JP2008107044A - Humidity conditioning system for inside air and outside air - Google Patents

Humidity conditioning system for inside air and outside air Download PDF

Info

Publication number
JP2008107044A
JP2008107044A JP2006292051A JP2006292051A JP2008107044A JP 2008107044 A JP2008107044 A JP 2008107044A JP 2006292051 A JP2006292051 A JP 2006292051A JP 2006292051 A JP2006292051 A JP 2006292051A JP 2008107044 A JP2008107044 A JP 2008107044A
Authority
JP
Japan
Prior art keywords
air
heat exchanger
sensible heat
outside air
humidity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006292051A
Other languages
Japanese (ja)
Other versions
JP4979343B2 (en
Inventor
Toshio Okura
俊雄 大倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanken Setsubi Kogyo Co Ltd
Original Assignee
Sanken Setsubi Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanken Setsubi Kogyo Co Ltd filed Critical Sanken Setsubi Kogyo Co Ltd
Priority to JP2006292051A priority Critical patent/JP4979343B2/en
Publication of JP2008107044A publication Critical patent/JP2008107044A/en
Application granted granted Critical
Publication of JP4979343B2 publication Critical patent/JP4979343B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Central Air Conditioning (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a technology capable of efficiently performing vaporization-type water humidification by preheating the outside air or indoor air by a sensible heat exchanger, and further heating the same by a heating humidifier to obtain the air of high temperature and low humidity by properly combining the sensible heat exchanger and the heating humidifier. <P>SOLUTION: The outdoor fresh air E is the non-humidified air, which is heat-exchange by the sensible heat exchanger 45 and flows to the heating humidifier 46. The outside air F flows out of the sensible heat exchanger 45, and flows to the heating humidifier 46. The outside air F flowing out of the heating humidifier 46 flows out as shown by an arrow G. The outside air G exchanges heat again by the sensible heat exchanger 45, and flows out as shown by an arrow H. The outside air H is taken into an air-conditioned room 44 as the humidification supply air I. The humidification supply air I can be set to a desired physical condition, that is, a dry-bulb temperature of 13-20°C. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、天井内又は機械室に顕熱交換器と加熱加湿器を直列に設置し、顕熱交換器により内・外気を予熱し、加熱加湿器によりさらに加熱を行い、高温低湿空気にすることにより、効率よく気化式の水加湿を行い、顕熱交換器によりアフター冷却することにより、室内よりあまり温度を高くせず湿度の高い供給空気を取り入れる内・外気の調湿システムに関する。 In the present invention, a sensible heat exchanger and a heating humidifier are installed in series in the ceiling or in a machine room, the inside and outside air are preheated by the sensible heat exchanger, and further heated by the heating humidifier to form high-temperature and low-humidity air. In particular, the present invention relates to a humidity control system for inside and outside air that efficiently evaporates water and performs after-cooling with a sensible heat exchanger to take in high-humidity supply air without raising the temperature of the room.

一般的にほとんどの家庭やビルにおいて冷房、暖房などの温度調節が行われるが温度調節のみ行うと、空気中の相対湿度が極端に低くなる場合があり、静電気の発生や居住者等の喉の痛みなどの障害が発生し、また、特に病弱な人が所在する病院や高精度の製品の生産を要求される最先端工場では加湿が必要となる。従来、この種の従来の技術の第1の例としては、特開2001−91020の公開特許公報に開示された調湿換気装置に係る技術がある。
これについて説明すれば、図11に示すように屋内機1は、略直方形状に形成された屋内機ケーシング2を備えている。この屋内機ケーシング2は、外気3を導入するための外気導入口4と、吸い込んだ外気3を給気5として室内側に排出する室内側排出口6と、室内空気7を導入するための室内空気導入口8と、吸い込んだ室内空気7を排気9として室外に排出するための室外側排出口10とを備えている。屋内機ケーシング2の内部は中空を形成しており、外気導入口4から室内側排出口6に至る給気経路11および室内空気導入口8から室外側排出口10に至る排気経路12が形成されている。外気導入口4の内方には、導入した外気3を濾過するためのフィルタ13が設けられている。フィルタ13のさらに内方には、後述の冷媒回路を構成する屋内熱交換器14が配置されている。この屋内熱交換器14は、連絡配管接続部15を有しており、この連絡配管接続部15を介して連絡配管と接続され冷媒回路を構成する。冷媒回路中において屋内熱交換器14が凝縮器として作用する場合に、外気3を除湿する除湿器としてはたらく。屋内熱交換器14のさらに内方には、顕熱交換器16が設けられている。この顕熱交換器16は、給気経路11と排気経路12とにわたって設けられており、両経路を通過する空気が非接触で熱交換を行えるように構成されている。顕熱交換器16の排気経路12における室内側には、室内空気7を濾過するためのフィルタ13が設けられている。顕熱交換器16のさらに内方には、加湿器17が配置されている。この加湿器17は、複数本の透湿膜パイプを互いに平行に並設し、この透湿膜パイプの周囲に加湿水を配して構成された透湿膜加湿器で構成される。室内側排出口6の近傍には、給気ファン18が設けられている。この給気ファン18は、回転軸と交わる方向に送風を行うクロスフローファンで構成され、ファンモータ20により回転駆動されることによって、外気導入口4から室内側排出口6に至る給気経路11に気流を生成する。室内空気導入口8の近傍には、排気ファン19が設けられている。排気ファン19は給気ファン18と同様のクロスフローファンで構成され、ファンモータ20により回転駆動されることによって、室内空気導入口8から室外側排出口10に至る排気経路12に気流を生成する。屋外機は、屋外機ケーシングを備えており、内部機構は通常のセパレート型空気調和機の室外機と同様の構成となっている。屋内機1と屋外機とは冷媒経路を構成するための連絡配管およびデータの送受信を行うための内外伝送線によって接続されている。連絡配管は、屋内機1の屋内熱交換器14に設けられる連絡配管接続部15に接続され、屋外機の内部に配置される屋外熱交換器などに接続されている。屋内機ケーシング2の連絡配管接続部近傍には、周囲の温湿度を検出するための温度センサおよび湿度センサが設けられている。
Generally, temperature adjustment such as cooling and heating is performed in most homes and buildings. However, if only temperature adjustment is performed, the relative humidity in the air may become extremely low. Injuries such as pain occur, and humidification is necessary in hospitals where sick people are located and in cutting-edge factories that require production of high-precision products. Conventionally, as a first example of this type of conventional technology, there is a technology related to a humidity control ventilator disclosed in Japanese Patent Application Laid-Open No. 2001-91020.
If it demonstrates about this, as shown in FIG. 11, the indoor unit 1 is provided with the indoor unit casing 2 formed in the substantially rectangular shape. The indoor unit casing 2 includes an outside air introduction port 4 for introducing outside air 3, an indoor side discharge port 6 for discharging the sucked outside air 3 into the indoor side as supply air 5, and a room for introducing indoor air 7. An air introduction port 8 and an outdoor side discharge port 10 for discharging the sucked indoor air 7 to the outside as an exhaust 9 are provided. The interior of the indoor unit casing 2 is hollow, and an air supply path 11 from the outdoor air inlet 4 to the indoor outlet 6 and an exhaust path 12 from the indoor air inlet 8 to the outdoor outlet 10 are formed. ing. A filter 13 for filtering the introduced outside air 3 is provided inside the outside air inlet 4. An indoor heat exchanger 14 constituting a refrigerant circuit described later is disposed further inside the filter 13. The indoor heat exchanger 14 has a communication pipe connection part 15 and is connected to the communication pipe via the connection pipe connection part 15 to constitute a refrigerant circuit. When the indoor heat exchanger 14 acts as a condenser in the refrigerant circuit, it functions as a dehumidifier that dehumidifies the outside air 3. A sensible heat exchanger 16 is provided further inside the indoor heat exchanger 14. The sensible heat exchanger 16 is provided over the air supply path 11 and the exhaust path 12, and is configured so that air passing through both paths can perform heat exchange without contact. A filter 13 for filtering the indoor air 7 is provided on the indoor side of the exhaust path 12 of the sensible heat exchanger 16. A humidifier 17 is disposed further inside the sensible heat exchanger 16. The humidifier 17 is constituted by a moisture permeable membrane humidifier configured by arranging a plurality of moisture permeable membrane pipes in parallel with each other and arranging humidified water around the moisture permeable membrane pipe. An air supply fan 18 is provided in the vicinity of the indoor outlet 6. The air supply fan 18 is constituted by a cross flow fan that blows air in a direction crossing the rotation shaft, and is driven to rotate by a fan motor 20, whereby the air supply path 11 from the outside air inlet 4 to the indoor outlet 6. To generate airflow. An exhaust fan 19 is provided in the vicinity of the indoor air inlet 8. The exhaust fan 19 is configured by a cross flow fan similar to the air supply fan 18, and is driven to rotate by a fan motor 20, thereby generating an air flow in the exhaust path 12 from the indoor air inlet 8 to the outdoor outlet 10. . The outdoor unit includes an outdoor unit casing, and the internal mechanism has the same configuration as an outdoor unit of a normal separate type air conditioner. The indoor unit 1 and the outdoor unit are connected by a communication pipe for configuring a refrigerant path and an internal / external transmission line for transmitting / receiving data. The connection pipe is connected to a connection pipe connection portion 15 provided in the indoor heat exchanger 14 of the indoor unit 1 and is connected to an outdoor heat exchanger or the like disposed inside the outdoor unit. A temperature sensor and a humidity sensor for detecting ambient temperature and humidity are provided in the vicinity of the connecting pipe connection portion of the indoor unit casing 2.

