JP2008107102A - Electronic compass and azimuth measuring method - Google Patents

Electronic compass and azimuth measuring method Download PDF

Info

Publication number
JP2008107102A
JP2008107102A JP2006287730A JP2006287730A JP2008107102A JP 2008107102 A JP2008107102 A JP 2008107102A JP 2006287730 A JP2006287730 A JP 2006287730A JP 2006287730 A JP2006287730 A JP 2006287730A JP 2008107102 A JP2008107102 A JP 2008107102A
Authority
JP
Japan
Prior art keywords
azimuth
component data
center
axis component
magnetic field
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006287730A
Other languages
Japanese (ja)
Other versions
JP5070428B2 (en
Inventor
Yoshinobu Motokura
義信 本蔵
Hideji Kako
英児 加古
Katsuhiko Tsuchida
克彦 土田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aichi Micro Intelligent Corp
Original Assignee
Aichi Micro Intelligent Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aichi Micro Intelligent Corp filed Critical Aichi Micro Intelligent Corp
Priority to JP2006287730A priority Critical patent/JP5070428B2/en
Publication of JP2008107102A publication Critical patent/JP2008107102A/en
Application granted granted Critical
Publication of JP5070428B2 publication Critical patent/JP5070428B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Measuring Magnetic Variables (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an electronic compass and an azimuth measuring method capable of calibrating easily a three-dimensional azimuth measurement error, and measuring precisely a three-dimensional azimuth. <P>SOLUTION: This electronic compass 10 has a geomagnetic azimuth detector 11 having three magnetic detection parts, an azimuth operation means 32 for calculating the attitude azimuth of a measuring object from triaxial component data, a magnetic field determination means 31 for determining normality/abnormality of a magnetic field, and a calibration means 33 for calibrating the center of an azimuth sphere drawn by the triaxial component data by an attitude change of the measuring object when determined to be abnormal by the magnetic field determination means 31. The calibration means 33 includes a center operation means 331 for operating the center of the azimuth sphere from at least four triaxial component data, and a least-squares-method operation means 332 for calculating the azimuth sphere by using a least-squares method from a prescribed number of the triaxial component data. The azimuth operation means 32 calculates and outputs the attitude azimuth successively by using the center of the azimuth sphere calibrated by the calibration means 33, when determined to be abnormal by the magnetic field determination means 31. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、3軸方向の地磁気を検出して被測定体の3次元的な方位を測定する電子コンパス及び方位測定方法に関し、特に、被測定体の着磁等による外乱磁場に伴い生じる方位測定誤差を補正する電子コンパス及び方位測定方法に関するものである。   The present invention relates to an electronic compass and an azimuth measuring method for detecting a three-dimensional geomagnetism and measuring a three-dimensional azimuth of a measurement object, and in particular, azimuth measurement caused by a disturbance magnetic field due to magnetization of the measurement object. The present invention relates to an electronic compass that corrects errors and a direction measurement method.

従来より、2軸方向の地磁気を検出して被測定体の2次元的な方位を測定する電子コンパスは開発されている。
そして、かかる電子コンパスにおいては、地磁気ベクトルの2軸成分を検出して、方位円の中心を基準にその方位を表示する。この方位円は、被測定体の旋回によって2軸成分データが描く円であり、方位を測定するにはまず方位円の中心を求める必要がある。そして、方位円がずれた場合にこれを校正する必要がある。
Conventionally, an electronic compass has been developed that detects geomagnetism in two axial directions and measures the two-dimensional orientation of a measurement object.
In such an electronic compass, the biaxial component of the geomagnetic vector is detected, and the orientation is displayed with reference to the center of the orientation circle. This azimuth circle is a circle drawn by biaxial component data by turning the object to be measured. In order to measure the azimuth, it is necessary to first obtain the center of the azimuth circle. And when an azimuth | direction circle has shifted | deviated, it is necessary to calibrate this.

例えば、引用文献1には、2つのデータを結ぶ線分の二等分線を算出し、算出された垂直二等分線の傾きによって複数個のセクターに分類し全てのセクターにデータが格納されると各セクターの代表からの距離の自乗和が最小となるポイントを算出して、円の中心を算出する技術が開示されている。   For example, in Cited Document 1, a bisector connecting two pieces of data is calculated, classified into a plurality of sectors according to the slope of the calculated vertical bisector, and data is stored in all sectors. Then, a technique for calculating the center of the circle by calculating the point at which the sum of squares of the distance from the representative of each sector is minimum is disclosed.

また、引用文献2には、地磁気方位センサによる所定数の測定値に基き、最小2乗法を用いて出力円として楕円を決定するパラメータを求め、これにより真円上のデータに変換して方位円の中心を求める旨が記載されている。
しかし、これらの方法では、方位円の校正に時間がかかり、精確な方位測定を適切に行えないという問題がある。
Also, in Cited Document 2, a parameter for determining an ellipse as an output circle using the least square method is obtained based on a predetermined number of measurement values obtained by a geomagnetic azimuth sensor. It is stated that the center is requested.
However, these methods have a problem that calibration of the azimuth circle takes time and accurate azimuth measurement cannot be performed appropriately.

そして、引用文献3には、中心演算手段と最小2乗法演算手段とを備えた、方位円の中心を校正する校正手段を有する電子コンパスが開示されている。これによれば、中心演算手段により素早く方位円の中心を校正し、更に、長期的には最小2乗法演算手段により、より高精度の校正を行うことができる。
なお、方位円の詳細については、引用文献3に記載されている。
Reference 3 discloses an electronic compass having a calibration unit that calibrates the center of the azimuth circle, which includes a center calculation unit and a least-squares calculation unit. According to this, the center of the azimuth circle can be calibrated quickly by the center computing means, and more accurately, calibration can be performed by the least square method computing means in the long term.
The details of the azimuth circle are described in Citation 3.

しかしながら、上記電子コンパスは、あくまでも、地磁気ベクトルの2軸成分を検出して方位測定をおこなうため、2次元的な方位測定しかできない。それ故、例えば、上記電子コンパスを携帯電子機器等に搭載して3次元的な方位測定を行うことはできない。
かかる3次元的な方位測定を行うためには、3個の磁気検出部(磁気センサ)を直交する3軸方向に配置して、地磁気成分を検出するよう構成することが考えられる。
However, the above-mentioned electronic compass can only measure the orientation by detecting the biaxial component of the geomagnetic vector and can only measure the orientation in two dimensions. Therefore, for example, the electronic compass cannot be mounted on a portable electronic device or the like to perform three-dimensional orientation measurement.
In order to perform such a three-dimensional azimuth measurement, it can be considered that three magnetic detectors (magnetic sensors) are arranged in three orthogonal directions to detect a geomagnetic component.

しかし、測定誤差を校正する際には、上述した方位円の中心を求める代わりに、図6に示すような3次元的な「方位球」の中心を求める必要がある。ここで、方位球とは、被測定体の3次元的な姿勢変化によって3軸成分データが描く球であり、その中心が方位測定の基準となるものである。   However, when calibrating the measurement error, it is necessary to obtain the center of a three-dimensional “azimuth sphere” as shown in FIG. 6 instead of obtaining the center of the azimuth circle described above. Here, the azimuth sphere is a sphere drawn by three-axis component data by a three-dimensional posture change of the measured object, and the center thereof is a reference for azimuth measurement.

