants slip through the upper end of the hollow fiber can be considered, but at present, the upper end of the hollow fiber is free. If it is at the end, the hollow fiber cannot be made to stand by itself, and a situation occurs such that the hollow fiber falls during filtration operation or backwashing. This leads to breakage of the hollow fiber.

そこで、本発明の膜モジュールは、被処理水と接触する複数の中空糸から成る中空糸束を備え、前記中空糸束はその上端が固定端となっている一方で下端は自由端となっている。前記中空糸束は前記被処理水の下降流に供される。   Therefore, the membrane module of the present invention includes a hollow fiber bundle composed of a plurality of hollow fibers in contact with the water to be treated, and the hollow fiber bundle has a fixed end at the upper end and a free end at the lower end. Yes. The hollow fiber bundle is subjected to a downward flow of the water to be treated.

本発明の水処理装置は、無酸素槽と好気槽とを備えた水処理装置において、前記好気槽の汚泥混合液を固液分離処理する膜モジュールと、この膜モジュールが設置される膜ろ過槽と、この膜ろ過槽内の汚泥混合液を前記無酸素槽に返送するポンプとを備える。前記膜モジュールは前記汚泥混合液と接触する複数の中空糸から成る中空糸束を備える。前記中空糸束はその上端が固定端となっている一方で下端は自由端となっている。また、前記中空糸束は前記汚泥混合液の返送によって生じた前記汚泥混合液の下降流に供される。   The water treatment apparatus of the present invention is a water treatment apparatus comprising an anaerobic tank and an aerobic tank, a membrane module that performs a solid-liquid separation process on the sludge mixed liquid in the aerobic tank, and a membrane in which the membrane module is installed A filtration tank and a pump for returning the sludge mixed liquid in the membrane filtration tank to the oxygen-free tank are provided. The membrane module includes a hollow fiber bundle composed of a plurality of hollow fibers in contact with the sludge mixed solution. The hollow fiber bundle has a fixed end at the upper end and a free end at the lower end. Further, the hollow fiber bundle is used for the downward flow of the sludge mixed liquid generated by returning the sludge mixed liquid.

本発明の膜分離システムは好気槽の汚泥混合液が供給される水路と前記水路内を流通する汚泥混合液を固液分離処理する膜モジュールとを備える。前記水路は前記好気槽よりも高位に配置されると共に前記好気槽の液面に対して垂直に設置されて前記汚泥混合液を前記好気槽に流下させるようにしている。前記膜モジュールは前記汚泥混合液と接触する複数の中空糸から成る中空糸束を備える。前記中空糸束はその上端が固定端となっている一方で下端は自由端となっている。前記中空糸束は前記水路内に生じている前記汚泥混合液の下降流に供される。   The membrane separation system of the present invention includes a water channel to which a sludge mixed solution in an aerobic tank is supplied and a membrane module that performs a solid-liquid separation process on the sludge mixed solution flowing through the water channel. The water channel is disposed higher than the aerobic tank and is installed perpendicular to the liquid level of the aerobic tank so that the sludge mixed liquid flows down to the aerobic tank. The membrane module includes a hollow fiber bundle composed of a plurality of hollow fibers in contact with the sludge mixed solution. The hollow fiber bundle has a fixed end at the upper end and a free end at the lower end. The hollow fiber bundle is used for the downward flow of the sludge mixed liquid generated in the water channel.

以上の発明によれば中空糸の下端が自由端でありまた中空糸は被処理液相(被処理水,汚泥混合液)の下降流に供されるので繊維状の夾雑物の絡みつきを防ぐと共に中空糸の倒れを防止できる。また、前記夾雑物の絡みつきが防止されることで前記夾雑物を核とした有機物等の付着も抑制される。したがって、所定ろ過流量の長期的な維持と安定した運転が確保される。   According to the above invention, the lower end of the hollow fiber is a free end, and the hollow fiber is provided for the downward flow of the liquid phase to be treated (water to be treated and sludge mixed liquid), thereby preventing entanglement of fibrous impurities. The fall of the hollow fiber can be prevented. In addition, since the entanglement of the contaminants is prevented, the adhesion of organic matter or the like with the contaminants as a core is also suppressed. Therefore, long-term maintenance of the predetermined filtration flow rate and stable operation are ensured.

また、前記膜モジュールにおいて、中空糸束の上端を固定端にする固定部には前記中空糸をスクラビングするための空気を導入する配管を接続するとよい。これによればスクラビング用の空気を自給できると共に前記空気の導入により生じたスクラビング気泡が中空糸を揺さぶりながら汚泥混合液と比較的長時間接触するので、夾雑物の付着の抑制と共に好気槽への酸素供給エネルギーが低減する。   Further, in the membrane module, a pipe for introducing air for scrubbing the hollow fiber may be connected to a fixing portion having the upper end of the hollow fiber bundle as a fixed end. According to this, the scrubbing air can be self-supplied and the scrubbing bubbles generated by the introduction of the air come into contact with the sludge mixed liquid for a relatively long time while shaking the hollow fiber. The oxygen supply energy is reduced.

