JP2008107202A - Device for measuring oxidation/reduction material concentration - Google Patents

Device for measuring oxidation/reduction material concentration Download PDF

Info

Publication number
JP2008107202A
JP2008107202A JP2006290271A JP2006290271A JP2008107202A JP 2008107202 A JP2008107202 A JP 2008107202A JP 2006290271 A JP2006290271 A JP 2006290271A JP 2006290271 A JP2006290271 A JP 2006290271A JP 2008107202 A JP2008107202 A JP 2008107202A
Authority
JP
Japan
Prior art keywords
diffusion current
measured
liquid
voltage
oxidation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006290271A
Other languages
Japanese (ja)
Inventor
Shinichiro Sakata
真一郎 坂田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2006290271A priority Critical patent/JP2008107202A/en
Publication of JP2008107202A publication Critical patent/JP2008107202A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an device for measuring oxidation/reduction material concentration that dispenses with a means for controlling the flow rate of liquid to be measured, or a movable part, such as a motor for making an electrode rotate or vibrate itself. <P>SOLUTION: This device is equipped with a measuring tube 1, through which the liquid to be measured, containing an oxidation or reduction material, flows; a detection electrode 2 and a counter electrode 3 provided in contact with the liquid to be measured in the facing state on the inner wall surface of the measuring tube 1; a power supply circuit 4 for applying a voltage, set beforehand in between the detection electrode 2 and the counter electrode 3; a diffusion current detection circuit 5 for detecting the diffusion current, flowing between the detection electrode 2 and the counter electrode 3; an oxidizing/reducing material content calculating circuit 6 for calculating the content concentration of the oxidizing or reducing material, based on the diffusion current detected by the diffusion current detection circuit 5; and a restriction mechanism 7, provided in the circumscribed state to the inner circumferential wall surface of the measuring tube 1, on the upstream side of the detection electrode 2 and the counter electrode 3, for making the pressure loss of the flow of the liquid to be measured generated. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、水道水に含まれる残留塩素等の酸化または還元物質の含有濃度を2つの電極付近で発生する酸化または還元反応による拡散電流を測定することで求める酸化・還元物質濃度測定装置に関する。   The present invention relates to an oxidation / reduction substance concentration measuring device for obtaining the concentration of oxidation or reduction substance such as residual chlorine contained in tap water by measuring diffusion current due to oxidation or reduction reaction generated near two electrodes.

一般に、酸化・還元物質濃度測定装置は、被測定液中に2つの電極を被測定液に浸漬し、電極間に電圧を印加することによって、電極付近で発生する酸化または還元反応による拡散電流を測定するものである。   In general, an oxidation / reduction substance concentration measuring device immerses two electrodes in a liquid to be measured and applies a voltage between the electrodes, thereby generating a diffusion current due to an oxidation or reduction reaction generated near the electrodes. Measure.

この拡散電流の値と被測定液中の酸化または還元物質等の濃度とは下記式に示すような一定の関係をもつことが知られており、拡散電流の値を基にして、被測定液中の酸化または還元物質の濃度を算出している。   It is known that the value of the diffusion current and the concentration of oxidation or reduction substances in the measured liquid have a certain relationship as shown in the following formula. Based on the value of the diffusion current, the measured liquid The concentration of oxidized or reduced substances is calculated.

拡散電流=K×濃度
ここで、Kは反応物質の価数、ファラデー定数、拡散係数、検知する電極の面積、及び拡散層の厚さにより定まる定数である。
Diffusion current = K × concentration Here, K is a constant determined by the valence of the reactant, the Faraday constant, the diffusion coefficient, the area of the electrode to be detected, and the thickness of the diffusion layer.

水道水等、連続して流れる水溶液から安定して拡散電流を測定するためには、電極表面積と拡散層の厚さを一定に維持する必要があるが、この拡散層の厚さは、被測定液の流量変化の影響を受ける。   In order to stably measure the diffusion current from a continuously flowing aqueous solution such as tap water, it is necessary to keep the electrode surface area and the thickness of the diffusion layer constant. The thickness of this diffusion layer is measured. Influenced by changes in liquid flow rate.

そのためこれまでの酸化・還元物質濃度測定装置は、被測定液の流量を一定にすることが必要であるため、流量変化がある場合には、流量センサにより流量を計測し、流量変化による拡散電流の増減分を補正する手段がとられている。   For this reason, the conventional concentration measuring devices for oxidation / reduction substances need to keep the flow rate of the liquid to be measured constant. Therefore, if there is a change in the flow rate, the flow rate sensor measures the flow rate and the diffusion current due to the flow rate change. A means for correcting the increase / decrease in the amount is taken.

この流量を一定に維持する酸化・還元物質濃度測定装置には、水量調整や定流量弁を用いる技術が開示されている(例えば特許文献1参照。)。   A technique for adjusting the amount of water and using a constant flow valve is disclosed in an oxidation / reduction substance concentration measuring device that maintains a constant flow rate (see, for example, Patent Document 1).

また、流量を計測し補正する酸化・還元物質濃度測定装置には、流路に渦発生体を設け、カルマン渦の振動数から流量を算出し、流量補正する技術が開示されている。(例えば特許文献2参照。)。   In addition, an oxidation / reduction substance concentration measuring device that measures and corrects a flow rate is disclosed in which a vortex generator is provided in a flow path, the flow rate is calculated from the frequency of Karman vortices, and the flow rate is corrected. (For example, refer to Patent Document 2).

また、流量が少ない場合は、流量変化の影響を低減させるために電極自体を一定の速度で回転または振動することや被測定液を一定の速度で攪拌することで、電極先端に一定の強制対流を作り、拡散層の厚さを一定にする技術が開示されている(例えば特許文献3参照。)。
特開2000−46795(第2頁、図1) 特開2000−171432(第1頁、図1) 特開平9−288083(第1頁、図1)
If the flow rate is small, a constant forced convection is applied to the tip of the electrode by rotating or vibrating the electrode itself at a constant speed or stirring the liquid to be measured at a constant speed in order to reduce the effects of flow rate changes. And a technique for making the thickness of the diffusion layer constant is disclosed (for example, see Patent Document 3).
JP 2000-46795 (2nd page, FIG. 1) JP2000-171432 (first page, FIG. 1) Japanese Patent Laid-Open No. 9-288083 (first page, FIG. 1)

上述したような従来の各種の酸化・還元物質濃度測定装置においては、流量変化の影響があるため、流量を一定にしたり、電極自体を一定の速度で回転または振動したり、または被測定液を一定の速度で攪拌する必要があった。   In various conventional oxidation / reduction substance concentration measuring devices as described above, the flow rate is affected, so the flow rate is constant, the electrode itself is rotated or vibrated at a constant speed, or the liquid to be measured is It was necessary to stir at a constant speed.

流量の変化に対する補正を行なう場合には、酸化・還元物質濃度測定装置とは別の流量センサを取り付ける必要があり、装置が大掛かりになる問題がある。   When correcting the change in flow rate, it is necessary to attach a flow rate sensor different from the oxidation / reduction substance concentration measuring device, which causes a problem that the device becomes large.