この方位球の中心を求めるに当って、上記特許文献3の発明と同様な方法を利用しようとすると、互いに直交する3つの平面における方位円を求めると共にそれぞれの中心を求め、これらを重ね合わせて、方位球の中心を求めなければならない。そうすると、極めて複雑な校正方法となるという問題がある。   In obtaining the center of this azimuth sphere, when trying to use the same method as the invention of Patent Document 3, the azimuth circles in three planes orthogonal to each other are obtained, the respective centers are obtained, and these are overlapped. You have to find the center of the azimuth sphere. Then, there is a problem that it becomes a very complicated calibration method.

特開平6−58758号公報JP-A-6-58758 特開平9−68431号公報JP-A-9-68431 特開2006−234581号公報JP 2006-234581 A

本発明は、かかる従来の問題点に鑑みてなされたもので、3次元的な方位測定誤差の校正を容易に行うことができ、3次元的な方位を精確に測定することができる電子コンパス及び方位測定方法を提供しようとするものである。   The present invention has been made in view of such conventional problems, and can easily calibrate a three-dimensional azimuth measurement error and can accurately measure a three-dimensional azimuth. It is intended to provide an orientation measurement method.

第1の発明は、被測定体の姿勢方位と共に変化する地磁気ベクトルの3軸成分を直交する3軸成分データ(X1、Y1、Z1)、(X2、Y2、Z2)、・・・(Xi、Yi、Zi)として検出する直交配置された3つの磁気検出部をもつ地磁気方位検出器と、
上記3軸成分データ(Xi、Yi、Zi)から上記被測定体の姿勢方位を算出する方位演算手段と、
磁界の正常・異常を判定する磁界判定手段と、
該磁界判定手段が異常と判定したとき、上記被測定体の姿勢変化によって上記3軸成分データ(Xi、Yi、Zi)が描く方位球の中心を校正する校正手段と、を有し、
該校正手段は、少なくとも4つの上記3軸成分データ(Xi、Yi、Zi)から上記方位球の中心を算出する中心演算手段と、
所定数の上記3軸成分データ(Xi、Yi、Zi)から最小2乗法を用いて上記方位球を算出する最小2乗法演算手段と、を備え、
上記方位演算手段は、上記磁界判定手段が正常と判定したとき、上記3軸成分データ(Xi、Yi、Zi)から算出した上記姿勢方位を出力し、上記磁界判定手段が異常と判定したとき、上記校正手段で校正された上記方位球の中心を用いて順次上記姿勢方位を算出して出力することを特徴とする電子コンパスにある(請求項1)。
In the first invention, triaxial component data (X1, Y1, Z1), (X2, Y2, Z2),... (Xi, which are orthogonal to the triaxial components of the geomagnetic vector that changes with the orientation of the measured object. Yi, Zi), a geomagnetic bearing detector having three magnetic detectors arranged orthogonally,
Azimuth calculating means for calculating the posture azimuth of the measured object from the three-axis component data (Xi, Yi, Zi);
Magnetic field determination means for determining normality / abnormality of the magnetic field;
Calibration means for calibrating the center of the azimuth sphere drawn by the three-axis component data (Xi, Yi, Zi) according to the change in posture of the object to be measured when the magnetic field determination means determines that it is abnormal;
The calibration means includes center calculation means for calculating the center of the azimuth sphere from at least four of the three-axis component data (Xi, Yi, Zi),
A least-squares calculation means for calculating the azimuth using a least-squares method from a predetermined number of the three-axis component data (Xi, Yi, Zi),
The azimuth calculating means outputs the posture azimuth calculated from the three-axis component data (Xi, Yi, Zi) when the magnetic field determining means determines normal, and when the magnetic field determining means determines abnormal, The electronic compass is characterized in that the posture azimuth is calculated and output sequentially using the center of the azimuth calibrated by the calibrating means.

次に、本発明の作用効果につき説明する。
上記電子コンパスにおいては、上記磁界判定手段で異常と判定され、上記方位球の中心を校正する必要があるときのみ、上記中心演算手段で少なくとも4つの3軸成分データ(Xi、Yi、Zi)から方位球の中心を算出し、その中心を方位球の暫定中心として上記方位演算手段で方位を求めるので、短時間に比較的誤差の少ない方位を表示することができる。
Next, the effects of the present invention will be described.
In the electronic compass, only when it is determined that the magnetic field determination means is abnormal and the center of the azimuth sphere needs to be calibrated, the center calculation means uses at least four three-axis component data (Xi, Yi, Zi). Since the center of the azimuth sphere is calculated, and the azimuth is calculated by the azimuth calculating means using the center as the provisional center of the azimuth sphere, it is possible to display an azimuth with relatively little error in a short time.

その後、上記最小2乗法演算手段で所定数の3軸成分データから方位球の中心を求め、上記方位演算手段で方位を求めるので、最終的には高精度の方位を表示することができる。したがって、着磁に起因する測定誤差の発生を抑制して、精確な3次元方位を測定することができる。
このように、上記校正手段における中心演算手段は、4つの3軸成分データ(Xi、Yi、Zi)から方位球の中心を算出することにより、3次元的な方位測定誤差を短時間で精確に校正して、上記方位球の中心を校正することができる。
Thereafter, the least square method computing means obtains the center of the azimuth sphere from a predetermined number of three-axis component data, and the azimuth computing means obtains the azimuth, so that a highly accurate azimuth can be finally displayed. Accordingly, it is possible to measure an accurate three-dimensional azimuth while suppressing generation of a measurement error due to magnetization.
As described above, the center calculation means in the calibration means calculates the center of the azimuth sphere from the four three-axis component data (Xi, Yi, Zi), thereby accurately correcting the three-dimensional azimuth measurement error in a short time. The center of the azimuth sphere can be calibrated.

以上のごとく、本発明によれば、3次元的な方位測定誤差の校正を容易に行うことができ、3次元的な方位を精確に測定することができる電子コンパスを提供することができる。   As described above, according to the present invention, it is possible to easily calibrate a three-dimensional orientation measurement error and provide an electronic compass capable of accurately measuring a three-dimensional orientation.