前記膜分離システムにおける汚泥混合液の循環供給の形態としては、前記水路から排出された汚泥混合液を受け入れた後にオーバーフローにより前記好気槽に返送する槽を備えたものがある。このような形態によれば、前記膜モジュールに対して好気槽の汚泥混合液を安定的に循環供給できる。前記水路はその下端が前記槽の液面下に所定の長さ潜入するように配置されると、安定的に前記汚泥混合液を循環供給できる。また、汚泥混合液の循環供給の他の形態としては、前記好気槽からオーバーフローにより導入した汚泥混合液を前記水路に供給するための槽を備えたものがある。このような形態によっても、前記膜モジュールに対して汚泥混合液を安定的に循環供給できる。前記水路はその下端が前記好気槽の液面下に潜入するように配置されると、安定的に前記汚泥混合液を循環供給できる。   As a form of circulating supply of the sludge mixed liquid in the membrane separation system, there is one provided with a tank that receives the sludge mixed liquid discharged from the water channel and returns it to the aerobic tank by overflow. According to such a form, the sludge liquid mixture of an aerobic tank can be stably circulated and supplied with respect to the said membrane module. The sludge mixed solution can be stably circulated and supplied when the lower end of the water channel is arranged so as to infiltrate a predetermined length below the liquid level of the tank. As another form of circulating supply of the sludge mixed liquid, there is one provided with a tank for supplying the sludge mixed liquid introduced by overflow from the aerobic tank to the water channel. Even in such a form, the sludge mixed liquid can be stably circulated and supplied to the membrane module. When the water channel is arranged so that the lower end of the water channel enters under the liquid surface of the aerobic tank, the sludge mixed solution can be circulated and supplied stably.

尚、本発明の膜モジュールは下廃水処理の膜分離活性汚泥法に使用する膜モジュールに限らず、浄水処理における浸漬ろ過膜モジュール等に適用できる。   In addition, the membrane module of this invention is applicable not only to the membrane module used for the membrane separation activated sludge method of a wastewater treatment, but to the immersion filtration membrane module etc. in a water purification process.

以上の発明によれば繊維状の夾雑物の絡みつきを防ぐと共に中空糸の倒れを防止できる。また、前記夾雑物の絡みつきを防ぐことができるので前記夾雑物を核とした有機物等の付着も防げる。これにより所定ろ過流量の長期的な維持と安定した運転が確保される。このことは膜モジュールを備えた施設の保守点検作業の低減にも繋がる。   According to the above invention, it is possible to prevent entanglement of fibrous impurities and to prevent the hollow fiber from collapsing. In addition, since the entanglement of the contaminants can be prevented, adhesion of organic matters and the like with the contaminants as a core can also be prevented. This ensures long-term maintenance of the predetermined filtration flow rate and stable operation. This also leads to a reduction in maintenance and inspection work for facilities equipped with membrane modules.

図1(a)は発明の第一の実施形態に係る膜モジュールの平面図である。図1(b)は前記膜モジュールの概略構成を示した側面図である。   Fig.1 (a) is a top view of the membrane module which concerns on 1st embodiment of invention. FIG. 1B is a side view showing a schematic configuration of the membrane module.

膜モジュール1は中空糸束11を備えている。中空糸束11は複数の中空糸12から成る。膜モジュール1は下キャップ部を備えていない。すなわち、中空糸束11は上キャップ部13によって保持されているのみであり中空糸束11の下端が自由端となっている。個々の中空糸12の下端は密閉されている。上部キャップ13の上端部にはろ過水吸引管14が中空糸束11と略同軸に接続されている。ろ過水吸引管14は中空糸束11の個々の中空糸12の内側から供されたろ過水を図示省略されたポンプによって吸引して系外(例えば放流槽)に移送するための排出口である。   The membrane module 1 includes a hollow fiber bundle 11. The hollow fiber bundle 11 includes a plurality of hollow fibers 12. The membrane module 1 does not include a lower cap part. That is, the hollow fiber bundle 11 is only held by the upper cap portion 13, and the lower end of the hollow fiber bundle 11 is a free end. The lower ends of the individual hollow fibers 12 are sealed. A filtered water suction tube 14 is connected to the upper end of the upper cap 13 substantially coaxially with the hollow fiber bundle 11. The filtered water suction pipe 14 is a discharge port for sucking filtered water supplied from the inside of each hollow fiber 12 of the hollow fiber bundle 11 by a pump not shown and transferring it to the outside of the system (for example, a discharge tank). .

