JP2008108978A - Method and apparatus for forming insulating film in three-dimensional circuit substrate - Google Patents

Method and apparatus for forming insulating film in three-dimensional circuit substrate Download PDF

Info

Publication number
JP2008108978A
JP2008108978A JP2006291656A JP2006291656A JP2008108978A JP 2008108978 A JP2008108978 A JP 2008108978A JP 2006291656 A JP2006291656 A JP 2006291656A JP 2006291656 A JP2006291656 A JP 2006291656A JP 2008108978 A JP2008108978 A JP 2008108978A
Authority
JP
Japan
Prior art keywords
dimensional
insulating film
substrate
nozzle
nozzles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006291656A
Other languages
Japanese (ja)
Inventor
Takashi Shindo
崇 進藤
Norikimi Kaji
紀公 梶
Tsukuo Wada
津久生 和田
Yoshiyuki Uchinono
良幸 内野々
Yasushi Masaki
康史 正木
Yoshio Mori
好男 森
Masahide Muto
正英 武藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP2006291656A priority Critical patent/JP2008108978A/en
Publication of JP2008108978A publication Critical patent/JP2008108978A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Landscapes

  • Insulated Metal Substrates For Printed Circuits (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To obtain a method and an apparatus for forming an insulating film in a three-dimensional circuit substrate wherein a more uniform insulating film can be formed more speedily. <P>SOLUTION: A hoop material supply unit 11 and a hoop material take-up unit 11A for successively moving a plurality of solid substrates 1 arranged in a metal hoop material H, two front/back nozzles 12 and 12A for irradiating the moving solid substrates 1 with particles of an insulating material, and a twisting mechanism 13 for changing the irradiation angle of the fine particles with respect to the solid substrates 1 are provided. The substrate feeding process for successively moving the plurality of solid substrates 1 is achieved by the hoop material supply unit 11 and the hoop material take-up unit 11A, and the fine particle irradiation process is achieved while changing the irradiation angle with the nozzles 12, 12A and the twisting mechanism 13, thereby the plurality of nozzles can irradiate the solid substrates 1 with the fine particles in the state where the solid substrates 1 are being moved, and irradiation can be carried out while changing the irradiation angle with respect to the solid substrates 1. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、絶縁素材の微粒子を照射して金属からなる立体基板の表面に絶縁膜を成膜する立体回路基板の絶縁膜形成方法および絶縁膜形成装置に関する。   The present invention relates to an insulating film forming method and an insulating film forming apparatus for a three-dimensional circuit board in which an insulating film is formed on the surface of a three-dimensional board made of metal by irradiating fine particles of an insulating material.

従来の立体回路部品(MID:Molded Interconnet Device)は、一般に小型・軽量化が要求される電子・オプトデバイス等に適用されており、高い放熱特性を求められる場合が多い。   Conventional three-dimensional circuit components (MID: Molded Interconnet Device) are generally applied to electronic / opto devices and the like that are required to be small and light, and often require high heat dissipation characteristics.

ところで、導電性材料に絶縁膜を成膜する方法としては、セラミック等の絶縁素材の微粒子を勢い良く照射する方法が知られている。この方法では、ヘリウムガスを用いて作成したセラミック微粒子のエアロゾルを、密閉室内でノズルからワークである基板に照射するようにして、基板に衝突したセラミック微粒子を照射したときのエネルギーで細かく粉砕し、その微細断片粒子を基板に接着させ、緻密な絶縁膜を成膜する(特許文献1参照)。
特開2004−256920号公報(第14−15頁、図1)
By the way, as a method of forming an insulating film on a conductive material, a method of vigorously irradiating fine particles of an insulating material such as ceramic is known. In this method, the aerosol of ceramic fine particles created using helium gas is finely pulverized with the energy when irradiated with the ceramic fine particles that collided with the substrate, so that the substrate as the workpiece is irradiated from the nozzle in the sealed chamber, The fine fragment particles are adhered to the substrate to form a dense insulating film (see Patent Document 1).
JP 2004-256920 A (pages 14-15, FIG. 1)

しかしながら、上記従来の方法では、基板をノズルに対向させて基板ホルダに支持させ、その基板ホルダを往復動させつつ固定されたノズルから上記微粒子を基板に照射するようになっているため、均一な絶縁膜の成膜は基板が平面である場合のみに限定されてしまい、基板が凹凸表面となる立体基板への適用は困難である。   However, in the above conventional method, the substrate is supported by the substrate holder so as to face the nozzle, and the substrate is irradiated with the fine particles from the fixed nozzle while reciprocating the substrate holder. The formation of the insulating film is limited only when the substrate is a flat surface, and it is difficult to apply the insulating film to a three-dimensional substrate having an uneven surface.

また、上記従来の方法では、基板ホルダに基板を支持させて比較的短い距離を往復動させるようになっているため、基板を一つずつ取り替えて成膜作業を繰り返す必要があり、生産能率が低く、大量生産が困難で、製品単価も嵩んでしまう。   In the conventional method, the substrate is supported by the substrate holder and reciprocated over a relatively short distance. Therefore, it is necessary to replace the substrates one by one and repeat the film forming operation. It is low, mass production is difficult, and the product unit price is increased.

そこで、本発明は、より放熱性の高い立体回路基板を得るべく、立体的な金属基板に対しても、より均一な絶縁膜をより迅速に成膜可能とする立体回路基板の絶縁膜形成方法および絶縁膜形成装置を得ることを目的とする。   Therefore, the present invention provides a method for forming an insulating film on a three-dimensional circuit board that can form a more uniform insulating film on a three-dimensional metal substrate more quickly in order to obtain a three-dimensional circuit board having higher heat dissipation. And it aims at obtaining the insulating-film formation apparatus.

請求項1の発明にかかる立体回路基板の絶縁膜形成方法にあっては、所定間隔で線状に配列された金属製の立体基板を順送りしながら当該立体基板の表面にノズルを用いて複数の方向から絶縁素材の微粒子を照射して絶縁膜を形成する絶縁膜形成工程と、上記絶縁膜の形成された立体基板に回路を形成する回路形成工程と、を備えることを特徴とする。   In the method for forming an insulating film of a three-dimensional circuit board according to the first aspect of the present invention, a plurality of metal three-dimensional boards arranged in a line at predetermined intervals are sequentially fed, and a plurality of nozzles are used on the surface of the three-dimensional board. An insulating film forming step of forming an insulating film by irradiating fine particles of an insulating material from a direction, and a circuit forming step of forming a circuit on the three-dimensional substrate on which the insulating film is formed are characterized.

請求項2の発明にあっては、上記ノズルには、微粒子の噴出口が複数形成されることを特徴とする。   The invention according to claim 2 is characterized in that a plurality of fine particle ejection openings are formed in the nozzle.

請求項3の発明にあっては、複数のノズルが立体基板を略中心とする半円弧上で当該立体基板に向けて配置されることを特徴とする。   The invention according to claim 3 is characterized in that the plurality of nozzles are arranged toward the three-dimensional board on a semicircular arc whose center is the three-dimensional board.

請求項4の発明にあっては、複数のノズルが立体基板を略中心とする円周上で当該立体基板に向けて配置されることを特徴とする。   The invention according to claim 4 is characterized in that the plurality of nozzles are arranged toward the three-dimensional board on a circumference having the three-dimensional board as a center.

請求項5の発明にあっては、複数のノズルが立体基板を囲繞して回転自在な円筒体に設けられており、当該円筒体の内周に形成した噴出口が半径方向に対して周方向に所定角度傾斜されていることを特徴とする。   In the invention of claim 5, the plurality of nozzles are provided in a rotatable cylindrical body surrounding the three-dimensional substrate, and the jet port formed on the inner periphery of the cylindrical body is circumferential with respect to the radial direction. Is inclined at a predetermined angle.

請求項6の発明にあっては、上記絶縁膜形成工程で立体基板上に絶縁膜を形成する前に、当該立体基板の表面から不要な微粒子を除去しておくことを特徴とする。   The invention of claim 6 is characterized in that unnecessary fine particles are removed from the surface of the three-dimensional substrate before forming the insulating film on the three-dimensional substrate in the insulating film forming step.

請求項7の発明にあっては、複数のノズルから照射する微粒子の径を、各ノズルで異ならせたことを特徴とする。   The invention according to claim 7 is characterized in that the diameters of the fine particles irradiated from a plurality of nozzles are different for each nozzle.

請求項8の発明にあっては、複数のノズルによる微粒子の照射を独立して作動可能とし、かつ、立体基板の移動速度を制御しつつ、移動する立体基板の表面に対向するノズルを選択的に作動させることを特徴とする。   In the eighth aspect of the invention, the irradiation of fine particles by a plurality of nozzles can be independently operated, and the nozzle facing the surface of the moving three-dimensional substrate is selectively controlled while controlling the moving speed of the three-dimensional substrate. It is characterized by operating.

請求項9の発明にあっては、上記ノズルの立体基板に対する照射角度を可変可能に構成し、移動する立体基板の表面に対向する照射角度となるように制御することを特徴とする。   The invention according to claim 9 is characterized in that the irradiation angle of the nozzle with respect to the three-dimensional substrate is configured to be variable, and is controlled so that the irradiation angle is opposed to the surface of the moving three-dimensional substrate.

請求項10の発明にあっては、上記ノズルを、微粒子の噴出口が外周に形成される内筒と、この内筒に対して所定間隔をもって同心状に配置され微粒子の噴出口が内周に形成される外筒とを有するように構成し、これら内筒と外筒との間に立体基板を螺旋状に回転させつつ筒軸方向に移動させるようにしたことを特徴とする。   In the invention of claim 10, the nozzle is arranged concentrically at a predetermined interval with respect to the inner cylinder in which the fine particle ejection port is formed on the outer periphery, and the fine particle ejection port is disposed on the inner periphery. It is configured to have an outer cylinder to be formed, and the three-dimensional board is moved between the inner cylinder and the outer cylinder in the direction of the cylinder axis while spirally rotating.