次に、この種の従来の技術の第2の例としては特開2002−349905公開特許公報に開示された暖房対応型デシカント空調装置に係る技術がある。これについて説明すれば、このデシカント空調装置21は、図12に示すように、給気経路及び排気経路となる向流型の2つの流路22、23と、これら2つの流路22、23に跨って設置された除湿器24及び顕熱交換器25と、流路23上の顕熱交換器25と除湿器24との間に設置された再生用ヒータ26と、2つの流路22、23のエア導入側及びエア導出側にそれぞれ接続されて各流路22、23を室内または屋外にそれぞれ交互に切り替えて連通させる第1流通切替弁27及び第2流通切替弁28とを備えている。第1の流通切替弁27と流路22及び流路23との間はそれぞれ流路29及び流路30で結ばれ、第2の流通切替弁28と流路22及び流路23との間は、それぞれ流路31及び流路32で結ばれている。第2の流通切替弁28と室内または屋外とはそれぞれ流路33及び流路34により結ばれている。調湿用の加湿器35は、第2流通切換弁28と室内とを結ぶ流路33上に設置される。この流路33には外気を強制的に室内へ送給するための給気ファン36も設けられている。他方、第2流通切換弁28と屋外とを結ぶ流路34上には、室内空気を強制的に屋外へ送給するための排気ファン37が設けられている。この装置の冷房時の運転状況について説明する。冷房時は、図12に示すように、屋外からの外気は、第1の流通切替弁27から流路29に送られ、向流する一方の流路22に導入される。他方、室内空気は同じく第1の流通切替弁27を通じて流路30に送られて、向流する他方の流路23に導入される。一方の流路22に導入された外気は除湿器24と接触して除湿される。他方、他方の流路23に導入された室内空気は顕熱交換器25と接触し、冷熱が回収される。回収された冷熱は、当該顕熱交換器25を通じて、一方の流路22を流通する除湿済みの外気に供与される。顕熱交換器25により冷却された外気は、流路31を通って第2の流通切替弁28に送られる。第2の流通切替弁28に送られた外気は、流路33に送られて、加湿器35によって調湿された後、室内に送給される。他方、冷熱が回収された室内空気は、除湿器24と顕熱交換器25との間に介設されたヒータ26により加熱されて、除湿器24と接触して除湿器24を加熱再生する。その後、室内空気は流路32を通って第2の流通切替弁28に送られ、そこから流路34を通じて屋外に排出される。 Next, as a second example of this type of conventional technique, there is a technique related to a heating-compatible desiccant air conditioner disclosed in Japanese Patent Application Laid-Open No. 2002-349905. If this is demonstrated, this desiccant air conditioner 21 will be divided into two counterflow type flow paths 22 and 23 used as an air supply path and an exhaust path, and these two flow paths 22 and 23, as shown in FIG. The dehumidifier 24 and the sensible heat exchanger 25 installed across, the regeneration heater 26 installed between the sensible heat exchanger 25 and the dehumidifier 24 on the flow path 23, and the two flow paths 22, 23 The first flow switching valve 27 and the second flow switching valve 28 are connected to the air introduction side and the air lead-out side, respectively, so that the flow paths 22 and 23 are alternately switched indoors and outdoors to communicate with each other. The first flow switching valve 27 and the flow path 22 and the flow path 23 are connected by the flow path 29 and the flow path 30, respectively, and the second flow switching valve 28 and the flow path 22 and the flow path 23 are connected. Are connected by a flow path 31 and a flow path 32, respectively. The second flow switching valve 28 and the indoor or outdoor are connected by a flow path 33 and a flow path 34, respectively. The humidifier 35 for humidity adjustment is installed on the flow path 33 that connects the second flow switching valve 28 and the room. The flow path 33 is also provided with an air supply fan 36 for forcibly supplying outside air into the room. On the other hand, an exhaust fan 37 for forcibly supplying the indoor air to the outdoors is provided on the flow path 34 connecting the second flow switching valve 28 and the outdoors. The operating status of the device during cooling will be described. At the time of cooling, as shown in FIG. 12, outside air from the outside is sent from the first flow switching valve 27 to the flow path 29 and introduced into one flow path 22 that counter-flows. On the other hand, the indoor air is also sent to the flow path 30 through the first flow switching valve 27 and introduced into the other flow path 23 that counter-flows. The outside air introduced into one flow path 22 contacts the dehumidifier 24 and is dehumidified. On the other hand, the room air introduced into the other channel 23 comes into contact with the sensible heat exchanger 25, and the cold heat is recovered. The collected cold heat is supplied to the dehumidified outside air flowing through one flow path 22 through the sensible heat exchanger 25. The outside air cooled by the sensible heat exchanger 25 is sent to the second flow switching valve 28 through the flow path 31. The outside air sent to the second flow switching valve 28 is sent to the flow path 33, adjusted in humidity by the humidifier 35, and then supplied indoors. On the other hand, the indoor air from which the cold heat has been recovered is heated by a heater 26 interposed between the dehumidifier 24 and the sensible heat exchanger 25 and comes into contact with the dehumidifier 24 to regenerate the dehumidifier 24 by heating. Thereafter, the indoor air is sent to the second flow switching valve 28 through the flow path 32 and is discharged to the outside through the flow path 34 from there.

また、この種の従来の技術の他の例としては、図13に示す屋外新鮮空気導入型加湿システムがある。これについて説明すれば、外部から天井38内へ屋外新鮮空気Aを給気管39を通じて該天井38内に配置した加熱加湿器40に導入する。この加熱加湿器40の働きにより排気管41を介して空調室42内に加湿供給空気Bを排出し、該空調室42内の調湿動作を行なう。ここに、前記加熱加湿器40は給気管39側から空気ろ過フィルター40A、加熱コイル40B、加湿部40C、エリミネーター40D及び送風機40Eを備えている。また、該加湿部40Cは給気管付湿度制御バルブ40Fを接続している。この屋外新鮮空気導入型加湿システムによれば、室外の新鮮な空気Aを前記加熱加湿器40により加熱して水を気化させる方式であり、空調室42内に加湿された空気Bを流送する。この技術は加湿供給空気の温度がおよそ40℃以下では加湿効率が悪く空調室42内の空気を設計湿度例えば40(%)で維持することが困難であり、しかも前記加湿部40Cへ供給する水量が比較的多量であった。
また、この種の従来の技術の更に他の例としては、図14に示す室内低湿度空気導入型加湿システムがある。これについて説明すれば、空調室42内から天井38内へ室内低湿度空気Cを供給管39を通じて該天井38内に配置した加熱加湿器40に導入する。この加熱加湿器40の働きにより排気管41を介して空調室42内に加湿供給空気Dを排出し、該空調室42内の調湿動作を行なう。ここに、前記加熱加湿器40は給気管39側から空気ろ過フィルター40A、加熱コイル40B、加湿部40C、エリミネーター40D及び送風機40Eを備えている。また、該加湿部40Cは給気管付湿度制御バルブ40Fを接続している。この室内低湿度空気導入型加湿システムによれば、室内低湿度空気Cを前記加熱加湿器40により加熱して水を気化させる方式である。空調室42内に加湿された空気Dを流送する。この技術は加湿効率が悪く空調室42内の空気を設計湿度例えば40(%)で維持することが困難であり、しかも前記加湿部40Cへ供給する水量が比較的多量であった。
特開2001−91020の公開特許公報 特開2002−349905公開特許公報
Another example of this type of conventional technology is an outdoor fresh air introduction type humidification system shown in FIG. To explain this, fresh outdoor air A is introduced from the outside into the ceiling 38 through the air supply pipe 39 to the heating humidifier 40 disposed in the ceiling 38. The humidifying supply air B is discharged into the air conditioning chamber 42 through the exhaust pipe 41 by the action of the heating humidifier 40, and the humidity control operation in the air conditioning chamber 42 is performed. Here, the heating humidifier 40 includes an air filtration filter 40A, a heating coil 40B, a humidifying unit 40C, an eliminator 40D, and a blower 40E from the air supply tube 39 side. The humidifying section 40C is connected to a humidity control valve 40F with an air supply pipe. According to this outdoor fresh air introduction type humidification system, the outdoor fresh air A is heated by the heating humidifier 40 to vaporize water, and the humidified air B is flowed into the air conditioning chamber 42. . In this technology, when the temperature of the humidified supply air is approximately 40 ° C. or less, the humidification efficiency is poor and it is difficult to maintain the air in the air-conditioned room 42 at the designed humidity, for example, 40 (%), and the amount of water supplied to the humidifying unit 40C Was relatively large.
As still another example of this type of conventional technology, there is an indoor low-humidity air introduction type humidification system shown in FIG. To explain this, indoor low-humidity air C is introduced from the air-conditioning chamber 42 into the ceiling 38 through the supply pipe 39 into the heating humidifier 40 disposed in the ceiling 38. Due to the action of the heating humidifier 40, the humidified supply air D is discharged into the air conditioning chamber 42 through the exhaust pipe 41, and the humidity control operation in the air conditioning chamber 42 is performed. Here, the heating humidifier 40 includes an air filtration filter 40A, a heating coil 40B, a humidifying unit 40C, an eliminator 40D, and a blower 40E from the air supply tube 39 side. The humidifying section 40C is connected to a humidity control valve 40F with an air supply pipe. According to this indoor low-humidity air introduction type humidification system, the indoor low-humidity air C is heated by the heating humidifier 40 to vaporize water. The humidified air D is flowed into the air conditioning chamber 42. In this technique, the humidification efficiency is poor and it is difficult to maintain the air in the air conditioning chamber 42 at the design humidity, for example, 40 (%), and the amount of water supplied to the humidification unit 40C is relatively large.
Japanese Patent Laid-Open No. 2001-91020 Japanese Patent Laid-Open No. 2002-349905