膜モジュール1は下降流を生じさせた液相(被処理水)に浸漬され、前記液相中の中空糸12の近傍に存在する繊維状の夾雑物が前記下降流によって前記近傍の領域から除外されるようになっている。これにより中空糸12への前記夾雑物の絡みつきが抑制される。また、中空糸束11は前記液相の下降流に供されているのでろ過処理中はほぼ直立状態に維持されて倒れが防止される。膜モジュール1は中空糸束11の上端が固定端となっているので被処理液相から取り出し時にも中空糸12が倒れることなく保守点検を確実に行なえる。   The membrane module 1 is immersed in the liquid phase (water to be treated) in which the downward flow is generated, and fibrous impurities existing in the vicinity of the hollow fiber 12 in the liquid phase are excluded from the nearby region by the downward flow. It has come to be. Thereby, the entanglement of the impurities on the hollow fiber 12 is suppressed. Further, since the hollow fiber bundle 11 is provided for the downward flow of the liquid phase, it is maintained in an almost upright state during the filtration process to prevent the collapse. In the membrane module 1, since the upper end of the hollow fiber bundle 11 is a fixed end, the maintenance inspection can be performed reliably without the hollow fiber 12 falling down even when taken out from the liquid phase to be treated.

図2は膜モジュール1を適用した水処理装置2の概略図である。   FIG. 2 is a schematic view of a water treatment device 2 to which the membrane module 1 is applied.

水処理装置2は無酸素槽21と好気槽22と膜ろ過槽23とから成る。無酸素槽21は原水ポンプP21によって導入した原水およびポンプP23で返送された汚泥混合液により脱窒処理する。好気槽22は無酸素槽21からオーバーフローしてきた汚泥混合液を硝化処理する。好気槽22は槽内に硝化に必要な空気を導入するための散気装置24を備える。前記空気はブロワBから供給される。膜ろ過槽23は槽内に膜モジュール1を備える。膜ろ過槽23内の汚泥混合液はポンプP23によって無酸素槽21に定量的に返送される。尚、無酸素槽21を設けない場合はろ過膜槽23から好気槽22に循環的に供給すればよい。   The water treatment apparatus 2 includes an oxygen-free tank 21, an aerobic tank 22, and a membrane filtration tank 23. The anoxic tank 21 is denitrified by the raw water introduced by the raw water pump P21 and the sludge mixed solution returned by the pump P23. The aerobic tank 22 nitrifies the sludge mixed solution overflowed from the anoxic tank 21. The aerobic tank 22 includes an air diffuser 24 for introducing air necessary for nitrification into the tank. The air is supplied from the blower B. The membrane filtration tank 23 includes the membrane module 1 in the tank. The sludge mixed solution in the membrane filtration tank 23 is quantitatively returned to the anoxic tank 21 by the pump P23. In the case where the oxygen-free tank 21 is not provided, it may be supplied cyclically from the filtration membrane tank 23 to the aerobic tank 22.

図2を参照しながら水処理装置2の動作例について説明する。   An operation example of the water treatment apparatus 2 will be described with reference to FIG.

好気槽22からオーバーフローによって膜ろ過槽23内に流入した汚泥混合液は膜モジュール1によって固液分離処理される。ろ過水はポンプP22によって吸引されてろ過水吸引管14から系外に移送される。膜ろ過槽23の液相は下降流が形成されている。前記下降流は膜ろ過槽23内の液相をポンプP23によって無酸素槽21に循環的に供給することにより形成される。膜モジュール1は前記下降流によって前記汚泥混合液に含まれる夾雑物の絡みつきが抑制される。また、膜ろ過槽23内の汚泥混合液が引き抜かれた場合、中空糸束11は倒れることなく固定されるので、膜ろ過槽23に次亜塩素酸ナトリウム等の洗浄薬液を満たす(但し、前記洗浄薬液は好気槽21に移行させないようにする)工程を有するようにすれば、膜モジュール1を浸漬洗浄する工程を自動化できる。この膜モジュール1の洗浄の自動化により膜モジュール1を備えた小規模施設の運転の無人化することができ、中規模及び大規模の施設では省力化が実現する。   The sludge mixed liquid flowing into the membrane filtration tank 23 by overflow from the aerobic tank 22 is subjected to solid-liquid separation processing by the membrane module 1. The filtered water is sucked by the pump P22 and transferred from the filtered water suction pipe 14 to the outside of the system. A downward flow is formed in the liquid phase of the membrane filtration tank 23. The downward flow is formed by circulating the liquid phase in the membrane filtration tank 23 to the oxygen-free tank 21 by the pump P23. In the membrane module 1, entanglement of impurities contained in the sludge mixed liquid is suppressed by the downward flow. Further, when the sludge mixed liquid in the membrane filtration tank 23 is pulled out, the hollow fiber bundle 11 is fixed without falling down, so the membrane filtration tank 23 is filled with a cleaning chemical such as sodium hypochlorite (however, If the cleaning chemical solution is not transferred to the aerobic tank 21, the step of immersing and cleaning the membrane module 1 can be automated. By automating the cleaning of the membrane module 1, the operation of a small-scale facility equipped with the membrane module 1 can be unmanned, and labor saving can be realized in medium-scale and large-scale facilities.