第2の発明は、被測定体の姿勢方位と共に変化する地磁気ベクトルの3軸成分を直交する3軸成分データ(X1、Y1、Z1)、(X2、Y2、Z2)、・・・(Xi、Yi、Zi)として検出する3軸成分データ検出ステップと、
上記3軸成分データ検出ステップで検出された上記3軸成分データ(Xi、Yi、Zi)から上記被測定体の該姿勢方位を算出する方位演算ステップと、
磁界の正常・異常を判定する磁界判定ステップと、
該磁界判定ステップが異常と判定したとき、上記被測定体の姿勢変化によって上記3軸成分データ(Xi、Yi、Zi)が描く方位球の中心を校正する校正ステップと、
を有し、
該校正ステップは、少なくとも4つの上記3軸成分データ(Xi、Yi、Zi)から上記方位球の中心を算出する中心演算ステップと、
所定数の上記3軸成分データ(Xi、Yi、Zi)から最小2乗法を用いて上記方位球を算出する最小2乗法演算ステップと、を備え、
上記方位演算ステップは、上記磁界判定ステップが正常と判定したとき、上記3軸成分データ(Xi、Yi、Zi)から算出された上記被測定体の姿勢方位を出力し、上記磁界判定ステップが異常と判定したとき、上記校正ステップで校正された上記方位球の中心を用いて順次上記姿勢方位を算出して出力することを特徴とする方位測定方法にある(請求項5)。
In the second invention, three-axis component data (X1, Y1, Z1), (X2, Y2, Z2) orthogonal to the three-axis components of the geomagnetic vector that changes with the orientation of the measured object, (Xi, Yi, Zi) is detected as a triaxial component data detection step;
An azimuth calculation step for calculating the posture azimuth of the measured object from the three-axis component data (Xi, Yi, Zi) detected in the three-axis component data detection step;
A magnetic field determination step for determining normality / abnormality of the magnetic field;
A calibration step for calibrating the center of an azimuth sphere drawn by the three-axis component data (Xi, Yi, Zi) according to a change in posture of the measured object when the magnetic field determination step is determined to be abnormal;
Have
The calibration step includes a center calculation step for calculating the center of the azimuth sphere from at least four of the three-axis component data (Xi, Yi, Zi);
A least-squares method calculating step for calculating the azimuth sphere using a least-squares method from a predetermined number of the three-axis component data (Xi, Yi, Zi),
The azimuth calculating step outputs the posture azimuth of the measured object calculated from the three-axis component data (Xi, Yi, Zi) when the magnetic field determining step is determined to be normal, and the magnetic field determining step is abnormal. In the azimuth measuring method, the posture azimuth is calculated and output sequentially using the center of the azimuth sphere calibrated in the calibration step.

本発明によれば、3次元的な方位測定誤差の校正を容易に行うことができ、3次元的な方位を精確に測定することができる方位測定方法を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the calibration of a three-dimensional azimuth | direction measurement error can be performed easily, and the azimuth | direction measurement method which can measure a three-dimensional azimuth | direction accurately can be provided.

上記第1の発明(請求項1)及び上記第2の発明(請求項5)において、上記被測定体としては、例えば、携帯電話器等の携帯電子機器がある。また、上記姿勢方位とは、被測定体の姿勢によって定まる3次元的な方位であって、例えば、携帯電話器の表示画面の上下方向が向く3次元的な方位等がこれに該当する。   In the first invention (invention 1) and the second invention (invention 5), examples of the object to be measured include portable electronic devices such as cellular phones. The orientation orientation is a three-dimensional orientation determined by the orientation of the object to be measured, and corresponds to, for example, a three-dimensional orientation in which the vertical direction of the display screen of the mobile phone is oriented.

また、上記磁気検出部は、±3mGの検出精度を有することが好ましい(請求項2)。
この場合には、地磁気ベクトルの3軸成分を充分な精度で検出することができる。これにより、姿勢方位の測定を精確に行うことができる。また、上記中心球の中心の校正を精確に行うことができるため、精確な測定を確保することができる。
また、地磁気の大きさが300〜350mGであることを考慮すると、方位が1°ずれたときに特定方位における検出誤差が3〜4mGとなる。それ故、上記磁気検出部が±3mGの検出精度を有することにより、方位検出として、±1°の検出精度を得ることができる。
Moreover, it is preferable that the said magnetic detection part has a detection accuracy of +/- 3mG (Claim 2).
In this case, the three-axis component of the geomagnetic vector can be detected with sufficient accuracy. Thereby, it is possible to accurately measure the posture orientation. In addition, since the center of the central sphere can be accurately calibrated, accurate measurement can be ensured.
Considering that the magnitude of geomagnetism is 300 to 350 mG, when the azimuth is shifted by 1 °, the detection error in the specific azimuth is 3 to 4 mG. Therefore, when the magnetic detection unit has a detection accuracy of ± 3 mG, a detection accuracy of ± 1 ° can be obtained as the direction detection.

また、方位測定を1m秒以下の間隔で行うことが好ましい(請求項3、請求項6)。
この場合には、上記校正手段において方位球の中心の校正を充分に精確に行うことができる。即ち、校正を行うに当って、4つ以上の3軸成分データを取得して、方位球の中心を求める必要があるが、方位測定を1m秒以下の間隔で行えるということは、3軸成分データを短時間で多数取得することができるということとなり、短時間で方位球の中心の校正を行うことができる。それ故、精確な校正を行うことができ、精確な3次元的な姿勢方位の検出が可能となる。
また、人間の通常の動作によって被測定体の姿勢を1°変化させるのに要する時間が約1m秒以上であることを考慮すると、方位測定を1m秒以下の間隔で行えれば、1°の姿勢変化を充分に検出できることとなる。
In addition, it is preferable to perform azimuth measurement at intervals of 1 msec or less (claims 3 and 6).
In this case, the calibration means can calibrate the center of the bearing sphere sufficiently accurately. In other words, when performing calibration, it is necessary to acquire four or more triaxial component data and obtain the center of the azimuth sphere, but the fact that azimuth measurement can be performed at intervals of 1 msec or less means that the triaxial component This means that a large number of data can be acquired in a short time, and the center of the azimuth sphere can be calibrated in a short time. Therefore, accurate calibration can be performed, and accurate three-dimensional posture orientation can be detected.
Considering that the time required to change the posture of the object to be measured by 1 ° by normal human movement is about 1 msec or more, if azimuth measurement can be performed at intervals of 1 msec or less, 1 ° A change in posture can be sufficiently detected.

また、上記磁気検出部は、マグネトインピーダンス磁気センサであることが好ましい(請求項4)。
マグネトインピーダンス磁気センサは、超小型であり、地磁気方位検出器を小型化することができる。したがって、地磁気方位検出器を例えば携帯電子機器等に内蔵することが容易となる。また、マグネトインピーダンス磁気センサは、高感度の磁気センサとすることができるため、地磁気ベクトルの3軸成分データ(Xi、Yi、Zi)を特に高精確に測定することができる。これにより、3次元的な姿勢方位を精確に検出することができると共に、上記校正手段における3次元的な方位測定誤差の校正を精確に行うことができる。
Moreover, it is preferable that the said magnetic detection part is a magnetoimpedance magnetic sensor.
The magneto-impedance magnetic sensor is very small, and the geomagnetic orientation detector can be miniaturized. Therefore, it becomes easy to incorporate the geomagnetic orientation detector in, for example, a portable electronic device. In addition, since the magneto-impedance magnetic sensor can be a highly sensitive magnetic sensor, the triaxial component data (Xi, Yi, Zi) of the geomagnetic vector can be measured with particularly high accuracy. As a result, it is possible to accurately detect the three-dimensional posture orientation and to accurately calibrate the three-dimensional orientation measurement error in the calibration means.

本発明の実施例にかかる電子コンパス及びこれを用いた方位測定方法につき、図1〜図6を用いて説明する。
本例の電子コンパス10は、図1に示すごとく、以下の地磁気方位検出器1と方位演算手段32と磁界判定手段31と校正手段33とを有する。
An electronic compass and an orientation measurement method using the same according to an embodiment of the present invention will be described with reference to FIGS.
As shown in FIG. 1, the electronic compass 10 of this example includes the following geomagnetic azimuth detector 1, azimuth calculation means 32, magnetic field determination means 31, and calibration means 33.