従来の技術に於ける第1に例によれば、室外からの空気を室内側に供給するための給気経路と、室内空気を室外側に排出するための排気経路と、給気経路内に配置される給気ファンと、排気経路内に配置される排気ファンと、給気経路内に配置され、室外からの空気を加湿する加湿器と、屋内熱交換器、四路切換弁、アキュムレータ、圧縮機、屋外熱交換器、減圧器を含む冷媒回路とを備え、冷媒回路の屋内熱交換器が給気経路内に配置され、加湿器による加湿量が不足する場合に、屋内熱交換器を凝縮器として冷媒回路を暖房運転する加湿アシストモードを備えた調湿換気装置であって、加湿アシストモードによる運転を開始した後、一定時間の間は前記圧縮機の機能を制限することを特徴とする。
また、従来の技術に於ける第2の例によれば、給気経路及び排気経路には、これら両経路に跨って除湿器および顕熱交換器が設けられている。除湿器は、冷房時に給気経路に取り込まれた外気を除湿する。除湿された外気は顕熱交換器へと送給される。また、顕熱交換器は、冷房時に、除湿された外気と排気経路に取り込まれた室内空気との間で熱交換をする。つまり、屋外へ排出される室内空気から冷熱を回収して室内へと送り込まれる外気に付与する。顕熱交換器により冷却された外気は、途中、加湿器により調湿された後、室内へと放出される。顕熱交換器により冷熱が回収された室内空気は除湿器へ送られる。この室内空気は、除湿器へと向かう途中、顕熱交換器と除湿器との間に設置された再生用ヒータにより加熱される。加熱された室内空気は、除湿器と接触して当該除湿器を加熱再生した後、屋外へと排出される。
而して、前記第1及び第2の例では、調湿換気装置及び空調装置に具備している顕熱交換器16、25は外気又は室内気を当該顕熱交換器16、25に流送し、これに加湿作用を奏し、そのまま室内排出口6や室外側排出口10に又は給気ファン36や排気ファン37等を介して排出し、空調作用を行なう技術である。
従って、特に、最近の建物は断熱性が良いことと内部発熱が多いため暖房負荷が少ないため、給気温度は室内温度とほぼ同程度となる傾向となり、室温に近い空気に気化加湿をしているので、大変加湿効率が悪いという問題点があった。
また湿度を満足させようとすると、暖房負荷に比べて給気温度が高くなりすぎて、室内温度が高くなる問題点があった。
また、図13及び図14に示す従来の技術によれば、いずれも顕熱交換器を備えておらず、この技術は加湿効率が悪く空調室42内の空気を設計湿度例えば40(%)で維持することが困難であり、しかも前記加湿部40Cへ供給する水量が比較的多量であり、供給水量が増大するという弊害もあった。
本発明が解決しようとする課題は、背景技術で述べた問題点を解決することにある。
According to a first example in the prior art, an air supply path for supplying outdoor air to the indoor side, an exhaust path for discharging indoor air to the outdoor side, and an air supply path An air supply fan that is disposed; an exhaust fan that is disposed in the exhaust path; a humidifier that is disposed in the air supply path and humidifies air from outside; an indoor heat exchanger; a four-way selector valve; an accumulator; A refrigerant circuit including a compressor, an outdoor heat exchanger, and a decompressor, and when the indoor heat exchanger of the refrigerant circuit is disposed in the air supply path and the humidification amount by the humidifier is insufficient, the indoor heat exchanger is A humidity control ventilator equipped with a humidification assist mode for heating a refrigerant circuit as a condenser, characterized by limiting the function of the compressor for a certain period of time after starting the operation in the humidification assist mode. To do.
Further, according to the second example in the prior art, the air supply path and the exhaust path are provided with a dehumidifier and a sensible heat exchanger over both these paths. The dehumidifier dehumidifies the outside air taken into the air supply path during cooling. The dehumidified outside air is sent to the sensible heat exchanger. Further, the sensible heat exchanger exchanges heat between the dehumidified outside air and the indoor air taken into the exhaust path during cooling. That is, cold heat is collected from the indoor air discharged to the outside and applied to the outside air sent into the room. The outside air cooled by the sensible heat exchanger is conditioned by a humidifier and then released into the room. The room air from which cold heat has been recovered by the sensible heat exchanger is sent to the dehumidifier. The room air is heated by a regeneration heater installed between the sensible heat exchanger and the dehumidifier on the way to the dehumidifier. The heated indoor air comes into contact with the dehumidifier and heats and regenerates the dehumidifier, and is then discharged to the outdoors.
Thus, in the first and second examples, the sensible heat exchangers 16 and 25 provided in the humidity control ventilator and the air conditioner send outside air or room air to the sensible heat exchangers 16 and 25. This is a technique for performing an air-conditioning effect by exerting a humidifying action on the air and discharging it directly to the indoor outlet 6 and the outdoor outlet 10 or via the air supply fan 36 and the exhaust fan 37.
Therefore, in particular, recent buildings have good heat insulation properties and a large amount of internal heat generation, so the heating load is small. Therefore, the supply air temperature tends to be almost the same as the room temperature. Therefore, there was a problem that the humidification efficiency was very bad.
Further, when trying to satisfy the humidity, there is a problem that the supply air temperature becomes too high as compared with the heating load and the room temperature becomes high.
Further, according to the conventional technique shown in FIGS. 13 and 14, none of them is provided with a sensible heat exchanger, and this technique has poor humidification efficiency, and the air in the air-conditioned room 42 is at a designed humidity, for example, 40 (%). It is difficult to maintain, and the amount of water supplied to the humidifying section 40C is relatively large, and there is a disadvantage that the amount of supplied water increases.
The problem to be solved by the present invention is to solve the problems described in the background art.

本発明に係る内・外気の調湿システムは顕熱交換器と加熱加湿器を巧みに組み合わせている。まず、外気または室内空気を顕熱交換器により予熱し、加熱加湿器によりさらに加熱を行い、高温低湿空気にすることにより効率よく気化式の水加湿を行うことが可能となる。その後顕熱交換器でアフター冷却することにより、低温高湿空気をつくることが可能となり、このシステムは、湿度を上げたいが室温を上げたくない状況において、大変有効であり、無駄な給水を大幅に削減でき省エネルギーとなる技術であって、次の構成、手段から成立する。
すなわち、請求項1記載の発明によれば、非加湿空気を天井内又は機械室に配置した顕熱交換器に導入し、該顕熱交換器で熱交換させて取出された内・外気を天井内又は機械室に配置した加熱加湿器に流過し、該加熱加湿器から流出した内・外気を前記顕熱交換器で再熱交換させた後、空調室内に所期する物理条件を充足した加湿供給空気を取入れることを特徴とする。
The inside / outside air humidity control system according to the present invention skillfully combines a sensible heat exchanger and a heating humidifier. First, the outdoor air or indoor air is preheated by a sensible heat exchanger, further heated by a heating humidifier, and converted to high-temperature and low-humidity air, whereby vaporization-type water humidification can be efficiently performed. After cooling with a sensible heat exchanger, it becomes possible to produce low-temperature and high-humidity air. This system is very effective in situations where you want to increase humidity but do not want to increase room temperature, and greatly reduce wasteful water supply. This technology can be reduced to energy savings and consists of the following configurations and means.
That is, according to the first aspect of the present invention, non-humidified air is introduced into a sensible heat exchanger disposed in a ceiling or in a machine room, and heat is exchanged by the sensible heat exchanger to extract the inside / outside air taken out from the ceiling. After passing through a heating / humidifier placed inside or in the machine room, the inside / outside air flowing out of the heating / humidifier was reheat-exchanged by the sensible heat exchanger, and the desired physical conditions were satisfied in the air-conditioning room. It is characterized by taking in humidified supply air.

請求項2記載の発明によれば、屋外新鮮空気を天井内又は機械室に配置した顕熱交換器に導入し、該顕熱交換器で熱交換させて取出された外気を天井内又は機械室に配置した加熱加湿器に流過し、該加熱加湿器から流出した外気を前記顕熱交換器で再熱交換させた後、空調室内に所期する物理条件を充足した加湿供給空気を取入れることを特徴とする。 According to invention of Claim 2, fresh outdoor air is introduce | transduced into the sensible heat exchanger arrange | positioned in the ceiling or the machine room, and the outside air taken out by heat-exchanging with this sensible heat exchanger is put in the ceiling or the machine room After passing through the heating and humidifying device arranged in the above, the outside air flowing out from the heating and humidifying device is reheat-exchanged by the sensible heat exchanger, and then the humidified supply air satisfying the desired physical conditions is introduced into the air-conditioned room. It is characterized by that.

請求項3記載の発明によれば、室内低湿度空気を天井内又は機械室に配置した顕熱交換器に導入し、該顕熱交換器で熱交換させて取出された内気を天井内又は機械室に配置した加熱加湿器に流過し、該加熱加湿器から流出した内気を前記顕熱交換器で再熱交換させた後、空調室内に所期する物理条件を充足した加湿供給空気を取入れることを特徴とする。 According to the third aspect of the present invention, indoor low-humidity air is introduced into the sensible heat exchanger disposed in the ceiling or in the machine room, and the inside air taken out by heat exchange in the sensible heat exchanger is removed from the ceiling or the machine. After passing through the heating humidifier placed in the room and re-exchanging the inside air flowing out from the heating humidifier with the sensible heat exchanger, the humidified supply air satisfying the desired physical conditions is taken into the air-conditioned room. It is characterized by putting.

本発明に係る内・外気の調湿システムは、叙上の構成、作用を有するので次の効果がある。
すなわち、請求項1記載の発明によれば、非加湿空気を天井内又は機械室に配置した顕熱交換器に導入し、該顕熱交換器で熱交換させて取出された内・外気を天井内又は機械室に配置した加熱加湿器に流過し、該加熱加湿器から流出した内・外気を前記顕熱交換器で再熱交換させた後、空調室内に所期する物理条件を充足した加湿供給空気を取入れることを特徴とする内・外気の調湿システムを提供する。
このような構成としたので、非加湿空気を顕熱交換器により予熱し、加熱加湿器によりさらに加熱を行い、高温低湿空気にすることにより効率よく気化式の水加湿を行うことが可能となる。その後顕熱交換器でアフター冷却することにより、低温高湿空気をつくることが可能となり、このシステムは、湿度を上げたいが室温を上げたくない状況において、大変有効であり、無駄な給水を大幅に削減でき省エネルギーを実現できるという効果がある。
The inside / outside air humidity control system according to the present invention has the following effects because it has the above-described configuration and action.
That is, according to the first aspect of the present invention, non-humidified air is introduced into a sensible heat exchanger disposed in a ceiling or in a machine room, and heat is exchanged by the sensible heat exchanger to extract the inside / outside air taken out from the ceiling. After passing through a heating / humidifier placed inside or in the machine room, the inside / outside air flowing out of the heating / humidifier was reheat-exchanged by the sensible heat exchanger, and the desired physical conditions were satisfied in the air-conditioning room. Provided is a humidity control system for inside and outside air characterized by incorporating humidified supply air.
With this configuration, non-humidified air is preheated by a sensible heat exchanger, further heated by a heating humidifier, and converted to high-temperature, low-humidity air, thereby enabling efficient vaporization-type water humidification. . After cooling with a sensible heat exchanger, it becomes possible to produce low-temperature and high-humidity air. This system is very effective in situations where you want to increase humidity but do not want to increase room temperature, and greatly reduce wasteful water supply. It is possible to reduce the energy consumption and realize energy saving.