図3は発明の第二の実施形態に係る膜モジュールの概略構成を示した側面図である。   FIG. 3 is a side view showing a schematic configuration of the membrane module according to the second embodiment of the invention.

膜モジュール3は上部キャップ部13にスクラビング用の空気を導入するための配管として空気導入管15を備えている。スクラビング用の空気は膜モジュール3が漬かっている液相の下降流の吸引力によって下降する。膜モジュール3が水処理装置2の膜ろ過槽23に設置された場合、膜ろ過槽23内の液相の流速が前記空気の導入によって生じたスクラビング気泡の上昇速度を上まわって前記スクラビング気泡が下降する程度の下降流が前記液相に形成される。これはろ過流速の断面積、循環汚泥流量、スクラビング用空気量が適切に設計されることで実現できる。   The membrane module 3 includes an air introduction pipe 15 as a pipe for introducing scrubbing air into the upper cap portion 13. The scrubbing air is lowered by the suction force of the downflow of the liquid phase immersed in the membrane module 3. When the membrane module 3 is installed in the membrane filtration tank 23 of the water treatment device 2, the flow rate of the liquid phase in the membrane filtration tank 23 exceeds the rising speed of the scrubbing bubbles generated by the introduction of the air, so that the scrubbing bubbles A downward flow of a descending degree is formed in the liquid phase. This can be realized by appropriately designing the cross-sectional area of the filtration flow rate, the circulating sludge flow rate, and the amount of scrubbing air.

図4は膜モジュール3を適用した膜分離システムの概略図である。   FIG. 4 is a schematic view of a membrane separation system to which the membrane module 3 is applied.

膜分離システム4は好気槽41と高架水槽42と垂直水路43と受水槽44とを備える。高架水槽42は好気槽41よりも高位に配置される。高架水槽42の底部には垂直水路43が好気槽41の液面に対して垂直に接続されている。垂直水路43内には膜モジュール3が収納されている。膜モジュール3は高架水槽42から供された汚泥混合液を固液分離処理する。受水槽44は垂直水路43の下端側に配置されている。受水槽44は液面下に高架水槽42の下端が若干潜るように配置される。受水槽44はオーバーフロー堰が適宜に設けられて液位がほぼ一定に保たれるように調整される。受水槽44内の汚泥混合液はオーバーフロー堰によって好気槽41に戻される。   The membrane separation system 4 includes an aerobic tank 41, an elevated water tank 42, a vertical water channel 43, and a water receiving tank 44. The elevated water tank 42 is disposed higher than the aerobic tank 41. A vertical water channel 43 is connected perpendicularly to the liquid surface of the aerobic tank 41 at the bottom of the elevated water tank 42. The membrane module 3 is accommodated in the vertical water channel 43. The membrane module 3 performs a solid-liquid separation process on the sludge mixed solution provided from the elevated water tank 42. The water receiving tank 44 is disposed on the lower end side of the vertical water channel 43. The water receiving tank 44 is arranged so that the lower end of the elevated water tank 42 is slightly submerged below the liquid level. The water receiving tank 44 is adjusted so that an overflow weir is appropriately provided and the liquid level is kept substantially constant. The sludge mixed solution in the water receiving tank 44 is returned to the aerobic tank 41 by the overflow weir.

図4を参照しながら膜分離システム4の動作例について説明する。   An example of the operation of the membrane separation system 4 will be described with reference to FIG.

好気槽41内の汚泥混合液はポンプP41によって高架水槽42に移送される。高架水槽42に導入された汚泥混合液は垂直水路43に移行する。垂直水路43内に導入された汚泥混合液は膜モジュール1によって固液分離処理される。膜モジュール1は垂直水路43内に生じている汚泥混合液の下降流によって前記汚泥混合液に含まれる夾雑物の絡みつきが抑制される。ろ過水はポンプP42によって吸引されてろ過水吸引管14から系外に移送される。一方、膜モジュール1の空気導入管15からはスクラビング用の空気が導入される。垂直水路43から排出された汚泥混合液は受水槽44内に滞留した後にオーバーフローによって好気槽41に移行する。   The sludge mixed liquid in the aerobic tank 41 is transferred to the elevated water tank 42 by the pump P41. The sludge mixed liquid introduced into the elevated water tank 42 moves to the vertical water channel 43. The sludge mixed liquid introduced into the vertical water channel 43 is subjected to solid-liquid separation processing by the membrane module 1. In the membrane module 1, the entanglement of impurities contained in the sludge mixed liquid is suppressed by the downward flow of the sludge mixed liquid generated in the vertical water channel 43. The filtered water is sucked by the pump P42 and transferred from the filtered water suction pipe 14 to the outside of the system. On the other hand, scrubbing air is introduced from the air introduction tube 15 of the membrane module 1. The sludge mixed liquid discharged from the vertical water channel 43 stays in the water receiving tank 44 and then moves to the aerobic tank 41 by overflow.