また、流量一定にするために、定流量弁を用いて流量を制御する方法や、電極を浸漬した測定槽の上部に受水槽を設け、受水槽と測定槽の水面を一定に保ち、圧力差により流量を制御する方法の場合にも、装置が大掛かりとなる問題や、定流量弁を用いる場合には、さらに、目詰まりによる流量の変化が懸念されるため、定期的なメンテナンスが必要となる問題がある。   In order to make the flow rate constant, a method of controlling the flow rate using a constant flow valve or a water receiving tank at the top of the measurement tank immersed in the electrode, keeping the water surface of the water receiving tank and the measuring tank constant, the pressure difference Even in the case of the method of controlling the flow rate by means of the above, there is a concern that the apparatus becomes large, and when a constant flow valve is used, there is a concern that the flow rate may change due to clogging, so periodic maintenance is required. There's a problem.

電極自体を一定の速度で回転または振動する場合や、被測定液を一定速度で攪拌するためのモータによる駆動が必要となる場合には、駆動モータの故障による被測定液の回転、振動または攪拌が停止するため、定期的なメンテナンスが必要となる問題がある。   When the electrode itself rotates or vibrates at a constant speed, or when driving by a motor for stirring the liquid to be measured at a constant speed is required, rotation, vibration or stirring of the liquid to be measured due to a failure of the drive motor Is a problem that requires regular maintenance.

本発明は上記問題点を解決するためになされたもので、被測定液の流量を制御する手段や、また電極自体を回転または振動させるためのモータなどの可動部をもたない酸化・還元物質濃度測定装置を提供することを目的とする。   The present invention has been made to solve the above problems, and is an oxidation / reduction substance having no moving parts such as means for controlling the flow rate of the liquid to be measured and a motor for rotating or vibrating the electrode itself. An object is to provide a concentration measuring device.

上記目的を達成するために、本発明による請求項1に係る酸化・還元物質濃度測定装置は、酸化または還元物質を含有する被測定液が流れる測定管と、前記測定管内壁面で対向し、前記被測定液に接液して設けられる検知極及び対極と、前記検知極及び前記対極間に予め設定された電圧を印加する電源回路と、前記検知極と前記対極間との間に流れる拡散電流を検出する拡散電流検出回路と、前記拡散電流に基づいて酸化または還元物質の含有濃度を算出する酸化・還元物質濃度演算回路と、前記検知極及び前記対極の上流側において、前記測定管の内周壁面に外接して設けられ前記被測定液の流れの圧力損失を発生させる絞り機構とを備えたことを特徴とする。   In order to achieve the above object, an oxidation / reduction substance concentration measurement apparatus according to claim 1 of the present invention is opposed to a measurement tube in which a liquid to be measured containing an oxidation or reduction substance flows, on the inner wall surface of the measurement tube, A detection electrode and a counter electrode provided in contact with the liquid to be measured, a power supply circuit that applies a preset voltage between the detection electrode and the counter electrode, and a diffusion current that flows between the detection electrode and the counter electrode A diffusion current detection circuit for detecting the concentration, an oxidation / reduction substance concentration calculation circuit for calculating the concentration of the oxidized or reduced substance based on the diffusion current, and an upstream side of the detection electrode and the counter electrode, And a throttle mechanism that is provided so as to circumscribe the peripheral wall surface and generates a pressure loss in the flow of the liquid to be measured.

上記目的を達成するために、本発明による請求項2に係る酸化・還元物質濃度測定装置は、酸化または還元物質を含有する被測定液が流れる測定管と、前記測定管の内周壁面に外接して設けられ、前記被測定液の流れの圧力損失を発生させる絞り機構と、前記絞り機構の取り付け位置から、前記被測定液の上流側及び下流側の対称な位置で、前記測定管内壁面で対向し、前記被測定液に接液して設けられる検知極及び対極からなる二組の対電極と、前記絞り機構の上流側及び下流側の圧力を測定する圧力検出器と、前記圧力検出器で検出される上流側及び下側の圧力を比較し、前記被測定液の流れる方向を判別し、下流側と判定された側の一組の前記対電極を選択する対電極切替え制御回路と、前記電極切替え回路で選択された該対電極間に予め設定された電圧を印加する電源回路と、前記電極切替え回路で選択された前記対電極間に流れる拡散電流を検出する拡散電流検出回路と、前記拡散電流に基づいて酸化または還元物質の含有濃度を算出する酸化・還元物質濃度演算回路とを備えたことを特徴とする。   In order to achieve the above object, an oxidation / reduction substance concentration measuring apparatus according to claim 2 of the present invention comprises a measuring tube through which a liquid to be measured containing an oxidizing or reducing substance flows, and an outer peripheral wall of the measuring tube. A throttling mechanism for generating a pressure loss of the flow of the liquid to be measured, and a symmetrical position on the upstream side and the downstream side of the liquid to be measured on the inner wall surface of the measuring pipe from the attachment position of the throttling mechanism Two sets of counter electrodes that are opposed to each other and are provided in contact with the liquid to be measured, a pressure detector that measures the pressure on the upstream side and the downstream side of the throttle mechanism, and the pressure detector A counter electrode switching control circuit for comparing the pressure on the upstream side and the lower side detected in step, determining the direction in which the liquid to be measured flows, and selecting a set of the counter electrodes on the side determined to be the downstream side; Between the counter electrodes selected by the electrode switching circuit A power supply circuit for applying a preset voltage; a diffusion current detection circuit for detecting a diffusion current flowing between the counter electrodes selected by the electrode switching circuit; and a concentration of an oxidizing or reducing substance based on the diffusion current And an oxidizing / reducing substance concentration calculation circuit for calculating

上記目的を達成するために、本発明による請求項3に係る酸化・還元物質濃度測定装置は、酸化または還元物質を含有する被測定液が流れる測定管と、前記測定管内壁面で対向し、前記被測定液に接液して設けられる検知極及び対極からなる複数の対電極と、複数の前記対電極の上流側において、前記測定管の内周壁面に外接して設けられ、前記被測定液の流れの圧力損失を発生させる絞り機構と、前記対電極間に印加する予め設定された測定時電圧、付着判定時電圧、及び洗浄時電圧を発生する電源回路と、複数の前記対電極間の夫々に流れる拡散電流を測定する拡散電流検出回路と、前記測定時電圧が印加された時に前記拡散電流に基づいて酸化または還元物質の含有濃度を算出する酸化・還元物質濃度演算回路と、夫々の前記対電極間の個々に独立して前記測定時電圧、前記付着判定時電圧、及び前記洗浄時電圧を切替えるスイッチと、前記拡散電流によって前記スイッチを選択制御する印加電圧切替え制御回路とを備えたことを特徴とする。   In order to achieve the above object, an oxidation / reduction substance concentration measuring device according to claim 3 of the present invention is opposed to a measurement tube through which a liquid to be measured containing an oxidation or reduction substance flows, and the inner wall surface of the measurement tube, A plurality of counter electrodes each having a detection electrode and a counter electrode provided in contact with the liquid to be measured; and provided on the upstream side of the plurality of counter electrodes and in contact with an inner peripheral wall surface of the measurement tube. A throttling mechanism that generates a pressure loss of the flow of the gas, a power supply circuit that generates a preset measurement voltage, adhesion determination voltage, and cleaning voltage applied between the counter electrodes, and a plurality of the counter electrodes A diffusion current detection circuit that measures a diffusion current flowing through each of the currents, an oxidation / reduction substance concentration calculation circuit that calculates a content concentration of an oxidation or reduction substance based on the diffusion current when the measurement voltage is applied, Between the counter electrodes A switch for switching the measurement voltage, the adhesion determination voltage, and the cleaning voltage independently, and an applied voltage switching control circuit that selectively controls the switch by the diffusion current. .

以上説明したように、本発明によれば、測定管内に対向し、被測定液に接液して設けられる検知極と対極の上流側で、測定管内を流れる被測定液の絞り機構を設けて、圧力損失を発生させてこの絞り機構の下流側に乱流を発生させ、被測定液の拡散層の厚さを一定にするようにしたので、被測定液の流量を制御する手段や、測定管内で被測定液を攪拌したりする可動部を持たない酸化・還元物質濃度測定装置を提供することが出来る。   As described above, according to the present invention, there is provided a throttling mechanism for the liquid to be measured flowing in the measurement tube on the upstream side of the detection electrode and the counter electrode provided in contact with the liquid to be measured and in contact with the liquid to be measured. Since the pressure loss is generated and the turbulent flow is generated downstream of the throttling mechanism so that the thickness of the diffusion layer of the liquid to be measured is made constant, the means for controlling the flow rate of the liquid to be measured and the measurement It is possible to provide an oxidation / reduction substance concentration measuring apparatus that does not have a movable part that stirs a liquid to be measured in a tube.

以下、本発明の実施例について図面を参照して説明する。   Embodiments of the present invention will be described below with reference to the drawings.

本発明による酸化・還元物質濃度測定装置の実施例1について、図面を参照して説明する。図1(a)は、本発明の酸化・還元物質濃度測定装置の実施例を示す構成図で、同図(b)は、図1(a)のx−x矢印に示す管軸方向から見た断面図である。   Example 1 of an oxidation / reduction substance concentration measuring apparatus according to the present invention will be described with reference to the drawings. FIG. 1 (a) is a block diagram showing an embodiment of the oxidation / reduction substance concentration measuring apparatus of the present invention, and FIG. 1 (b) is a view from the tube axis direction indicated by the xx arrow in FIG. 1 (a). FIG.

本発明による酸化・還元物質濃度測定装置は、被測定液に酸化または還元物質が含有される、例えば、水道水の残留塩素濃度を測定する場合について説明する。   The oxidation / reduction substance concentration measuring apparatus according to the present invention will be described in the case where, for example, the residual chlorine concentration of tap water is measured, in which the liquid to be measured contains an oxidation or reduction substance.

被測定液を流す測定管1と、測定管1の管壁に対向して設けられる検知極2及び対極3と、検知極2と対極3の間に予め設定される測定時の電圧を印加する電源回路4と、検知極2と対極3の間を流れる拡散電流を検出する拡散電流検出回路5と、拡散電流検出回路5の出力から被測定液に含まれる残留塩素等の酸化または還元物質の含有濃度を求める酸化・還元物質濃度演算回路6と、検知極2と対極3の上流側で測定管1の内周壁面に外接して設けられ、予め設定される開口内径を有する絞り機構7とからなる。   A measurement tube 1 for flowing the liquid to be measured, a detection electrode 2 and a counter electrode 3 provided to face the tube wall of the measurement tube 1, and a measurement voltage set in advance between the detection electrode 2 and the counter electrode 3 are applied. A power source circuit 4, a diffusion current detection circuit 5 that detects a diffusion current flowing between the detection electrode 2 and the counter electrode 3, and an oxidation or reduction substance such as residual chlorine contained in the liquid to be measured from the output of the diffusion current detection circuit 5 An oxidizing / reducing substance concentration calculating circuit 6 for obtaining the concentration of concentration; and a throttle mechanism 7 provided on the upstream side of the detection electrode 2 and the counter electrode 3 so as to circumscribe the inner peripheral wall surface of the measuring tube 1 and having a preset opening inner diameter; Consists of.

次に、各部の詳細について説明する。測定管1は、塩化ビニル等の絶縁物からなり、検知極2及び対極3は、図1(b)に示すように、測定管1の内壁面に密着または内壁面から突出した状態で対向して、夫々が接液して固定される。   Next, the detail of each part is demonstrated. The measuring tube 1 is made of an insulator such as vinyl chloride, and the detection electrode 2 and the counter electrode 3 are opposed to the inner wall surface of the measuring tube 1 while being in close contact with or protruding from the inner wall surface, as shown in FIG. Each of them is wetted and fixed.

電極の材質は、水道水に含まれる残留塩素濃度を測定する場合においては、検知極2は金、対極3は銀または塩化銀とすることが望ましい。   When measuring the residual chlorine concentration contained in tap water, it is desirable that the electrode is made of gold for the detection electrode 2 and silver or silver chloride for the counter electrode 3.

電源回路4は、±500mV程度の直流電圧を発生する安定化電源で、拡散電流と濃度とが比例する範囲の電圧が予め設定される。そして、この電圧を印加したときに検知極2と対極3間に流れる拡散電流を測定する拡散電流検出回路5は、数μAレベルの電流が検出できる回路構成としておく。   The power supply circuit 4 is a stabilized power supply that generates a DC voltage of about ± 500 mV, and a voltage in a range in which the diffusion current and the concentration are proportional is preset. The diffusion current detection circuit 5 that measures the diffusion current flowing between the detection electrode 2 and the counter electrode 3 when this voltage is applied has a circuit configuration that can detect a current of several μA level.

また、酸化・還元物質濃度演算回路6は、記憶、演算機能を備えるマイクロコンピュータで構成され、被測定液の濃度と拡散電流との関係をテーブル化して記憶しておき、検出された拡散電流に対応する濃度をこのテーブルを参照して求める。   The oxidation / reduction substance concentration calculation circuit 6 is composed of a microcomputer having a storage and calculation function, stores the relationship between the concentration of the liquid to be measured and the diffusion current in a table, and stores the detected diffusion current. The corresponding density is determined with reference to this table.

絞り機構7は、測定管1と同じ材質の塩化ビニルなどの絶縁板で、測定管1と同心円の絞り穴を備えるドーナツ板を、測定管1の内周壁面に管軸と直交する方向でこの円板の外周を接合して固定される。   The throttle mechanism 7 is an insulating plate made of polyvinyl chloride or the like made of the same material as the measurement tube 1, and a donut plate having a throttle hole concentric with the measurement tube 1 is formed on the inner peripheral wall surface of the measurement tube 1 in a direction perpendicular to the tube axis. The outer periphery of the disk is joined and fixed.

測定管1及び絞り機構7の材質は、これらに要求される機械的な強度と、拡散電流の測定に影響しない構造であれば良く、夫々を金属で一体成型しやすい材料とし強度を確保して、その接液部に絶縁物をライニングする構造としても良い。   The material of the measuring tube 1 and the diaphragm mechanism 7 may be any structure that does not affect the mechanical strength required for these and the measurement of diffusion current. A structure in which an insulating material is lined on the liquid contact portion may be employed.

絞り機構7の絞り穴の径d1は、予め予測される被測定液の流速の変化範囲内で拡散電流が変わらないように、絞り機構7とその下流の検出極2及び対極3との間を所定の距離d2の範囲内に配設して、検出極2及び対極3の接液表面で一定の乱流状態が発生する径d1とその距離d2とを予め選定する。   The diameter d1 of the throttle hole of the throttle mechanism 7 is between the throttle mechanism 7 and the detection electrode 2 and the counter electrode 3 downstream thereof so that the diffusion current does not change within the change range of the flow velocity of the liquid to be measured which is predicted in advance. A diameter d1 at which a constant turbulent state occurs on the liquid contact surface of the detection electrode 2 and the counter electrode 3 and the distance d2 are selected in advance within a predetermined distance d2.

例えば、図2は、本発明による同一濃度と見なせる残留塩素を含む水道水を口径Dの測定管1に流した時の拡散電流(μA)と流量(L/min)との関係を図示したもので、破線は絞り機構7がない場合の特性、実線は本発明による絞り機構7がある場合の特性、また一点破線は電極自体を回転させた従来方式の特性を示す。   For example, FIG. 2 illustrates the relationship between the diffusion current (μA) and the flow rate (L / min) when tap water containing residual chlorine, which can be regarded as the same concentration according to the present invention, is passed through the measuring tube 1 having the diameter D. The broken line indicates the characteristic when the diaphragm mechanism 7 is not provided, the solid line indicates the characteristic when the diaphragm mechanism 7 according to the present invention is provided, and the one-dot broken line indicates the characteristic of the conventional method in which the electrode itself is rotated.

本発明による実験では、絞り機構7の絞り比α(=d1/D)を0.2乃至0.75とし、検出極2及び対極3との距離d2を0.5D乃至2Dの範囲とした場合には、実線に示すように同一濃度の被測定液の流量が2(L/min)から10(L/min)の範囲で変化しても、拡散電流の値は、0.55乃至0.65(μA)と、ほぼ同じレベル値となることが確認された。   In the experiment according to the present invention, the aperture ratio α (= d1 / D) of the aperture mechanism 7 is set to 0.2 to 0.75, and the distance d2 between the detection electrode 2 and the counter electrode 3 is set to a range of 0.5D to 2D. As shown by the solid line, even if the flow rate of the liquid to be measured having the same concentration changes in the range of 2 (L / min) to 10 (L / min), the value of the diffusion current is 0.55 to 0.00. It was confirmed that the level value was almost the same as 65 (μA).

図2に見られるように、絞り機構7を備えないストレートな測定管1に検知極2と対極3を設けた場合には、破線に示すように流量の増加に伴い、ほぼ比例して拡散電流の値が増加するが、絞り機構7を設けた場合には、実線に示すように拡散電流の値は、一点破線に示す従来方式と同等レベルの安定度が得られる。   As shown in FIG. 2, when the detection electrode 2 and the counter electrode 3 are provided in the straight measuring tube 1 not provided with the throttle mechanism 7, the diffusion current is approximately proportional to the increase in the flow rate as shown by the broken line. However, in the case where the diaphragm mechanism 7 is provided, the diffusion current value has the same level of stability as the conventional method shown by the one-dot broken line as shown by the solid line.

即ち、このように構成された絞り機構7を備える酸化・還元物質濃度測定装置は、絞り機構7下流側に発生する乱流によって、特許文献3に示されたようなポーラログラフ法などの被測定液を攪拌するものと同様の効果が得られ、流量変化の影響を受けにくい測定が可能となる。   That is, the oxidation / reduction substance concentration measuring apparatus including the throttle mechanism 7 configured as described above is a liquid to be measured such as a polarographic method as disclosed in Patent Document 3 due to turbulent flow generated on the downstream side of the throttle mechanism 7. The same effect as that obtained by stirring can be obtained, and measurement that is not easily affected by changes in flow rate can be performed.

本発明の酸化・還元物質濃度測定装置の実施例2について、図3及び図4を参照して説明する。   A second embodiment of the oxidation / reduction substance concentration measurement apparatus of the present invention will be described with reference to FIGS.

図3は、本発明の酸化・還元物質濃度測定装置の実施例2の構成図で、図4はその動作を説明するフローチャートである。実施例2の各部について、図1に示す実施例1の酸化・還元物質濃度測定装置と同一部分は、同一記号を付しその説明を省略する。   FIG. 3 is a block diagram of Embodiment 2 of the oxidation / reduction substance concentration measuring apparatus of the present invention, and FIG. 4 is a flowchart for explaining the operation thereof. About each part of Example 2, the same part as the oxidation / reduction substance density | concentration measuring apparatus of Example 1 shown in FIG. 1 attaches | subjects the same symbol, and abbreviate | omits the description.

この実施例2が、実施例1と異なる点は、実施例1では、検知極2と対極3とからなる対電極を、管軸と直交する方向に測定管1の内周壁面に取り付けられた同心円板の絞り機構7の下流方向で、絞り機構7から所定の距離内に設けたが、本実施例2では、絞り機構7の取り付け位置に対し、管軸上で対称に1対の対電極を2箇所に設け、さらに、絞り機構7の左右2箇所の測定管1内の圧力を測定して被測定液の流れる方向を判別し、被測定液の下流側の対電極を自動的に選択して被測定液の濃度を測定するようにしたことにある。   The difference between the second embodiment and the first embodiment is that in the first embodiment, the counter electrode composed of the detection electrode 2 and the counter electrode 3 is attached to the inner peripheral wall surface of the measurement tube 1 in the direction perpendicular to the tube axis. In the downstream direction of the concentric disc diaphragm mechanism 7, it is provided within a predetermined distance from the diaphragm mechanism 7. However, in the second embodiment, a pair of counter electrodes symmetrically on the tube axis with respect to the mounting position of the diaphragm mechanism 7. Are further measured, and the pressure in the two measurement tubes 1 on the left and right sides of the throttle mechanism 7 is measured to determine the direction in which the liquid to be measured flows, and the counter electrode on the downstream side of the liquid to be measured is automatically selected. Thus, the concentration of the liquid to be measured is measured.

図3において、絞り機構7の左右には、検知極2A及び対極3Aと、検知極2B及び対極3Bとを絞り機構7から所定の距離d2内に設ける。   In FIG. 3, the detection electrode 2 </ b> A and the counter electrode 3 </ b> A, and the detection electrode 2 </ b> B and the counter electrode 3 </ b> B are provided on the left and right sides of the diaphragm mechanism 7 within a predetermined distance d <b> 2.

さらに、絞り機構7の左右の圧力を測定する半導体圧力センサ8A及び8Bと、該半導体圧力センサ8A及び8Bの出力から左右の圧力差を求める圧力検出器8と、圧力の低い方を下流側と判定し、下流側と判定された側の対電極を選択する対電極切替え回路9と、スイッチSW1とを備える。   Further, semiconductor pressure sensors 8A and 8B for measuring the left and right pressures of the throttle mechanism 7, a pressure detector 8 for obtaining a left and right pressure difference from the outputs of the semiconductor pressure sensors 8A and 8B, and a lower pressure on the downstream side A counter electrode switching circuit 9 that determines and selects the counter electrode on the side determined to be the downstream side, and a switch SW1 are provided.

半導体圧力センサ8A及び8Bは、測定管1の内壁に埋め込み、接液するように設ける以外に、測定管1の管壁に導圧管を設け、2箇所の内圧を差圧伝送器に導いて測定するようにしても良い。   The semiconductor pressure sensors 8A and 8B are embedded in the inner wall of the measuring tube 1 and provided so as to be in contact with the liquid. In addition, a pressure guiding tube is provided on the tube wall of the measuring tube 1, and two internal pressures are guided to the differential pressure transmitter for measurement. You may make it do.

次に、図4を参照して、このように構成された実施例2の動作について説明する。   Next, the operation of the second embodiment configured as described above will be described with reference to FIG.

先ず、半導体圧力センサ8Aと半導体圧力センサ8Bとの圧力差ΔPを求める(s1)。次に、この圧力差ΔPの極性を判定する(s2)。   First, a pressure difference ΔP between the semiconductor pressure sensor 8A and the semiconductor pressure sensor 8B is obtained (s1). Next, the polarity of the pressure difference ΔP is determined (s2).

この圧力差ΔPの値が正の場合は、半導体圧力センサ8B側が下流側と判定し、検知極2B及び対極3B側を選択する制御出力を対電極切替え制御回路9からスイッチSW1に送信し、対電極を切替える(s4)。   When the value of the pressure difference ΔP is positive, the semiconductor pressure sensor 8B side is determined to be the downstream side, and a control output for selecting the detection electrode 2B and the counter electrode 3B side is transmitted from the counter electrode switching control circuit 9 to the switch SW1. The electrodes are switched (s4).

この圧力差ΔPが負の値となる場合には、半導体圧力センサ8A側が下流と判定し、検知極2A及び対極3A側を選択する制御出力を対電極切替え制御回路9からスイッチSW1に送信し、対電極を切替える(s3)。   When the pressure difference ΔP is a negative value, the semiconductor pressure sensor 8A side is determined to be downstream, and a control output for selecting the detection electrode 2A and the counter electrode 3A side is transmitted from the counter electrode switching control circuit 9 to the switch SW1, The counter electrode is switched (s3).

したがって、水道配管のように流れ方向が変わる場合、検知極2及び対極3が絞り機構7の一方にのみの構成では、流れの向きが変わると測定が不可能になるが、絞り機構7の左右の圧力差によって被測定液の流れ方向を判定し、絞り機構7前後の検知極2及び対極3を自動選択する本発明によれば、流れ方向が変わっても測定が可能となる、可動部を持たない酸化・還元物質濃度測定装置を提供できる。   Therefore, when the flow direction is changed as in a water pipe, in the configuration in which the detection electrode 2 and the counter electrode 3 are only provided in one of the throttle mechanisms 7, measurement becomes impossible when the flow direction changes. According to the present invention in which the flow direction of the liquid to be measured is determined based on the pressure difference and the detection electrode 2 and the counter electrode 3 before and after the throttle mechanism 7 are automatically selected, the movable part can be measured even if the flow direction changes. An oxidation / reduction substance concentration measuring device that does not have can be provided.

本発明の酸化・還元物質濃度測定装置の実施例3について図5乃至図7を参照して説明する。   Embodiment 3 of the oxidation / reduction substance concentration measuring apparatus according to the present invention will be described with reference to FIGS.

図5は、酸化・還元物質濃度測定装置の実施例3の構成図である。実施例3の各部について、図1に示す実施例1の酸化・還元物質濃度測定装置と同一部分は、同一記号を付しその説明を省略する。   FIG. 5 is a configuration diagram of Example 3 of the oxidation / reduction substance concentration measurement apparatus. About each part of Example 3, the same part as the oxidation / reduction substance density | concentration measuring apparatus of Example 1 shown in FIG. 1 attaches | subjects the same symbol, and abbreviate | omits the description.

この実施例3が、実施例1と異なる点は、実施例1では、検知極2と対極3とからなる対電極一対を、絞り機構7の下流方向に設けたが、本実施例3では、絞り機構7の下流側に複数対の対電極を備えた。   The difference between the third embodiment and the first embodiment is that, in the first embodiment, a pair of counter electrodes composed of the detection electrode 2 and the counter electrode 3 is provided in the downstream direction of the aperture mechanism 7, but in the third embodiment, A plurality of pairs of counter electrodes were provided on the downstream side of the throttle mechanism 7.

そして、この対電極表面の汚れ状態を判定するための複数の印加電圧を備える電源回路14と、予め設定される拡散電流の出力の変化から対電極の汚れを判定する印加電圧切替え制御回路21とを備えて、対電極の汚れ状態を判定して使用する対電極を切替えて被測定液の濃度を測定するようにしたことにある。   The power supply circuit 14 includes a plurality of applied voltages for determining the contamination state of the counter electrode surface, and the applied voltage switching control circuit 21 for determining the contamination of the counter electrode from a change in preset diffusion current output. And determining the contamination state of the counter electrode and switching the counter electrode to be used to measure the concentration of the liquid to be measured.

この電源回路14には、詳細を後述する測定時電圧14a、付着判定時電圧14b、及びこれらと逆極性の洗浄時電圧14cを発生する定電圧回路を備える。   The power supply circuit 14 is provided with a constant voltage circuit that generates a measurement voltage 14a, an adhesion determination voltage 14b, and a cleaning voltage 14c having a polarity opposite to that described later.

そして、検知極2C及び対極3C、検知極2D及び対極3Dの夫々の対電極に印加する電圧を独立して切替えるスイッチSW2と、このスイッチSW2を拡散電流の値で制御する印加電圧切替え制御回路21を備える。   A switch SW2 for independently switching voltages applied to the counter electrodes of the detection electrode 2C and the counter electrode 3C, the detection electrode 2D and the counter electrode 3D, and an applied voltage switching control circuit 21 for controlling the switch SW2 with the value of the diffusion current. Is provided.

夫々の対電極間を流れる拡散電流を測定する拡散電流測定回路5a及び5bは図に示すように独立に設けても良いし、切替えて使用することで1つにすることも可能である。   The diffusion current measuring circuits 5a and 5b for measuring the diffusion current flowing between the respective counter electrodes may be provided independently as shown in the figure, or may be switched to one.

一般に、残留塩素を含む水道水が被測定液である場合、当対電極間に印加する印加電圧と対電極間流れる拡散電流とは、図6の実線で示すような関係が得られることが知られている。   In general, when tap water containing residual chlorine is the liquid to be measured, the relationship between the applied voltage applied between the counter electrodes and the diffusion current flowing between the counter electrodes has the relationship shown by the solid line in FIG. It has been.

印加電圧を変化させて対極に対する検知極の電位を下げてゆくと、反応速度がまして拡散電流の値が大きくなってゆく(領域1)。さらに電位下げてゆくと電流が変化少なくなる、濃度に比例する拡散電流が得られる領域となる(領域2)。   When the applied voltage is changed to lower the potential of the detection electrode with respect to the counter electrode, the reaction speed increases and the value of the diffusion current increases (region 1). When the potential is further lowered, the current decreases less, and a diffusion current proportional to the concentration is obtained (region 2).

これは、反応速度が充分速くなると、拡散速度が反応速度に追いつけなくなり検知極2の部分で濃度に分極が生じて一定の各拡散層が形成され、濃度に応じた拡散電流が検知極2に流れるためと考えられている。   This is because when the reaction rate becomes sufficiently high, the diffusion rate cannot catch up with the reaction rate, and the concentration is polarized in the detection electrode 2 to form each diffusion layer, and a diffusion current corresponding to the concentration is applied to the detection electrode 2. It is thought to flow.

さらに、印加電位を下げてゆくと再び印加電圧に比例して拡散電流が増大する状態となる(領域3)。   Further, when the applied potential is lowered, the diffusion current increases again in proportion to the applied voltage (region 3).

このような電圧電流特性を、高濃度から低濃度までの濃度測定範囲について測定する。   Such voltage-current characteristics are measured in a concentration measurement range from high concentration to low concentration.

そして、濃度に比例する測定領域(領域2)において測定時に印加する測定電圧14a(例えば、−120mV)を定め、濃度と拡散電流の関係を予めテーブル化して酸化・還元物質濃度演算回路6に記憶しておく。   Then, a measurement voltage 14a (for example, −120 mV) to be applied at the time of measurement is determined in the measurement region (region 2) proportional to the concentration, and the relationship between the concentration and the diffusion current is tabulated in advance and stored in the oxidation / reduction substance concentration calculation circuit 6. Keep it.

ところで、被測定液が水道水の場合でも長時間の測定において、検知極2にカルシウム、マグネシウム、鉄、マンガンなどのイオンが析出し、この析出物質が電極表面に付着することで電極表面積が小さくなり、拡散電流の値が減少することが知られている。   By the way, even when the liquid to be measured is tap water, ions such as calcium, magnesium, iron, and manganese are deposited on the detection electrode 2 in a long-time measurement, and the deposited material adheres to the electrode surface, thereby reducing the electrode surface area. Thus, it is known that the value of the diffusion current decreases.

付着物がある場合は、破線に示すように印加する電圧を上げても拡散電流の値はほとんど変化しないが、付着物が無く低濃度の場合には印加電圧をさらに低下させると急激に拡散電流が増大するので、図6に示すような付着判定時電圧14b(例えば、−500mV)を印加して、この時の拡散電流の変動量をみることで、電極表面への付着の有無を判定することができる。   If there is deposit, the value of the diffusion current will hardly change even if the applied voltage is increased as shown by the broken line, but if there is no deposit and the concentration is low, if the applied voltage is further reduced, the diffusion current will suddenly increase. 6 is applied, a voltage 14b (for example, −500 mV) at the time of adhesion determination as shown in FIG. 6 is applied, and the presence / absence of adhesion to the electrode surface is determined by observing the fluctuation amount of the diffusion current at this time. be able to.

この付着の有無を判定するために、測定時電圧14aを印加時で、拡散電流が所定の下限値Imin以下となった時に、付着判定時電圧を印加して、この時の拡散電流が所定の上限値Imaxを超えたか否かで判定する
この拡散電流の下限値Iminと上限値Imaxとを予め求め、酸化・還元物質濃度演算回路6に記憶しておく。
In order to determine the presence or absence of the adhesion, when the measurement voltage 14a is applied and the diffusion current falls below a predetermined lower limit Imin, the adhesion determination voltage is applied, and the diffusion current at this time Judgment is made based on whether or not the upper limit value Imax has been exceeded.

次に、このように構成された実施例3の動作について図7、及び図5、図6を参照して説明する。   Next, the operation of the third embodiment configured as described above will be described with reference to FIG. 7, FIG. 5, and FIG.

測定中の検知極2Cと対極3C間に流れる拡散電流Iは、拡散電流検出回路5aで検出される。この時、拡散電流Iが下限値Imin以下になったか否かが印加電圧切替え制御回路21で判定される(s11)。   The diffusion current I flowing between the detection electrode 2C and the counter electrode 3C being measured is detected by the diffusion current detection circuit 5a. At this time, the applied voltage switching control circuit 21 determines whether or not the diffusion current I has become the lower limit value Imin or less (s11).

拡散電流Iが、下限値Imin以下でなければ、スイッチSW2はそのままの状態を保持し、濃度の測定が継続される(s12)。   If the diffusion current I is not less than or equal to the lower limit value Imin, the switch SW2 is kept as it is, and the concentration measurement is continued (s12).

下限値Imin以下であると判定された場合には、印加電圧切替え制御回路21は、付着判定時電圧14bを選択するように、スイッチSW2を切替える(s13)。   When it is determined that the value is equal to or lower than the lower limit value Imin, the applied voltage switching control circuit 21 switches the switch SW2 so as to select the adhesion determination time voltage 14b (s13).

次に、印加電圧切替え制御回路21は、付着判定時電圧14bを印加した状態で、拡散電流Iが上限値Imaxを以下であるか否かが判定される(s14)。   Next, the applied voltage switching control circuit 21 determines whether or not the diffusion current I is less than or equal to the upper limit value Imax in the state where the adhesion determination time voltage 14b is applied (s14).

そうでなければ、即ち、付着無しとの判定がされ、印加電圧を測定時電圧14aに切替えて濃度の測定が継続される。   Otherwise, it is determined that there is no adhesion, the applied voltage is switched to the measurement voltage 14a, and the concentration measurement is continued.

上限値Imax以下の場合には、付着ありと判定され待機している検知極2D及び対極3Dを選択し、測定時電圧14aを印加して(s15)、拡散電流検出回路5bの出力から濃度が測定される(s12)。   In the case of the upper limit Imax or less, the detection electrode 2D and the counter electrode 3D that are determined to be attached and are on standby are selected, the measurement voltage 14a is applied (s15), and the concentration is determined from the output of the diffusion current detection circuit 5b. Measured (s12).

付着ありと判定された検知極2Cと対極3Cは、測定時電圧14aと逆極性の洗浄時電圧14cを印加して、検知極2cに付着したプラスイオンを取り除くことが出来る電気化学洗浄がされる。   The detection electrode 2C and the counter electrode 3C determined to be attached are subjected to electrochemical cleaning that can remove positive ions attached to the detection electrode 2c by applying a cleaning voltage 14c having a polarity opposite to the measurement voltage 14a. .

本実施例によれば、検知極がプラスイオンの付着物等で汚れた場合でも、他の対電極に切替えて測定を継続することが出来る可動部を持たない酸化・還元物質濃度測定装置を提供することができる。   According to the present embodiment, there is provided an oxidation / reduction substance concentration measurement device having no movable part that can be switched to another counter electrode and continue measurement even when the detection electrode is contaminated with a deposit of positive ions or the like. can do.