請求項11の発明にあっては、微粒子の照射方向を異ならせた複数のノズルを設け、当該立体基板およびノズルを立体基板の移動方向軸回りに相対的に回転させつつ立体基板の移動方向に相対的に往復動させることを特徴とする。   In the invention of claim 11, a plurality of nozzles having different irradiation directions of the fine particles are provided, and the three-dimensional substrate and the nozzle are rotated in the moving direction of the three-dimensional substrate while relatively rotating around the three-dimensional substrate moving direction axis. Reciprocally move relatively.

請求項12の発明にかかる立体回路基板の絶縁膜形成装置にあっては、所定間隔で線状に配列された金属製の立体基板を順送りする基板送り手段と、移動する立体基板に複数の方向から絶縁素材の微粒子を照射するノズルと、を備えたことを特徴とする。   In the insulating circuit forming apparatus for a three-dimensional circuit board according to the invention of claim 12, a substrate feeding means for sequentially feeding a metal three-dimensional board arranged in a line at predetermined intervals, and a plurality of directions on the moving three-dimensional board And a nozzle for irradiating fine particles of an insulating material.

請求項1の発明にかかる立体回路基板の絶縁膜形成方法によれば、立体基板を順送りして移動させながら、複数の方向から微粒子を照射するので、立体基板への絶縁膜をより迅速に成膜できるとともに、絶縁素材の微粒子を複数の方向から照射するので、立体基板の凹凸面へのより均一な成膜を可能としつつ生産性を向上でき、立体回路基板をより安価に得ることができるようになる。   According to the method for forming an insulating film of a three-dimensional circuit board according to the first aspect of the present invention, since the fine particles are irradiated from a plurality of directions while sequentially moving the three-dimensional board, the insulating film on the three-dimensional board is formed more quickly. In addition to being able to form a film, it is possible to irradiate fine particles of an insulating material from a plurality of directions, so that it is possible to improve the productivity while enabling more uniform film formation on the uneven surface of the three-dimensional substrate, and a three-dimensional circuit board can be obtained at a lower cost. It becomes like this.

請求項2の発明によれば、ノズルの噴出口を複数形成したので、ノズルから噴射する微粒子の拡散効率を高めて絶縁膜をより均一に成膜することができる。   According to the invention of claim 2, since a plurality of nozzle outlets are formed, it is possible to increase the diffusion efficiency of the fine particles ejected from the nozzle and form the insulating film more uniformly.

請求項3の発明によれば、立体基板を略中心とする半円弧上に複数配置したノズルの噴出口から立体基板に向けて微粒子を照射できるので、立体基板の凹凸面が平面、斜面、垂直面等、種々の面からなる場合にあってもそれら各面を並行して成膜することができるため、高速に絶縁膜を施すことができるとともに、省スペースでのノズルの設置が可能となって装置の小型化が可能となる。   According to the invention of claim 3, since the fine particles can be irradiated toward the three-dimensional substrate from the nozzle outlets arranged on the semicircular arc having the three-dimensional substrate substantially at the center, the uneven surface of the three-dimensional substrate is flat, inclined, vertical. Even in the case of various surfaces such as surfaces, since each surface can be formed in parallel, an insulating film can be applied at a high speed and a nozzle can be installed in a small space. The size of the device can be reduced.

請求項4の発明によれば、立体基板を略中心とする円周上に複数配置したノズルの噴出口から立体基板に向けて微粒子を照射できるので、複数の立体基板の凹凸面を並行して成膜して高速な絶縁膜の形成が可能となるとともに、省スペースでのノズルの設置が可能となって装置の小型化が可能となり、さらには、立体基板の表裏両面を同時に成膜できるので立体基板を裏返す手間を省くことができる。   According to the invention of claim 4, since the fine particles can be irradiated toward the three-dimensional substrate from the nozzle outlets arranged on the circumference having the three-dimensional substrate substantially at the center, the uneven surfaces of the plurality of three-dimensional substrates are arranged in parallel. It is possible to form a high-speed insulating film by forming a film, and it is possible to reduce the size of the apparatus by installing a nozzle in a space-saving manner. The trouble of turning the three-dimensional substrate over can be saved.

請求項5の発明によれば、ノズルの噴出口が半径方向に対して傾斜配置されているので、噴出口から微粒子を噴射するエネルギーで円筒状のノズルを自動的に回転でき、円筒状のノズル内に配置した立体基板のあらゆる方向に微粒子を照射して、立体基板の裏側も含めて凹凸面へのより均一な成膜が可能となる。   According to the invention of claim 5, since the nozzle outlet is inclined with respect to the radial direction, the cylindrical nozzle can be automatically rotated by the energy for injecting the fine particles from the outlet, and the cylindrical nozzle By irradiating fine particles in all directions of the three-dimensional substrate arranged inside, it is possible to form a more uniform film on the uneven surface including the back side of the three-dimensional substrate.

請求項6の発明によれば、絶縁膜を成膜する前に不要な微粒子を除去して、立体基板の活性化された面を露出させることができるため、絶縁膜の層間強度をより強固にして成膜効率を高めることができる。   According to the sixth aspect of the present invention, unnecessary fine particles can be removed before the insulating film is formed, and the activated surface of the three-dimensional substrate can be exposed. Thus, the film formation efficiency can be increased.

請求項7の発明によれば、各ノズルで微粒子の径を異ならせることで成膜時間の短縮が可能となる。特に、ノズルから照射する微粒子の径を表層側ほど小さくするようにして、より緻密な絶縁膜をより高速に成膜するのが好適である。   According to the seventh aspect of the present invention, the film formation time can be shortened by making the diameter of the fine particles different for each nozzle. In particular, it is preferable to form a denser insulating film at a higher speed by reducing the diameter of the fine particles irradiated from the nozzle toward the surface layer side.

請求項8の発明によれば、立体基板の移動速度を制御しつつ、移動する立体基板の表面に対して最適な角度のノズルを選択的に作動させることができるため、余分な微粒子の照射を無くして絶縁膜の厚みのバラツキを効率良く低減できるとともに、使用する微粒子の量を節約することができる。   According to the eighth aspect of the invention, since the nozzle having the optimum angle with respect to the surface of the moving three-dimensional substrate can be selectively operated while controlling the moving speed of the three-dimensional substrate, the irradiation of the extra fine particles is performed. By eliminating this, variation in the thickness of the insulating film can be reduced efficiently, and the amount of fine particles used can be saved.

請求項9の発明によれば、立体基板の表面に最適な角度で微粒子を照射できるため、絶縁膜の厚さをより均一にできるとともに、各ノズルを連続照射させることで微粒子の噴射開始時に発生する粉溜まりを無くすことができる。   According to the ninth aspect of the present invention, the surface of the three-dimensional substrate can be irradiated with the fine particles at an optimum angle, so that the thickness of the insulating film can be made more uniform, and the nozzles are continuously irradiated to generate the fine particles at the start of injection. Can be eliminated.

請求項10の発明によれば、上記内筒および外筒から立体基板の表裏同時に微粒子を照射できるため迅速な成膜が可能となるとともに、立体基板を螺旋状に移動させることにより成膜工程における立体基板の実質的な移動距離を長くでき、ひいては装置の小型化を図ることができる。   According to the invention of claim 10, since the fine particles can be simultaneously irradiated from the inner cylinder and the outer cylinder on the front and back of the three-dimensional substrate, rapid film formation is possible, and in the film formation step, the three-dimensional substrate is moved spirally. The substantial moving distance of the three-dimensional substrate can be increased, and as a result, the apparatus can be reduced in size.

請求項11の発明によれば、より多くの方向から立体基板に同時に微粒子を照射できるため成膜時間を短縮できる。   According to the eleventh aspect of the invention, it is possible to simultaneously irradiate the three-dimensional substrate with the fine particles from more directions, so that the film formation time can be shortened.

請求項12の発明にかかる立体回路基板の絶縁膜形成装置によれば、基板送り手段により複数の立体基板を順次移動させ、当該立体基板に対して複数の方向から絶縁素材の微粒子を照射させるようにしたので、立体基板への絶縁膜をより迅速に成膜できるとともに、絶縁素材の微粒子を複数の方向から照射するので、立体基板の凹凸面へのより均一な成膜が可能となる。   According to the insulating film forming apparatus for a three-dimensional circuit board according to the invention of claim 12, the plurality of three-dimensional substrates are sequentially moved by the substrate feeding means, and the three-dimensional substrate is irradiated with the fine particles of the insulating material from a plurality of directions. Therefore, the insulating film on the three-dimensional substrate can be formed more rapidly, and the fine particles of the insulating material can be irradiated from a plurality of directions, so that a more uniform film can be formed on the uneven surface of the three-dimensional substrate.

以下、本発明の実施形態について図面を参照しつつ詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

(第1実施形態)図1は、立体基板の一連の製造工程を概略的に示すブロック図、図2は、立体基板の配列状態を示す斜視図、図3は、絶縁膜形成装置の概略構成図である。   (First Embodiment) FIG. 1 is a block diagram schematically showing a series of manufacturing steps of a three-dimensional substrate, FIG. 2 is a perspective view showing an arrangement state of the three-dimensional substrate, and FIG. 3 is a schematic configuration of an insulating film forming apparatus. FIG.

本実施形態では、図1に示すように、アルミニウムや銅で形成される帯状となった金属フープ材Hを立体基板の素材として用い、構成体形成工程A、絶縁膜形成工程B、回路形成工程Cおよび基板分離工程Dを経て立体基板1の単品が形成される場合を例示する。   In the present embodiment, as shown in FIG. 1, a metal hoop material H in the form of a band formed of aluminum or copper is used as a material for a three-dimensional substrate, and a structure forming process A, an insulating film forming process B, and a circuit forming process. The case where the single article of the three-dimensional board | substrate 1 is formed through C and the board | substrate separation process D is illustrated.

すなわち、かかる立体回路基板の製造方法では、まず、構成体形成工程Aで図2に示す金属フープ材Hに立体基板1および位置合わせ用のパイロット穴2を形成し、絶縁膜形成工程Bにおいて立体基板1の両面に絶縁膜を形成し、さらに、回路形成工程Cにおいて絶縁膜を形成した立体基板1に回路を形成し、最後に、基板分離工程Dによって回路形成した立体基板1を個々に切断分離するようになっている。   That is, in such a method of manufacturing a three-dimensional circuit board, first, the three-dimensional board 1 and the pilot holes 2 for alignment are formed in the metal hoop material H shown in FIG. Insulating films are formed on both surfaces of the substrate 1, and a circuit is formed on the three-dimensional substrate 1 on which the insulating film is formed in the circuit forming step C. Finally, the three-dimensional substrate 1 on which the circuit is formed in the substrate separating step D is cut individually. It comes to separate.

立体基板1は、図2に示すように、金属フープ材Hの長さ方向に所定間隔をもって形成される。この立体基板1の中央部には、鍛造等により凹凸面1aが形成されるとともに、周縁部には、部分的に開口1bが形成されて縁取りされる。   As shown in FIG. 2, the three-dimensional substrate 1 is formed at a predetermined interval in the length direction of the metal hoop material H. An uneven surface 1a is formed in the central portion of the three-dimensional substrate 1 by forging or the like, and an opening 1b is partially formed in the peripheral portion and bordered.

図3に示す立体回路基板の絶縁膜形成装置10は、金属フープ材Hに配列した複数の立体基板1を順次移動させる基板送り手段としてのフープ材繰出し部11およびフープ材巻取り部11Aと、移動する立体基板1に絶縁素材の微粒子を照射する前・後二つのノズル12,12Aと、立体基板1に対する微粒子の照射角度を変化させる照射角度可変手段としてのひねり機構13と、を備えて構成される。   An insulating film forming apparatus 10 for a three-dimensional circuit board shown in FIG. 3 includes a hoop material feeding portion 11 and a hoop material winding portion 11A as substrate feeding means for sequentially moving a plurality of three-dimensional substrates 1 arranged in a metal hoop material H, Two nozzles 12 and 12A before and after irradiating the moving solid substrate 1 with the fine particles of the insulating material, and a twist mechanism 13 as an irradiation angle varying means for changing the irradiation angle of the fine particles with respect to the three-dimensional substrate 1 Is done.

すなわち、本実施形態では、フープ材繰出し部11およびフープ材巻取り部11Aによって複数の立体基板1を順送りし、ひねり機構13によって金属フープ材Hを捻ることで、ノズル12,12Aから立体基板1に対して異なる複数の方向から絶縁素材の微粒子を照射できるようにしてある。   In other words, in the present embodiment, the plurality of three-dimensional substrates 1 are sequentially fed by the hoop material feeding unit 11 and the hoop material winding unit 11A, and the metal hoop material H is twisted by the twisting mechanism 13, so that the three-dimensional substrate 1 is formed from the nozzles 12 and 12A. In contrast, the fine particles of the insulating material can be irradiated from a plurality of different directions.

また、この立体回路基板の絶縁膜形成装置10は、フープ材繰出し部11・巻取り部11A、ノズル12,12Aおよびひねり機構13を密閉された成膜室14内に収納し、ボンベ15から供給されるヘリウムガス等のキャリアガスをエアロゾル化室16,16Aを通してノズル12,12Aに供給するようになっており、さらに、成膜室14内の圧力を真空ポンプ17によって略真空状態に維持するようにしてある。   In addition, the insulating film forming apparatus 10 for the three-dimensional circuit board accommodates the hoop material feeding part 11, the winding part 11 A, the nozzles 12, 12 A and the twist mechanism 13 in a sealed film forming chamber 14 and supplies it from a cylinder 15. The carrier gas such as helium gas is supplied to the nozzles 12 and 12A through the aerosolization chambers 16 and 16A, and the pressure in the film forming chamber 14 is maintained in a substantially vacuum state by the vacuum pump 17. It is.

エアロゾル化室16,16Aでは、セラミック等の絶縁素材の微粒子とキャリアガスとを混合して、ノズル12,12Aから立体基板1に勢い良く照射し、この照射した時のエネルギーで立体基板1に緻密な絶縁膜を成膜するようになっている。   In the aerosol chambers 16 and 16A, fine particles of an insulating material such as ceramic and a carrier gas are mixed, and the three-dimensional substrate 1 is vigorously irradiated from the nozzles 12 and 12A. A simple insulating film is formed.

ノズル12,12Aは、金属フープ材Hの下方に配置されるとともに、ひねり機構13を挟んで金属フープ材Hの送り方向に対して前・後両側に配置され、ひねり機構13によって金属フープ材Hをひねって反転する等して、ノズル12,12Aに対する立体基板1の角度を任意に可変設定できるようになっている。   The nozzles 12, 12 </ b> A are disposed below the metal hoop material H, and are disposed on both the front and rear sides with respect to the feeding direction of the metal hoop material H with the twist mechanism 13 interposed therebetween. The angle of the three-dimensional substrate 1 with respect to the nozzles 12 and 12A can be arbitrarily variably set by, for example, twisting and reversing.

以上の本実施形態によれば、立体基板1に絶縁膜を成膜するにあたって、フープ材繰出し部11・巻取り部11Aによって立体基板1を順送りし、かつひねり機構13によって金属フープ材Hを捻ることで、立体基板1に対するノズル12,12Aからの照射角度を変化させつつ絶縁素材の微粒子を照射することができるので、立体基板1の表面に絶縁膜をより迅速に成膜できるとともに、立体基板1に対して微粒子の照射角度を変化させることで、立体基板1の凹凸面1aへのより均一な成膜が実現される。   According to the above-described embodiment, when forming the insulating film on the three-dimensional substrate 1, the three-dimensional substrate 1 is sequentially fed by the hoop material feeding unit 11 and the winding unit 11A, and the metal hoop material H is twisted by the twist mechanism 13. As a result, it is possible to irradiate the fine particles of the insulating material while changing the irradiation angle from the nozzles 12 and 12A to the three-dimensional substrate 1, so that the insulating film can be formed on the surface of the three-dimensional substrate 1 more quickly and the three-dimensional substrate. By changing the irradiation angle of the fine particles with respect to 1, a more uniform film formation on the uneven surface 1a of the three-dimensional substrate 1 is realized.

このため、本実施形態では、凹凸面1aがある立体基板1への絶縁膜の成膜を可能としつつ生産性を向上できるようになり、立体基板1を安価に提供できる。   For this reason, in this embodiment, productivity can be improved while enabling the formation of an insulating film on the three-dimensional substrate 1 having the uneven surface 1a, and the three-dimensional substrate 1 can be provided at low cost.

また、図4,図5は、本実施形態の変形例を示しており、図4は、立体回路基板の絶縁膜形成装置の概略構成図、図5は、立体基板の他の配列状態を(a),(b)にそれぞれ示す斜視図である。なお、以下では、上述した構成と対応する構成要素には共通の符号を付し、重複する説明を省略するものとする。   4 and 5 show a modification of the present embodiment, FIG. 4 is a schematic configuration diagram of an insulating film forming apparatus for a three-dimensional circuit board, and FIG. 5 shows another arrangement state of the three-dimensional board ( It is a perspective view shown to a) and (b), respectively. In addition, below, the code | symbol common to the component corresponding to the structure mentioned above is attached | subjected, and the overlapping description shall be abbreviate | omitted.

本変形例にかかる立体回路基板の絶縁膜形成装置10Aは、上記金属フープ材Hに代えて、基板送り手段としてのコンベア20で搬送されるパレット21に立体基板1を複数個連設して搭載するようにしたものである。すなわち、コンベア20によってシート供給用マガジン22からパレット21を順次搬送し、立体基板1に絶縁膜を成膜した後に、当該パレット21をシート収納用マガジン22Aに収納するようにしている。   The three-dimensional circuit board insulating film forming apparatus 10A according to the present modification is mounted with a plurality of three-dimensional boards 1 connected to a pallet 21 conveyed by a conveyor 20 as a board feeding means instead of the metal hoop material H. It is what you do. That is, the pallet 21 is sequentially conveyed from the sheet supply magazine 22 by the conveyor 20, and after the insulating film is formed on the three-dimensional substrate 1, the pallet 21 is stored in the sheet storage magazine 22A.

パレット21は、搭載した立体基板1の上面全面が上方に露出されるのはもちろんのこと下面全面も下方に露出され、下方に配置したノズル12,12Aから噴射した微粒子が、立体基板1の下面全面に照射されるようにしてある。   In the pallet 21, the entire upper surface of the mounted three-dimensional substrate 1 is exposed upward as well as the entire lower surface is exposed downward, and the fine particles ejected from the nozzles 12, 12 </ b> A disposed below are exposed to the lower surface of the three-dimensional substrate 1. The entire surface is irradiated.

また、コンベア20の中間部分には、照射角度可変手段としての反転機構23が設けられており、この反転機構23によってパレット21の天地を反転させるようになっている。また、その反転機構23の前後両側に、ノズル12,12Aが配置されている。   Further, a reversing mechanism 23 as an irradiation angle variable means is provided at an intermediate portion of the conveyor 20, and the top and bottom of the pallet 21 is reversed by the reversing mechanism 23. In addition, nozzles 12 and 12A are arranged on both front and rear sides of the reversing mechanism 23.

なお、パレット21に搭載する立体基板1は、図5(a)に示すように個々に分離した複数個を一列に配列することができるし、あるいは、同図(b)に示すように複数列・複数行に配列することも可能である。もちろん、互い違いの配列も可能である。   The three-dimensional substrate 1 mounted on the pallet 21 can be arranged in a single row as shown in FIG. 5 (a), or in a plurality of rows as shown in FIG. 5 (b). -It is possible to arrange in multiple lines. Of course, alternate arrangements are possible.

この変形例にあっても、上記第1実施形態と同様の作用効果を奏することができ、立体基板1の表面により迅速に絶縁膜を成膜できる上、立体基板1に対する微粒子の照射角度を変化させることで立体基板1の凹凸面1aへのより均一な成膜が可能となる。   Even in this modification, the same effect as the first embodiment can be obtained, and an insulating film can be quickly formed on the surface of the three-dimensional substrate 1, and the irradiation angle of the fine particles with respect to the three-dimensional substrate 1 can be changed. This makes it possible to form a more uniform film on the uneven surface 1a of the three-dimensional substrate 1.

(第2実施形態)図6は、立体基板への成膜状態をノズルを含めて天地逆にして示す正面図、図7は、図6中A部の拡大断面図である。なお、以下では、上記実施形態と対応する構成要素には共通の符号を付し、重複する説明を省略するものとする。   (Second Embodiment) FIG. 6 is a front view showing the state of film formation on a three-dimensional substrate including the nozzles upside down, and FIG. 7 is an enlarged cross-sectional view of a portion A in FIG. In addition, below, the code | symbol common to the component corresponding to the said embodiment shall be attached | subjected, and the overlapping description shall be abbreviate | omitted.

本実施形態にかかる立体回路基板の絶縁膜形成装置は、基本的には、第1実施形態および変形例のものと同様の構成を備えている。すなわち、図6に示すように、ノズル12,12Aから噴射した微粒子を立体基板1の表面に照射して絶縁膜mを成膜するようになっている。   The insulating film forming apparatus for a three-dimensional circuit board according to the present embodiment basically has the same configuration as that of the first embodiment and the modification. That is, as shown in FIG. 6, the insulating film m is formed by irradiating the surface of the three-dimensional substrate 1 with the fine particles ejected from the nozzles 12 and 12A.

ただし、図7に示すように、ノズル12,12Aの先端に、微粒子を噴射するための噴出口12hを複数形成した点が、上記実施形態とは相違している。   However, as shown in FIG. 7, a point different from the above-described embodiment is that a plurality of outlets 12 h for injecting fine particles are formed at the tips of the nozzles 12 and 12 </ b> A.

このとき、複数の噴出口12hは、ノズル12,12Aの先端に均等に分布されるが、その分布頻度は照射する立体基板1の凹凸面1aの形状に応じて適宜変化させることもできる。   At this time, the plurality of jet nozzles 12h are evenly distributed at the tips of the nozzles 12 and 12A, but the distribution frequency can be appropriately changed according to the shape of the uneven surface 1a of the three-dimensional substrate 1 to be irradiated.

したがって、本実施形態によれば、ノズル12,12Aの噴出口12hを複数形成したので、図6に示すように、ノズル12,12Aから噴射する微粒子の拡散効率を高めて絶縁膜mをより均一に成膜することができる。   Therefore, according to the present embodiment, since the plurality of nozzles 12h of the nozzles 12 and 12A are formed, as shown in FIG. 6, the diffusion efficiency of the fine particles ejected from the nozzles 12 and 12A is increased, and the insulating film m is made more uniform. It can be formed into a film.

(第3実施形態)図8は、本実施形態にかかるノズルの斜視図である。なお、以下では、上記実施形態と対応する構成要素には共通の符号を付し、重複する説明を省略するものとする。   (Third Embodiment) FIG. 8 is a perspective view of a nozzle according to this embodiment. In addition, below, the code | symbol common to the component corresponding to the said embodiment shall be attached | subjected, and the overlapping description shall be abbreviate | omitted.

本実施形態にあっても、基本的に第1実施形態と同様の構成を備えている。ただし、図8に示すように、ノズル30の噴出口30hを、立体基板1を略中心とする半円弧上でその立体基板1に向けて複数配置してある点が、上記実施形態とは相違している。   Even in the present embodiment, the configuration is basically the same as that of the first embodiment. However, as shown in FIG. 8, it differs from the above-described embodiment in that a plurality of nozzles 30 h of the nozzle 30 are arranged toward the three-dimensional substrate 1 on a semicircular arc having the three-dimensional substrate 1 as the center. is doing.

すなわち、ノズル30は半円筒状に形成して、その内周に所定間隔をもって複数の噴出口30hを形成してあり、その半円筒状のノズル30の中間部に微粒子(エアロゾル)の供給ポート30pを設けて、その供給ポート30pから供給した微粒子が複数の噴出口30hから均等に噴出されるようになっている。   That is, the nozzle 30 is formed in a semi-cylindrical shape, and a plurality of jet nozzles 30h are formed at predetermined intervals on the inner periphery thereof, and a fine particle (aerosol) supply port 30p is provided in the middle of the semi-cylindrical nozzle 30. Are provided so that the fine particles supplied from the supply port 30p are uniformly ejected from the plurality of ejection ports 30h.

そして、半円筒状のノズル30の中心部30cに立体基板1を通過させるようになっている。   Then, the three-dimensional substrate 1 is allowed to pass through the central portion 30c of the semi-cylindrical nozzle 30.

もちろん、本実施形態にあってもノズル30は前後に複数配置して、それらのノズル30間に図3,図4に示したひねり機構13や反転機構23が設けられる。   Of course, even in the present embodiment, a plurality of nozzles 30 are arranged in the front and rear, and the twist mechanism 13 and the reversing mechanism 23 shown in FIGS. 3 and 4 are provided between the nozzles 30.

したがって、本実施形態によれば立体基板1を略中心とする半円弧上に複数配置した噴出口30hから立体基板1に向けて微粒子を照射できるので、立体基板1の凹凸面1aが平面、斜面、垂直面からなる場合にあっても、それら各面を同時に成膜することができる。よって、より高速に絶縁膜を形成することができる上、省スペースでのノズル30の設置が可能となって装置の小型化が可能となる。   Therefore, according to the present embodiment, since the fine particles can be irradiated toward the three-dimensional substrate 1 from the plurality of jet nozzles 30h arranged on the semicircular arc having the three-dimensional substrate 1 as a substantially center, the uneven surface 1a of the three-dimensional substrate 1 is flat and inclined. Even in the case of vertical surfaces, these surfaces can be formed simultaneously. Therefore, the insulating film can be formed at a higher speed, and the nozzle 30 can be installed in a space-saving manner, and the apparatus can be downsized.

(第4実施形態)図9は、本実施形態にかかるノズルの斜視図である。なお、以下では、上記実施形態と対応する構成要素には共通の符号を付し、重複する説明を省略するものとする。   (Fourth Embodiment) FIG. 9 is a perspective view of a nozzle according to this embodiment. In addition, below, the code | symbol common to the component corresponding to the said embodiment shall be attached | subjected, and the overlapping description shall be abbreviate | omitted.

本実施形態にあっても、基本的に第1実施形態と同様の構成を備えている。ただし、本実施形態では、図9に示すように、ノズル31の噴出口31hを、立体基板1を略中心とする円周上でその立体基板1に向けて複数配置した点が、上記実施形態とは相違している。   Even in the present embodiment, the configuration is basically the same as that of the first embodiment. However, in the present embodiment, as shown in FIG. 9, a plurality of the ejection openings 31 h of the nozzle 31 are arranged toward the three-dimensional substrate 1 on the circumference having the three-dimensional substrate 1 as the center. Is different.

すなわち、ノズル31を円筒状に形成し、その内周に所定間隔をもって複数の噴出口31hを形成するとともに、当該ノズル31の外周の一部に微粒子の供給ポート31pを設けて、その供給ポート31pから供給した微粒子が複数の噴出口31hから均等に噴出されるようになっている。   That is, the nozzle 31 is formed in a cylindrical shape, and a plurality of jet ports 31h are formed at predetermined intervals on the inner periphery thereof, and a fine particle supply port 31p is provided on a part of the outer periphery of the nozzle 31, and the supply port 31p The fine particles supplied from the nozzles are ejected uniformly from the plurality of ejection ports 31h.

そして、円筒状のノズル31の中心部31cに立体基板1を通過させるようになっている。   The three-dimensional substrate 1 is allowed to pass through the central portion 31 c of the cylindrical nozzle 31.

したがって、本実施形態によれば、立体基板1を略中心とする円周上に複数配置した噴出口31hから立体基板1に向けて微粒子を照射できるので、立体基板1の凹凸面1aを同時に成膜することができる。よって、より高速に絶縁膜を形成することができる上、省スペースでのノズル31の設置が可能となって装置の小型化が可能となる。   Therefore, according to the present embodiment, since the fine particles can be irradiated toward the three-dimensional substrate 1 from the plurality of jet nozzles 31h arranged on the circumference having the three-dimensional substrate 1 as the center, the uneven surface 1a of the three-dimensional substrate 1 is simultaneously formed. Can be membrane. Therefore, the insulating film can be formed at a higher speed, and the nozzle 31 can be installed in a space-saving manner, thereby reducing the size of the apparatus.

また、本実施形態では、立体基板1の表裏両面を同時に成膜できるので立体基板1を裏返す手間を省くことができる。よって、図3,図4に示したひねり機構13や反転機構23を設ける必要がなくなり、立体回路基板の絶縁膜形成装置10のより一層の簡素化を図ることができるという利点もある。   Moreover, in this embodiment, since the front and back both surfaces of the three-dimensional board | substrate 1 can be formed into a film simultaneously, the effort which reverses the three-dimensional board | substrate 1 can be saved. Therefore, it is not necessary to provide the twisting mechanism 13 and the reversing mechanism 23 shown in FIGS. 3 and 4, and there is an advantage that the insulation film forming apparatus 10 for the three-dimensional circuit board can be further simplified.

(第5実施形態)図10は、本実施形態にかかるノズルの斜視図、図11は、噴出口の断面図である。なお、以下では、上記実施形態と対応する構成要素には共通の符号を付し、重複する説明を省略するものとする。   (Fifth Embodiment) FIG. 10 is a perspective view of a nozzle according to this embodiment, and FIG. 11 is a cross-sectional view of a jet port. In addition, below, the code | symbol common to the component corresponding to the said embodiment shall be attached | subjected, and the overlapping description shall be abbreviate | omitted.

本実施形態にあっても、基本的に第1実施形態と同様の構成を備えている。ただし、図10に示すように、ノズル32を、立体基板1を囲繞して回転自在な円筒状に形成し、図11に示すようにそれの内周に形成した噴出口32hを半径方向rに対して周方向に所定角度θを傾斜させた点が、上記実施形態とは異なっている。   Even in the present embodiment, the configuration is basically the same as that of the first embodiment. However, as shown in FIG. 10, the nozzle 32 is formed in a rotatable cylindrical shape surrounding the three-dimensional substrate 1, and as shown in FIG. 11, the jet port 32 h formed on the inner periphery thereof is formed in the radial direction r. In contrast to the above embodiment, the predetermined angle θ is inclined in the circumferential direction.

そして、円筒状のノズル32の外周に微粒子の供給ポート32pを設け、当該供給ポート32pから供給した微粒子が複数の噴出口32hから均等に噴出されるようにしてある。   A fine particle supply port 32p is provided on the outer periphery of the cylindrical nozzle 32, and the fine particles supplied from the supply port 32p are uniformly ejected from the plurality of ejection ports 32h.

もちろん、本実施形態にあっても、ノズル32は前後に複数配置され、それら複数のノズル32間に、図3,図4に示したひねり機構13や反転機構23が設けてある。   Of course, also in this embodiment, a plurality of nozzles 32 are arranged in the front and rear, and the twist mechanism 13 and the reversing mechanism 23 shown in FIGS. 3 and 4 are provided between the plurality of nozzles 32.

したがって、本実施形態によれば、回転自在な円筒状に形成したノズル32の噴出口32hが半径方向に傾斜されているので、噴出口32hから微粒子を噴射するエネルギーによって円筒状のノズル32を自動的に回転することができ、当該円筒状のノズル32内に配置した立体基板1のあらゆる方向に微粒子を照射して、立体基板の裏側も含めて凹凸面1aへの均一な成膜が可能となる。   Therefore, according to the present embodiment, since the nozzle 32h of the nozzle 32 formed in a rotatable cylindrical shape is inclined in the radial direction, the cylindrical nozzle 32 is automatically activated by the energy for injecting fine particles from the nozzle 32h. And can be uniformly formed on the uneven surface 1a including the back side of the three-dimensional substrate by irradiating fine particles in all directions of the three-dimensional substrate 1 disposed in the cylindrical nozzle 32. Become.

このため、本実施形態では、第4実施形態と同様に、立体基板1の表裏両面を同時に成膜できるので、立体基板1を裏返す手間を省くことができ、以て、ひねり機構13や反転機構23を省略して立体回路基板の絶縁膜形成装置10のより一層の簡素化を図ることができる。   For this reason, in this embodiment, since both the front and back surfaces of the three-dimensional substrate 1 can be formed simultaneously, as in the fourth embodiment, it is possible to save the trouble of turning the three-dimensional substrate 1 upside down. 23 can be omitted, and the insulation film forming apparatus 10 for the three-dimensional circuit board can be further simplified.

(第6実施形態)図12は、本実施形態にかかるノズルと立体基板との関係を示す側面図である。なお、以下では、上記実施形態と対応する構成要素には共通の符号を付し、重複する説明を省略するものとする。   (Sixth Embodiment) FIG. 12 is a side view showing the relationship between a nozzle and a three-dimensional board according to this embodiment. In addition, below, the code | symbol common to the component corresponding to the said embodiment shall be attached | subjected, and the overlapping description shall be abbreviate | omitted.

本実施形態にあっても、基本的に第1実施形態と同様の構成を備えている。すなわち、図12に示すように、移動する立体基板1に絶縁素材の微粒子を照射する前・後2つのノズル12,12Aを備えている。   Even in the present embodiment, the configuration is basically the same as that of the first embodiment. That is, as shown in FIG. 12, two nozzles 12 and 12A are provided before and after the moving solid substrate 1 is irradiated with the fine particles of the insulating material.

ただし、2つのノズル12,12Aの間にキャリアガスを立体基板1に向けて噴出する付着粉除去ノズル33を設け、ノズル12Aに立体基板1が送り込まれる前に、先行するノズル12で照射して未成膜となった不要な微粒子Icを立体基板1の表面から予め除去するようにした点が、上記実施形態とは異なっている。   However, an adhering powder removal nozzle 33 that ejects carrier gas toward the three-dimensional substrate 1 is provided between the two nozzles 12 and 12A, and before the three-dimensional substrate 1 is sent to the nozzle 12A, the preceding nozzle 12 irradiates the carrier gas. This is different from the above embodiment in that unnecessary fine particles Ic that have not been formed are previously removed from the surface of the three-dimensional substrate 1.

したがって、本実施形態によれば、ノズル12Aに立体基板1が送り込まれる前に未成膜となった不要な微粒子Icを除去できるので、絶縁膜mを成膜する前段階では、常に、立体基板1の活性化された面を露出させることができる。かかる活性化した露出面に成膜できるため、絶縁膜mの層間強度をより一層強固にして、成膜効率を向上することができる。   Therefore, according to the present embodiment, unnecessary fine particles Ic that have not been formed before the three-dimensional substrate 1 is fed into the nozzle 12A can be removed. Therefore, in the stage before forming the insulating film m, the three-dimensional substrate 1 is always provided. The activated surface of can be exposed. Since the film can be formed on the activated exposed surface, the interlayer strength of the insulating film m can be further strengthened and the film formation efficiency can be improved.

(第7実施形態)図13は、本実施形態にかかるノズルと立体基板との関係を示す側面図である。なお、以下では、上記実施形態と対応する構成要素には共通の符号を付し、重複する説明を省略するものとする。   (Seventh Embodiment) FIG. 13 is a side view showing the relationship between a nozzle and a three-dimensional board according to this embodiment. In addition, below, the code | symbol common to the component corresponding to the said embodiment shall be attached | subjected, and the overlapping description shall be abbreviate | omitted.

本実施形態にあっても、基本的に第1実施形態と同様の構成を備えている。すなわち、図13に示すように、移動する立体基板1に絶縁素材の微粒子を照射する前・後2つのノズル12,12Aを備えている。   Even in the present embodiment, the configuration is basically the same as that of the first embodiment. That is, as shown in FIG. 13, two nozzles 12 and 12A are provided before and after the moving solid substrate 1 is irradiated with the fine particles of the insulating material.

ただし、ノズル12,12Aから照射する微粒子Ic1,Ic2の径を、それぞれのノズル12,12Aで異ならせるようにした点が、上記実施形態とは異なっている。   However, it differs from the above embodiment in that the diameters of the fine particles Ic1 and Ic2 irradiated from the nozzles 12 and 12A are different for the nozzles 12 and 12A.

すなわち、本実施形態では、立体基板1の移動方向に対して前方に配置されるノズル12から照射される微粒子Ic1の径を比較的大きくし、後方に配置されるノズル12Aから照射される微粒子Ic2の径を比較的小さくしてある。   That is, in the present embodiment, the diameter of the fine particles Ic1 irradiated from the nozzles 12 arranged in the front with respect to the moving direction of the three-dimensional substrate 1 is made relatively large, and the fine particles Ic2 irradiated from the nozzles 12A arranged in the rear. The diameter is relatively small.

したがって、本実施形態によれば、ノズル12,12A毎に照射する微粒子Ic1,Ic2の径を異ならせることで、成膜時間の短縮が可能となり、かつ、ノズル12,12Aから照射する微粒子Ic1,Ic2の径を表層ほど小さくすることにより、緻密かつ強固な絶縁膜をより高速に成膜することが可能となる。   Therefore, according to the present embodiment, the film formation time can be shortened by changing the diameters of the fine particles Ic1 and Ic2 irradiated to the nozzles 12 and 12A, and the fine particles Ic1 and Ic1 irradiated from the nozzles 12 and 12A can be shortened. By reducing the diameter of Ic2 as the surface layer, a dense and strong insulating film can be formed at a higher speed.

(第8実施形態)図14は、本実施形態にかかる立体基板の表面に対するノズルの選択作動状態を(a)〜(e)によってそれぞれ示す説明図である。なお、以下では、上記実施形態と対応する構成要素には共通の符号を付し、重複する説明を省略するものとする。   (Eighth Embodiment) FIGS. 14A and 14B are explanatory views respectively showing the selective operation states of the nozzles with respect to the surface of the three-dimensional board according to this embodiment by (a) to (e). In addition, below, the code | symbol common to the component corresponding to the said embodiment shall be attached | subjected, and the overlapping description shall be abbreviate | omitted.

本実施形態にあっても、基本的に第1実施形態と同様の構成を備えている。すなわち、立体基板1を移動させつつノズル34から絶縁素材の微粒子を照射するようになっている。   Even in the present embodiment, the configuration is basically the same as that of the first embodiment. That is, the fine particles of the insulating material are irradiated from the nozzle 34 while moving the three-dimensional substrate 1.

ただし、図14に示すように、1つの立体基板1に微粒子Icを照射するに複数(本実施形態では3本)の第1ノズル34a,第2ノズル34b,第3ノズル34cを1組のノズル34とした点が、上記実施形態とは異なっている。   However, as shown in FIG. 14, in order to irradiate one solid substrate 1 with the fine particles Ic, a plurality of (three in this embodiment) first nozzles 34a, second nozzles 34b, and third nozzles 34c are used as one set of nozzles. The point 34 is different from the above embodiment.

そして、複数の第1〜第3ノズル34a〜34cの照射角度を相互に異ならせるとともに、それぞれのノズル34a〜34cによる微粒子Icの照射を独立して作動可能とし、かつ、立体基板1の移動速度を制御しつつ、移動する立体基板1の表面に対向する最適なノズル34a〜34cを選択的に作動させるようにしてある。   The irradiation angles of the plurality of first to third nozzles 34a to 34c are made different from each other, the irradiation of the fine particles Ic by the respective nozzles 34a to 34c can be independently operated, and the moving speed of the three-dimensional substrate 1 The optimum nozzles 34a to 34c facing the surface of the moving three-dimensional substrate 1 are selectively operated while controlling the above.

すなわち、微粒子Icの照射方向を、第1ノズル34aは立体基板1の移動方向に対して前方に向けるとともに、第2ノズル34bは立体基板1に対して垂直に向け、かつ、第3ノズル34cは立体基板1の移動方向に対して後方に向けてある。   That is, the irradiation direction of the fine particles Ic is directed forward with respect to the moving direction of the three-dimensional substrate 1, the second nozzle 34b is directed perpendicular to the three-dimensional substrate 1, and the third nozzle 34c is It is directed rearward with respect to the moving direction of the three-dimensional substrate 1.

具体的には、図14(a)では、第1ノズル34aを作動させつつ立体基板1を低速で送り、立体基板1の前端面1cに微粒子Icを照射し、図14(b)では、第1ノズル34aと第2ノズル34bを作動させつつ立体基板1を高速で送り、立体基板1の上面前縁1dおよび凹凸面1aの前縁傾斜面1eに微粒子Icを照射する。   Specifically, in FIG. 14A, the three-dimensional substrate 1 is fed at a low speed while operating the first nozzle 34a, and the front end surface 1c of the three-dimensional substrate 1 is irradiated with the fine particles Ic. In FIG. The three-dimensional substrate 1 is fed at a high speed while operating the first nozzle 34a and the second nozzle 34b, and the fine particle Ic is irradiated to the upper surface front edge 1d of the three-dimensional substrate 1 and the front edge inclined surface 1e of the uneven surface 1a.

また、図14(c)では、第2ノズル34bを作動させつつ立体基板1を高速で送り、立体基板1の凹凸面1aの底面1fに微粒子Icを照射し、図14(d)では、第1ノズル34aを作動させつつ立体基板1を高速で送り、立体基板1の凹凸面1aの後縁傾斜面1gに微粒子Icを照射する。   14C, the solid substrate 1 is fed at a high speed while operating the second nozzle 34b, and the bottom surface 1f of the uneven surface 1a of the three-dimensional substrate 1 is irradiated with the fine particles Ic. In FIG. The three-dimensional substrate 1 is fed at a high speed while the one nozzle 34a is operated, and the fine particle Ic is irradiated on the inclined surface 1g of the rear edge of the uneven surface 1a of the three-dimensional substrate 1.

さらに、図14(e)では、第2ノズル34bおよび第3ノズル34cを作動させつつ立体基板1を低速で送り、立体基板1の上面後縁1hおよび後端面1iに微粒子Icを照射する。   Further, in FIG. 14E, the three-dimensional substrate 1 is fed at a low speed while operating the second nozzle 34b and the third nozzle 34c, and the upper surface rear edge 1h and the rear end surface 1i of the three-dimensional substrate 1 are irradiated with the fine particles Ic.

したがって、本実施形態によれば、立体基板1の移動速度を制御しつつ、移動する立体基板1の表面に対向する(好適には正対する)最適な第1〜第3ノズル34a〜34cを選択的に作動させることにより、余分な微粒子の照射を無くして絶縁膜の厚みのバラツキを効率良く低減できるとともに、使用する微粒子の量を節約することができる。   Therefore, according to the present embodiment, the optimal first to third nozzles 34a to 34c facing (preferably directly facing) the surface of the moving three-dimensional substrate 1 are selected while controlling the moving speed of the three-dimensional substrate 1. By operating in an effective manner, it is possible to efficiently reduce the variation in the thickness of the insulating film by eliminating the irradiation of extra fine particles, and to save the amount of fine particles to be used.

(第9実施形態)図15は、本実施形態にかかる立体基板に対するノズルの照射角度変化を(a)〜(c)によってそれぞれ示す説明図、図16は、照射角度変化装置の一例を示す斜視図である。なお、以下では、上記実施形態と対応する構成要素には共通の符号を付し、重複する説明を省略するものとする。   (Ninth Embodiment) FIG. 15 is an explanatory view showing the change in the irradiation angle of the nozzle with respect to the three-dimensional substrate according to this embodiment by (a) to (c), and FIG. 16 is a perspective view showing an example of the irradiation angle changing device. FIG. In addition, below, the code | symbol common to the component corresponding to the said embodiment shall be attached | subjected, and the overlapping description shall be abbreviate | omitted.

本実施形態にあっても、基本的に第1実施形態と同様の構成を備えている。すなわち、立体基板1を移動させつつノズル35から絶縁素材の微粒子を照射するようになっている。   Even in the present embodiment, the configuration is basically the same as that of the first embodiment. That is, the fine particles of the insulating material are irradiated from the nozzle 35 while moving the three-dimensional substrate 1.

ただし、図15(a)〜(c)に示すように、ノズル35の角度を可変可能とし、移動する立体基板1の表面に最適な照射角度となるようにノズル35の角度を制御するようにした点が、上記実施形態とは異なっている。   However, as shown in FIGS. 15A to 15C, the angle of the nozzle 35 can be varied, and the angle of the nozzle 35 is controlled so that the irradiation angle is optimum for the surface of the moving three-dimensional substrate 1. The point which did is different from the said embodiment.

すなわち、図15(a)に示すように、立体基板1の前端面1cを成膜する場合は、例えば、ノズル35を立体基板1の移動方向に対して前方に傾斜させ、図15(b)に示すように立体基板1の上面前縁1dを成膜する場合は、ノズル35を立体基板1に対して垂直に設定し、図15(c)に示すように立体基板1の凹凸面1aの前縁傾斜面1eを成膜する場合は、ノズル35を立体基板1の移動方向に対して後方に傾斜させる。   That is, as shown in FIG. 15A, when forming the front end face 1c of the three-dimensional substrate 1, for example, the nozzle 35 is inclined forward with respect to the moving direction of the three-dimensional substrate 1, and FIG. When the upper surface leading edge 1d of the three-dimensional substrate 1 is formed as shown in FIG. 1, the nozzle 35 is set perpendicular to the three-dimensional substrate 1, and the uneven surface 1a of the three-dimensional substrate 1 is formed as shown in FIG. When the front edge inclined surface 1 e is formed, the nozzle 35 is inclined backward with respect to the moving direction of the three-dimensional substrate 1.

図16は、例えば第3実施形態に示したようにノズル35を半円筒状に形成した場合におけるノズル35の角度制御を例示しており、このように半円筒状のノズル35の両端部を結ぶ回転中心Cを中心として当該ノズル35の指向角度を変化させることにより、中心部35cを通過する立体基板1に対して噴出口35hから微粒子を照射する角度を制御できるようになっている。なお、35pはエアロゾル状態の微粒子の供給ポートである。   FIG. 16 exemplifies the angle control of the nozzle 35 when the nozzle 35 is formed in a semi-cylindrical shape as shown in the third embodiment, for example, and connects both end portions of the semi-cylindrical nozzle 35 in this way. By changing the directivity angle of the nozzle 35 around the rotation center C, the angle at which the fine particles are irradiated from the jet outlet 35h to the three-dimensional substrate 1 passing through the center portion 35c can be controlled. Reference numeral 35p denotes a supply port for aerosol particles.

したがって、本実施形態によれば、立体基板1の表面に最適な角度で微粒子を照射できるため、絶縁膜の厚さを一定にできるとともに、ノズル35は表面を連続して照射できるため、微粒子の噴射開始時に発生する粉溜まりを無くすことができる。   Therefore, according to this embodiment, the surface of the three-dimensional substrate 1 can be irradiated with the fine particles at an optimum angle, so that the thickness of the insulating film can be made constant, and the nozzle 35 can continuously irradiate the surface. It is possible to eliminate powder accumulation generated at the start of injection.

(第10実施形態)図17は、本実施形態にかかるノズルの斜視図、図18は、図17中B−B線に沿った拡大断面図である。なお、以下では、上記実施形態と対応する構成要素には共通の符号を付し、重複する説明を省略するものとする。   (Tenth Embodiment) FIG. 17 is a perspective view of a nozzle according to this embodiment, and FIG. 18 is an enlarged sectional view taken along the line BB in FIG. In addition, below, the code | symbol common to the component corresponding to the said embodiment shall be attached | subjected, and the overlapping description shall be abbreviate | omitted.

本実施形態にあっても、基本的に第1実施形態と同様の構成を備えている。すなわち、立体基板1を移動させつつノズル36から絶縁素材の微粒子を照射するようになっている。   Even in the present embodiment, the configuration is basically the same as that of the first embodiment. That is, the fine particles of the insulating material are irradiated from the nozzle 36 while moving the three-dimensional substrate 1.

ただし、図17,図18に示すように、ノズル36を、微粒子の噴出口36Ahが外周に形成される内筒36Aと、この内筒36Aに対して所定間隔をもって同心状に配置され微粒子の噴出口36Bhが内周に形成される外筒36Bとで構成し、これら内筒36Aと外筒36Bとの間に立体基板1を螺旋状に回転させつつ筒軸方向に移動させるようにした点が、上記実施形態とは相違している。   However, as shown in FIGS. 17 and 18, the nozzle 36 is arranged concentrically with a predetermined interval with respect to the inner cylinder 36 </ b> A having a fine particle ejection port 36 </ b> Ah formed on the outer periphery thereof. The outlet 36Bh is composed of an outer cylinder 36B formed on the inner periphery, and the three-dimensional substrate 1 is moved in the cylinder axis direction while rotating spirally between the inner cylinder 36A and the outer cylinder 36B. This is different from the above embodiment.

図17に示すように、内筒36Aの中心部には、微粒子(エアロゾル)の供給ポート36Apが設けられるとともに、外筒36Bには、外周の一部に微粒子(エアロゾル)の供給ポート36Bpが設けられる。   As shown in FIG. 17, a fine particle (aerosol) supply port 36Ap is provided at the center of the inner cylinder 36A, and a fine particle (aerosol) supply port 36Bp is provided at a part of the outer periphery of the outer cylinder 36B. It is done.

したがって、本実施形態によれば、微粒子の噴出口36Ahを外周に形成した内筒36Aと微粒子の噴出口36Bhを内周に形成した外筒36Bとの間に立体基板1を螺旋状に回転させつつ筒軸方向に移動させたので、内筒36Aおよび外筒36Bから立体基板1の表裏同時に微粒子を照射できるため迅速な成膜が可能となるとともに、立体基板1を螺旋状に移動させることにより実質的な成膜距離を長くでき、ひいては装置の小型化を図ることができる。   Therefore, according to the present embodiment, the three-dimensional substrate 1 is helically rotated between the inner cylinder 36A in which the fine particle outlet 36Ah is formed on the outer periphery and the outer cylinder 36B in which the fine particle outlet 36Bh is formed on the inner periphery. However, since the fine particles can be simultaneously irradiated from the inner cylinder 36A and the outer cylinder 36B to the front and back of the three-dimensional substrate 1, the film can be formed quickly, and the three-dimensional substrate 1 is moved spirally. A substantial film forming distance can be increased, and the apparatus can be downsized.

(第11実施形態)図19は、本実施形態にかかるノズルと立体基板との関係を示す説明図である。なお、以下では、上記実施形態と対応する構成要素には共通の符号を付し、重複する説明を省略するものとする。   (Eleventh Embodiment) FIG. 19 is an explanatory view showing the relationship between a nozzle and a three-dimensional board according to this embodiment. In addition, below, the code | symbol common to the component corresponding to the said embodiment shall be attached | subjected, and the overlapping description shall be abbreviate | omitted.

本実施形態にあっても、基本的に第1実施形態と同様の構成を備えている。すなわち、立体基板1を移動させつつノズル37から絶縁素材の微粒子を照射するようになっている。   Even in the present embodiment, the configuration is basically the same as that of the first embodiment. That is, the fine particles of the insulating material are irradiated from the nozzle 37 while moving the three-dimensional substrate 1.

ただし、図19に示すように、微粒子の照射方向を異ならせた複数のノズル37設け、それらノズル37と立体基板1を、相対的に回転しつつ立体基板の移動方向に相対的に往復動させる点が、上記実施形態とは相違している。   However, as shown in FIG. 19, a plurality of nozzles 37 having different irradiation directions of the fine particles are provided, and the nozzles 37 and the three-dimensional substrate 1 are relatively reciprocated in the moving direction of the three-dimensional substrate while relatively rotating. The point is different from the above embodiment.

すなわち、ノズル37を立体基板1の移動方向に複数配列するとともに、それぞれの微粒子の照射方向が1つの立体基板1を指向するように円弧状に配列してある。   That is, a plurality of nozzles 37 are arranged in the moving direction of the three-dimensional substrate 1 and arranged in an arc shape so that the irradiation direction of each fine particle is directed to one three-dimensional substrate 1.

そして、本実施形態では、複数のノズル37を弧状取付板38に固定しておくとともに、立体基板1を移動方向に沿った回転軸Cまわりに回転させ、かつ、その移動方向に往復動させるようになっている。   In the present embodiment, the plurality of nozzles 37 are fixed to the arcuate mounting plate 38, and the three-dimensional board 1 is rotated around the rotation axis C along the movement direction and reciprocated in the movement direction. It has become.

したがって、本実施形態によれば、照射方向を異ならせた複数のノズル37から微粒子を照射しつつ、立体基板1が回転および往復動されるため、多方向から立体基板に同時に微粒子を照射できるため成膜時間を短縮することができる。   Therefore, according to the present embodiment, since the three-dimensional substrate 1 is rotated and reciprocated while irradiating the fine particles from the plurality of nozzles 37 having different irradiation directions, the three-dimensional substrate can be simultaneously irradiated with the fine particles from multiple directions. The film formation time can be shortened.

なお、本実施形態では、立体基板1に対してノズル37を回転および往復動させることによっても同様の作用効果を奏することができる。   In the present embodiment, the same effect can be obtained by rotating and reciprocating the nozzle 37 with respect to the three-dimensional substrate 1.

ところで、本発明は第1〜第11実施形態に例をとって説明したが、これら実施形態に限ることなく本発明の要旨を逸脱しない範囲で他の実施形態を各種採用することができる。   By the way, although this invention was demonstrated taking the example in 1st-11th embodiment, various other embodiment can be employ | adopted in the range which is not restricted to these embodiments and does not deviate from the summary of this invention.

本発明の第1実施形態における立体基板の一連の製造工程を概略的に示すブロック図である。It is a block diagram showing roughly a series of manufacturing processes of a solid board in a 1st embodiment of the present invention. 本発明の第1実施形態における立体基板の配列状態を示す斜視図である。It is a perspective view which shows the arrangement | sequence state of the solid substrate in 1st Embodiment of this invention. 本発明の第1実施形態における立体回路基板の絶縁膜形成装置の概略構成図である。It is a schematic block diagram of the insulating film formation apparatus of the three-dimensional circuit board in 1st Embodiment of this invention. 本発明の第1実施形態の変形例を示す立体回路基板の絶縁膜形成装置の概略構成図である。It is a schematic block diagram of the insulating-film formation apparatus of the three-dimensional circuit board which shows the modification of 1st Embodiment of this invention. 本発明の第1実施形態の変形例を示す立体基板の他の配列状態を(a),(b)にそれぞれ示す斜視図である。It is a perspective view which shows the other arrangement | sequence state of the three-dimensional board | substrate which shows the modification of 1st Embodiment of this invention to (a) and (b), respectively. 本発明の第2実施形態における立体基板への成膜状態をノズルを含めて天地逆にして示す正面図である。It is a front view which shows the film-forming state on the three-dimensional board | substrate in 2nd Embodiment of this invention reversely upside down including a nozzle. 図6中A部の拡大断面図である。It is an expanded sectional view of the A section in FIG. 本発明の第3実施形態におけるノズルの斜視図である。It is a perspective view of the nozzle in 3rd Embodiment of this invention. 本発明の第4実施形態におけるノズルの斜視図である。It is a perspective view of the nozzle in 4th Embodiment of this invention. 本発明の第5実施形態におけるノズルの斜視図である。It is a perspective view of the nozzle in 5th Embodiment of this invention. 本発明の第5実施形態における噴出口の断面図である。It is sectional drawing of the jet nozzle in 5th Embodiment of this invention. 本発明の第6実施形態におけるノズルと立体基板との関係を示す側面図である。It is a side view which shows the relationship between the nozzle and solid substrate in 6th Embodiment of this invention. 本発明の第7実施形態におけるノズルと立体基板との関係を示す側面図である。It is a side view which shows the relationship between the nozzle and solid substrate in 7th Embodiment of this invention. 本発明の第8実施形態における立体基板の表面に対するノズルの選択作動状態を(a)〜(e)によってそれぞれ示す説明図である。It is explanatory drawing which each shows the selective operation state of the nozzle with respect to the surface of the solid substrate in 8th Embodiment of this invention by (a)-(e). 本発明の第9実施形態における立体基板に対するノズルの照射角度変化を(a)〜(c)によってそれぞれ示す説明図である。It is explanatory drawing which each shows the irradiation angle change of the nozzle with respect to the solid substrate in 9th Embodiment of this invention by (a)-(c). 本発明の第9実施形態における照射角度変化装置の一例を示す斜視図である。It is a perspective view which shows an example of the irradiation angle change apparatus in 9th Embodiment of this invention. 本発明の第10実施形態におけるノズルの斜視図である。It is a perspective view of the nozzle in 10th Embodiment of this invention. 図17中B−B線に沿った拡大断面図である。FIG. 18 is an enlarged cross-sectional view along the line BB in FIG. 17. 本発明の第11実施形態におけるノズルと立体基板との関係を示す説明図である。It is explanatory drawing which shows the relationship between the nozzle and solid board | substrate in 11th Embodiment of this invention.

符号の説明Explanation of symbols

1 立体基板
1a 凹凸面
10,10A 立体回路基板の絶縁膜形成装置
11 フープ材繰出し部(基板送り手段)
11A フープ材巻取り部(基板送り手段)
12,12A,30,31,32,34,35,36,37ノズル
12h,30h,31h,32h,35h,36Ah,36Bh 噴出口
20 コンベア(基板送り手段)
34a 第1ノズル
34b 第2ノズル
34c 第3ノズル
36A 内筒
36B 外筒
m 絶縁膜
Ic,Ic1,Ic2 微粒子
DESCRIPTION OF SYMBOLS 1 3D substrate 1a Uneven surface 10, 10A 3D circuit board insulation film forming apparatus 11 Hoop material feeding part (substrate feeding means)
11A Hoop material winding part (substrate feeding means)
12, 12A, 30, 31, 32, 34, 35, 36, 37 nozzles 12h, 30h, 31h, 32h, 35h, 36Ah, 36Bh Spout 20 Conveyor (substrate feed means)
34a First nozzle 34b Second nozzle 34c Third nozzle 36A Inner cylinder 36B Outer cylinder m Insulating film Ic, Ic1, Ic2 Fine particles

Claims (12)

所定間隔で線状に配列された金属製の立体基板を順送りしながら当該立体基板の表面にノズルを用いて複数の方向から絶縁素材の微粒子を照射して絶縁膜を形成する絶縁膜形成工程を備えることを特徴とする立体回路基板の絶縁膜形成方法。   An insulating film forming step of forming an insulating film by sequentially irradiating fine particles of an insulating material from a plurality of directions using nozzles on the surface of the three-dimensional board while sequentially feeding metal three-dimensional boards arranged linearly at predetermined intervals An insulating film forming method for a three-dimensional circuit board, comprising: 前記ノズルには、微粒子の噴出口が複数形成されることを特徴とする請求項1に記載の立体回路基板の絶縁膜形成方法。   The method for forming an insulating film on a three-dimensional circuit board according to claim 1, wherein a plurality of fine particle ejection holes are formed in the nozzle. 複数のノズルが立体基板を略中心とする半円弧上で当該立体基板に向けて配置されることを特徴とする請求項1または2に記載の立体回路基板の絶縁膜形成方法。   The method for forming an insulating film on a three-dimensional circuit board according to claim 1, wherein the plurality of nozzles are arranged toward the three-dimensional board on a semicircular arc whose center is the three-dimensional board. 複数のノズルが立体基板を略中心とする円周上で当該立体基板に向けて配置されることを特徴とする請求項1または2に記載の立体回路基板の絶縁膜形成方法。   The method for forming an insulating film on a three-dimensional circuit board according to claim 1, wherein the plurality of nozzles are arranged toward a three-dimensional board on a circumference having the three-dimensional board as a center. 複数のノズルが立体基板を囲繞して回転自在な円筒体に設けられており、当該円筒体の内周に形成した噴出口が半径方向に対して周方向に所定角度傾斜されていることを特徴とする請求項1または2に記載の立体回路基板の絶縁膜形成方法。   A plurality of nozzles are provided in a rotatable cylindrical body surrounding the three-dimensional substrate, and a jet port formed on the inner periphery of the cylindrical body is inclined at a predetermined angle in the circumferential direction with respect to the radial direction. The method for forming an insulating film on a three-dimensional circuit board according to claim 1 or 2. 前記絶縁膜形成工程で立体基板上に絶縁膜を形成する前に、当該立体基板の表面から不要な微粒子を除去しておくことを特徴とする請求項1〜5のうちいずれか一つに記載の立体回路基板の絶縁膜形成方法。   The unnecessary fine particles are removed from the surface of the three-dimensional substrate before forming the insulating film on the three-dimensional substrate in the insulating film forming step. The method for forming an insulating film on a three-dimensional circuit board. 複数のノズルから照射する微粒子の径を、各ノズルで異ならせたことを特徴とする請求項3〜5のうちいずれか一つに記載の立体回路基板の絶縁膜形成方法。   The method for forming an insulating film on a three-dimensional circuit board according to any one of claims 3 to 5, wherein the diameters of the fine particles irradiated from the plurality of nozzles are different for each nozzle. 複数のノズルによる微粒子の照射を独立して作動可能とし、かつ、立体基板の移動速度を制御しつつ、移動する立体基板の表面に対向するノズルを選択的に作動させることを特徴とする請求項3〜5のうちいずれか一つに記載の立体回路基板の絶縁膜形成方法。   The fine particle irradiation by a plurality of nozzles can be independently operated, and the nozzle facing the surface of the moving three-dimensional substrate is selectively operated while controlling the moving speed of the three-dimensional substrate. The insulating film formation method of the three-dimensional circuit board as described in any one of 3-5. 前記ノズルの立体基板に対する照射角度を可変可能に構成し、移動する立体基板の表面に対向する照射角度となるように制御することを特徴とする請求項1〜7のうちいずれか一つに記載の立体回路基板の絶縁膜形成方法。   The irradiation angle of the nozzle with respect to the three-dimensional substrate is configured to be variable, and the irradiation angle is controlled so as to be opposed to the surface of the moving three-dimensional substrate. The method for forming an insulating film on a three-dimensional circuit board. 前記ノズルを、微粒子の噴出口が外周に形成される内筒と、この内筒に対して所定間隔をもって同心状に配置され微粒子の噴出口が内周に形成される外筒とを有するように構成し、
これら内筒と外筒との間に立体基板を螺旋状に回転させつつ筒軸方向に移動させるようにしたことを特徴とする請求項1または2に記載の立体回路基板の絶縁膜形成方法。
The nozzle includes an inner cylinder in which a fine particle ejection port is formed on the outer periphery, and an outer cylinder in which the fine particle ejection port is formed on the inner circumference and arranged concentrically with a predetermined interval with respect to the inner cylinder. Configure
3. The method for forming an insulating film on a three-dimensional circuit board according to claim 1, wherein the three-dimensional substrate is moved between the inner cylinder and the outer cylinder in the cylinder axis direction while being spirally rotated.
微粒子の照射方向を異ならせた複数のノズルを設け、当該立体基板およびノズルを立体基板の移動方向軸回りに相対的に回転させつつ立体基板の移動方向に相対的に往復動させることを特徴とする請求項1または2に記載の立体回路基板の絶縁膜形成方法。   A plurality of nozzles having different irradiation directions of the fine particles are provided, and the three-dimensional substrate and the nozzle are relatively reciprocated in the moving direction of the three-dimensional substrate while relatively rotating about the moving direction axis of the three-dimensional substrate. The method for forming an insulating film on a three-dimensional circuit board according to claim 1 or 2. 所定間隔で線状に配列された金属製の立体基板を順送りする基板送り手段と、
移動する立体基板に複数の方向から絶縁素材の微粒子を照射するノズルと、
を備えたことを特徴とする立体回路基板の絶縁膜形成装置。
A substrate feeding means for sequentially feeding a metal three-dimensional substrate arranged linearly at a predetermined interval;
A nozzle that irradiates the moving solid substrate with fine particles of insulating material from a plurality of directions;
An apparatus for forming an insulating film of a three-dimensional circuit board, comprising:
JP2006291656A 2006-10-26 2006-10-26 Method and apparatus for forming insulating film in three-dimensional circuit substrate Pending JP2008108978A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006291656A JP2008108978A (en) 2006-10-26 2006-10-26 Method and apparatus for forming insulating film in three-dimensional circuit substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006291656A JP2008108978A (en) 2006-10-26 2006-10-26 Method and apparatus for forming insulating film in three-dimensional circuit substrate

Publications (1)

Publication Number Publication Date
JP2008108978A true JP2008108978A (en) 2008-05-08

Family

ID=39442071

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006291656A Pending JP2008108978A (en) 2006-10-26 2006-10-26 Method and apparatus for forming insulating film in three-dimensional circuit substrate

Country Status (1)

Country Link
JP (1) JP2008108978A (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS513376B1 (en) * 1970-08-31 1976-02-03
JPS5916963A (en) * 1982-07-20 1984-01-28 Toshiba Corp Preparation of metal sprayed substrate
JPS60119784A (en) * 1983-12-01 1985-06-27 Kanegafuchi Chem Ind Co Ltd Manufacture of insulation metal base plate and device utilizing thereof
JPS63136692A (en) * 1986-11-28 1988-06-08 三菱電機株式会社 Method and equipment for manufacture of metal base printed wiring board
JPH1110037A (en) * 1997-06-20 1999-01-19 Toray Ind Inc Manufacture of planar body and its producing device
JP2001162211A (en) * 1999-12-06 2001-06-19 Kansai Paint Co Ltd Coating method
JP2002283304A (en) * 2001-03-22 2002-10-03 Misawa Homes Co Ltd Apparatus and method for spraying chemical

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS513376B1 (en) * 1970-08-31 1976-02-03
JPS5916963A (en) * 1982-07-20 1984-01-28 Toshiba Corp Preparation of metal sprayed substrate
JPS60119784A (en) * 1983-12-01 1985-06-27 Kanegafuchi Chem Ind Co Ltd Manufacture of insulation metal base plate and device utilizing thereof
JPS63136692A (en) * 1986-11-28 1988-06-08 三菱電機株式会社 Method and equipment for manufacture of metal base printed wiring board
JPH1110037A (en) * 1997-06-20 1999-01-19 Toray Ind Inc Manufacture of planar body and its producing device
JP2001162211A (en) * 1999-12-06 2001-06-19 Kansai Paint Co Ltd Coating method
JP2002283304A (en) * 2001-03-22 2002-10-03 Misawa Homes Co Ltd Apparatus and method for spraying chemical

Similar Documents

Publication Publication Date Title
JP4658506B2 (en) Power supply circuit for generating pulsed arc plasma and pulsed arc plasma processing apparatus
CN1323751C (en) Plasma processing apparatus, method for producing reaction vessel for plasma generation, and plasma processing method
JP2008541367A5 (en)
TWI565527B (en) Plasma film deposition device
US20120217224A1 (en) Wire electric discharge machining apparatus, wire electric discharge machining method, thin board manufacturing method, and semiconductor wafer manufacturing method
JP2017045713A (en) Arc type atmospheric pressure plasma apparatus
US20120125765A1 (en) Plasma processing apparatus and printed wiring board manufacturing method
CN112139492A (en) Adjustable compound vibration material disk of super-strong steel normal position silk powder composition
CN107666979A (en) For manufacturing stator or the method for the inner wall part for processing stator
US10941478B2 (en) Arc wire spraying method, equipment and product
JP2008108978A (en) Method and apparatus for forming insulating film in three-dimensional circuit substrate
JP6352436B2 (en) Deposition equipment
CN103839747A (en) Plasma device
US20210358720A1 (en) Substrate treating apparatus
WO2016075822A1 (en) Wiring board manufacturing method and wiring board manufacturing device
JP2019220639A (en) Gas distribution object for shower head
CN102078993A (en) Jet-type welding system and manufacture system of PCB (Printed Circuit Board) with same
JP2008053367A5 (en)
JP2004211161A (en) Plasma generating apparatus
JP2008146994A (en) Treatment device
JP2003159616A (en) Method for machining silicon carbide sintered compact
Smolentsev et al. Processing of channels in heat engine filters
CN203741412U (en) Atomic layer thin film deposition air inlet device
JP5630387B2 (en) Film forming apparatus and film forming method
JP2006147734A (en) Interlayer connection device and interlayer connection method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080305

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101012

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110222