膜分離システム4では高架水槽42への供給水量、垂直水路43の内径及び受水槽44の液面下への潜入の長さ等が適宜に調整される。この調整により垂直水路43内の汚泥混合液の流速が前記空気の導入によって生じたスクラビング気泡の上昇速度を上まわって前記スクラビング気泡が下降する程度の下降流が前記液相に形成される。前記汚泥混合液は落下流となっているので、この落下流の流速を利用して膜モジュール3はスクラビング用の空気を図3に示された空気導入管15から自給するようになっている。また、垂直水路43内のスクラビング気泡は膜モジュール3の中空糸12を揺さぶりながら比較的長時間汚泥混合液を接触させることができるので好気槽41への酸素供給作用も高くなる。   In the membrane separation system 4, the amount of water supplied to the elevated water tank 42, the inner diameter of the vertical water channel 43, the length of infiltration under the liquid surface of the water receiving tank 44, and the like are adjusted as appropriate. By this adjustment, a downward flow is formed in the liquid phase such that the flow rate of the sludge mixed liquid in the vertical water channel 43 exceeds the rising speed of the scrubbing bubbles generated by the introduction of the air and the scrubbing bubbles are lowered. Since the sludge mixed liquid is in a falling flow, the membrane module 3 uses the flow velocity of the falling flow to supply the scrubbing air from the air introduction pipe 15 shown in FIG. In addition, since the scrubbing bubbles in the vertical water channel 43 can contact the sludge mixed solution for a relatively long time while shaking the hollow fiber 12 of the membrane module 3, the action of supplying oxygen to the aerobic tank 41 is enhanced.

図5は膜モジュール3を適用した他の膜分離システムの概略図である。   FIG. 5 is a schematic view of another membrane separation system to which the membrane module 3 is applied.

膜分離システム5は膜分離システム4の構成において受水槽44の代わりに供給槽51を備える。垂直水路43はその下端が好気槽41の液面下に若干潜るように配置されている。高架水槽42への汚泥混合液の供給は供給槽51から行なわれる。好気槽41は汚泥混合液の液位はほぼ一定に保たれるように前記汚泥混合液を供給槽51に移行させるためのオーバーフロー等が設けられて調整される。但し、本実施形態では供給槽51の液位を検知するレベル計が設置され、検知された液位に基づきポンプP41の動作を制御する必要がある。膜モジュール1,3及び垂直水路43の設定数は図2、図4及び図5に示された実施形態に限定されず負荷量に応じて適宜複数設けられる。   The membrane separation system 5 includes a supply tank 51 instead of the water receiving tank 44 in the configuration of the membrane separation system 4. The vertical water channel 43 is arranged so that the lower end thereof is slightly submerged below the liquid surface of the aerobic tank 41. The sludge mixed liquid is supplied to the elevated water tank 42 from the supply tank 51. The aerobic tank 41 is adjusted by providing an overflow or the like for transferring the sludge mixed liquid to the supply tank 51 so that the liquid level of the sludge mixed liquid is kept substantially constant. However, in this embodiment, a level meter that detects the liquid level in the supply tank 51 is installed, and it is necessary to control the operation of the pump P41 based on the detected liquid level. The set number of the membrane modules 1 and 3 and the vertical water channel 43 is not limited to the embodiment shown in FIG. 2, FIG. 4 and FIG.

図5を参照しながら膜分離システム5の動作例について説明する。   An example of the operation of the membrane separation system 5 will be described with reference to FIG.