地磁気方位検出器1は、図2に示すごとく、被測定体の姿勢方位と共に変化する地磁気ベクトルの3軸成分を直交する3軸成分データ(X1、Y1、Z1)、(X2、Y2、Z2)、・・・(Xi、Yi、Zi)として検出する直交配置された3つの磁気検出部11x、11y、11zをもつ。   As shown in FIG. 2, the geomagnetic azimuth detector 1 has three-axis component data (X1, Y1, Z1), (X2, Y2, Z2) orthogonal to the three-axis components of the geomagnetic vector that changes with the orientation of the measured object. ,..., (Xi, Yi, Zi), and three magnetic detectors 11x, 11y, 11z arranged orthogonally.

方位演算手段32は、上記3軸成分データ(Xi、Yi、Zi)から被測定体の姿勢方位を算出する。
磁界判定手段31は、磁界の正常・異常を判定する。
校正手段33は、磁界判定手段31が異常と判定したとき、被測定体の姿勢変化によって上記3軸成分データ(Xi、Yi、Zi)が描く方位球(図6)の中心を校正する。なお、図6には、外乱磁場等により方位球が偏移する様子を示した図であって、実線にて表した球が偏移する前の方位球であり、破線にて表した球が偏移した後の方位球である。
The azimuth calculating means 32 calculates the posture azimuth of the measured object from the three-axis component data (Xi, Yi, Zi).
The magnetic field determination means 31 determines normality / abnormality of the magnetic field.
When the magnetic field determination unit 31 determines that the magnetic field determination unit 31 is abnormal, the calibration unit 33 calibrates the center of the azimuth sphere (FIG. 6) drawn by the three-axis component data (Xi, Yi, Zi) according to the posture change of the measured object. FIG. 6 is a diagram showing how the azimuth sphere shifts due to a disturbance magnetic field, etc., where the sphere represented by the solid line is the azimuth sphere before the shift, and the sphere represented by the broken line is It is an azimuth sphere after shifting.

校正手段33は、少なくとも4つの上記3軸成分データ(Xi、Yi、Zi)から上記方位球の中心を算出する中心演算手段331と、所定数の上記3軸成分データ(Xi、Yi、Zi)から最小2乗法を用いて上記方位球を算出する最小2乗法演算手段332とを備えている。
上記方位演算手段32は、上記磁界判定手段31が正常と判定したとき、3軸成分データ(Xi、Yi、Zi)から算出した姿勢方位を出力し、磁界判定手段31が異常と判定したとき、校正手段33で校正された上記方位球の中心を用いて順次姿勢方位を算出して出力する。
The calibration means 33 includes a center calculation means 331 for calculating the center of the azimuth sphere from at least four of the three-axis component data (Xi, Yi, Zi), and a predetermined number of the three-axis component data (Xi, Yi, Zi). And a least square method computing means 332 for calculating the azimuth sphere using the least square method.
When the magnetic field determination means 31 determines that the magnetic field determination means 31 is normal, the azimuth calculation means 32 outputs the posture direction calculated from the triaxial component data (Xi, Yi, Zi). Using the center of the azimuth sphere calibrated by the calibration means 33, the orientation azimuth is calculated and output sequentially.

具体的には、本例の電子コンパス10は、図1に示すように、感度軸が直交配設され、地磁気ベクトルのX成分とY成分を直交する3軸成分データ(X1、Y1、Z1)、(X2、Y2、Z2)、・・・(Xi、Yi、Zi)として検出する3つの磁気検出部11x、11y、11zをもつ地磁気方位検出器1と、磁気検出部11x、11y、11zの出力を所定の頻度でデジタル信号に変換するAD変換器2と、デジタル信号を受けてソフトウエアにより移動体の方位を演算するマイクロコンピュータ3と、演算された方位を表示する表示手段4を備えている。   Specifically, as shown in FIG. 1, the electronic compass 10 of the present example has triaxial component data (X1, Y1, Z1) in which the sensitivity axes are orthogonally arranged and the X component and Y component of the geomagnetic vector are orthogonal. , (X2, Y2, Z2),... (Xi, Yi, Zi) of the geomagnetic azimuth detector 1 having three magnetic detectors 11x, 11y, 11z, and the magnetic detectors 11x, 11y, 11z An AD converter 2 that converts an output into a digital signal at a predetermined frequency, a microcomputer 3 that receives the digital signal and calculates the direction of the moving object by software, and a display unit 4 that displays the calculated direction are provided. Yes.

地磁気方位検出器1として、パーマロイコアに直交して巻回された2つのコイルを磁気検出部11x、11y、11zとする従来の検出器を用いてもよいが、マグネトインピーダンス磁気センサを磁気検出部11x、11y、11zとする磁気検出器を用いることが好ましい。マグネトインピーダンス磁気センサ(以後、「MIセンサ」という)は、例えば、直径20μm、長さ1mmのアモルファス(FeCoSiB)ワイヤと、このワイヤに巻回された検出コイルとからなり、磁界の強さに比例したアナログ電圧を出力する、超小型・高感度の磁気センサである。したがって、地磁気方位検出器1を、図2に示すように、2つのMIセンサを互いに直角に配設し(11x、11y、11zとし)、駆動回路12と共に、縦約3.5mm、横約3.5mmのIC用パッケージに封入したものとすることができる。
また、磁気検出部11x、11y、11zは、±3mGの検出精度を有する。
As the geomagnetic azimuth detector 1, a conventional detector in which two coils wound perpendicularly to the permalloy core are used as the magnetic detectors 11x, 11y, and 11z may be used, but the magneto-impedance magnetic sensor is used as the magnetic detector. It is preferable to use magnetic detectors having 11x, 11y, and 11z. A magneto-impedance magnetic sensor (hereinafter referred to as “MI sensor”) is composed of, for example, an amorphous (FeCoSiB) wire having a diameter of 20 μm and a length of 1 mm and a detection coil wound around the wire, and is proportional to the strength of the magnetic field. It is an ultra-compact, high-sensitivity magnetic sensor that outputs an analog voltage. Therefore, as shown in FIG. 2, the geomagnetic orientation detector 1 has two MI sensors arranged at right angles to each other (11x, 11y, and 11z), together with the drive circuit 12, about 3.5 mm in length and about 3 in width. It can be enclosed in a 5 mm IC package.
Further, the magnetic detection units 11x, 11y, and 11z have a detection accuracy of ± 3 mG.

AD変換器2としては、分解能が14ビット程度のものを用いるとよい。これにより、被測定体の方位測定分解能を満たすことができると共に、被測定体の磁化による地磁気方位検出器1の周辺の磁界が地磁気より大きくなっても信号が飽和することがない。
マイクロコンピュータ3は、磁界の正常・異常を判定する磁界判定手段31と、被測定体の姿勢方位を算出する方位演算手段32と、磁界判定手段31が異常と判定したとき、方位円の中心を校正する校正手段33と、を有している。また、校正手段33は、中心演算手段331と、最小2乗法演算手段332と、を備えている。なお、磁界判定手段31、方位演算手段32、及び校正手段33は、ソフトウエアにより構成されている。
As the AD converter 2, one having a resolution of about 14 bits may be used. Thereby, the azimuth measurement resolution of the measured object can be satisfied, and the signal does not saturate even if the magnetic field around the geomagnetic direction detector 1 due to the magnetization of the measured object becomes larger than the geomagnetism.
The microcomputer 3 determines the center of the azimuth circle when the magnetic field determination means 31 for determining the normality / abnormality of the magnetic field, the azimuth calculation means 32 for calculating the posture azimuth of the measurement object, and the magnetic field determination means 31 determine that the magnetic field determination means 31 is abnormal. And calibration means 33 for calibrating. The calibration unit 33 includes a center calculation unit 331 and a least square method calculation unit 332. The magnetic field determination unit 31, the azimuth calculation unit 32, and the calibration unit 33 are configured by software.

3つの磁気検出部11x、11y、11zにおいて、所定時間ごとに、3軸成分データ(Xi、Yi、Zi)を順次取得し、AD変換器2を介してマイクロコンピュータ3に入力する。マイクロコンピュータ3の磁界判定手段31は、所定の時間間隔を置いて取得された2つの3軸成分データから、その各成分の変化量の2乗の和(ΔX2+ΔY2+ΔZ2)を閾値と比較する。ここで、閾値は例えば100mGとすることができる。この100mGは、3軸成分データの測定精度を考慮して導き出せる閾値である。
即ち、磁界判定手段31は、以下の不等式が成り立つか否かを判定し、成り立つ場合には以上と判断し、成り立たない場合には正常と判断する。
In the three magnetic detectors 11x, 11y, and 11z, triaxial component data (Xi, Yi, Zi) are sequentially acquired at predetermined time intervals and input to the microcomputer 3 via the AD converter 2. The magnetic field determination means 31 of the microcomputer 3 uses, as a threshold value, the sum of the squares of the change amounts of each component (ΔX 2 + ΔY 2 + ΔZ 2 ) from two triaxial component data acquired at a predetermined time interval. Compare. Here, the threshold value can be set to 100 mG, for example. This 100 mG is a threshold that can be derived in consideration of the measurement accuracy of the triaxial component data.
That is, the magnetic field determination means 31 determines whether or not the following inequality holds, and determines that the above is true if it is true, and judges that it is normal if it is not true.

Figure 2008107102
Figure 2008107102

磁界判定手段31の動作を図3のフローチャートを使って説明する。ステップS11で3軸成分データ(Xi、Yi、Zi)の取得を行い、ステップS12でΔX2+ΔY2+ΔZ2を演算し、100mGとの大小関係を比較し、ΔX2+ΔY2+ΔZ2≧100mGのときY(異常)と判定し、ΔX2+ΔY2+ΔZ2<100mGのときN(正常)と判定する。異常と判定されると、ステップS13に進む。 The operation of the magnetic field determination unit 31 will be described with reference to the flowchart of FIG. In step S11, triaxial component data (Xi, Yi, Zi) is acquired, ΔX 2 + ΔY 2 + ΔZ 2 is calculated in step S12, the magnitude relationship with 100 mG is compared, and ΔX 2 + ΔY 2 + ΔZ 2 ≧ 100 mG At this time, it is determined as Y (abnormal), and when ΔX 2 + ΔY 2 + ΔZ 2 <100 mG, it is determined as N (normal). If determined to be abnormal, the process proceeds to step S13.

ステップS13においては、マイクロコンピュータ3に蓄積されている所定時間の4つ以上の3軸成分データ(Xi、Yi、Zi)を用いて、方位球の中心の座標を求める。ここでは、4つの3軸成分データを用い、それぞれの3軸成分データを(X1、Y1、Z1)、(X2、Y2、Z2)、(X3、Y3、Z3)、(X4、Y4、Z4)として説明する。
上記3軸成分データを、下記の(数2)に示す球の方程式に代入して4つの式を得、それらの連立方程式を解くことにより偏移後の方位球の中心(a、b、c)を求めることができる。(数2)において、Rは方位球の半径である。
In step S13, the coordinates of the center of the azimuth sphere are obtained using four or more three-axis component data (Xi, Yi, Zi) stored in the microcomputer 3 for a predetermined time. Here, four three-axis component data are used, and the respective three-axis component data are (X1, Y1, Z1), (X2, Y2, Z2), (X3, Y3, Z3), (X4, Y4, Z4). Will be described.
The above three-axis component data is substituted into the sphere equation shown in the following (Equation 2) to obtain four equations, and by solving these simultaneous equations, the center of the azimuth sphere after the shift (a, b, c) ). In (Expression 2), R is the radius of the azimuth sphere.

Figure 2008107102
Figure 2008107102

しかし、ここで、変数を減らすために、上記4つの3軸成分データにおける4点目の点(X4、Y4、Z4)に原点を移動して、4点の座標を、それぞれ(X1−X4、Y1−Y4、Z1−Z4)、(X2−X4、Y2−Y4、Z2−Z4)、(X3−X4、Y3−Y4、Z3−Z4)、(0、0、0)とする。
これらの座標を新たに、(X1、Y1、Z1)、(X2、Y2、Z2)、(X3、Y3、Z3)、(0、0、0)と定義しなおす。そして、これらの座標を改めて、下記の(数3)に示す球の方程式に代入して、以下の(数4)に示す3個の方程式が得られる。
However, here, in order to reduce the variables, the origin is moved to the fourth point (X4, Y4, Z4) in the four three-axis component data, and the coordinates of the four points are respectively (X1-X4, Y1-Y4, Z1-Z4), (X2-X4, Y2-Y4, Z2-Z4), (X3-X4, Y3-Y4, Z3-Z4), (0, 0, 0).
These coordinates are newly defined as (X1, Y1, Z1), (X2, Y2, Z2), (X3, Y3, Z3), (0, 0, 0). These coordinates are newly substituted into the equation of the sphere shown in the following (Equation 3), and the following three equations shown in (Equation 4) are obtained.

Figure 2008107102
Figure 2008107102

Figure 2008107102
Figure 2008107102

これらの式を行列に書き直すと、以下の(数5)のようになる。   When these equations are rewritten into a matrix, the following (Formula 5) is obtained.

Figure 2008107102
Figure 2008107102

Figure 2008107102
Figure 2008107102

と置くと、(数5)は、下記の(数7)となる。 (Equation 5) becomes (Equation 7) below.

Figure 2008107102
Figure 2008107102

(数7)の両辺に逆行列M-1をかけて、以下の(数8)を得る。 The following (Equation 8) is obtained by multiplying both sides of (Equation 7) by the inverse matrix M −1 .

Figure 2008107102
Figure 2008107102

そして、このこの逆行列M-1を求めることで、連立方程式の解(a’、b’、c’)を計算できる。
そして、座標原点を元に戻して、解(a、b、c)は、(a’+X4、b’+Y4、c’+Z4)により求められる。
Then, by obtaining this inverse matrix M −1 , the solutions (a ′, b ′, c ′) of the simultaneous equations can be calculated.
Then, the coordinate origin is returned to the original, and the solution (a, b, c) is obtained by (a ′ + X4, b ′ + Y4, c ′ + Z4).

次に、ステップS14においては、この解と、元から設定されていた方位球の中心座標(a、b、c)との間の3次元的なズレ量(Δa2+Δb2+Δc21/2を所定の閾値と比較する。閾値としては、例えば20mGとする。即ち以下の不等式(数9)が成り立つか否かを判断する。この20mGは、地磁気の測定環境による誤差を考慮して導き出せる閾値である。また、上記MIセンサの検出精度が±3mGであることから、このズレ量20mGは充分に検出することができる。 Next, in step S14, a three-dimensional shift amount (Δa 2 + Δb 2 + Δc 2 ) 1 / between this solution and the center coordinates (a, b, c) of the azimuth sphere set from the beginning. 2 is compared with a predetermined threshold. For example, the threshold is 20 mG. That is, it is determined whether or not the following inequality (Equation 9) holds. This 20 mG is a threshold value that can be derived in consideration of errors due to the geomagnetic measurement environment. Further, since the detection accuracy of the MI sensor is ± 3 mG, the amount of deviation 20 mG can be sufficiently detected.

Figure 2008107102
Figure 2008107102

上記不等式が成り立つ場合には異常と判断し校正手段33へ進み、不等式が成り立たない場合には正常と判断し方位演算手段32へ進む。
そして、校正手段33によって、元から設定されていた方位球の中心座標(a、b、c)を、新たに求めた方位球の中心座標に設定しなおす。
その上で、方位演算を行う。
If the above inequality is satisfied, it is determined as abnormal and the process proceeds to the calibration means 33. If the inequality is not satisfied, it is determined as normal and the process proceeds to the direction calculation means 32.
Then, the calibration means 33 resets the center coordinates (a, b, c) of the azimuth sphere that were originally set to the newly obtained center coordinates of the azimuth sphere.
Then, the azimuth calculation is performed.

中心演算手段331の動作の機能は図4のフローチャートによるソフトウエアで行われる。このフローチャートは磁界判定手段31が異常と判定したとき起動する。ステップS21でデータ点(Xi、Yi、Zi)を取得し、ステップS22でそのデータを順次ストアする。次にステップS23で互いに所定距離以上離れたデータ点を4つ取り出す。ここで、所定距離以上離れたデータ点の条件としては、たとえば、3つのデータ点の距離が互いに200mG以上離れていて、4つめのデータ点が、上記3つのデータ点によって定まる平面からの距離が50mG以上離れている状態に設定することができる。
次いで、ステップS24において、上記の4つの3軸成分データから、上述した計算方法によって方位球の中心を求め、その結果をステップS25で方位演算手段32に渡す。
The function of the operation of the central calculation means 331 is performed by software according to the flowchart of FIG. This flowchart is activated when the magnetic field determination means 31 determines that there is an abnormality. In step S21, a data point (Xi, Yi, Zi) is acquired, and in step S22, the data is sequentially stored. Next, in step S23, four data points separated from each other by a predetermined distance or more are extracted. Here, as a condition of data points that are separated by a predetermined distance or more, for example, the distance between the three data points is 200 mG or more away from each other, and the distance from the plane that the fourth data point is determined by the three data points is, for example, It can be set in a state of being separated by 50 mG or more.
Next, in step S24, the center of the azimuth sphere is obtained from the above four three-axis component data by the calculation method described above, and the result is passed to the azimuth calculation means 32 in step S25.

最小2乗法演算手段332の機能は、図5のフローチャートによるソフトウエアで行われる。このフローチャートは、磁界判定手段31が異常と判定したとき、中心演算手段331と同時に起動する。ステップS31でデータ点を取得し、ステップS32でそのデータ点を順次ストアする。次に、ステップS33において、所定数のデータ点を取りだし、ステップS34において、最小2乗法演算により方位球を推定し、この方位球の中心位置(a、b、c)を算出する。なお、ここで、データ点を取り出す所定数とは、40のことである。ここで求められた中心位置(a、b、c)は、ステップS35で方位演算手段32へ渡される。   The function of the least squares method calculation means 332 is performed by software according to the flowchart of FIG. This flowchart is activated simultaneously with the center calculation means 331 when the magnetic field determination means 31 determines that there is an abnormality. In step S31, a data point is acquired, and in step S32, the data point is sequentially stored. Next, in step S33, a predetermined number of data points are taken out, and in step S34, an azimuth sphere is estimated by a least square method calculation, and the center position (a, b, c) of this azimuth sphere is calculated. Here, the predetermined number of data points to be extracted is 40. The center position (a, b, c) obtained here is transferred to the azimuth calculating means 32 in step S35.

この最小2乗法演算手段332による中心位置(a、b、c)の演算は、所定のデータ点数が集まるまである程度の時間が必要であり、中心演算手段331よりも遅れて完了する。方位演算手段32は、図1に示すように、最小2乗法演算手段332から中心位置(a、b、c)データが渡されると、これを新たな方位球の中心位置として入れ替え、その後の姿勢方位を算出し、表示手段4で精度の高い方位を表示する。   The calculation of the center position (a, b, c) by the least square method calculation means 332 requires a certain amount of time until a predetermined number of data points are collected, and is completed later than the center calculation means 331. As shown in FIG. 1, when the center position (a, b, c) data is passed from the least square method calculator 332, the azimuth calculator 32 replaces this with the center position of a new azimuth sphere, The azimuth is calculated, and the display unit 4 displays the azimuth with high accuracy.

また、校正手段33が、中心演算手段331で求められた方位球の中心位置(a、b、c)と、最小2乗法演算手段332で求められた方位球の中心位置(a、b、c)の平均を演算する平均演算手段をさらに有していてもよい。
この平均演算手段によって、上記二つの手段によって求めた方位球の中心位置の平均を求め、この平均値を方位演算手段32において用いることにより、精確な方位演算を行うこともできる。
Further, the calibration means 33 has the center position (a, b, c) of the azimuth sphere determined by the center calculation means 331 and the center position (a, b, c) of the azimuth sphere determined by the least squares calculation means 332. You may further have an average calculating means which calculates the average of.
An accurate azimuth calculation can be performed by calculating the average of the center positions of the azimuth spheres obtained by the two means and using the average value in the azimuth calculation means 32 by the average calculation means.

なお、本例の電子コンパスは、例えば、携帯電話器等の携帯電子機器に用いることができる。そして、例えば、携帯電子機器を3次元的に動かしたときに、校正手段33による校正が行われるように構成することもできる。
また、磁界判定手段31の作動条件として、例えば、所定の加速度が生じたときや、電話がかかったときなどの条件によって作動させることもできる。
即ち、地磁気方位検出器1において3軸成分データを取得し続け、そのデータをメモリ内に記憶させるが、使用しないデータは順次消去していくこととなる。そして、磁界判定手段31において、上記のような作動条件が整ったとき、所定の過去のデータまで遡ってデータを比較し、磁界の正常、異常の判定を行うことができる。なお、所定の加速度については、被測定体に加速度センサをも併設することにより、検出することができる。また、この加速度センサも、MIセンサを用いた小型、高精度のものを採用することができる。
In addition, the electronic compass of this example can be used for portable electronic devices, such as a mobile telephone, for example. For example, when the portable electronic device is moved three-dimensionally, the calibration by the calibration unit 33 can be performed.
Further, as the operating condition of the magnetic field determining means 31, for example, it can be operated according to conditions such as when a predetermined acceleration occurs or when a telephone call is made.
That is, the geomagnetic azimuth detector 1 continues to acquire the triaxial component data and stores the data in the memory, but the unused data is sequentially deleted. In the magnetic field determination means 31, when the above operating conditions are satisfied, the data can be compared retroactively to predetermined past data to determine whether the magnetic field is normal or abnormal. The predetermined acceleration can be detected by installing an acceleration sensor on the measured object. In addition, this acceleration sensor can also employ a small and highly accurate sensor using an MI sensor.

次に、本例の作用効果につき説明する。
上記電子コンパス10においては、磁界判定手段31で異常と判定され、方位球の中心を校正する必要があるときのみ、中心演算手段331で少なくとも4つの3軸成分データ(Xi、Yi、Zi)から方位球の中心を算出し、その中心を方位球の暫定中心として上記方位演算手段32で方位を求めるので、短時間に比較的誤差の少ない方位を表示することができる。
Next, the function and effect of this example will be described.
In the electronic compass 10, only when it is determined that the magnetic field determination unit 31 is abnormal and the center of the azimuth sphere needs to be calibrated, the center calculation unit 331 uses at least four three-axis component data (Xi, Yi, Zi). Since the center of the azimuth sphere is calculated and the azimuth is calculated by the azimuth calculating means 32 using the center as the temporary center of the azimuth sphere, it is possible to display an azimuth with relatively little error in a short time.

その後、最小2乗法演算手段332で所定数の3軸成分データから方位球の中心を求め、方位演算手段32で方位を求めるので、最終的には高精度の方位を表示することができる。したがって、着磁に起因する測定誤差の発生を抑制して、精確な3次元方位を測定することができる。
このように、上記校正手段33における中心演算手段331は、4つの3軸成分データ(Xi、Yi、Zi)から方位球の中心を算出することにより、3次元的な方位測定誤差を短時間で精確に校正して、上記方位球の中心を校正することができる。
Thereafter, the least square method computing means 332 obtains the center of the azimuth sphere from a predetermined number of three-axis component data, and the azimuth computing means 32 obtains the azimuth, so that a highly accurate azimuth can be finally displayed. Accordingly, it is possible to measure an accurate three-dimensional azimuth while suppressing generation of a measurement error due to magnetization.
As described above, the center calculation means 331 in the calibration means 33 calculates the center of the azimuth sphere from the four three-axis component data (Xi, Yi, Zi), thereby reducing the three-dimensional azimuth measurement error in a short time. The center of the azimuth sphere can be calibrated accurately.

以上のごとく、本例によれば、3次元的な方位測定誤差の校正を容易に行うことができ、3次元的な方位を精確に測定することができる電子コンパスを提供することができる。   As described above, according to this example, it is possible to easily calibrate a three-dimensional orientation measurement error, and to provide an electronic compass capable of accurately measuring a three-dimensional orientation.

実施例における、電子コンパスのブロック図。The block diagram of the electronic compass in an Example. 実施例における、MIセンサを用いた地磁気方位検出器の概略構成図。The schematic block diagram of the geomagnetic direction detector using MI sensor in an Example. 実施例における、磁界判定手段のフローチャート。The flowchart of the magnetic field determination means in an Example. 実施例における、中心演算手段のフローチャート。The flowchart of the center calculating means in an Example. 実施例における、最小2乗法演算手段のフローチャート。The flowchart of the least squares method calculating means in an Example. 実施例における、外乱磁場により方位球が偏移する様子を示した図。The figure which showed a mode that the orientation sphere shifted by the disturbance magnetic field in an Example.

符号の説明Explanation of symbols

1 地磁気方位検出器
10 電子コンパス
11a、11b、11c 磁気検出部(マグネトインピーダンス磁気センサ)
31 磁界判定手段
32 方位演算手段
33 校正手段
331 中心演算手段
332 最小2乗法演算手段
DESCRIPTION OF SYMBOLS 1 Geomagnetic direction detector 10 Electronic compass 11a, 11b, 11c Magnetic detection part (Magnet impedance magnetic sensor)
31 Magnetic field determination means 32 Direction calculation means 33 Calibration means 331 Center calculation means 332 Least squares calculation means

Claims (6)

被測定体の姿勢方位と共に変化する地磁気ベクトルの3軸成分を直交する3軸成分データ(X1、Y1、Z1)、(X2、Y2、Z2)、・・・(Xi、Yi、Zi)として検出する直交配置された3つの磁気検出部をもつ地磁気方位検出器と、
上記3軸成分データ(Xi、Yi、Zi)から上記被測定体の姿勢方位を算出する方位演算手段と、
磁界の正常・異常を判定する磁界判定手段と、
該磁界判定手段が異常と判定したとき、上記被測定体の姿勢変化によって上記3軸成分データ(Xi、Yi、Zi)が描く方位球の中心を校正する校正手段と、を有し、
該校正手段は、少なくとも4つの上記3軸成分データ(Xi、Yi、Zi)から上記方位球の中心を算出する中心演算手段と、
所定数の上記3軸成分データ(Xi、Yi、Zi)から最小2乗法を用いて上記方位球を算出する最小2乗法演算手段と、を備え、
上記方位演算手段は、上記磁界判定手段が正常と判定したとき、上記3軸成分データ(Xi、Yi、Zi)から算出した上記姿勢方位を出力し、上記磁界判定手段が異常と判定したとき、上記校正手段で校正された上記方位球の中心を用いて順次上記姿勢方位を算出して出力することを特徴とする電子コンパス。
Detects the three-axis component of the geomagnetic vector that changes with the orientation of the measured object as three-axis component data (X1, Y1, Z1), (X2, Y2, Z2), ... (Xi, Yi, Zi) A geomagnetic azimuth detector having three magnetic detectors arranged orthogonally;
Azimuth calculating means for calculating the posture azimuth of the measured object from the three-axis component data (Xi, Yi, Zi);
Magnetic field determination means for determining normality / abnormality of the magnetic field;
Calibration means for calibrating the center of the azimuth sphere drawn by the three-axis component data (Xi, Yi, Zi) according to the change in posture of the object to be measured when the magnetic field determination means determines that it is abnormal;
The calibration means includes center calculation means for calculating the center of the azimuth sphere from at least four of the three-axis component data (Xi, Yi, Zi),
A least-squares calculation means for calculating the azimuth using a least-squares method from a predetermined number of the three-axis component data (Xi, Yi, Zi),
The azimuth calculating means outputs the posture azimuth calculated from the three-axis component data (Xi, Yi, Zi) when the magnetic field determining means determines normal, and when the magnetic field determining means determines abnormal, An electronic compass characterized by sequentially calculating and outputting the posture orientation using the center of the orientation sphere calibrated by the calibration means.
請求項1において、上記磁気検出部は、±3mGの検出精度を有することを特徴とする電子コンパス。   The electronic compass according to claim 1, wherein the magnetic detection unit has a detection accuracy of ± 3 mG. 請求項1又は2において、方位測定を1m秒以下の間隔で行うことを特徴とする電子コンパス。   3. The electronic compass according to claim 1, wherein the azimuth measurement is performed at intervals of 1 msec or less. 請求項1〜3のいずれか一項において、上記磁気検出部は、マグネトインピーダンス磁気センサであることを特徴とする電子コンパス。   The electronic compass according to claim 1, wherein the magnetic detection unit is a magneto-impedance magnetic sensor. 被測定体の姿勢方位と共に変化する地磁気ベクトルの3軸成分を直交する3軸成分データ(X1、Y1、Z1)、(X2、Y2、Z2)、・・・(Xi、Yi、Zi)として検出する3軸成分データ検出ステップと、
上記3軸成分データ検出ステップで検出された上記3軸成分データ(Xi、Yi、Zi)から上記被測定体の該姿勢方位を算出する方位演算ステップと、
磁界の正常・異常を判定する磁界判定ステップと、
該磁界判定ステップが異常と判定したとき、上記被測定体の姿勢変化によって上記3軸成分データ(Xi、Yi、Zi)が描く方位球の中心を校正する校正ステップと、
を有し、
該校正ステップは、少なくとも4つの上記3軸成分データ(Xi、Yi、Zi)から上記方位球の中心を算出する中心演算ステップと、
所定数の上記3軸成分データ(Xi、Yi、Zi)から最小2乗法を用いて上記方位球を算出する最小2乗法演算ステップと、を備え、
上記方位演算ステップは、上記磁界判定ステップが正常と判定したとき、上記3軸成分データ(Xi、Yi、Zi)から算出された上記被測定体の姿勢方位を出力し、上記磁界判定ステップが異常と判定したとき、上記校正ステップで校正された上記方位球の中心を用いて順次上記姿勢方位を算出して出力することを特徴とする方位測定方法。
Detects the three-axis component of the geomagnetic vector that changes with the orientation of the measured object as three-axis component data (X1, Y1, Z1), (X2, Y2, Z2), ... (Xi, Yi, Zi) A three-axis component data detecting step,
An azimuth calculation step for calculating the posture azimuth of the measured object from the three-axis component data (Xi, Yi, Zi) detected in the three-axis component data detection step;
A magnetic field determination step for determining normality / abnormality of the magnetic field;
A calibration step for calibrating the center of an azimuth sphere drawn by the three-axis component data (Xi, Yi, Zi) according to a change in posture of the measured object when the magnetic field determination step is determined to be abnormal;
Have
The calibration step includes a center calculation step for calculating the center of the azimuth sphere from at least four of the three-axis component data (Xi, Yi, Zi);
A least-squares method calculating step for calculating the azimuth sphere using a least-squares method from a predetermined number of the three-axis component data (Xi, Yi, Zi),
The azimuth calculating step outputs the posture azimuth of the measured object calculated from the three-axis component data (Xi, Yi, Zi) when the magnetic field determining step is determined to be normal, and the magnetic field determining step is abnormal. And determining and outputting the orientation orientation sequentially using the center of the orientation sphere calibrated in the calibration step.
請求項5において、方位測定を1m秒以下の間隔で行うことを特徴とする方位測定方法。   6. The azimuth measuring method according to claim 5, wherein the azimuth measurement is performed at intervals of 1 msec or less.
JP2006287730A 2006-10-23 2006-10-23 Electronic compass and direction measurement method Expired - Fee Related JP5070428B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006287730A JP5070428B2 (en) 2006-10-23 2006-10-23 Electronic compass and direction measurement method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006287730A JP5070428B2 (en) 2006-10-23 2006-10-23 Electronic compass and direction measurement method