本発明は上述したような実施例に何ら限定されるものでなく、測定管1の形状を円筒管でなく方形管としてもよく、また絞り機構7の中空の形状も測定管1の形状に応じて種々変形してもよく、本発明の主旨を逸脱しない範囲内で適宜変更することが出来る。   The present invention is not limited to the embodiment described above, and the shape of the measuring tube 1 may be a rectangular tube instead of a cylindrical tube, and the hollow shape of the throttle mechanism 7 depends on the shape of the measuring tube 1. The present invention may be variously modified and can be changed as appropriate without departing from the gist of the present invention.

本発明の実施例1の酸化・還元物質濃度測定装置の構成図。BRIEF DESCRIPTION OF THE DRAWINGS The block diagram of the oxidation / reduction substance concentration measuring apparatus of Example 1 of this invention. 被測定液の流れの状態と拡散電流特性の説明図。An explanatory view of the state of flow of a liquid to be measured and diffusion current characteristics. 本発明の実施例2の酸化・還元物質濃度測定装置の構成図。The block diagram of the oxidation / reduction substance concentration measuring apparatus of Example 2 of this invention. 実施例2の動作を説明するフローチャート。9 is a flowchart for explaining the operation of the second embodiment. 本発明の実施例3の酸化・還元物質濃度測定装置の構成図。The block diagram of the oxidation / reduction substance concentration measuring apparatus of Example 3 of this invention. 本発明の実施例3の酸化・還元物質濃度測定装置の印加電圧に対する拡散電流特性を説明図。Explanatory drawing with respect to the applied voltage of the oxidation / reduction substance density | concentration measuring apparatus of Example 3 of this invention with respect to the applied voltage. 実施例3の説明する動作を説明するフローチャート。10 is a flowchart for explaining the operation explained in the third embodiment.

符号の説明Explanation of symbols

1 測定管
2、2A乃至2D 検知極
3、3A乃至3D 対極
4 電源回路
5、5a、5b 拡散電流検出回路
6 酸化・還元物質濃度演算回路
7 絞り機構
8 圧力検出器
8A、8B 半導体圧力センサ
9 対電極切替え制御回路
14 電源回路
14a 測定時電圧
14b 付着判定時電圧
14c 洗浄時電圧
21 印加電圧切替え制御回路
SW1、SW2 スイッチ
DESCRIPTION OF SYMBOLS 1 Measuring tube 2, 2A thru | or 2D Detection pole 3, 3A thru | or 3D Counter electrode 4 Power supply circuit 5, 5a, 5b Diffusion current detection circuit 6 Oxidation / reduction substance concentration calculation circuit 7 Throttle mechanism 8 Pressure detector 8A, 8B Semiconductor pressure sensor 9 Counter electrode switching control circuit 14 Power supply circuit 14a Measurement voltage 14b Adhesion determination voltage 14c Washing voltage 21 Applied voltage switching control circuit SW1, SW2 switch

Claims (6)

酸化または還元物質を含有する被測定液が流れる測定管と、
前記測定管内壁面で対向し、前記被測定液に接液して設けられる検知極及び対極と、
前記検知極及び前記対極間に予め設定された電圧を印加する電源回路と、
前記検知極と前記対極間との間に流れる拡散電流を検出する拡散電流検出回路と、
前記拡散電流に基づいて酸化または還元物質の含有濃度を算出する酸化・還元物質濃度演算回路と、
前記検知極及び前記対極の上流側において、前記測定管の内周壁面に外接して設けられ前記被測定液の流れの圧力損失を発生させる絞り機構と
を備えたことを特徴とする酸化・還元物質濃度測定装置。
A measuring tube through which a liquid to be measured containing an oxidizing or reducing substance flows;
A detection electrode and a counter electrode that are opposed to each other on the inner wall surface of the measurement tube and are in contact with the liquid to be measured
A power supply circuit for applying a preset voltage between the detection electrode and the counter electrode;
A diffusion current detection circuit for detecting a diffusion current flowing between the detection electrode and the counter electrode;
An oxidation / reduction substance concentration calculation circuit that calculates the concentration of the oxidation or reduction substance based on the diffusion current; and
Oxidation / reduction comprising a throttling mechanism that is provided on the upstream side of the detection electrode and the counter electrode so as to circumscribe the inner peripheral wall surface of the measurement tube and generates a pressure loss of the flow of the liquid to be measured Substance concentration measuring device.
酸化または還元物質を含有する被測定液が流れる測定管と、
前記測定管の内周壁面に外接して設けられ、前記被測定液の流れの圧力損失を発生させる絞り機構と、
前記絞り機構の取り付け位置から、前記被測定液の上流側及び下流側の対称な位置で、前記測定管内壁面で対向し、前記被測定液に接液して設けられる検知極及び対極からなる二組の対電極と、
前記絞り機構の上流側及び下流側の圧力を測定する圧力検出器と、
前記圧力検出器で検出される上流側及び下側の圧力を比較し、前記被測定液の流れる方向を判別し、下流側と判定された側の一組の前記対電極を選択する対電極切替え制御回路と、
前記電極切替え回路で選択された該対電極間に予め設定された電圧を印加する電源回路と、
前記電極切替え回路で選択された前記対電極間に流れる拡散電流を検出する拡散電流検出回路と、
前記拡散電流に基づいて酸化または還元物質の含有濃度を算出する酸化・還元物質濃度演算回路と
を備えたことを特徴とする酸化・還元物質濃度測定装置。
A measuring tube through which a liquid to be measured containing an oxidizing or reducing substance flows;
A throttle mechanism that is provided circumscribing the inner peripheral wall surface of the measurement tube and generates a pressure loss of the flow of the liquid to be measured;
Two detection electrodes and a counter electrode are provided that are opposed to each other on the inner wall surface of the measurement tube and are in contact with the liquid to be measured at symmetrical positions on the upstream and downstream sides of the liquid to be measured from the attachment position of the throttle mechanism. A pair of counter electrodes;
A pressure detector for measuring the pressure on the upstream side and the downstream side of the throttle mechanism;
Compare the upstream and lower pressures detected by the pressure detector, determine the direction in which the liquid to be measured flows, and select a pair of counter electrodes that are determined to be downstream A control circuit;
A power supply circuit for applying a preset voltage between the counter electrodes selected by the electrode switching circuit;
A diffusion current detection circuit for detecting a diffusion current flowing between the counter electrodes selected by the electrode switching circuit;
An oxidation / reduction substance concentration measuring device comprising an oxidation / reduction substance concentration calculation circuit for calculating a concentration of oxidation or reduction substance based on the diffusion current.
酸化または還元物質を含有する被測定液が流れる測定管と、
前記測定管内壁面で対向し、前記被測定液に接液して設けられる検知極及び対極からなる複数の対電極と、
複数の前記対電極の上流側において、前記測定管の内周壁面に外接して設けられ、前記被測定液の流れの圧力損失を発生させる絞り機構と、
前記対電極間に印加する予め設定された測定時電圧、付着判定時電圧、及び洗浄時電圧を発生する電源回路と、
複数の前記対電極間の夫々に流れる拡散電流を測定する拡散電流検出回路と、
前記測定時電圧が印加された時に前記拡散電流に基づいて酸化または還元物質の含有濃度を算出する酸化・還元物質濃度演算回路と、
夫々の前記対電極間の個々に独立して前記測定時電圧、前記付着判定時電圧、及び前記洗浄時電圧を切替えるスイッチと、
前記拡散電流によって前記スイッチを選択制御する印加電圧切替え制御回路と
を備えたことを特徴とする酸化・還元物質濃度測定装置。
A measuring tube through which a liquid to be measured containing an oxidizing or reducing substance flows;
A plurality of counter electrodes consisting of a detection electrode and a counter electrode facing each other at the inner wall surface of the measurement tube and in contact with the liquid to be measured;
On the upstream side of the plurality of counter electrodes, a throttle mechanism that is provided to circumscribe the inner peripheral wall surface of the measurement tube and generates a pressure loss of the flow of the liquid to be measured;
A power supply circuit that generates a preset measurement voltage, adhesion determination voltage, and cleaning voltage applied between the counter electrodes;
A diffusion current detection circuit for measuring a diffusion current flowing between each of the plurality of counter electrodes;
An oxidation / reduction substance concentration calculation circuit that calculates the concentration of the oxidation or reduction substance based on the diffusion current when the measurement voltage is applied; and
A switch for switching between the measurement voltage, the adhesion determination voltage, and the cleaning voltage independently of each counter electrode;
An oxidizing / reducing substance concentration measuring device comprising: an applied voltage switching control circuit that selectively controls the switch by the diffusion current.
印加電圧切り替え制御回路は、前記測定時電圧を印加し、前記拡散電流検出回路の出力が予め設定される下限値より小さくなった時に、前記測定時電圧よりも大きな電位差を与える前記付着判定時電圧を印加し、この時に流れる拡散電流が予め設定される値よりも小さい場合には、他の前記対電極いずれかの対電極に切替えるようにしたことを特徴とする請求項3に記載の酸化・還元物質濃度測定装置。   The applied voltage switching control circuit applies the measurement voltage, and gives an electric potential difference larger than the measurement voltage when the output of the diffusion current detection circuit becomes smaller than a preset lower limit value. When the diffusion current flowing at this time is smaller than a preset value, the counter electrode is switched to any one of the other counter electrodes. Reducing substance concentration measuring device. 印加電圧切り替え制御回路は、前記測定時電圧を印加し、前記拡散電流検出回路の出力が予め設定される下限値より小さくなった時に、前記測定時電圧よりも大きな電位差を与える前記付着判定時電圧を印加し、この時に流れる拡散電流が予め設定される上限値よりも小さい場合には、前記対電極を他のいずれか前記対電極に切替え、前記付着判定時電圧を印加し、この時に流れる拡散電流が予め設定される前記上限値よりも小さいと判定された該対電極間に前記測定時電圧と逆極性の前記洗浄時電圧を印加するようにしたことを特徴とする請求項3に記載の酸化・還元物質濃度測定装置。   The applied voltage switching control circuit applies the measurement voltage, and gives an electric potential difference larger than the measurement voltage when the output of the diffusion current detection circuit becomes smaller than a preset lower limit value. When the diffusion current flowing at this time is smaller than a preset upper limit value, the counter electrode is switched to one of the other counter electrodes, the voltage at the time of adhesion determination is applied, and the diffusion flowing at this time The cleaning voltage having a polarity opposite to that of the measurement voltage is applied between the counter electrodes determined to have a current smaller than the preset upper limit value. Oxidation / reduction substance concentration measuring device. 前記絞り機構は、前記測定管と同心円状の絞り穴を有する中空の円板で成形されたことを特徴とする請求項1乃至請求項3のいずれか1項に記載の酸化・還元物質濃度測定装置。   The oxidation / reduction substance concentration measurement according to any one of claims 1 to 3, wherein the throttle mechanism is formed of a hollow disk having a throttle hole concentric with the measurement tube. apparatus.
JP2006290271A 2006-10-25 2006-10-25 Device for measuring oxidation/reduction material concentration Pending JP2008107202A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006290271A JP2008107202A (en) 2006-10-25 2006-10-25 Device for measuring oxidation/reduction material concentration

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006290271A JP2008107202A (en) 2006-10-25 2006-10-25 Device for measuring oxidation/reduction material concentration

Publications (1)

Publication Number Publication Date
JP2008107202A true JP2008107202A (en) 2008-05-08

Family

ID=39440668

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006290271A Pending JP2008107202A (en) 2006-10-25 2006-10-25 Device for measuring oxidation/reduction material concentration

Country Status (1)

Country Link
JP (1) JP2008107202A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010181294A (en) * 2009-02-05 2010-08-19 Yunifiido Engineering:Kk Method and apparatus for measuring concentration of residual free chlorine
JP2012145436A (en) * 2011-01-12 2012-08-02 Nikka Micron Kk Cleaning method of ozone water sensor
JP2015090270A (en) * 2013-11-05 2015-05-11 株式会社日立ハイテクノロジーズ Electrochemical measuring apparatus

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010181294A (en) * 2009-02-05 2010-08-19 Yunifiido Engineering:Kk Method and apparatus for measuring concentration of residual free chlorine
JP2012145436A (en) * 2011-01-12 2012-08-02 Nikka Micron Kk Cleaning method of ozone water sensor
JP2015090270A (en) * 2013-11-05 2015-05-11 株式会社日立ハイテクノロジーズ Electrochemical measuring apparatus

Similar Documents

Publication Publication Date Title
JP2008107202A (en) Device for measuring oxidation/reduction material concentration
JPH0354781B2 (en)
JPH05248902A (en) Electromagnetic flow meter
US2076964A (en) Process and apparatus for water purification
WO2001063269A1 (en) Apparatus for measuring conductivity
JP2001141694A (en) Apparatus for measuring concentration of residual chlorine
JP2002136809A (en) Polymer coagulant dissolving/injecting apparatus equipped with concentration measuring device
JP3650919B2 (en) Electrochemical sensor
JP2006023181A (en) Flow meter
EP0572824B1 (en) Galvanic cell type gas concentration sensor system capable of detecting more than one type of gas
JP2008286741A (en) Concentration measuring instrument for oxidizing/reducing substance
JP3448834B2 (en) ORP sensor for anode water measurement
JP4216846B2 (en) Electrodes for electrochemical measurements and electrochemical measurement methods
JP2001174431A (en) Apparatus and method for measuring residual chlorine concentration in acidic liquid
JP6540593B2 (en) Defect inspection apparatus and defect inspection method
JP2005331337A (en) Oxidation-reduction current measuring device and cleaning method of the oxidation-reduction current measuring device
JP5154707B1 (en) Ozone water thermometer and ozone water generator
JP2000121605A (en) Reagent-free type apparatus for measuring concentration of oxidation-reduction substance, and its measuring method
US20230068448A1 (en) Chemical sensor apparatus
JP2000171432A (en) Apparatus and method for measurement of concentration of oxidation or reduction substance
JP2006153712A (en) Chemical liquid permeation sensor
JP2011075309A (en) Flowmeter and mass flow controller
JP2010224898A (en) Flow rate controller and flow rate controlling method
JP2007071580A (en) Flow meter and method of manufacturing same
JP2000321239A (en) Device for measuring concentration of oxidation- reduction substance