供給槽51内の汚泥混合液はポンプP41によって高架水槽42に移送される。高架水槽42に導入された汚泥混合液は垂直水路43に移行する。垂直水路43内に導入された汚泥混合液は膜モジュール3によって固液分離処理される。膜モジュール3は垂直水路43内に生じている汚泥混合液の下降流によって前記汚泥混合液に含まれる夾雑物の絡みつきが抑制される。ろ過水はポンプP42によって吸引されてろ過水吸引管14から系外に移送される。一方、膜モジュール3の空気導入管15からはスクラビング用の空気が導入される。垂直水路43から排出された汚泥混合液は好気槽41内に滞留した後にオーバーフローによって供給槽51に移行する。膜分離システム5でも高架水槽42への供給水量、垂直水路43の内径及び好気槽41の液面下への潜入等が適宜に調整されて、スクラビング気泡が下降する程度の下降流が垂直水路43内の液相に形成される。前記スクラビング気泡は膜モジュール3の中空糸12を揺さぶりながら比較的長時間汚泥混合液を接触させることができるので好気槽41への酸素供給作用も高くなる。   The sludge mixed liquid in the supply tank 51 is transferred to the elevated water tank 42 by the pump P41. The sludge mixed liquid introduced into the elevated water tank 42 moves to the vertical water channel 43. The sludge mixed liquid introduced into the vertical water channel 43 is subjected to solid-liquid separation processing by the membrane module 3. In the membrane module 3, entanglement of impurities contained in the sludge mixed liquid is suppressed by the downward flow of the sludge mixed liquid generated in the vertical water channel 43. The filtered water is sucked by the pump P42 and transferred from the filtered water suction pipe 14 to the outside of the system. On the other hand, scrubbing air is introduced from the air introduction pipe 15 of the membrane module 3. The sludge mixed liquid discharged from the vertical water channel 43 stays in the aerobic tank 41 and then moves to the supply tank 51 due to overflow. In the membrane separation system 5 as well, the amount of water supplied to the elevated water tank 42, the inner diameter of the vertical water channel 43, the infiltration of the aerobic tank 41 under the liquid surface, and the like are appropriately adjusted, and the downward flow to the extent that the scrubbing bubbles descend is generated. 43 is formed in the liquid phase. Since the scrubbing bubbles can contact the sludge mixed solution for a relatively long time while shaking the hollow fiber 12 of the membrane module 3, the oxygen supplying action to the aerobic tank 41 is also enhanced.

(a)発明の第一の実施形態に係る膜モジュールの平面図,(b)前記膜モジュールの概略構成を示した側面図。(A) The top view of the membrane module which concerns on 1st embodiment of invention, (b) The side view which showed schematic structure of the said membrane module. 第一の実施形態に係る膜モジュールを適用した水処理装置の概略図。1 is a schematic view of a water treatment device to which a membrane module according to a first embodiment is applied. 発明の第二の実施形態に係る膜モジュールの概略構成を示した側面図。The side view which showed schematic structure of the membrane module which concerns on 2nd embodiment of invention. 第二の実施形態に係る膜モジュールを適用した膜分離システムの概略図。Schematic of the membrane separation system to which the membrane module which concerns on 2nd embodiment is applied. 第二の実施形態に係る膜モジュールを適用した膜分離システムの概略図。Schematic of the membrane separation system to which the membrane module which concerns on 2nd embodiment is applied. 膜分離活性汚泥法に基づく水処理装置の構成例を示したフロー図。The flowchart which showed the example of a structure of the water treatment apparatus based on a membrane separation activated sludge method. (a)膜分離活性汚泥法に基づく水処理装置に適用された膜モジュールの平面図,(b)前記水処理装置に適用された膜モジュールの概略構成を示した断面図。(A) The top view of the membrane module applied to the water treatment apparatus based on a membrane separation activated sludge method, (b) Sectional drawing which showed schematic structure of the membrane module applied to the said water treatment apparatus.

符号の説明Explanation of symbols

1,3…膜モジュール
2…水処理装置
4,5…膜分離システム
11…中空糸束、12…中空糸、13…上キャップ部、14…ろ過水吸引管、15…空気導入管
21…無酸素槽、22…好気槽、23…膜ろ過槽、24…散気装置、P21〜P23…ポンプ、B…ブロワ
41…好気槽、42…高架水槽、43…垂直水路、44…受水槽、P41,P42…ポンプ
51…供給槽
DESCRIPTION OF SYMBOLS 1, 3 ... Membrane module 2 ... Water treatment apparatus 4, 5 ... Membrane separation system 11 ... Hollow fiber bundle, 12 ... Hollow fiber, 13 ... Upper cap part, 14 ... Filtrated water suction pipe, 15 ... Air introduction pipe 21 ... None Oxygen tank, 22 ... Aerobic tank, 23 ... Membrane filtration tank, 24 ... Air diffuser, P21 to P23 ... Pump, B ... Blower 41 ... Aerobic tank, 42 ... Elevated water tank, 43 ... Vertical water channel, 44 ... Water receiving tank , P41, P42 ... Pump 51 ... Supply tank

Claims (8)