Publications (2)

Publication Number Publication Date
JP2008107102A true JP2008107102A (en) 2008-05-08
JP5070428B2 JP5070428B2 (en) 2012-11-14

Family

ID=39440580

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006287730A Expired - Fee Related JP5070428B2 (en) 2006-10-23 2006-10-23 Electronic compass and direction measurement method

Country Status (1)

Country Link
JP (1) JP5070428B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102202235A (en) * 2010-03-24 2011-09-28 华为技术有限公司 Internet protocol television (IPTV)-based azimuth display method, set-top box and system
JP2012093152A (en) * 2010-10-26 2012-05-17 Aichi Micro Intelligent Corp Magnetic gyroscope
CN104931028A (en) * 2015-06-30 2015-09-23 北京联合大学 Triaxial magnetic electronic compass error compensation method based on depth learning
US9366533B2 (en) 2010-11-18 2016-06-14 Nec Corporation Electronic device
CN110044321A (en) * 2019-03-22 2019-07-23 北京理工大学 The method for resolving attitude of flight vehicle using Geomagnetism Information and angular rate gyroscope
CN113615208A (en) * 2018-10-22 2021-11-05 沃克斯国际公司 Vehicle entertainment system providing paired wireless connectivity for multiple wireless headsets and related methods

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006011276A1 (en) * 2004-07-23 2006-02-02 Yamaha Corporation Direction processing device, direction processing method, direction processing program, direction measuring device, and geographic information display
JP2006234581A (en) * 2005-02-24 2006-09-07 Aichi Micro Intelligent Corp Electronic compass and azimuth measuring method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006011276A1 (en) * 2004-07-23 2006-02-02 Yamaha Corporation Direction processing device, direction processing method, direction processing program, direction measuring device, and geographic information display
JP2006234581A (en) * 2005-02-24 2006-09-07 Aichi Micro Intelligent Corp Electronic compass and azimuth measuring method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102202235A (en) * 2010-03-24 2011-09-28 华为技术有限公司 Internet protocol television (IPTV)-based azimuth display method, set-top box and system
JP2012093152A (en) * 2010-10-26 2012-05-17 Aichi Micro Intelligent Corp Magnetic gyroscope
US9366533B2 (en) 2010-11-18 2016-06-14 Nec Corporation Electronic device
CN104931028A (en) * 2015-06-30 2015-09-23 北京联合大学 Triaxial magnetic electronic compass error compensation method based on depth learning
CN113615208A (en) * 2018-10-22 2021-11-05 沃克斯国际公司 Vehicle entertainment system providing paired wireless connectivity for multiple wireless headsets and related methods
CN110044321A (en) * 2019-03-22 2019-07-23 北京理工大学 The method for resolving attitude of flight vehicle using Geomagnetism Information and angular rate gyroscope

Also Published As

Publication number Publication date
JP5070428B2 (en) 2012-11-14

Similar Documents

Publication Publication Date Title
US7119533B2 (en) Method, system and device for calibrating a magnetic field sensor
JP4252555B2 (en) Tilt sensor and azimuth measuring device using the same
JP5070428B2 (en) Electronic compass and direction measurement method
KR101485142B1 (en) Method and system for a self-calibrated multi-magnetometer platform
JP5017539B1 (en) Applied equipment for measuring and using geomagnetism
JP5706576B2 (en) Offset estimation apparatus, offset estimation method, offset estimation program, and information processing apparatus
JP2007500350A (en) System using 2-axis magnetic sensor for 3-axis compass solution
KR20110081205A (en) Electronic compass
WO2011158856A1 (en) Error cause determination method and device, error compensation method, three-axis magnetic sensor, sensor module, and program for determining error cause
KR20140093111A (en) Geomagnetic sensor calibration apparatus and method thereof
JP4590511B2 (en) Electronic compass
JP2006226810A (en) Azimuth measuring instrument
JPWO2008146757A1 (en) Physical quantity measuring apparatus and physical quantity measuring method
JP5475873B2 (en) Geomagnetic detector
JP2007256161A (en) Electronic azimuth meter
JP5457890B2 (en) Orientation detection device
JP2005265414A (en) Electronic azimuth meter and recording medium
JP2006275524A (en) Electronic azimuth meter and recording medium
KR100674194B1 (en) Method of controlling magnetic sensor, control device therefor, and portable terminal
JP2011185866A (en) Magnetic field detector
JP2013117442A (en) Bearing error compensation device, bearing error compensation method, bearing error compensation program, error angle compensation apparatus, triaxial magnetic sensor and sensor module
JP4551661B2 (en) Electronic compass, recording medium, and compass program
JP2010048826A (en) Azimuth angle measurement method and azimuth angle measurement device
JP2011185867A (en) Magnetic field detector
JP5033526B2 (en) Physical quantity measuring apparatus and physical quantity measuring method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090918

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100714

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111129

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120117

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120703

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120703

R150 Certificate of patent or registration of utility model

Ref document number: 5070428

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150831

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees