JP2000121605A - Reagent-free type apparatus for measuring concentration of oxidation-reduction substance, and its measuring method - Google Patents

Reagent-free type apparatus for measuring concentration of oxidation-reduction substance, and its measuring method

Info

Publication number
JP2000121605A
JP2000121605A JP10298230A JP29823098A JP2000121605A JP 2000121605 A JP2000121605 A JP 2000121605A JP 10298230 A JP10298230 A JP 10298230A JP 29823098 A JP29823098 A JP 29823098A JP 2000121605 A JP2000121605 A JP 2000121605A
Authority
JP
Japan
Prior art keywords
electrode
counter electrode
current
measured
liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10298230A
Other languages
Japanese (ja)
Inventor
Fumio Nakayama
文雄 中山
Toshiyuki Kubota
俊幸 久保田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP10298230A priority Critical patent/JP2000121605A/en
Publication of JP2000121605A publication Critical patent/JP2000121605A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a reagent-free type apparatus for measuring the concentration of oxidation-reduction substance capable of easily and stably measuring an oxidation-reduction current even if the flow condition of a liquid to be measured fluctuates. SOLUTION: This reagent-free type apparatus for measuring the concentration of oxidation- reduction substance is provided with a detection electrode 2 submergedly installed in a flow-in liquid to be measured; a counter electrode 3 formed with a material different from that of the detection electrode 2; a third electrode 4 disposed to be opposed to the counter electrode 3 across the flow of the liquid to be measured and formed of the same material as that of the counter electrode 3; a magnetic field generator 5 generating a magnetic field vertically to a flow-in direction of the liquid to be measured and to a direction which connects the counter electrode 3 and the third electrode 4; and a current detector 6 connected with the counter electrode 3 and detecting a current or voltage between the detection electrode 2 and the counter electrode 3 to which a current or voltage, generated by the magnetic field generator 5, between the counter electrode 3 and the third electrode 4 is overlapped. The apparatus is constituted to correct the current or voltage between the detection electrode 2 and the counter electrode 3, which fluctuates according to the flow velocity of the liquid to be measured.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、被測定液に含まれ
る測定対象成分の濃度を検出極での酸化還元反応により
求める装置に係り、被測定液の流量状態により変化する
量を補正して検出精度を向上させた酸化還元物質濃度測
定装置および測定方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an apparatus for determining the concentration of a component to be measured contained in a liquid to be measured by an oxidation-reduction reaction at a detection electrode. The present invention relates to a redox substance concentration measuring device and a measuring method with improved detection accuracy.

【0002】[0002]

【従来の技術】近年、被測定液に含まれる測定対象成分
を流路内に設けた検出極を用いて電解酸化または還元さ
せ、その時に流れる電流値の濃度依存性を利用して濃度
を連続して測定する種々の装置が開発されている。
2. Description of the Related Art In recent years, components to be measured contained in a liquid to be measured are electrolytically oxidized or reduced by using a detection electrode provided in a flow path, and the concentration is continuously controlled by utilizing the concentration dependence of a current value flowing at that time. Various devices have been developed for measurement.

【0003】特開平8−278284号公報(以下イ号
公報という)には、筒状フィルタの内部に試料液流路、
外側に対極室を形成し、試料液流路に検出極をフィルタ
に接触させて配置することで装置の構造的強度を高め、
かつ検出極と対極との位置関係を安定させることで測定
精度の安定性を高めることができるように構成された測
定装置が開示されている。
[0003] Japanese Patent Application Laid-Open No. 8-278284 (hereinafter referred to as “A”) discloses a sample liquid flow path inside a cylindrical filter.
Forming a counter electrode chamber on the outside and increasing the structural strength of the device by placing the detection electrode in contact with the filter in the sample liquid flow path,
In addition, a measurement device is disclosed which is configured to stabilize the positional relationship between the detection electrode and the counter electrode, thereby improving the stability of measurement accuracy.

【0004】[0004]

【発明が解決しようとする課題】しかしながら従来の測
定装置および測定方法は、以下の課題を有していた。
However, the conventional measuring device and measuring method have the following problems.

【0005】イ号公報に記載の測定装置は、構造的強度
の向上により耐久性を持たせ、かつ電極間の位置関係を
安定させたことで高精度測定を図るものであるが、管路
内の被測定液の流量が変化するとそれに伴い電極間の酸
化還元電流値も変化するため、連続的にかつ安定して被
測定液中の対象物質の濃度を計測するためには管路内の
流量を一定に規制するために流量調整弁などの機構等を
付加するなどの必要があり、被測定液の流量の変化を補
正できないという課題を有していた。
[0005] The measuring device described in Japanese Patent Application Laid-Open Publication No. H07-27139 aims to provide high durability by improving the structural strength and to stabilize the positional relationship between the electrodes. When the flow rate of the liquid to be measured changes, the oxidation-reduction current value between the electrodes also changes, so that the concentration of the target substance in the liquid to be measured must be continuously and stably measured. Therefore, it is necessary to add a mechanism such as a flow rate adjusting valve in order to regulate the flow rate to a constant value, and the change in the flow rate of the liquid to be measured cannot be corrected.

【0006】本発明は上記従来の問題点を解決するもの
で、被測定液の流動状態が変化しても容易にかつ常に安
定して酸化還元電流値を計測できる無試薬型酸化還元物
質濃度測定装置および測定方法を提供することを目的と
する。
SUMMARY OF THE INVENTION The present invention solves the above-mentioned conventional problems, and is a non-reagent type redox substance concentration measurement method capable of easily and constantly measuring an oxidation-reduction current value even when the flow state of a liquid to be measured changes. An object is to provide an apparatus and a measurement method.

【0007】[0007]

【課題を解決するための手段】この目的を達成するため
に本発明の無試薬型酸化還元物質濃度測定装置および測
定方法は次の構成からなる。
In order to achieve this object, a reagent-free type redox substance concentration measuring apparatus and measuring method of the present invention have the following constitution.

【0008】本発明の無試薬型酸化還元物質濃度測定装
置は、流入する被測定液に浸漬配置される検出極と、前
記検出極と異種の材質で形成された対極と、前記被測定
液の流れを挟んで前記対極と対向した位置に配置され、
前記対極と同種の材質で形成された第3の電極と、前記
被測定液の流入方向及び前記対極と前記第3の電極結ん
だ方向に対して垂直に磁場を発生する磁場発生装置と、
前記対極に接続されるとともに、前記磁場発生装置によ
って前記対極と前記第3の電極間に形成される電流また
は電圧が重畳された前記検出極と前記対極間の電流また
は電圧を検知する電流検出器とを備え、前記被測定液の
流速により変動する前記検出極と前記対極間の電流又は
電圧を補正した構成を有している。
According to the present invention, there is provided a non-reagent type redox substance concentration measuring apparatus, comprising: a detection electrode immersed and arranged in a liquid to be measured; a counter electrode formed of a material different from the detection electrode; It is arranged at a position facing the counter electrode across the flow,
A third electrode formed of the same material as the counter electrode, and a magnetic field generator that generates a magnetic field perpendicular to the inflow direction of the liquid to be measured and the direction in which the counter electrode is connected to the third electrode;
A current detector connected to the counter electrode and detecting a current or voltage between the detection electrode and the counter electrode on which a current or voltage formed between the counter electrode and the third electrode by the magnetic field generator is superimposed; And the current or voltage between the detection electrode and the counter electrode, which fluctuates according to the flow rate of the liquid to be measured, is corrected.

【0009】この構成により、被測定液の流量変動によ
って変化する検出極の電流値又は電圧値を、磁場発生部
と第3の電極によって変化する電流値又は電圧値により
補正することができ、常に安定した酸化還元物質濃度を
無試薬で精度よく安定して測定することができるという
作用を有する。
With this configuration, the current value or the voltage value of the detection electrode, which changes due to the fluctuation of the flow rate of the liquid to be measured, can be corrected by the current value or the voltage value that changes by the magnetic field generator and the third electrode. This has the effect that a stable redox substance concentration can be measured accurately and stably without using any reagent.

【0010】また、本発明の無試薬型酸化還元物質濃度
測定方法は、前記検出極と前記対極の電流値又は電圧値
による酸化還元物質濃度値を、前記対極と前記第3の電
極間の電流又は電圧値により流量補正した構成を有して
いる。
[0010] In the method for measuring the concentration of a redox substance without a reagent according to the present invention, the concentration of the redox substance based on the current value or the voltage value of the detection electrode and the counter electrode may be determined by measuring the current between the counter electrode and the third electrode. Alternatively, the flow rate is corrected by the voltage value.

【0011】この構成により、検出極と対極間で検知し
た被測定液の酸化還元電流の流量変量分を、磁場発生部
により誘導された対極と第3の電極の間の電流値又は電
圧値により補正し、被測定液の流量変動に応じて被測定
物質の計測電流を補正できるという作用を有する。
According to this configuration, the flow rate variation of the oxidation-reduction current of the liquid to be measured detected between the detection electrode and the counter electrode is determined by the current value or the voltage value between the counter electrode and the third electrode induced by the magnetic field generator. This has the effect that the measured current of the substance to be measured can be corrected in accordance with the fluctuation of the flow rate of the liquid to be measured.

【0012】[0012]

【発明の実施の形態】請求項1に記載の無試薬型酸化還
元物質濃度測定装置は、流入する被測定液に浸漬配置さ
れる検出極と、前記検出極と異種の材質で形成された対
極と、前記被測定液の流れを挟んで前記対極と対向した
位置に配置され、前記対極と同種の材質で形成された第
3の電極と、前記被測定液の流入方向及び前記対極と前
記第3の電極結んだ方向に対して垂直に磁場を発生する
磁場発生装置と、前記対極に接続されるとともに、前記
磁場発生装置によって前記対極と前記第3の電極間に形
成される電流または電圧が重畳された前記検出極と前記
対極間の電流または電圧を検知する電流検出器とを備
え、前記被測定液の流速により変動する前記検出極と前
記対極間の電流又は電圧を補正する構成を有している。
According to a first aspect of the present invention, there is provided an apparatus for measuring a concentration of a redox substance without a reagent, wherein the detection electrode is immersed in the liquid to be measured and a counter electrode formed of a material different from the detection electrode. A third electrode disposed at a position facing the counter electrode across the flow of the liquid to be measured, and a third electrode formed of the same type of material as the counter electrode; and a flowing direction of the liquid to be measured and the counter electrode and the third electrode. A magnetic field generator that generates a magnetic field perpendicular to the direction in which the three electrodes are connected; and a current or voltage that is connected to the counter electrode and that is formed between the counter electrode and the third electrode by the magnetic field generator. A current detector that detects a current or a voltage between the superposed detection electrode and the counter electrode, and has a configuration for correcting a current or a voltage between the detection electrode and the counter electrode that fluctuates according to a flow rate of the liquid to be measured. are doing.

【0013】これにより、検出極と対極間で検知した被
測定液の酸化還元電流を、磁場発生部により誘導された
対極と第3の電極間の電流又は電圧により、被測定液の
流量変動に応じて被測定物質の計測電流又は電圧を補正
できるという作用を有する。
Thus, the oxidation-reduction current of the liquid to be measured, which is detected between the detection electrode and the counter electrode, is changed by the current or voltage between the counter electrode and the third electrode induced by the magnetic field generating section to change the flow rate of the liquid to be measured. This has the effect that the measured current or voltage of the substance to be measured can be corrected accordingly.

【0014】ここで、検出極の材質としては、白金、
金、カーボン、グラッシーカーボンの固体電極が用いら
れる。
Here, the material of the detection electrode is platinum,
Solid electrodes of gold, carbon and glassy carbon are used.

【0015】対極と第3の電極の材質としては、銀、塩
化銀、ステンレス、白金、カーボン、グラッシーカーボ
ンの固体電極が用いられる。
As the material of the counter electrode and the third electrode, solid electrodes of silver, silver chloride, stainless steel, platinum, carbon, and glassy carbon are used.

【0016】請求項2に記載の無試薬型酸化還元物質濃
度測定装置は、請求項1に記載の発明において、磁場発
生部が永久磁石又は電磁石である構成を有している。
According to a second aspect of the present invention, there is provided a reagent-free type redox substance concentration measuring apparatus, wherein the magnetic field generating section is a permanent magnet or an electromagnet.

【0017】これにより、請求項1により得られる作用
の他、永久磁石又は電磁石により対極と第3の電極間に
流量に応じた補正電流を形成できるという作用を有す
る。
Thus, in addition to the effect obtained in the first aspect, there is an effect that a correction current corresponding to the flow rate can be formed between the counter electrode and the third electrode by the permanent magnet or the electromagnet.

【0018】ここで、永久磁石としては、磁鉄鉱、ジリ
ュウテッ鉱、ニッケル鉱、炭素鋼、タングステン鋼、K
S鋼、コバルト鋼、MT鋼、クロム鋼、アルニコが用い
られる。
[0018] Here, permanent magnets include magnetite, giruite ore, nickel ore, carbon steel, tungsten steel, K
S steel, cobalt steel, MT steel, chrome steel, and alnico are used.

【0019】電磁石としては、純鉄、構造用炭素鋼、鋳
鋼、ケイ素鋼板などの強磁性体の周囲に巻いたコイルに
電流を流して磁場をつくり出すものが用いられる。
As the electromagnet, a magnet which generates a magnetic field by passing an electric current through a coil wound around a ferromagnetic material such as pure iron, structural carbon steel, cast steel, and silicon steel plate is used.

【0020】請求項3に記載の無試薬型酸化還元物質濃
度測定装置は、請求項1又は2の内いずれか1項に記載
の発明において、酸化還元物質が残留塩素である構成を
有している。
According to a third aspect of the present invention, there is provided a reagent-free type redox substance concentration measuring apparatus according to any one of the first or second aspects, wherein the redox substance is residual chlorine. I have.

【0021】これにより、請求項1又は2の内いずれか
1項により得られる作用の他、被測定液中に含まれる残
留塩素を精度よく検出できるという作用を有する。
Thus, in addition to the effect obtained by any one of the first and second aspects, the present invention has the effect of accurately detecting residual chlorine contained in the liquid to be measured.

【0022】ここで、残留塩素としては、塩素、塩素
酸、次亜塩素酸、二酸化塩素、亜塩素酸、クロラミンな
どがある。
Here, the residual chlorine includes chlorine, chloric acid, hypochlorous acid, chlorine dioxide, chlorous acid, chloramine and the like.

【0023】請求項4に記載の無試薬型酸化還元物質濃
度測定方法は、前記検出極と前記対極の電流又は電圧値
による酸化還元物質濃度値を、前記対極と前記第3の電
極間の電流又は電圧値により流量補正した構成を有して
いる。
The method of measuring a concentration of a redox substance without a reagent according to claim 4, wherein the concentration of the redox substance based on the current or voltage value of the detection electrode and the counter electrode is determined by measuring the current between the counter electrode and the third electrode. Alternatively, the flow rate is corrected by the voltage value.

【0024】これにより、検出極と対極間で検知した被
測定液の酸化還元電流の流量変量分を、磁場発生部によ
り誘導された対極と第3の電極の間の電流又は電圧によ
り補正し、被測定液の流量変動に応じて被測定物質の計
測電流又は電圧を補正できるという作用を有する。
Thus, the flow rate variation of the oxidation-reduction current of the liquid to be measured detected between the detection electrode and the counter electrode is corrected by the current or voltage between the counter electrode and the third electrode induced by the magnetic field generator, This has the effect that the measured current or voltage of the substance to be measured can be corrected according to the flow rate fluctuation of the liquid to be measured.

【0025】請求項5に記載の無試薬型酸化還元物質濃
度測定方法は、請求項4に記載の発明において、前記検
出極と前記対極との電極反応により生じる電流方向に対
して、前記対極と対向して設けた前記第3の電極間の流
速により発生する電流方向が逆向きとなり、かつ、双方
の流速による電流勾配が同一となるような前記磁場発生
部が配設され、前記検出極と前記対極間の電流が前記対
極と前記第3の電極間の逆向の電流で相殺されることに
より流量補正した構成を有している。
According to a fifth aspect of the present invention, in the method for measuring a concentration of a reagentless redox substance according to the fourth aspect of the present invention, the counter electrode and the counter electrode are arranged in a direction of current generated by an electrode reaction between the detection electrode and the counter electrode. The direction of current generated by the flow rate between the third electrodes provided opposite to each other is opposite, and the magnetic field generation unit is arranged such that the current gradients due to both flow rates are the same. The flow rate is corrected by canceling the current between the counter electrode and the reverse current between the counter electrode and the third electrode.

【0026】これにより、請求項4により得られる作用
の他、検出極と対極間で検知した被測定液の酸化還元電
流の流量変量分を、磁場発生部により誘導された対極と
第3の電極間の電流により相殺し、被測定液の流量変動
に応じて被測定物質の計測電流を補正できる作用を有す
る。
According to this, in addition to the function obtained by the fourth aspect, the flow rate variation of the oxidation-reduction current of the liquid to be measured detected between the detection electrode and the counter electrode can be calculated by using the counter electrode induced by the magnetic field generator and the third electrode. This has the effect of canceling out the current between them and correcting the measured current of the substance to be measured according to the fluctuation of the flow rate of the liquid to be measured.

【0027】以下、本発明の実施の形態について図面を
用いて説明する。 (実施の形態)図1は本発明の一実施の形態による無試
薬型酸化還元物質濃度測定装置の概要を示す図であり、
図2は図1のA−A線の断面を示す図であり、図3は無
試薬型酸化還元物質濃度測定装置を構成している各電極
間の配線原理図である。
Hereinafter, embodiments of the present invention will be described with reference to the drawings. (Embodiment) FIG. 1 is a diagram showing an outline of a reagentless redox substance concentration measuring apparatus according to an embodiment of the present invention.
FIG. 2 is a diagram showing a cross section taken along line AA of FIG. 1, and FIG. 3 is a diagram showing the principle of wiring between electrodes constituting a reagentless redox substance concentration measuring device.

【0028】図1乃至図3において、1は被測定液が流
れる管路、2は被測定液の電極反応により測定対象物質
を検知する検出極、3は検出極2とが電気的に接続され
ている異種の材質に構成された対極、4は流路方向Qに
対して対極3と対向した位置に配設された第3の電極、
5は流路方向Qと、対極3と第3の電極4とに対して直
交した位置に管路1を挟んで設けられている永久磁石又
は電磁石などからなる磁場発生装置、6は検出極2と対
極3の間に電極反応で生じる酸化還元電流及び対極3と
第3の電極4の間に磁場発生部により誘導される電流を
重畳させて測定する電流検出器である。
1 to 3, reference numeral 1 denotes a conduit through which a liquid to be measured flows, 2 denotes a detection electrode for detecting a substance to be measured by an electrode reaction of the liquid to be measured, and 3 denotes a detection electrode 2 which is electrically connected. A counter electrode 4 made of a different kind of material; a third electrode disposed at a position facing the counter electrode 3 with respect to the flow direction Q;
Reference numeral 5 denotes a magnetic field generator including a permanent magnet or an electromagnet provided with the conduit 1 interposed therebetween at a position orthogonal to the flow direction Q and the counter electrode 3 and the third electrode 4, and 6 denotes a detection electrode 2 And a current detector that superimposes and measures an oxidation-reduction current generated by an electrode reaction between the counter electrode 3 and a current induced by the magnetic field generator between the counter electrode 3 and the third electrode 4.

【0029】図1において、被測定液が流れる管路1内
に沿って、被測定液の電極反応により測定対象物質を検
知するための検出極2および対極3とを配置し、さらに
流路方向Qに対して対極3と対向した位置に第3の電極
4が管路1内の被測定液に接触するように設けられてい
る。また、流路方向Qと、対極3と第3の電極4とに対
して直交した位置に管路1を挟んで磁場発生装置5が設
けられている。
In FIG. 1, a detection electrode 2 and a counter electrode 3 for detecting a substance to be measured by an electrode reaction of the liquid to be measured are arranged along a pipe 1 through which the liquid to be measured flows. A third electrode 4 is provided at a position facing the counter electrode 3 with respect to Q so as to come into contact with the liquid to be measured in the pipeline 1. Further, a magnetic field generator 5 is provided at a position orthogonal to the flow direction Q and the counter electrode 3 and the third electrode 4 with the conduit 1 interposed therebetween.

【0030】検出極2と対極3は異種の材質により構成
され、検出極2と対極3とが電気的に接続されているの
で、管路1に被測定液を通水することにより、被測定液
を検出極2に直接接触させて検出極2の電極反応で生じ
る酸化還元電流を測定でき、そのとき流れる電流値又は
電圧値の濃度依存性を利用して被測定液中に含まれる対
象物質の濃度が測定できる。
The detection electrode 2 and the counter electrode 3 are made of different kinds of materials, and the detection electrode 2 and the counter electrode 3 are electrically connected. The redox current generated by the electrode reaction of the detection electrode 2 can be measured by bringing the liquid into direct contact with the detection electrode 2, and the target substance contained in the liquid to be measured is determined by utilizing the concentration dependence of the current value or voltage value flowing at that time. Can be measured.

【0031】検出極は、白金、金、カーボン等の固体電
極からなり、一方対極の材質は銀、塩化銀、ステンレス
等からなる固体電極を用い、この2つの電極間に発生す
る電圧差を利用して、被測定液中の対象物質をこの検出
極上で電解酸化又は還元させて、このときに生じる酸化
又は還元電流値又は電圧値を計測し、この電流値又は電
圧値から電流検出器に内蔵した演算回路により対象物質
の濃度を表示できる構成となっている。但し、検出極お
よび対極の材質および組合せは、酸化還元電流を得る構
成の材質であればよく、特に限定されるものではない。
The detection electrode is made of a solid electrode such as platinum, gold, or carbon, while the counter electrode is made of a solid electrode made of silver, silver chloride, stainless steel, or the like, and uses the voltage difference generated between the two electrodes. Then, the target substance in the liquid to be measured is electrolytically oxidized or reduced on the detection electrode, and the oxidation or reduction current value or voltage value generated at this time is measured, and the current or voltage value is incorporated in the current detector. The arithmetic circuit thus configured can display the concentration of the target substance. However, the material and combination of the detection electrode and the counter electrode are not particularly limited as long as they are materials having a configuration for obtaining an oxidation-reduction current.

【0032】また、図2において、第3の電極4は対極
3と同種の材質により構成されるため電圧差は生じない
が、流路方向Qと磁場発生装置5とに対して直交した位
置に配置され互いに電気的に接続されているので、第3
の電極4と対極3との間には被測定液の流速に応じた起
電力が生じる。このとき、被測定液の流速による電極間
の電流の向きが、検出極2と対極3との電流の向きと逆
向きになるように磁場発生装置5を構成して、管路1を
挟んでそれぞれにN極とS極とが対向して配置される。
In FIG. 2, the third electrode 4 is made of the same material as the counter electrode 3, so that no voltage difference occurs, but the third electrode 4 is located at a position orthogonal to the flow path direction Q and the magnetic field generator 5. Since they are arranged and electrically connected to each other, the third
An electromotive force is generated between the electrode 4 and the counter electrode 3 according to the flow rate of the liquid to be measured. At this time, the magnetic field generator 5 is configured so that the direction of the current between the electrodes due to the flow rate of the liquid to be measured is opposite to the direction of the current between the detection electrode 2 and the counter electrode 3, and the tube 1 is sandwiched therebetween. An N pole and an S pole are respectively arranged facing each other.

【0033】以上の検出極2と対極3と第3の電極4と
を一体化して互いに結線するように配置された電極構成
であれば、検出極2と、対極3と、第3の電極4との結
線上は、互いに電気的に等価となる配置となっているた
め、検出極と対極間との間に発生した電圧差により流れ
る電流方向は検出極と対極間のみで第3の電極方向へは
流れずに、一方、被測定液の流速と磁場とにより生じる
起電力により流れる電流は対極3と第3の電極4との間
のみに電流が流れ、検出極の方向には電流は流れること
はないことになる。
If the detection electrode 2, the counter electrode 3, and the third electrode 4 are integrated and arranged so as to be connected to each other, the detection electrode 2, the counter electrode 3, and the third electrode 4 Are connected electrically to each other, the direction of current flowing due to the voltage difference generated between the detection electrode and the counter electrode is only between the detection electrode and the counter electrode. Does not flow, while the current flowing due to the electromotive force generated by the flow velocity of the liquid to be measured and the magnetic field flows only between the counter electrode 3 and the third electrode 4, and the current flows in the direction of the detection electrode. It will not be.

【0034】ところで、検出極2と対極3との間で流れ
る酸化還元電流は、管路内を流れる被測定液の流速に応
じて対象物質が検出極上で反応し生じる酸化又は還元反
応による電流値又は電圧値が変化するために流速に対し
て電流勾配を有することになる。この時、図3に示すよ
うに電流検出器6を対極3に備え、検知する電流値を対
極3の流入出電流として、先の対極3と第3の電極4と
の間で磁場発生部により生じる電流の電流勾配は、磁場
強度に比例して加減できることから、検出極2と対極3
間に生じる流速に応じて生じる電流勾配と同一となるよ
うに磁場強度をもたせることで、これら被測定液の流速
により変動する電流値を重畳して互いに相殺させること
ができ、流量変動により変化する電流値を補正すること
ができるため、流量変動に依らず一定の電流値が計測で
きることとなる。
Incidentally, the oxidation-reduction current flowing between the detection electrode 2 and the counter electrode 3 is a current value due to an oxidation or reduction reaction that occurs when the target substance reacts on the detection electrode according to the flow rate of the liquid to be measured flowing in the pipe. Alternatively, since the voltage value changes, the current has a current gradient with respect to the flow velocity. At this time, a current detector 6 is provided at the counter electrode 3 as shown in FIG. 3, and the detected current value is taken as the inflow / outflow current of the counter electrode 3, between the counter electrode 3 and the third electrode 4 by the magnetic field generator. Since the current gradient of the generated current can be adjusted in proportion to the magnetic field strength, the detection electrode 2 and the counter electrode 3
By giving the magnetic field strength so as to be the same as the current gradient generated according to the flow velocity generated between them, the current values fluctuating according to the flow velocity of the liquid to be measured can be superimposed and cancel each other, and the current values fluctuate due to the flow fluctuation. Since the current value can be corrected, a constant current value can be measured regardless of the flow rate fluctuation.

【0035】したがって、検出極2と、対極3と、第3
の電極4とを互いに電気的に連結し、対極3に備えた電
流検出器6によって被測定液の対象物質に応じた電極電
流を検知し、この電流値を電流検出器において対象物質
の濃度に変換して表示する構成とすることで、被測定液
の流量が変動しても対極の流入出電流を計測すること
で、その変動による電流値を自動的に相殺し補正できる
構成であるため、被測定液中の酸化還元物質である残留
塩素等の濃度を連続して安定した計測が可能になり、精
度の高い測定を行うことができることとなる。
Therefore, the detection pole 2, the counter electrode 3, and the third
Are electrically connected to each other, and an electrode current corresponding to the target substance of the liquid to be measured is detected by a current detector 6 provided on the counter electrode 3, and this current value is converted to a concentration of the target substance by the current detector. By converting and displaying, even if the flow rate of the liquid to be measured fluctuates, by measuring the inflow / outflow current of the counter electrode, the current value due to the fluctuation can be automatically canceled and corrected. It is possible to continuously and stably measure the concentration of the residual chlorine or the like as the redox substance in the liquid to be measured, and it is possible to perform highly accurate measurement.

【0036】さらに、管路内の流速と磁場により生じる
対極3と第3の電極4間の誘導電流は、管路の径によっ
ても変化するため、磁場強度を調整してやることが必要
であり、磁場発生装置5としては一定の管路径を有する
構成の装置であれば、管路内の流速による電流勾配と同
一の電流勾配を生じさせることのできる永久磁石の選定
により磁場を調整できる。
Furthermore, the induced current between the counter electrode 3 and the third electrode 4 generated by the flow velocity and the magnetic field in the pipe changes depending on the diameter of the pipe, so that it is necessary to adjust the magnetic field strength. If the generator 5 is a device having a constant pipe diameter, the magnetic field can be adjusted by selecting a permanent magnet capable of generating the same current gradient as the current gradient due to the flow velocity in the pipe.

【0037】なお、以上の説明では、磁場発生装置5が
永久磁石を使用した例で説明したが、電磁石の使用によ
り構成したものについても同様に実施可能である。電磁
石の場合、流れる電流を調整する手段を回路に設けるこ
とで、磁場強度を同一の電流勾配となるように調整でき
る。
In the above description, an example has been described in which the magnetic field generator 5 uses a permanent magnet. However, the magnetic field generator 5 can be similarly implemented using an electromagnet. In the case of an electromagnet, by providing means for adjusting the flowing current in the circuit, the magnetic field strength can be adjusted to have the same current gradient.

【0038】本発明の実施の形態によれば、被測定液の
流動状態が変化しても容易にかつ常に安定して酸化還元
電流値を計測できる無試薬型酸化還元物質濃度測定装置
および測定方法を提供することができる。
According to the embodiment of the present invention, a reagentless redox substance concentration measuring apparatus and a measuring method capable of easily and constantly measuring an oxidation-reduction current value even when the flow state of a liquid to be measured changes. Can be provided.

【0039】[0039]

【実施例】(実施例1)実施の形態の無試薬型酸化還元
物質濃度測定装置を用いて、一例として残留塩素の確認
実験を実施した。その測定結果を図4に示した。図4は
本実施の形態の無試薬型酸化還元物質濃度測定装置を用
いた残留塩素の測定図である。
EXAMPLES (Example 1) As an example, an experiment for confirming residual chlorine was carried out using the reagentless redox substance concentration measuring apparatus of the embodiment. The measurement results are shown in FIG. FIG. 4 is a diagram showing the measurement of residual chlorine using the reagentless redox substance concentration measuring apparatus of the present embodiment.

【0040】検出極と対極間でのみ検知した被測定液中
に含まれる残留塩素の還元電流値を図中に示す。被測
定液の流速Qの増加に従って、還元電流値は一定の勾配
(+α)をもって増加する。
The figure shows the reduction current value of residual chlorine contained in the liquid to be measured detected only between the detection electrode and the counter electrode. As the flow rate Q of the liquid to be measured increases, the reduction current value increases with a constant gradient (+ α).

【0041】一方、対極3と第3の電極4とにのみで磁
場を発生させ、さらにに示された勾配(α)と逆向き
の勾配(−α)となるように磁場強度を調節して得られ
た流量による誘導電流を図中に示す。
On the other hand, a magnetic field is generated only by the counter electrode 3 and the third electrode 4, and the magnetic field intensity is adjusted so that the gradient (-α) is opposite to the gradient (α) indicated. The induced current based on the obtained flow rate is shown in the figure.

【0042】以上の構成で、検出極2と対極3と第3の
電極4とを互いに結線して配置し、対極3における流出
入電流値として検出した結果、図中の直線データを得
た。
With the above arrangement, the detection electrode 2, the counter electrode 3, and the third electrode 4 were arranged so as to be connected to each other, and detected as the inflow / outflow current value at the counter electrode 3, and the straight line data in the figure was obtained.

【0043】被測定液の流量により変動するの還元電
流値を、の電流値で自動的に補正することができ、安
定した還元電流値iを計測できるため、被測定液中に含
まれる残留塩素濃度を正確に測定できる。
The reduction current value fluctuating according to the flow rate of the liquid to be measured can be automatically corrected by the current value of the liquid to be measured, and a stable reduction current value i can be measured. The concentration can be measured accurately.

【0044】(比較例1)従来の無試薬型酸化還元物質
濃度測定装置を用いて残留塩素の確認実験を行った。そ
の測定結果を図5に示した。図5は従来の無試薬型酸化
還元物質濃度測定装置を用いた残留塩素の測定図であ
る。
(Comparative Example 1) An experiment for confirming residual chlorine was conducted using a conventional reagentless redox substance concentration measuring apparatus. The measurement results are shown in FIG. FIG. 5 is a measurement diagram of residual chlorine using a conventional reagentless redox substance concentration measuring device.

【0045】検出極と対極間でのみ検知した被測定液中
に含まれる残留塩素の還元電流値を図5の〜に示
す。
The reduction current values of residual chlorine contained in the liquid to be measured detected only between the detection electrode and the counter electrode are shown in FIG.

【0046】ここで、〜は各被測定液中の残留塩素
濃度が異なるものである。各サンプルにおいて、流量Q
の増加に対して一定の勾配(α)を有し流量に依存し計
測電流値は変化した。
Here, 〜 indicates that the residual chlorine concentration in each liquid to be measured is different. For each sample, the flow rate Q
There was a constant gradient (α) with the increase in, and the measured current value changed depending on the flow rate.

【0047】従って、ここで構成された電極対において
は、一定の流量Qを規定し、還元電流値iを計測するこ
とにより、残留塩素濃度を計測する必要があった。
Therefore, in the electrode pair configured here, it is necessary to measure the residual chlorine concentration by defining a constant flow rate Q and measuring the reduction current value i.

【0048】以上のことから実施例によれば、被測定液
の流動状態が変化しても容易にかつ常に安定して酸化還
元電流値を計測できる無試薬型酸化還元物質濃度測定装
置および測定方法を提供できることが明らかである。
As described above, according to the embodiment, even if the flow state of the liquid to be measured changes, the oxidation-reduction substance concentration measuring apparatus and the reagent can be measured easily and constantly stably. It is clear that can be provided.

【0049】[0049]

【発明の効果】以上のように本発明においては、以下の
優れた効果を実現できる。
As described above, according to the present invention, the following excellent effects can be realized.

【0050】本発明の請求項1に記載の発明によれば、
(1)検出極と対極間で検知した被測定液の酸化還元電
流を、簡単の構造で磁場発生部により誘導された対極と
第3の電極間の電流により、被測定液の流量変動に応じ
て被測定物質の計測電流を自動的に補正できる。
According to the first aspect of the present invention,
(1) The oxidation-reduction current of the liquid to be measured detected between the detection electrode and the counter electrode is changed according to the flow rate fluctuation of the liquid to be measured by the current between the counter electrode and the third electrode induced by the magnetic field generating unit with a simple structure. Thus, the measured current of the substance to be measured can be automatically corrected.

【0051】本発明の請求項2に記載の発明によれば、
請求項1に記載の効果に加えて、(2)永久磁石又は電
磁石により対極と第3の電極間に流量に応じた補正電流
を形成できる。
According to the second aspect of the present invention,
In addition to the effect of the first aspect, (2) a correction current corresponding to the flow rate can be formed between the counter electrode and the third electrode by the permanent magnet or the electromagnet.

【0052】本発明の請求項3に記載の発明によれば、
請求項1又は2の内いずれか1項に記載の効果に加え
て、(3)被測定液中に含まれる残留塩素を精度よく検
出できる。
According to the third aspect of the present invention,
In addition to the effect described in any one of claims 1 and 2, (3) residual chlorine contained in the liquid to be measured can be detected with high accuracy.

【0053】本発明の請求項4に記載の発明によれば、
(4)検出極と対極間で検知した被測定液の酸化還元電
流の流量変量分を、磁場発生部により誘導された対極と
第3の電極の間の電流により補正し、被測定液の流量変
動に応じて被測定物質の計測電流を補正できるととも
に、無試薬で連続した酸化還元物質の濃度を測定でき、
測定の正確性を向上できる。
According to the fourth aspect of the present invention,
(4) The flow rate variation of the oxidation-reduction current of the liquid to be measured detected between the detection electrode and the counter electrode is corrected by the current between the counter electrode and the third electrode induced by the magnetic field generator, and the flow rate of the liquid to be measured is corrected. The measured current of the substance to be measured can be corrected according to the fluctuation, and the concentration of the redox substance can be measured continuously without using any reagent.
Measurement accuracy can be improved.

【0054】本発明の請求項5に記載の発明によれば、
請求項4に記載の効果に加えて、(5)検出極と対極間
で検知した被測定液の酸化還元電流の流量変量分を、磁
場発生部により誘導された対極と第3の電極間の電流に
より相殺し、被測定液の流量変動に応じて被測定物質の
計測電流を補正できる。
According to the fifth aspect of the present invention,
In addition to the effect of the fourth aspect, (5) the flow rate variation of the oxidation-reduction current of the liquid to be measured detected between the detection electrode and the counter electrode may be calculated between the counter electrode and the third electrode induced by the magnetic field generator. The measurement current of the substance to be measured can be corrected according to the fluctuation of the flow rate of the liquid to be measured, offset by the current.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施の形態による酸化還元物質の濃
度測定装置の概要を示す図
FIG. 1 is a diagram showing an outline of an apparatus for measuring the concentration of a redox substance according to an embodiment of the present invention.

【図2】図1のA−A線の断面を示す図FIG. 2 is a diagram showing a cross section taken along line AA of FIG. 1;

【図3】酸化還元物質の濃度測定装置を構成している各
電極間の配線原理図
FIG. 3 is a diagram showing the principle of wiring between electrodes constituting the redox substance concentration measuring device.

【図4】実施の形態の無試薬型酸化還元物質濃度測定装
置を用いた残留塩素の測定図
FIG. 4 is a view showing the measurement of residual chlorine using the reagentless redox substance concentration measuring apparatus according to the embodiment.

【図5】従来の無試薬型酸化還元物質濃度測定装置を用
いた残留塩素の測定図
FIG. 5 is a measurement diagram of residual chlorine using a conventional reagentless redox substance concentration measuring device.

【符号の説明】[Explanation of symbols]

1 管路 2 検出極 3 対極 4 第3の電極 5 磁場発生装置 6 電流検出器 Q 被測定液の流動方向 DESCRIPTION OF SYMBOLS 1 Pipeline 2 Detection pole 3 Counter electrode 4 Third electrode 5 Magnetic field generator 6 Current detector Q Flow direction of liquid to be measured

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】流入する被測定液に浸漬配置される検出極
と、 前記検出極と異種の材質で形成された対極と、 前記被測定液の流れを挟んで前記対極と対向した位置に
配置され、前記対極と同種の材質で形成された第3の電
極と、 前記被測定液の流入方向及び前記対極と前記第3の電極
結んだ方向に対して垂直に磁場を発生する磁場発生装置
と、 前記対極に接続されるとともに、前記磁場発生装置によ
って前記対極と前記第3の電極間に形成される電流また
は電圧が重畳された前記検出極と前記対極間の電流また
は電圧を検知する電流検出器とを備え、 前記被測定液の流速により変動する前記検出極と前記対
極間の電流又は電圧を補正することを特徴とする無試薬
型酸化還元物質濃度測定装置。
A detection electrode immersed in the liquid to be measured, a counter electrode formed of a material different from the detection electrode, and a detection electrode disposed at a position facing the counter electrode with the flow of the liquid to be measured interposed therebetween. A third electrode formed of the same material as the counter electrode; and a magnetic field generator that generates a magnetic field perpendicular to the inflow direction of the liquid to be measured and the direction in which the counter electrode is connected to the third electrode. A current detection device that is connected to the counter electrode and detects a current or voltage between the detection electrode and the counter electrode on which a current or voltage formed between the counter electrode and the third electrode is superimposed by the magnetic field generator. A non-reagent-type redox substance concentration measuring device, comprising: a device for correcting a current or a voltage between the detection electrode and the counter electrode, which fluctuates according to a flow rate of the liquid to be measured.
【請求項2】前記磁場発生部が永久磁石又は電磁石であ
ることを特徴とする請求項1に記載の無試薬型酸化還元
物質濃度測定装置。
2. The apparatus according to claim 1, wherein the magnetic field generator is a permanent magnet or an electromagnet.
【請求項3】前記酸化還元物質が残留塩素であることを
特徴とする特許請求項1又は2に記載の無試薬型酸化還
元物質濃度測定装置。
3. The reagentless redox substance concentration measuring device according to claim 1, wherein the redox substance is residual chlorine.
【請求項4】前記検出極と前記対極の電流又は電圧値に
よる酸化還元物質濃度値を、前記対極と前記第3の電極
間の電流又は電圧値により被測定液の流量補正すること
を特徴とする無試薬型酸化還元物質濃度の測定方法。
4. The method according to claim 1, wherein a flow rate of the liquid to be measured is corrected by a current or voltage value between the counter electrode and the third electrode based on a current or voltage value between the detection electrode and the counter electrode. For measuring the concentration of a reagentless redox substance.
【請求項5】前記検出極と前記対極との電極反応により
生じる電流方向に対して、前記対極と対向して設けた前
記第3の電極間の流速により発生する電流方向が逆向き
となり、かつ、双方の流速による電流勾配が同一となる
ような前記磁場発生部が配設され、前記検出極と前記対
極間の電流が前記対極と前記第3の電極間の逆向の電流
で相殺されることにより流量補正することを特徴とする
請求項4に記載の無試薬型酸化還元物質濃度の測定方
法。
5. A current direction generated by the flow rate between the third electrode provided opposite to the counter electrode is opposite to a current direction generated by an electrode reaction between the detection electrode and the counter electrode, and The magnetic field generating unit is arranged such that current gradients due to both flow rates are the same, and a current between the detection electrode and the counter electrode is offset by a reverse current between the counter electrode and the third electrode. The method for measuring the concentration of a reagentless redox substance according to claim 4, wherein the flow rate is corrected by:
JP10298230A 1998-10-20 1998-10-20 Reagent-free type apparatus for measuring concentration of oxidation-reduction substance, and its measuring method Pending JP2000121605A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10298230A JP2000121605A (en) 1998-10-20 1998-10-20 Reagent-free type apparatus for measuring concentration of oxidation-reduction substance, and its measuring method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10298230A JP2000121605A (en) 1998-10-20 1998-10-20 Reagent-free type apparatus for measuring concentration of oxidation-reduction substance, and its measuring method

Publications (1)

Publication Number Publication Date
JP2000121605A true JP2000121605A (en) 2000-04-28

Family

ID=17856927

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10298230A Pending JP2000121605A (en) 1998-10-20 1998-10-20 Reagent-free type apparatus for measuring concentration of oxidation-reduction substance, and its measuring method

Country Status (1)

Country Link
JP (1) JP2000121605A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005321230A (en) * 2004-05-06 2005-11-17 Aichi Tokei Denki Co Ltd Flow rate/residual chlorine concentration measuring device, and flow rate/residual chlorine concentration measuring method of service water
US11610467B2 (en) 2020-10-08 2023-03-21 Ecolab Usa Inc. System and technique for detecting cleaning chemical usage to control cleaning efficacy

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005321230A (en) * 2004-05-06 2005-11-17 Aichi Tokei Denki Co Ltd Flow rate/residual chlorine concentration measuring device, and flow rate/residual chlorine concentration measuring method of service water
JP4493010B2 (en) * 2004-05-06 2010-06-30 愛知時計電機株式会社 Flow rate / residual chlorine concentration measuring instrument and tap water flow rate / residual chlorine concentration measurement method
US11610467B2 (en) 2020-10-08 2023-03-21 Ecolab Usa Inc. System and technique for detecting cleaning chemical usage to control cleaning efficacy

Similar Documents

Publication Publication Date Title
JP4851832B2 (en) Coriolis type mass flow meter
JP4386855B2 (en) Operation method of magnetic inductive flow meter
JP2009258125A (en) Magnetically induced flow measurement gauge for fluid and method of magnetically induced flow measurement
JP2002022403A (en) Displacement detector and displacement detecting method
JP2019052909A (en) Electromagnetic flowmeter error detection circuit and error detection method, and electromagnetic flowmeter
JP2003532885A (en) Flowmeter
US20230213367A1 (en) Method of operating a magnetically-inductive flowmeter
JP2000121605A (en) Reagent-free type apparatus for measuring concentration of oxidation-reduction substance, and its measuring method
US20170350865A1 (en) Flow Measuring Device
JP4493010B2 (en) Flow rate / residual chlorine concentration measuring instrument and tap water flow rate / residual chlorine concentration measurement method
JP2001141694A (en) Apparatus for measuring concentration of residual chlorine
JP2003065816A (en) Electromagnetic flowmeter
JP3340123B1 (en) Electromagnetic specific gravity meter
JP3113946B2 (en) Vortex flow meter
JP3337118B2 (en) Electromagnetic flow meter
JPH0121903B2 (en)
JPH1078411A (en) Method and device for measuring magnetic powder concentration
CN217374974U (en) Novel quantitative filling electromagnetic flowmeter
JP3130729B2 (en) Electromagnetic flow meter
JP2005207755A (en) Electromagnetic flowmeter
JPH05256673A (en) Excitation malfunction detecting means of electromagnetic flowmeter
JP4013253B2 (en) Magnetic oxygen meter
JP2001281028A (en) Electromagnetic flowmeter
US20200217698A1 (en) Magnetic flowmeter with media conductivity measurement
JP5941348B2 (en) Flow rate measuring device and flow rate measuring method