被処理水と接触する複数の中空糸から成る中空糸束を備え、
前記中空糸束はその上端が固定端となっている一方で下端は自由端となっており、
前記中空糸束は前記被処理水の下降流に供されること
を特徴とする膜モジュール。
A hollow fiber bundle comprising a plurality of hollow fibers in contact with the water to be treated is provided.
The hollow fiber bundle has a fixed end at the top and a free end at the bottom,
The membrane module, wherein the hollow fiber bundle is subjected to a downward flow of the water to be treated.
前記中空糸束の上端を固定端にする固定部には前記中空糸をスクラビングするための空気を導入する配管が接続されたこと
を特徴とする請求項1に記載の膜モジュール。
The membrane module according to claim 1, wherein a pipe for introducing air for scrubbing the hollow fiber is connected to a fixing portion having an upper end of the hollow fiber bundle as a fixed end.
無酸素槽と好気槽とを備えた水処理装置において、
前記好気槽の汚泥混合液を固液分離処理する膜モジュールと、
この膜モジュールが設置される膜ろ過槽と、
この膜ろ過槽内の汚泥混合液を前記無酸素槽に返送するポンプと
を備え、
前記膜モジュールは前記汚泥混合液と接触する複数の中空糸から成る中空糸束を備え、
前記中空糸束はその上端が固定端となっている一方で下端は自由端となっており、
前記中空糸束は前記汚泥混合液の返送によって生じた前記汚泥混合液の下降流に供されること
を特徴とする水処理装置。
In a water treatment device equipped with an anaerobic tank and an aerobic tank,
A membrane module for solid-liquid separation treatment of the sludge mixture in the aerobic tank;
A membrane filtration tank in which this membrane module is installed;
A pump for returning the sludge mixed liquid in the membrane filtration tank to the anoxic tank,
The membrane module comprises a hollow fiber bundle consisting of a plurality of hollow fibers in contact with the sludge mixed solution,
The hollow fiber bundle has a fixed end at the top and a free end at the bottom,
The hollow fiber bundle is used for a downward flow of the sludge mixed liquid generated by returning the sludge mixed liquid.
好気槽の汚泥混合液が供給される水路と、
前記水路内を流通する汚泥混合液を固液分離処理する膜モジュールと
を備え、
前記水路は前記好気槽よりも高位に配置されると共に前記好気槽の液面に対して垂直に設置されて前記汚泥混合液を前記好気槽に流下させるようにし、
前記膜モジュールは前記汚泥混合液と接触する複数の中空糸から成る中空糸束を備え、
前記中空糸束はその上端が固定端となっている一方で下端は自由端となっており、
前記中空糸束は前記水路内に生じている前記汚泥混合液の下降流に供されること
を特徴とする膜分離システム。
A water channel to which the sludge mixture of the aerobic tank is supplied;
A membrane module for solid-liquid separation treatment of the sludge mixed liquid flowing through the water channel,
The water channel is disposed higher than the aerobic tank and is installed perpendicular to the liquid level of the aerobic tank so that the sludge mixed liquid flows down to the aerobic tank,
The membrane module comprises a hollow fiber bundle consisting of a plurality of hollow fibers in contact with the sludge mixed solution,
The hollow fiber bundle has a fixed end at the top and a free end at the bottom,
The membrane separation system, wherein the hollow fiber bundle is used for a downward flow of the sludge mixed solution generated in the water channel.
前記水路から排出された汚泥混合液を受け入れた後にオーバーフローにより前記好気槽に返送するための槽を備えたことを特徴とする請求項4に記載の膜分離システム。   5. The membrane separation system according to claim 4, further comprising a tank for receiving the sludge mixed liquid discharged from the water channel and returning it to the aerobic tank by overflow. 前記槽はその液面下に前記水路の下端が潜入するように配置されることを特徴とする請求項5に記載の膜分離システム。   The membrane separation system according to claim 5, wherein the tank is disposed so that a lower end of the water channel enters under the liquid level. 前記好気槽からオーバーフローにより導入した汚泥混合液を前記水路に供給するための槽を備えたことを特徴とする請求項4に記載の膜分離システム。   5. The membrane separation system according to claim 4, further comprising a tank for supplying the sludge mixed liquid introduced from the aerobic tank by overflow to the water channel. 前記水路はその下端が前記好気槽の液面下に潜入するように配置されることを特徴とする請求項7に記載の膜分離システム。   The membrane separation system according to claim 7, wherein the water channel is disposed so that a lower end of the water channel enters under a liquid surface of the aerobic tank.
JP2006295440A 2006-10-31 2006-10-31 Membrane separation system Expired - Fee Related JP4899794B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006295440A JP4899794B2 (en) 2006-10-31 2006-10-31 Membrane separation system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006295440A JP4899794B2 (en) 2006-10-31 2006-10-31 Membrane separation system

Publications (2)

Publication Number Publication Date
JP2008110306A true JP2008110306A (en) 2008-05-15
JP4899794B2 JP4899794B2 (en) 2012-03-21

Family

ID=39443137

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006295440A Expired - Fee Related JP4899794B2 (en) 2006-10-31 2006-10-31 Membrane separation system

Country Status (1)

Country Link
JP (1) JP4899794B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010069361A (en) * 2008-09-16 2010-04-02 Mitsubishi Rayon Eng Co Ltd Membrane washing apparatus, membrane separation apparatus, and wastewater treatment apparatus
CN102451618A (en) * 2010-10-28 2012-05-16 绵阳美能材料科技有限公司 System and method for carrying out gas washing on immersed hollow fibrous membranes
CN104826496A (en) * 2015-05-12 2015-08-12 郭会 Combined membrane assembly
CN104888609A (en) * 2015-05-12 2015-09-09 郭会 Membrane assembly for treating sewage
CN110436632A (en) * 2019-09-11 2019-11-12 上海丰信环保科技有限公司 It is a kind of continuous automatic running and miniature MBR pilot plant with self-cleaning function and its technique to be used