請求項2記載の発明によれば、屋外新鮮空気を天井内又は機械室に配置した顕熱交換器に導入し、該顕熱交換器で熱交換させて取出された外気を天井内又は機械室に配置した加熱加湿器に流過し、該加熱加湿器から流出した外気を前記顕熱交換器で再熱交換させた後、空調室内に所期する物理条件を充足した加湿供給空気を取入れることを特徴とする内・外気の調湿システムを提供する。
このような構成としたので、屋外新鮮空気を顕熱交換器により予熱し、加熱加湿器によりさらに加熱を行い、高温低湿空気にすることにより効率よく気化式の水加湿を行うことが可能となる。その後顕熱交換器でアフター冷却することにより、低温高湿空気をつくることが可能となり、このシステムは、湿度を上げたいが室温を上げたくない状況において、大変有効であり、無駄な給水を大幅に削減でき省エネルギーを実現できるという効果がある。
According to invention of Claim 2, fresh outdoor air is introduce | transduced into the sensible heat exchanger arrange | positioned in the ceiling or the machine room, and the outside air taken out by heat-exchanging with this sensible heat exchanger is put in the ceiling or the machine room After passing through the heating and humidifying device arranged in the above, the outside air flowing out from the heating and humidifying device is reheat-exchanged by the sensible heat exchanger, and then the humidified supply air satisfying the desired physical conditions is introduced into the air-conditioned room. A humidity control system for inside and outside air is provided.
With such a configuration, it is possible to preheat outdoor fresh air with a sensible heat exchanger, further heat with a heating humidifier, and efficiently perform vaporization-type water humidification by using high-temperature and low-humidity air. . After cooling with a sensible heat exchanger, it becomes possible to produce low-temperature and high-humidity air. This system is very effective in situations where you want to increase humidity but do not want to increase room temperature, and greatly reduce wasteful water supply. It is possible to reduce the energy consumption and realize energy saving.

請求項3記載の発明によれば、室内低湿度空気を天井内又は機械室に配置した顕熱交換器に導入し、該顕熱交換器で熱交換させて取出された内気を天井内又は機械室に配置した加熱加湿器に流過し、該加熱加湿器から流出した内気を前記顕熱交換器で再熱交換させた後、空調室内に所期する物理条件を充足した加湿供給空気を取入れることを特徴とする内・外気の調湿システムを提供する。
このような構成としたので、室内低湿度空気を顕熱交換器により予熱し、加熱加湿器によりさらに加熱を行い、高温低湿空気にすることにより効率よく気化式の水加湿を行うことが可能となる。その後顕熱交換器でアフター冷却することにより、低温高湿空気をつくることが可能となり、このシステムは、湿度を上げたいが室温を上げたくない状況において、大変有効であり、無駄な給水を大幅に削減でき省エネルギーを実現できるという効果がある。
According to the third aspect of the present invention, indoor low-humidity air is introduced into the sensible heat exchanger disposed in the ceiling or in the machine room, and the inside air taken out by heat exchange in the sensible heat exchanger is removed from the ceiling or the machine. After passing through the heating humidifier placed in the room and re-exchanging the inside air flowing out from the heating humidifier with the sensible heat exchanger, the humidified supply air satisfying the desired physical conditions is taken into the air-conditioned room. Provide a humidity control system for inside and outside air characterized by
With this configuration, it is possible to preheat indoor low-humidity air with a sensible heat exchanger, further heat with a heating humidifier, and efficiently perform vaporization-type water humidification by using high-temperature, low-humidity air. Become. After cooling with a sensible heat exchanger, it becomes possible to produce low-temperature and high-humidity air. This system is very effective in situations where you want to increase humidity but do not want to increase room temperature, and greatly reduce wasteful water supply. It is possible to reduce the energy consumption and realize energy saving.

以下、本発明に係る内・外気の調湿システムの実施の形態について、添付図面に基づき詳細に説明する。 DESCRIPTION OF EMBODIMENTS Hereinafter, embodiments of a humidity control system for inside and outside air according to the present invention will be described in detail with reference to the accompanying drawings.

図1は、本発明に係る内・外気の調湿システムの実施の形態を示すもので該システムを建物の内部に配置した構成図である。 FIG. 1 shows an embodiment of a humidity control system for inside and outside air according to the present invention, and is a configuration diagram in which the system is arranged inside a building.

43は建物の天井又は機械室である。44は該建物の空調室である。建物の外部から矢印Eで示す屋外新鮮空気を導入配管等で導入する。導入された屋外新鮮空気Eは顕熱交換器45に流送される。該顕熱交換器45では、図2の本発明に係る模式図に示すように、顕熱交換器45と加熱加湿器46を直列に配置し、加湿前に空気の温度を予熱で高くすることにより、飽和効率を低くすることで加湿を容易にし、加湿有効率が高めることにより消費される給水量を削減でき、しかもアフター冷却により、一般的に難しいとされる温度が低く相対湿度が高い空気を供給可能とする。ここで飽和効率とは加湿による空気の状態変化の中で相対湿度100%の飽和点に至るまでの加湿のし易さを表わすものである。 43 is a ceiling of a building or a machine room. Reference numeral 44 denotes an air conditioning room of the building. Outdoor fresh air indicated by an arrow E is introduced from outside the building through an introduction pipe or the like. The introduced outdoor fresh air E is sent to the sensible heat exchanger 45. In the sensible heat exchanger 45, as shown in the schematic diagram of the present invention in FIG. 2, the sensible heat exchanger 45 and the heating humidifier 46 are arranged in series, and the temperature of the air is increased by preheating before humidification. This makes it easy to humidify by lowering the saturation efficiency, reducing the amount of water consumed by increasing the humidification efficiency, and after cooling, air that is generally considered difficult and has a high relative humidity Can be supplied. Here, the saturation efficiency represents the ease of humidification up to the saturation point of 100% relative humidity in the air state change due to humidification.

例えば、加湿により空気の相対湿度を10%上げる場合において、相対湿度80%を90%にする場合と相対湿度20%を30%にする場合を比較すると、相対湿度20%を30%にする場合の方が飽和効率の数値が低くなり、加湿が容易であることを示す。そして、例えば図1のシステムにおける図3、図4の設計仕様1で言えば、加湿前の導入気体Qの温度を0(℃)から22.9(℃)に温度を高くするに伴い、相対湿度が50(%)から11(%)となり、さらに加熱加湿器46における加熱コイルで加熱された時の空気は温度が50(℃)で相対湿度が2(%)と相対湿度を低くした後に加湿をし、空気温度が38.3(℃)で相対湿度が16(%)となった時の飽和効率は、0.38となる。同様な加湿を従来技術である図13の方式で行った場合における飽和効率は、0.73であり、本システムにおいては従来技術に比べ飽和効率が大変低くなり、加湿が容易となることがわかる。また、加湿が容易となることにより、加湿有効率が高められ消費される給水量を削減でき、しかもアフター冷却により、一般的に難しいとされる温度が低く相対湿度が高い空気例えば温度が15.4(℃)、相対湿度が60(%)の空気を供給可能とする。 For example, when the relative humidity of air is increased by 10% by humidification, when the relative humidity of 80% is set to 90% and the relative humidity of 20% is set to 30%, the relative humidity of 20% is set to 30%. This indicates that the value of saturation efficiency is lower, and humidification is easier. For example, in the design specification 1 of FIGS. 3 and 4 in the system of FIG. 1, as the temperature of the introduction gas Q 0 before humidification is increased from 0 (° C.) to 22.9 (° C.), The relative humidity was reduced from 50 (%) to 11 (%), and the air when heated by the heating coil in the heating humidifier 46 had a relative humidity of 50 (° C) and a relative humidity of 2 (%). When the air is humidified later and the air temperature is 38.3 (° C.) and the relative humidity is 16 (%), the saturation efficiency is 0.38. When similar humidification is performed by the conventional technique of FIG. 13, the saturation efficiency is 0.73, and in this system, the saturation efficiency is much lower than that of the conventional technique, and humidification is easy. . Further, since humidification is facilitated, the humidification effective rate can be increased and the amount of water supply consumed can be reduced, and after cooling, air that is generally considered to be difficult and has a high relative humidity, for example, a temperature of 15. It is possible to supply air at 4 (° C.) and a relative humidity of 60 (%).

図2に示すように、該導入気体Qと流出気体Qの熱交換作用を行っている。そして、図2では、当該導入気体Qつまり室内供給空気が該顕熱交換器45の本体45A内に流過し、熱交換され供給ファン45Bを経て矢印P1に示すように加熱加湿器46に導入される。該加熱加湿器46から流出気体Qつまり室内供給空気は矢印P2に示すように該顕熱交換器45の本体45A内に流過し、熱交換され、排出ファン45Cを経て加湿供給空気としての流出気体Qが排出する。このように排気する空気の熱回収目的ではなく、同一空気を顕熱交換器45で直列利用することにより、予熱で飽和効率を低くして加湿効率を上げ、アフター冷却により温度が低く相対湿度が高い空気を得ることが可能となることを特徴としている。 As shown in FIG. 2, it is performed heat exchange action of the outflow gas Q 1 and the introduction gas Q 0. In FIG. 2, the introduced gas Q 0, that is, the indoor supply air flows into the main body 45A of the sensible heat exchanger 45 and is heat-exchanged to the heating humidifier 46 through the supply fan 45B as indicated by an arrow P1. be introduced. Gaseous effluents Q 1 clogging indoor supply air from the heating humidifier 46 flowed through in the body 45A of該顕heat exchanger 45 as indicated by arrow P2, is heat-exchanged, as the humidified feed air through the exhaust fan 45C outflow gas Q 1 is discharged. This is not the purpose of heat recovery of the exhausted air, but by using the same air in series in the sensible heat exchanger 45, the saturation efficiency is lowered by preheating and the humidification efficiency is increased, and the temperature is lowered and the relative humidity is reduced by after-cooling. It is characterized by being able to obtain high air.

ここで翻って図1に示すように、前記屋外新鮮空気Eは非加湿空気であって、前記顕熱交換器45外気Gとの熱交換により予熱され、外気Fとして加熱加湿器46に流送される。該顕熱交換器45は屋外新鮮空気Eとしての外気Fを流出し、該加熱加湿器46に流送する。該加熱加湿器46は、供給ファン46a、エリミネーター46b、加湿部46c、加熱コイル46d、空気ろ過フィルター46e及び該加湿部46cに接続した湿度制御バルブ付給水管46fを備えている。
そこで流送された外気Fは該加熱加湿器46における前記加熱コイル46dを経由して、前記加湿部46cで加湿され、外気Fに包含する水分は前記エリミネーター46eにより除去し、前記供給ファン46aを介して矢印Gに示すように流出する。そこで外気Gは前記顕熱交換器45で再熱交換され矢印Hに示すように流出する。
外気Hは空調室44内へ加湿供給空気Iとして取入れる。該加湿供給空気Iは所期する物理条件、すなわち乾球温度と絶対湿度または相対湿度に設定され、得られる。
Here, as shown in FIG. 1, the outdoor fresh air E is non-humidified air, which is preheated by heat exchange with the outside air G of the sensible heat exchanger 45 and flows to the heating humidifier 46 as the outside air F. Is done. The sensible heat exchanger 45 flows outside air F as outdoor fresh air E and sends it to the heating humidifier 46. The heating humidifier 46 includes a supply fan 46a, an eliminator 46b, a humidifying unit 46c, a heating coil 46d, an air filtration filter 46e, and a water supply pipe 46f with a humidity control valve connected to the humidifying unit 46c.
The outside air F sent there is humidified by the humidifying section 46c via the heating coil 46d in the heating humidifier 46, and the moisture contained in the outside air F is removed by the eliminator 46e, and the supply fan 46a is removed. And flows out as shown by an arrow G. Therefore, the outside air G is reheated by the sensible heat exchanger 45 and flows out as indicated by an arrow H.
The outside air H is taken into the air conditioning chamber 44 as humidified supply air I. The humidified supply air I is obtained by setting the desired physical conditions, that is, dry bulb temperature and absolute humidity or relative humidity.

次に、図1に示す本発明に係る内・外気の調湿システムの実施の形態の構成に於ける設計仕様1及び2についてその作用等を図3、図4に基づき説明する。先づ、設計仕様1は空調室で暖房時に加湿する場合であり、それについて説明する。 Next, the operation of the design specifications 1 and 2 in the configuration of the embodiment of the inside / outside air humidity control system according to the present invention shown in FIG. 1 will be described with reference to FIGS. First, the design specification 1 is a case where humidification is performed during heating in the air conditioning room, which will be described.

外気としての屋外空気Eが図3及び図4に示すように、乾球温度(DB)を0(℃)、相対湿度(RH)を50(%)に設定したとき(No.1)、絶対湿度(X)は1.9(g/kg・DA)であり、前記屋外新鮮空気Eは1000(m/時間)の流量であって、前記顕熱交換器45で外気Gとの熱交換により予熱され外気Fとして、加熱加湿器46に流送される。予熱され外気Fは、乾球温度(DB)が22.9(℃)、相対湿度(RH)が11(%)、絶対湿度(X)が1.9(g/kg・DA)となる(No.4)。そのときの空調室44内の室内空気は乾球温度(DB)が20(℃)、相対湿度(RH)が45(%)、絶対湿度(X)が6.5(g/kg・DA)である(No.2)。該加熱加湿器46は屋外新鮮空気Fとしての外気Gを流出し、該顕熱交換器45に流送する。このとき外気Gは乾球温度(DB)が38.3(℃)、相対湿度(RH)が16(%)及び絶対湿度(X)が6.5(g/kg・DA)である(No.6)。さらに外気Gは前記顕熱交換器45で外気Eとの熱交換によりアフター冷却され外気Hとなり、空調室44内へ加湿供給空気Iとして取入れられる。外気Hおよび加湿供給空気Iは、乾球温度(DB)が15.4(℃)、相対湿度(RH)が60(%)、絶対湿度(X)が6.5(g/kg・DA)となる(No.7)該加熱加湿器46は、供給ファン46a、エリミネーター46b、加湿部46c、加熱コイル46d、空気ろ過フィルター46e及び該加湿部46eに接続した湿度制御バルブ付給水管46fを備えている。そこで流送された外気Fは前記加熱コイル46dを介して流入し、加湿部46cを経て、外気Fに包含する水分は前記エリミネーター46bにより除去し、供給ファン46aを介して加熱加湿器46の外へ流出する。 When the outdoor air E as the outside air is set to 0 (° C.) and the relative humidity (RH) to 50 (%) as shown in FIGS. The humidity (X) is 1.9 (g / kg · DA), the outdoor fresh air E has a flow rate of 1000 (m 3 / hour), and heat exchange with the outside air G is performed by the sensible heat exchanger 45. Is preheated by the air and sent to the heating humidifier 46 as the outside air F. The preheated outside air F has a dry bulb temperature (DB) of 22.9 (° C.), a relative humidity (RH) of 11 (%), and an absolute humidity (X) of 1.9 (g / kg · DA) ( No. 4). The indoor air in the air-conditioning room 44 at that time has a dry bulb temperature (DB) of 20 (° C.), a relative humidity (RH) of 45 (%), and an absolute humidity (X) of 6.5 (g / kg · DA). (No. 2). The heating humidifier 46 flows out the outside air G as the outdoor fresh air F and sends it to the sensible heat exchanger 45. At this time, the outside air G has a dry bulb temperature (DB) of 38.3 (° C.), a relative humidity (RH) of 16 (%), and an absolute humidity (X) of 6.5 (g / kg · DA) (No .6). Further, the outside air G is after-cooled by heat exchange with the outside air E in the sensible heat exchanger 45 to become outside air H, and is taken into the air conditioning chamber 44 as humidified supply air I. The outside air H and the humidified supply air I have a dry bulb temperature (DB) of 15.4 (° C.), a relative humidity (RH) of 60 (%), and an absolute humidity (X) of 6.5 (g / kg · DA). (No. 7) The heating humidifier 46 includes a supply fan 46a, an eliminator 46b, a humidifying unit 46c, a heating coil 46d, an air filtration filter 46e, and a water supply pipe 46f with a humidity control valve connected to the humidifying unit 46e. ing. The outside air F sent there flows in through the heating coil 46d, the moisture contained in the outside air F is removed by the eliminator 46b through the humidifying part 46c, and the outside of the heating humidifier 46 through the supply fan 46a. Spill to

このときの加熱加湿器46、つまり調湿機内の内部において、外気Fは加熱加湿器の加熱コイル46dで加熱され、乾球温度(DB)が50(℃)、相対湿度(RH)が2(%)、絶対湿度(X)が1.9(g/kg・DA)でとなる(No.5)。さらに該加熱加湿器46の加熱加湿器の加湿部で加湿され外気Gとなる。外気Gは、乾球温度(DB)が38.3(℃)、相対湿度(RH)が16(%)及び絶対湿度(X)が6.5(g/kg・DA)となる(No.6)。該加熱加湿器46から流出した外気Gは顕熱交換器45の入口となり、そこで外気Eとの熱交換によりアフター冷却され矢印Hに示すように流出する。外気Hは空調室44内へ加湿供給空気Iとして取入れる。このときの加湿供給空気Iは乾球温度(DB)が15.4(℃)、相対湿度(RH)が60(%)、絶対湿度(X)が6.5(g/kg・DA)である(No.7)。該加湿供給空気Iは所期する物理条件、すなわち乾球温度および絶対湿度または相対湿度に設定され、得られる。この設計仕様1における試算では、室内設定状態である乾球温度(DB)が20.0(℃)、絶対湿度(X)が6.5(g/kg・DA)に対し、該加湿供給空気Iは、乾球温度(DB)が15.4(℃)、絶対湿度(X)が6.5(g/kg・DA)となり、冷却加湿が可能となる。
その他の物理的条件は、例えばエンタルピーh(KJ/kg・DA)、結露温度(DP)(℃)は図3に示すとおりで、顕熱交換器の熱交換率は60%とした。
この設計仕様1における飽和効率は、0.38である。同様な加湿を従来技術である図13の方式で行った場合における飽和効率は、0.73であり、本システムにおいては従来技術に比べ飽和効率が大変低くなり、加湿が容易となることがわかる。また、加湿が容易となることにより、加湿有効率が高められ消費される給水量を削減でき、しかもアフター冷却により、一般的に難しいとされる温度が低く相対湿度が高い空気例えば温度が15.4(℃)、相対湿度が60(%)の空気を供給可能とする。
そして、一般的な論理としては、調湿装置では図5に示すように、空気(外気)乾球温度が高いとき、湿度量も高く、逆に、空気(外気)乾球温度が低いとき、加湿量も低くなることが判明している。
Inside the heating humidifier 46, that is, inside the humidity controller, the outside air F is heated by the heating coil 46d of the heating humidifier, the dry bulb temperature (DB) is 50 (° C.), and the relative humidity (RH) is 2 ( %) And absolute humidity (X) is 1.9 (g / kg · DA) (No. 5). Furthermore, it is humidified by the humidifying part of the heating humidifier of the heating humidifier 46 to become the outside air G. The outside air G has a dry bulb temperature (DB) of 38.3 (° C.), a relative humidity (RH) of 16 (%), and an absolute humidity (X) of 6.5 (g / kg · DA) (No. 6). The outside air G flowing out of the heating humidifier 46 becomes the inlet of the sensible heat exchanger 45, where it is cooled after by heat exchange with the outside air E and flows out as shown by an arrow H. The outside air H is taken into the air conditioning chamber 44 as humidified supply air I. At this time, the humidified supply air I has a dry bulb temperature (DB) of 15.4 (° C.), a relative humidity (RH) of 60 (%), and an absolute humidity (X) of 6.5 (g / kg · DA). Yes (No. 7). The humidified supply air I is set and obtained at the desired physical conditions, ie dry bulb temperature and absolute or relative humidity. According to the trial calculation in the design specification 1, the humidified supply air is used when the dry bulb temperature (DB), which is the indoor setting state, is 20.0 (° C.) and the absolute humidity (X) is 6.5 (g / kg · DA). I has a dry bulb temperature (DB) of 15.4 (° C.) and an absolute humidity (X) of 6.5 (g / kg · DA), and can be cooled and humidified.
Other physical conditions are, for example, enthalpy h (KJ / kg · DA), dew condensation temperature (DP) (° C.) as shown in FIG. 3, and the heat exchange rate of the sensible heat exchanger was 60%.
The saturation efficiency in this design specification 1 is 0.38. When similar humidification is performed by the conventional technique of FIG. 13, the saturation efficiency is 0.73, and in this system, the saturation efficiency is much lower than that of the conventional technique, and humidification is easy. . Further, since humidification is facilitated, the humidification effective rate can be increased and the amount of water supply consumed can be reduced, and after cooling, air that is generally considered to be difficult and has a high relative humidity, for example, a temperature of 15. It is possible to supply air at 4 (° C.) and a relative humidity of 60 (%).
And as a general logic, as shown in FIG. 5, when the air (outside air) dry bulb temperature is high, the humidity is also high, and conversely, when the air (outside air) dry bulb temperature is low, It has been found that the amount of humidification is also reduced.

次に、図1に示す本発明に係る内・外気の調湿システムの実施の形態の構成に於ける設計仕様2についてその作用等を図6、図7に基づいて説明する。設計仕様2は空調室を暖房時に加湿する場合であり、それについて説明する。 Next, the operation of the design specification 2 in the configuration of the embodiment of the humidity control system for the inside / outside air according to the present invention shown in FIG. 1 will be described with reference to FIGS. The design specification 2 is a case where the air conditioning room is humidified during heating, which will be described.

外気としての屋外空気Eが図6及び図7に示すように、乾球温度(DB)を7.8(℃)、相対湿度(RH)を29(%)に設定したとき(No.1)、絶対湿度(X)は1.9(g/kg・DA)であり、前記屋外新鮮空気Eは1000(m/時間)の流量であって、前記顕熱交換器45で熱交換され加熱加湿器46に流送される。そのときの空調室44内の室内空気は乾球温度(DB)が20(℃)、相対湿度(RH)が45(%)、絶対湿度(X)が6.5(g/kg・DA)である(No.2)。該加熱加湿器46は屋外新鮮空気Eとしての外気Fを流出し、該加熱加湿器46、すなわち、調湿機に流送する。このとき外気Eは乾球温度(DB)が38.3(℃)、相対湿度(RH)が16(%)及び絶対湿度(X)が6.5(g/kg・DA)である(No.6)。該加熱加湿器46は、供給ファン46a、エリミネーター46b、加湿部46c、加熱コイル46d、空気ろ過フィルター46e及び該加湿部46eに接続した湿度制御バルブ付給水管46fを備えている。そこで流送された外気Fは前記加熱コイル46dを介して流入し、加湿部46cを経て、外気Fに包含する水分は前記エリミネーター46bにより除去し、供給ファン46aを介して加熱加湿器46の外へ流出する。このときの加熱加湿器46、つまり調湿機内部において、外気Fは加熱加湿器の加熱コイル46dで加熱され、つまり調湿機内を流送する外気Fは乾球温度(DB)が50(℃)、相対湿度(RH)が2(%)、絶対湿度(X)が1.9(g/kg・DA)である(No.5)。該加熱加湿器46から流出した外気Gは顕熱交換器45の入口となり、乾球温度(DB)が38.3(℃)、相対湿度(RH)が16(%)及び絶対湿度(X)が6.5(g/kg・DA)である(No.6)。そこで外気Gは前記顕熱交換器45で再熱交換され矢印Hに示すように流出する。外気Hは空調室44内へ加湿供給空気Iとして取入れる。このときの加湿供給空気Iは乾球温度(DB)が20(℃)、相対湿度(RH)が45(%)、絶対湿度(X)が6.5(g/kg・DA)である(No.7)。該加湿供給空気Iは所期する物理条件、すなわち乾球温度および相対湿度または絶対湿度に設定され、得られる。
その他の物理的条件は、例えばエンタルピーh(KJ/kg・DA)、結露温度(DP)(℃)は図6に示すとおりで、顕熱交換器の熱交換率は60%とした。
この設計仕様2における飽和効率は、0.38である。同様な加湿を従来技術である図13の方式で行った場合における飽和効率は、0.63であり、本システムにおいては従来技術に比べ飽和効率が大変低くなり、加湿が容易となることがわかる。また、加湿が容易となることにより、加湿有効率が高められ消費される給水量を削減でき、しかもアフター冷却により、一般的に難しいとされる温度が低く相対湿度が高い空気例えば温度が20(℃)、相対湿度が45(%)の空気を供給可能とする。
When the outdoor air E as outside air is set to 7.8 (° C.) dry bulb temperature (DB) and 29 (%) relative humidity (RH) as shown in FIGS. 6 and 7 (No. 1) The absolute humidity (X) is 1.9 (g / kg · DA), the outdoor fresh air E has a flow rate of 1000 (m 3 / hour), and heat is exchanged by the sensible heat exchanger 45. It is sent to the humidifier 46. The indoor air in the air-conditioning room 44 at that time has a dry bulb temperature (DB) of 20 (° C.), a relative humidity (RH) of 45 (%), and an absolute humidity (X) of 6.5 (g / kg · DA). (No. 2). The heating humidifier 46 flows out the outside air F as the outdoor fresh air E and sends it to the heating humidifier 46, that is, the humidity controller. At this time, the outside air E has a dry bulb temperature (DB) of 38.3 (° C.), a relative humidity (RH) of 16 (%), and an absolute humidity (X) of 6.5 (g / kg · DA) (No .6). The heating humidifier 46 includes a supply fan 46a, an eliminator 46b, a humidifying unit 46c, a heating coil 46d, an air filtration filter 46e, and a water supply pipe 46f with a humidity control valve connected to the humidifying unit 46e. The outside air F sent there flows in through the heating coil 46d, the moisture contained in the outside air F is removed by the eliminator 46b through the humidifying part 46c, and the outside of the heating humidifier 46 through the supply fan 46a. Spill to At this time, inside the heating humidifier 46, that is, inside the humidity controller, the outside air F is heated by the heating coil 46d of the heating humidifier, that is, the outside air F flowing inside the humidity controller has a dry bulb temperature (DB) of 50 (° C. ), Relative humidity (RH) is 2 (%), and absolute humidity (X) is 1.9 (g / kg · DA) (No. 5). The outside air G flowing out of the heating humidifier 46 becomes the inlet of the sensible heat exchanger 45, the dry bulb temperature (DB) is 38.3 (° C.), the relative humidity (RH) is 16 (%), and the absolute humidity (X). Is 6.5 (g / kg · DA) (No. 6). Therefore, the outside air G is reheated by the sensible heat exchanger 45 and flows out as indicated by an arrow H. The outside air H is taken into the air conditioning chamber 44 as humidified supply air I. At this time, the humidified supply air I has a dry bulb temperature (DB) of 20 (° C.), a relative humidity (RH) of 45 (%), and an absolute humidity (X) of 6.5 (g / kg · DA) ( No. 7). The humidified supply air I is set and obtained at the desired physical conditions, ie dry bulb temperature and relative or absolute humidity.
Other physical conditions are, for example, enthalpy h (KJ / kg · DA), dew condensation temperature (DP) (° C.) as shown in FIG. 6, and the heat exchange rate of the sensible heat exchanger was 60%.
The saturation efficiency in this design specification 2 is 0.38. When similar humidification is performed by the conventional technique shown in FIG. 13, the saturation efficiency is 0.63, and in this system, the saturation efficiency is much lower than that of the conventional technique, and humidification is facilitated. . In addition, since the humidification is facilitated, the humidification effective rate can be increased and the amount of consumed water can be reduced. Further, after-cooling, air having a low temperature and a high relative humidity, for example, a temperature of 20 ( C.) and air with a relative humidity of 45 (%) can be supplied.

次に、本発明に係る内・外気の調湿システムに於ける実施例について図8に基づき説明する。 Next, an embodiment of the inside / outside air humidity control system according to the present invention will be described with reference to FIG.

図8は、本発明に係る内・外気の調湿システムの実施例を示すシステムを建物の内部に配置した構成図である。 FIG. 8 is a configuration diagram in which a system showing an embodiment of a humidity control system for inside and outside air according to the present invention is arranged inside a building.

43は建物の天井又は機械室である。44は該建物の空調室である。空調室44内から矢印Jで示す室内低湿度空気を導入配管等で天井内に設置した顕熱交換器45に導入する。導入された室内低湿度空気Jは顕熱交換器45に流送される。
図8に示すように、前記室内低湿度空気Jは非加湿空気であって、前記顕熱交換器45で熱交換され加熱加湿器46に流送される。該加熱加湿器46は熱交換された室内低湿度空気Fつまり内気を流出し、該加熱加湿器46に流送する。該加熱加湿器46は、空気ろ過フィルター46e、加熱コイル46d、加湿部46c、エリミネーター46b、供給ファン46a及び該加湿部46cに接続した湿度制御バルブ付給水管46fを備えている。そこで流送された外気Fは前記加熱コイル46dを介して流入し、加湿部46cを経て、外気Fに包含する水分は前記エリミネーター46bにより除去し、供給ファン46aを介して矢印Gに示すように流出する。そこで内気Gは前記顕熱交換器45で再熱交換され矢印Hに示すように流出する。内気Hは空調室44内へ加湿供給空気Kとして取入れる。該加湿供給空気Kは所期する物理条件、すなわち乾球温度および相対湿度または絶対湿度に設定され、得られる。
43 is a ceiling of a building or a machine room. Reference numeral 44 denotes an air conditioning room of the building. The indoor low-humidity air indicated by the arrow J is introduced from the air-conditioning chamber 44 into the sensible heat exchanger 45 installed in the ceiling through an introduction pipe or the like. The introduced indoor low humidity air J is sent to the sensible heat exchanger 45.
As shown in FIG. 8, the indoor low-humidity air J is non-humidified air, and is heat-exchanged by the sensible heat exchanger 45 and sent to the heating humidifier 46. The heating humidifier 46 flows out the indoor low-humidity air F that has been heat-exchanged, that is, the inside air, and sends it to the heating humidifier 46. The heating humidifier 46 includes an air filtration filter 46e, a heating coil 46d, a humidifying unit 46c, an eliminator 46b, a supply fan 46a, and a water supply pipe 46f with a humidity control valve connected to the humidifying unit 46c. The outside air F sent there flows in through the heating coil 46d, and the moisture contained in the outside air F is removed by the eliminator 46b through the humidifying portion 46c, and as indicated by the arrow G through the supply fan 46a. leak. Therefore, the inside air G is reheat-exchanged by the sensible heat exchanger 45 and flows out as indicated by an arrow H. The inside air H is taken into the air conditioning chamber 44 as humidified supply air K. The humidified supply air K is set and obtained at the desired physical conditions, ie, dry bulb temperature and relative or absolute humidity.

次に、図8に示す本発明に係る内・外気の調湿システムの実施例の構成に於ける設計仕様3についてその作用等を図9、図10に基づき説明する。先づ、設計仕様3は空調室で暖房時に加湿する場合であり、それについて説明する。 Next, the operation of the design specification 3 in the configuration of the embodiment of the inside / outside air humidity control system according to the present invention shown in FIG. 8 will be described with reference to FIGS. First, design specification 3 is a case where humidification is performed during heating in an air-conditioned room, which will be described.

図9及び図10に示すように、空調室44内の設計条件を乾球温度(DB)を20(℃)、相対湿度(RH)を45(%)に設定したとき(No.1)、絶対湿度(X)は6.5(g/kg・DA)であり、室内低湿度空気Jは1000(m/時間)の流量であって、前記顕熱交換器45で熱交換され加熱加湿器46に流送される。そのときの空調室44内の室内空気は乾球温度(DB)が20(℃)、相対湿度(RH)が8(%)、絶対湿度(X)が1.9(g/kg・DA)である(No.2)。該顕熱交換器45は室内低湿度空気Jとしての内気Fを流出し、該加熱加湿器46、すなわち、調湿機に流送する。このとき内気Fは乾球温度(DB)が38.3(℃)、相対湿度(RH)が16(%)及び絶対湿度(X)が6.5(g/kg・DA)である(No.6)。該加熱加湿器46は、供給ファン46a、エリミネーター46b、加湿部46c、加熱コイル46d、空気ろ過フィルター46e及び該加湿部46eに接続した湿度制御バルブ付給水管46fを備えている。 As shown in FIGS. 9 and 10, when the design conditions in the air-conditioning chamber 44 are set such that the dry bulb temperature (DB) is 20 (° C.) and the relative humidity (RH) is 45 (%) (No. 1), The absolute humidity (X) is 6.5 (g / kg · DA), the indoor low-humidity air J has a flow rate of 1000 (m 3 / hour), and is heat-humidified by heat exchange in the sensible heat exchanger 45. To the vessel 46. The indoor air in the air-conditioning room 44 at that time has a dry bulb temperature (DB) of 20 (° C.), a relative humidity (RH) of 8 (%), and an absolute humidity (X) of 1.9 (g / kg · DA). (No. 2). The sensible heat exchanger 45 flows out the indoor air F as the indoor low-humidity air J and sends it to the heating humidifier 46, that is, the humidity controller. At this time, the inside air F has a dry bulb temperature (DB) of 38.3 (° C.), a relative humidity (RH) of 16 (%), and an absolute humidity (X) of 6.5 (g / kg · DA) (No .6). The heating humidifier 46 includes a supply fan 46a, an eliminator 46b, a humidifying unit 46c, a heating coil 46d, an air filtration filter 46e, and a water supply pipe 46f with a humidity control valve connected to the humidifying unit 46e.

このときの加熱加湿器46、つまり調湿機内部において、内気Fは加熱加湿器の加熱コイル46dで加熱され、乾球温度(DB)が50(℃)、相対湿度(RH)が2(%)、絶対湿度(X)が1.9(g/kg・DA)である(No.5)。該加熱加湿器46から流出した内気Gは顕熱交換器45の入口となり、乾球温度(DB)が38.3(℃)、相対湿度(RH)が16(%)及び絶対湿度(X)が6.5(g/kg・DA)である(No.6)。そこで内気Gは前記顕熱交換器45で再熱交換され矢印Hに示すように流出する。内気Hは空調室44内へ加湿供給空気Kとして取入れる。このときの加湿供給空気Kは乾球温度(DB)が27.3(℃)、相対湿度(RH)が29(%)、絶対湿度(X)が6.5(g/kg・DA)である(No.7)。該加湿供給空気Kは、すなわち乾球温度および相対湿度または絶対湿度に設定され、得られる。
その他の物理的条件は、例えばエンタルピーh(KJ/kg・DA)、結露温度(DP)(℃)は図9に示すとおりで、顕熱交換器の熱交換率は60%とした。
この設計仕様3における飽和効率は、0.38である。同様な加湿を従来技術である図14の方式で行った場合における飽和効率は、0.5であり、本システムにおいては従来技術に比べ飽和効率が大変低くなり、加湿が容易となることがわかる。また、加湿が容易となることにより、加湿有効率が高められ消費される給水量を削減でき、しかもアフター冷却により、一般的に難しいとされる温度が低く相対湿度が高い空気例えば温度が27.3(℃)、相対湿度が29(%)の空気を供給可能とする。
Inside the heating humidifier 46, that is, inside the humidity controller, the inside air F is heated by the heating coil 46d of the heating humidifier, the dry bulb temperature (DB) is 50 (° C.), and the relative humidity (RH) is 2 (%). ) And absolute humidity (X) is 1.9 (g / kg · DA) (No. 5). The inside air G flowing out of the heating humidifier 46 becomes an inlet of the sensible heat exchanger 45, the dry bulb temperature (DB) is 38.3 (° C.), the relative humidity (RH) is 16 (%), and the absolute humidity (X). Is 6.5 (g / kg · DA) (No. 6). Therefore, the inside air G is reheat-exchanged by the sensible heat exchanger 45 and flows out as indicated by an arrow H. The inside air H is taken into the air conditioning chamber 44 as humidified supply air K. At this time, the humidified supply air K has a dry bulb temperature (DB) of 27.3 (° C.), a relative humidity (RH) of 29 (%), and an absolute humidity (X) of 6.5 (g / kg · DA). Yes (No. 7). The humidified supply air K is obtained by setting the dry bulb temperature and relative humidity or absolute humidity.
As other physical conditions, for example, the enthalpy h (KJ / kg · DA), the dew condensation temperature (DP) (° C.) are as shown in FIG. 9, and the heat exchange rate of the sensible heat exchanger is 60%.
The saturation efficiency in this design specification 3 is 0.38. When similar humidification is performed by the conventional technique of FIG. 14, the saturation efficiency is 0.5, and in this system, the saturation efficiency is very low compared to the conventional technique, and it is understood that humidification is easy. . Further, since humidification becomes easy, the humidification effective rate can be increased and the amount of water supply to be consumed can be reduced, and after cooling, air that is generally considered difficult and low in relative humidity is high. It is possible to supply air at 3 (° C.) and a relative humidity of 29 (%).

本発明に係る内・外気の調湿システムに於ける実施の形態を示すシステム構成図である。1 is a system configuration diagram showing an embodiment of a humidity control system for inside and outside air according to the present invention. 本発明に係る内・外気の調湿システムに備えた顕熱交換器の作用を示す模式図である。It is a schematic diagram which shows the effect | action of the sensible heat exchanger with which the humidity control system of the inside / outside air which concerns on this invention was equipped. 本発明に係る内・外気の調湿システムの実施の形態に於ける設計仕様1に基づく各部位の物理的データを示す図である。It is a figure which shows the physical data of each site | part based on the design specification 1 in embodiment of the humidity control system of the inside / outside air which concerns on this invention. 本発明に係る内・外気の調湿システムの実施の形態に於ける設計仕様1に基づくDB(乾球温度)に対するX(絶対湿度)の特性図である。It is a characteristic view of X (absolute humidity) with respect to DB (dry bulb temperature) based on the design specification 1 in the embodiment of the humidity control system for inside and outside air according to the present invention. 調湿装置に於ける空気温度に対する空気湿度の一般的な特性図である。It is a general characteristic view of the air humidity with respect to the air temperature in a humidity control apparatus. 本発明に係る内・外気の調湿システムの実施の形態に於ける設計仕様2に基づく各部位の物理的データを示す図である。It is a figure which shows the physical data of each site | part based on the design specification 2 in embodiment of the humidity control system of the inside / outside air which concerns on this invention. 本発明に係る内・外気の調湿システムの実施の形態に於ける設計仕様2に基づくDB(乾球温度)に対するX(絶対湿度)の特性図である。It is a characteristic view of X (absolute humidity) with respect to DB (dry bulb temperature) based on the design specification 2 in the embodiment of the humidity control system for inside and outside air according to the present invention. 本発明に係る内・外気の調湿システムに於ける実施例を示すシステム構成図である。1 is a system configuration diagram showing an embodiment of an inside / outside air humidity control system according to the present invention. 本発明に係る内・外気の調湿システムに於ける実施例の設計仕様に基づく各部位の物理的データを示す図である。It is a figure which shows the physical data of each site | part based on the design specification of the Example in the humidity control system of the inside / outside air which concerns on this invention. 本発明に係る内・外気の調湿システムに於ける実施例の設計仕様に基づくDB(乾球温度)に対するX(絶対湿度)の特性図である。It is a characteristic view of X (absolute humidity) with respect to DB (dry bulb temperature) based on the design specification of the Example in the humidity control system of the inside / outside air which concerns on this invention. 従来の技術に於ける第1の例を示す調湿換気装置の構成例を示す図である。It is a figure which shows the structural example of the humidity control ventilation apparatus which shows the 1st example in a prior art. 従来の技術に於ける第2の例を示す暖房対応型デシカント空調装置の構成例を示す図である。It is a figure which shows the structural example of the desiccant air conditioning apparatus corresponding to a heating which shows the 2nd example in a prior art. 従来の技術に於ける外気の調湿システムの構成を示すシステム図である。It is a system diagram which shows the structure of the humidity control system of the external air in a prior art. 従来の技術に於ける内気の調湿システムの構成を示すシステム図である。It is a system diagram which shows the structure of the humidity control system of the inside air in a prior art.

符号の説明Explanation of symbols

43 天井(機械室)
44 空調室
45 顕熱交換器
45A 顕熱交換器の本体
45B 顕熱交換器の供給ファン
46 加熱加湿器
46a 加熱加湿器の供給ファン
46b 加熱加湿器のエリミネーター
46c 加熱加湿器の加湿部
46d 加熱加湿器の加熱コイル
46e 加熱加湿器の空気ろ過フィルター
46f 加熱加湿器の湿度制御バルブ付給水管
E 屋外新鮮空気
F 外気(内気)
G 外気(内気)
H 外気(内気)
I 加湿供給空気
J 室内低湿度空気
K 加湿供給空気
43 Ceiling (machine room)
44 Air Conditioning Room 45 Sensible Heat Exchanger 45A Sensible Heat Exchanger Body 45B Sensible Heat Exchanger Supply Fan 46 Heating Humidifier 46a Heating Humidifier Supply Fan 46b Heating Humidifier Eliminator 46c Heating Humidifier Humidifier 46d Heating Humidification Heating coil 46e Heating humidifier air filtration filter 46f Heating humidifier water supply pipe with humidity control valve E Fresh outdoor air F Outside air (inside air)
G Outside air (Sleep)
H Open air (Sleep)
I Humidification supply air J Indoor low humidity air K Humidification supply air

Claims (3)

非加湿空気を天井内又は機械室に配置した顕熱交換器に導入し、該顕熱交換器で熱交換させて取出された内・外気を天井内又は機械室に配置した加熱加湿器に流過し、該加熱加湿器から流出した内・外気を前記顕熱交換器で再熱交換させた後、空調室内に所期する物理条件を充足した加湿供給空気を取入れることを特徴とする内・外気の調湿システム。 Non-humidified air is introduced into the sensible heat exchanger located in the ceiling or machine room, and the inside and outside air extracted by heat exchange in the sensible heat exchanger flows into the heating humidifier located in the ceiling or machine room. The inside / outside air flowing out from the heating humidifier is reheat-exchanged by the sensible heat exchanger, and then the humidified supply air satisfying a desired physical condition is introduced into the air-conditioned room.・ Humidity control system for outside air. 屋外新鮮空気を天井内又は機械室に配置した顕熱交換器に導入し、該顕熱交換器で熱交換させて取出された外気を天井内又は機械室に配置した加熱加湿器に流過し、該加熱加湿器から流出した外気を前記顕熱交換器で再熱交換させた後、空調室内に所期する物理条件を充足した加湿供給空気を取入れることを特徴とする内・外気の調湿システム。 Fresh outdoor air is introduced into the sensible heat exchanger located in the ceiling or machine room, and the outside air extracted by heat exchange in the sensible heat exchanger is passed through the heating humidifier located in the ceiling or machine room. After the outside air that has flowed out of the heating humidifier is reheat-exchanged by the sensible heat exchanger, humidified supply air that satisfies the expected physical conditions is introduced into the air conditioning room. Wet system. 室内低湿度空気を天井内又は機械室に配置した顕熱交換器に導入し、該顕熱交換器で熱交換させて取出された内気を天井内又は機械室に配置した加熱加湿器に流過し、該加熱加湿器から流出した内気を前記顕熱交換器で再熱交換させた後、空調室内に所期する物理条件を充足した加湿供給空気を取入れることを特徴とする内・外気の調湿システム。 Indoor low-humidity air is introduced into a sensible heat exchanger located in the ceiling or machine room, and the inside air taken out by heat exchange in the sensible heat exchanger flows through the heating humidifier located in the ceiling or machine room. Then, after the inside air that has flowed out of the heating humidifier is reheat-exchanged by the sensible heat exchanger, humidified supply air that satisfies the desired physical conditions is introduced into the air-conditioning chamber. Humidity control system.
JP2006292051A 2006-10-27 2006-10-27 Humidity control system for inside and outside air Active JP4979343B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006292051A JP4979343B2 (en) 2006-10-27 2006-10-27 Humidity control system for inside and outside air

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006292051A JP4979343B2 (en) 2006-10-27 2006-10-27 Humidity control system for inside and outside air

Publications (2)

Publication Number Publication Date
JP2008107044A true JP2008107044A (en) 2008-05-08
JP4979343B2 JP4979343B2 (en) 2012-07-18

Family

ID=39440529

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006292051A Active JP4979343B2 (en) 2006-10-27 2006-10-27 Humidity control system for inside and outside air

Country Status (1)

Country Link
JP (1) JP4979343B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008164252A (en) * 2006-12-28 2008-07-17 Sasakura Engineering Co Ltd Air conditioning facility
CN102907077A (en) * 2010-04-08 2013-01-30 高通股份有限公司 System and method of smart audio logging for mobile devices
CN110864421A (en) * 2019-11-29 2020-03-06 宁波奥克斯电气股份有限公司 Air conditioner control method and system and air conditioner
JP2022050159A (en) * 2020-09-17 2022-03-30 ダイキン工業株式会社 Air conditioning system

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000130805A (en) * 1998-08-18 2000-05-12 Denso Corp Humidifier
JP2002317966A (en) * 2001-04-20 2002-10-31 Daikin Ind Ltd Ventilating system

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000130805A (en) * 1998-08-18 2000-05-12 Denso Corp Humidifier
JP2002317966A (en) * 2001-04-20 2002-10-31 Daikin Ind Ltd Ventilating system

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008164252A (en) * 2006-12-28 2008-07-17 Sasakura Engineering Co Ltd Air conditioning facility
CN102907077A (en) * 2010-04-08 2013-01-30 高通股份有限公司 System and method of smart audio logging for mobile devices
US9112989B2 (en) 2010-04-08 2015-08-18 Qualcomm Incorporated System and method of smart audio logging for mobile devices
CN110864421A (en) * 2019-11-29 2020-03-06 宁波奥克斯电气股份有限公司 Air conditioner control method and system and air conditioner
JP2022050159A (en) * 2020-09-17 2022-03-30 ダイキン工業株式会社 Air conditioning system
JP7202335B2 (en) 2020-09-17 2023-01-11 ダイキン工業株式会社 air conditioning system

Also Published As

Publication number Publication date
JP4979343B2 (en) 2012-07-18

Similar Documents

Publication Publication Date Title
KR101746154B1 (en) Air conditioning system
KR100504503B1 (en) air conditioning system
JP4207166B2 (en) Dehumidifying air conditioner
CN205783434U (en) A kind of combined air conditioner VMC (Ventilation Mechanical Control System)
CN101979927B (en) Rotating wheel moisture removal and cooling-plate radiation cooling combined air conditioning system and air conditioning method thereof
KR101269287B1 (en) Thermal energy collection ventilator
JP2004219053A (en) Air conditioning system for air conditioner
CN211041202U (en) Fresh air humidifying unit with double cold and heat sources
JP2011163682A (en) Indirect evaporation cooling type outdoor air conditioner system
JP2006313027A (en) Ventilation air conditioner
JP2006329600A (en) Air conditioning system
JPH11101520A (en) Air cycle type air conditioner
CN105757853A (en) Heating, cooling and dehumidification integrated dehumidification loop and heating, cooling and dehumidification integrated dehumidifier adopting same
JP4979343B2 (en) Humidity control system for inside and outside air
JP2006300392A (en) Air-conditioning heat source facility for clean room
JP4683548B2 (en) Desiccant ventilator
JPH09329371A (en) Air conditioning system
CN107575967A (en) A kind of heat pump type air conditioning system and its operation method suitable for annual operating mode
CN102418980A (en) Humidification and dedusting method for air-conditioning system
JP3821031B2 (en) Desiccant air conditioning system
JP3785753B2 (en) Air conditioner
JP2003294274A (en) Constant temperature and humidity air-conditioning system
CN107192013A (en) Indoor units and the air conditioner with it
JPH0814600A (en) Desiccant type air conditioner
CN205878496U (en) New trend is from exchanging four control air -handling unit of reheat

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091006

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20110622

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110706

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20110704

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110720

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110915

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20111012

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111226

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20120110

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20120206

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120417

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120417

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150427

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4979343

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250