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110960988B (en) * 2018-09-28 2022-05-24 鸿翌科技有限公司 Hollow fiber membrane packaging method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6387206A (en) * 1986-09-30 1988-04-18 Takiron Co Ltd Preparation of molding having projecting rib
JPH02268890A (en) * 1989-04-11 1990-11-02 Tokyu Constr Co Ltd Device for treating sewage by hollow-fiber membrane
JPH05154356A (en) * 1991-12-10 1993-06-22 Sanki Eng Co Ltd Membrane filter module
JP2005349337A (en) * 2004-06-11 2005-12-22 Kurita Water Ind Ltd Method for treating sewage
JP2006035099A (en) * 2004-07-27 2006-02-09 Kobelco Eco-Solutions Co Ltd Activated sludge treatment equipment and its operation method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6387206A (en) * 1986-09-30 1988-04-18 Takiron Co Ltd Preparation of molding having projecting rib
JPH02268890A (en) * 1989-04-11 1990-11-02 Tokyu Constr Co Ltd Device for treating sewage by hollow-fiber membrane
JPH05154356A (en) * 1991-12-10 1993-06-22 Sanki Eng Co Ltd Membrane filter module
JP2005349337A (en) * 2004-06-11 2005-12-22 Kurita Water Ind Ltd Method for treating sewage
JP2006035099A (en) * 2004-07-27 2006-02-09 Kobelco Eco-Solutions Co Ltd Activated sludge treatment equipment and its operation method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010069361A (en) * 2008-09-16 2010-04-02 Mitsubishi Rayon Eng Co Ltd Membrane washing apparatus, membrane separation apparatus, and wastewater treatment apparatus
CN102451618A (en) * 2010-10-28 2012-05-16 绵阳美能材料科技有限公司 System and method for carrying out gas washing on immersed hollow fibrous membranes
CN104826496A (en) * 2015-05-12 2015-08-12 郭会 Combined membrane assembly
CN104888609A (en) * 2015-05-12 2015-09-09 郭会 Membrane assembly for treating sewage
CN110436632A (en) * 2019-09-11 2019-11-12 上海丰信环保科技有限公司 It is a kind of continuous automatic running and miniature MBR pilot plant with self-cleaning function and its technique to be used

Also Published As

Publication number Publication date
JP4899794B2 (en) 2012-03-21

Similar Documents

Publication Publication Date Title
JP4899794B2 (en) Membrane separation system
JP4635666B2 (en) Water treatment method
KR20090028737A (en) Apparatus having a bioreactor and membrane filtration module for treatment of an incoming fluid
WO2012008115A1 (en) Immersion type membrane filtration unit and immersion type membrane filtration apparatus
JP2018034077A (en) Method for operating membrane separation device and membrane separation device
JP2010125348A (en) Membrane separation apparatus
JP2009247936A (en) Method of inline-cleaning immersion type membrane-separation device
JPH09308883A (en) Apparatus for biological treatment of water
JP5120106B2 (en) Method and apparatus for treating organic alkaline wastewater
CN201999787U (en) Biological contact reaction device with fibre bundle and hanging packing
JP2007209949A (en) Filtrate recovery device of solid-liquid mixed/processed liquid
CN110078175A (en) A kind of ultrafiltration and air-floating integral unit and application
JP4979519B2 (en) Operation method of membrane separation activated sludge treatment equipment
JP2007152302A (en) Solid/liquid separator of solid/liquid mixture
WO2018051630A1 (en) Membrane-separation activated sludge treatment system
JP5294555B2 (en) Sewage treatment equipment
JP5423184B2 (en) Filtration membrane module cleaning method and cleaning apparatus
JP2008264664A (en) Fluidized bed aerobic wastewater treatment equipment
KR100881629B1 (en) Apparatus for purifying sewage using micro porous hollow fiber membrane
JP2007268415A (en) Immersion type membrane separation apparatus and water producing method
JP4899795B2 (en) Membrane module
JP5825807B2 (en) Waste water treatment apparatus and waste water treatment method
JP2008207157A (en) Operation method of membrane separation apparatus and membrane separation apparatus
JP2008188562A (en) Membrane separation apparatus
JP7284545B1 (en) MEMBRANE FILTRATION DEVICE AND WATER PURIFICATION SYSTEM USING THE SAME

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090909

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110322

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110509

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20110509

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111206

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111219

R150 Certificate of patent or registration of utility model

Ref document number: 4899794

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150113

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees