JP2008106292A - Method for producing cathode for electrowinning of special shape electric nickel - Google Patents

Method for producing cathode for electrowinning of special shape electric nickel Download PDF

Info

Publication number
JP2008106292A
JP2008106292A JP2006288300A JP2006288300A JP2008106292A JP 2008106292 A JP2008106292 A JP 2008106292A JP 2006288300 A JP2006288300 A JP 2006288300A JP 2006288300 A JP2006288300 A JP 2006288300A JP 2008106292 A JP2008106292 A JP 2008106292A
Authority
JP
Japan
Prior art keywords
resin
cathode
temperature
epoxy resin
electrodeposition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006288300A
Other languages
Japanese (ja)
Inventor
Masahiro Shingu
正寛 新宮
Hiroyuki Mitsui
宏之 三ツ井
Shigeki Matsuki
茂喜 松木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2006288300A priority Critical patent/JP2008106292A/en
Publication of JP2008106292A publication Critical patent/JP2008106292A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Electrolytic Production Of Metals (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method by which the contraction or the deformation of an electrodeposition part formed by masking using an insulating material can be prevented and the special shape of the electrodeposition part can be maintained for a cathode used for electrowinning of special shape electric nickel for plating. <P>SOLUTION: An one-component epoxy resin is used as an insulating material applied on a cathode base plate for masking, and the kinetic viscosity of the resin is kept within a range of 10,000-30,000 cSt regardless of outside air temperature when the resin is applied. Further, concretely, the one-component epoxy resin is preheated so that the temperature Y (°C) of the resin satisfies following relation: Y= -0.82X+48.28, wherein X is outside air temperature, and the resin is applied on the cathode base material within one hour immediately after preheating. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、メッキ用の特殊形状の電気ニッケルを電解採取する際に用いるカソードの製造方法に関するものである。   The present invention relates to a method for manufacturing a cathode used for electrolytically collecting electroplated nickel having a special shape for plating.

ニッケルをはじめとする金属の電解精製では、カソードとして、電解採取する金属とは別種の金属からなり、且つ繰り返し使用できる材質の母板を使用し、所定時間の電解を行った後、電着物を母板より引き剥がして回収する方法が一般的に行われている。この時、カソードである母板上に絶縁物でマスキングを施しておくことにより、任意の特殊形状の電着物を得ることができる。   In electrolytic refining of metals such as nickel, a cathode made of a metal that is different from the metal to be collected as the cathode and that can be used repeatedly is used for electrolysis for a predetermined period of time. Generally, a method of peeling and collecting from a mother board is performed. At this time, an electrodeposit having an arbitrary special shape can be obtained by masking the base plate as a cathode with an insulator.

例えば、メッキ用のアノードとして用いる電気ニッケルは、使用の際のアノードボックス内での充填性やハンドリング性などの観点から、角が立たない丸みのある小塊状の形状が好まれることが多い。そのため、このような小塊状の電気ニッケルを電解精製により製造する場合には、特開2002−302787号公報に記載されるように、表面に多数の円形の電着部(ニッケルが電着する部分)を有するようにマスキングしたカソードを用いて電解している。   For example, electronickel used as an anode for plating is often preferred to have a rounded lump shape with no corners from the viewpoints of filling properties and handling properties in the anode box during use. Therefore, when such a small lump of electronickel is produced by electrolytic purification, as described in JP-A-2002-302787, a large number of circular electrodeposition portions (portions where nickel is electrodeposited) are formed. The cathode is masked to have electrolysis.

上記したように特殊形状の電着物が得られるように表面を絶縁物でマスキングする場合、絶縁物であるマスキング剤として一液性エポキシ樹脂を用い、電着部が所望の特殊形状、例えば真円となるようにスクリーンを用いて塗布する。その際、樹脂温度の変動などによって一液性エポキシ樹脂で形成した電着部の円形が歪み、電着部の面積が真円の10〜70%にまで縮小ないし変形してしまうことがある。そのため、電着した電気ニッケルの形状も歪んだ円形となり、外観が悪くなるという問題があった。
特開2002−302787号公報
When the surface is masked with an insulator so as to obtain a specially shaped electrodeposit as described above, a one-part epoxy resin is used as a masking agent that is an insulator, and the electrodeposition portion has a desired special shape, for example, a perfect circle Apply using a screen. At this time, the electrodeposition circle formed of the one-component epoxy resin may be distorted due to fluctuations in the resin temperature, and the electrodeposition area may be reduced or deformed to 10 to 70% of the true circle. For this reason, the shape of the electrodeposited electric nickel is also distorted and there is a problem that the appearance is deteriorated.
JP 2002-302787 A

本発明は、このような従来の事情に鑑み、メッキ用の特殊形状電気ニッケルの電解採取に用いるカソードを製造する際に、絶縁物でのマスキングにより形成する電着部が縮小ないし変形することを防止して、電着部の特殊形状を維持することができる方法を提供することを目的とする。   In view of such a conventional situation, the present invention reduces or deforms an electrodeposition portion formed by masking with an insulator when manufacturing a cathode used for electrowinning of special-shaped electronickel for plating. An object of the present invention is to provide a method capable of preventing and maintaining the special shape of the electrodeposited portion.

上記目的を達成するため、本発明は、電解採取によって特殊形状の電気ニッケルが得られるように表面を絶縁物でマスキングしたカソードの製造方法において、マスキングのためカソード母板に塗布する絶縁物として一液性エポキシ樹脂を使用し、該一液性エポキシ樹脂の塗布時の動粘度を外気温にかかわらず10000〜30000cStに保つことを特徴とする特殊形状電気ニッケルの電解採取用カソードの製造方法を提供する。   In order to achieve the above object, the present invention provides an insulating material to be applied to a cathode base plate for masking in a method of manufacturing a cathode whose surface is masked with an insulating material so that electronickel having a special shape can be obtained by electrowinning. Provided is a method for producing a cathode for electrowinning of specially shaped electro nickel, which uses a liquid epoxy resin and maintains the kinematic viscosity at the time of application of the one-component epoxy resin at 10,000 to 30,000 cSt regardless of the outside temperature To do.

また、上記本発明による特殊形状電気ニッケルの電解採取用カソードの製造方法においては、更に具体的には、前記一液性エポキシ樹脂を予熱する際に、外気温Xに対しY=−0.82X+48.27の関係を満たす樹脂温度Yに予熱し、予熱直後〜1時間の間にカソード母板に塗布することを特徴とする。   In the method for producing a cathode for electrowinning specially shaped nickel according to the present invention, more specifically, when preheating the one-component epoxy resin, Y = −0.82X + 48 with respect to the outside air temperature X. It is preheated to a resin temperature Y satisfying the relationship of .27, and is applied to the cathode base plate immediately after preheating to 1 hour.

本発明によれば、一液性エポキシ樹脂で形成するマスキングの電着部が縮小ないし変形することを防止でき、例えば電着部が円形の場合、その電着部の面積を元の真円に対して80%以上に保つことが可能となる。従って、本発明によるカソードを用いた電解採取によって、良好な外観を有するメッキ用の特殊形状電気ニッケルを安定して製造することができる。   According to the present invention, it is possible to prevent the masking electrodeposition portion formed of the one-component epoxy resin from being reduced or deformed. For example, when the electrodeposition portion is circular, the area of the electrodeposition portion is changed to the original perfect circle. On the other hand, it can be kept at 80% or more. Therefore, specially-shaped electronickel for plating having a good appearance can be stably produced by electrowinning using the cathode according to the present invention.

一般にメッキ用の特殊形状電気ニッケルの電解採取においては、電気ニッケルの形状として、アノードボックス内での充填性やハンドリング性などの観点から、角が立たない丸みのある小塊状の形状が好まれるため、母板表面に多数の円形の電着部を有するようにマスキングを施したカソードを使用する。このマスキングの方法として、チタン(Ti)など繰り返し使用できる材質の母板表面に、スクリーン印刷により電着部が真円となるように絶縁物を塗布した後、乾燥・硬化させることによりマスキングを行う。   In general, in the electrowinning of special-shaped electronickel for plating, the shape of electronickel is favorably rounded and rounded with no corners from the viewpoint of filling and handling in the anode box. A cathode that is masked so as to have a large number of circular electrodeposition portions on the surface of the mother board is used. As a masking method, an insulating material is applied to the surface of a base plate made of a material such as titanium (Ti) which can be used repeatedly so that the electrodeposition portion becomes a perfect circle by screen printing, and then masked by drying and curing. .

本発明においては、マスキングのための絶縁物として、一液性エポキシ樹脂を使用する。一液性エポキシ樹脂としては、特に限定されるものではなく、従来から特殊形状電気ニッケルの電解採取用カソードのマスキングに使用されていたものを使用することができる。例えば、(株)テスク製の一液性エポキシ樹脂(商品名B−1057)などを好適に使用することができる。   In the present invention, a one-component epoxy resin is used as an insulator for masking. The one-part epoxy resin is not particularly limited, and one that has been conventionally used for masking a cathode for electrolytic collection of special-shaped electronickel can be used. For example, a one-component epoxy resin (trade name B-1057) manufactured by Tesque Co., Ltd. can be preferably used.

しかし、一液性エポキシ樹脂は外気温によって粘度が変動しやすいため、適切な粘度範囲に管理して印刷塗布することが難しい。そのため、塗布直後に形成される電着部の形状が崩れたり、又は塗布直後から乾燥までの間に形状が変化したりして、乾燥・硬化後に良好な電着部の形状が得られなくなる場合があることから、真円など特殊形状のマスキングを施すことは極めて困難である。   However, since the viscosity of a one-component epoxy resin is likely to vary depending on the outside air temperature, it is difficult to perform printing and coating within an appropriate viscosity range. For this reason, the shape of the electrodeposition part formed immediately after application collapses, or the shape changes from immediately after application to drying, and a good electrodeposition part shape cannot be obtained after drying and curing. Therefore, it is extremely difficult to mask a special shape such as a perfect circle.

そこで、本発明者らは、一液性エポキシ樹脂の動粘度と、マスキングによって形成される円形の電着部形状について鋭意検討を重ねた結果、樹脂の動粘度が10000cSt未満では塗布した直後に樹脂の電着部への染み出しが起こり、良好な円形の電着部を保持できないことが分った。また、樹脂の動粘度が30000cStを超えると、塗布後から乾燥・硬化するまでの間に電着部の形状変化が起こり、良好な円形の電着部が得られないことが判明した。   Therefore, as a result of intensive studies on the kinematic viscosity of the one-part epoxy resin and the circular electrodeposition shape formed by masking, the present inventors have determined that the kinematic viscosity of the resin is less than 10,000 cSt, and the resin is applied immediately after application. As a result, it was found that the electrodeposited part of the electrode was oozed out and a good circular electrodeposited part could not be retained. Moreover, when the kinematic viscosity of resin exceeded 30000 cSt, it turned out that the shape change of an electrodeposition part occurs after application | coating until it dries and hardens | cures, and a favorable circular electrodeposition part cannot be obtained.

一方、一液性エポキシ樹脂の動粘度を10000〜30000cStの範囲に管理すれば、塗布時ないし塗布から乾燥・硬化の間に樹脂の染み出しや電着部の形状変化が発生せず、良好な円形の電着部を形成できることが分った。このような知見に基づいて、本発明では、カソード母板に塗布する際の一液性エポキシ樹脂について、外気温によって変動する動粘度を、樹脂温度の管理によって常に10000〜30000cStに保つものであり、これにより良好な形状の電着部を有するカソードを製造することができる。   On the other hand, if the kinematic viscosity of the one-part epoxy resin is controlled in the range of 10,000 to 30000 cSt, the resin does not bleed out or the shape of the electrodeposition part does not change during application or from application to drying / curing. It has been found that a circular electrodeposition portion can be formed. Based on such knowledge, in the present invention, the kinematic viscosity that fluctuates depending on the outside temperature of the one-component epoxy resin applied to the cathode base plate is always kept at 10,000 to 30,000 cSt by controlling the resin temperature. As a result, a cathode having a well-shaped electrodeposition portion can be produced.

次に、一液性エポキシ樹脂の温度と動粘度の関係を調査した結果、図1に示すような樹脂温度と動粘度の関係を得た。この一液性エポキシ樹脂の温度と動粘度の関係から、動粘度を10000〜30000cStの範囲に保つためには、塗布時の樹脂温度を外気温にかかわらず約25〜35℃の範囲に保持すればよいことが分る。即ち、塗布時における一液性エポキシ樹脂の温度を約25〜35℃に管理すれば、その動粘度を10000〜30000cStの範囲に保持することができ、その結果マシキングにより良好な形状の電着部を形成することができるのである。   Next, as a result of investigating the relationship between the temperature and the kinematic viscosity of the one-component epoxy resin, the relationship between the resin temperature and the kinematic viscosity as shown in FIG. 1 was obtained. From the relationship between the temperature and kinematic viscosity of this one-part epoxy resin, in order to keep the kinematic viscosity in the range of 10,000 to 30000 cSt, the resin temperature during coating should be kept in the range of about 25 to 35 ° C. regardless of the outside temperature. I know what to do. That is, if the temperature of the one-component epoxy resin at the time of coating is controlled to about 25 to 35 ° C., the kinematic viscosity can be maintained in the range of 10,000 to 30000 cSt, and as a result, the electrodeposition portion having a good shape by machining. Can be formed.

尚、一液性エポキシ樹脂の塗布時の温度が35℃を超えると、動粘度が10000cStを下回ってしまうため、塗布直後に樹脂の電着部への染み出しが起こり、良好な円形の電着部を保持できなくなる。また、塗布時の樹脂温度が25℃未満では、動粘度が30000cStよりも高くなるため、塗布から乾燥・硬化までの間に電着部の形状変化が起こり、良好な円形の電着部を得ることができなくなる。   In addition, since the kinematic viscosity falls below 10000 cSt when the temperature at the time of application of the one-component epoxy resin exceeds 35 ° C., the resin is oozed out immediately after application, and a good circular electrodeposition is achieved. The part cannot be held. In addition, when the resin temperature at the time of application is less than 25 ° C., the kinematic viscosity is higher than 30000 cSt, so that the shape change of the electrodeposition part occurs from application to drying / curing, and a good circular electrodeposition part is obtained. I can't do that.

上記したように、塗布時の一液性エポキシ樹脂の動粘度を10000〜30000cStの範囲に管理するためには、その塗布時の樹脂温度を外気温の変動にかかわりなく常に25〜35℃の範囲に管理することが必要である。塗布時の樹脂温度を管理する方法は一様ではなく、さまざまな方法が適用できることは言うまでもない。ここでは、塗布前の準備作業として樹脂を予熱する場合について、外気温の影響により樹脂温度が変化することを考慮に入れた樹脂温度の管理方法を説明する。   As described above, in order to manage the kinematic viscosity of the one-component epoxy resin at the time of application in the range of 10,000 to 30000 cSt, the resin temperature at the time of application is always in the range of 25 to 35 ° C. regardless of the fluctuation of the outside air temperature. It is necessary to manage. It goes without saying that the method of controlling the resin temperature during coating is not uniform, and various methods can be applied. Here, in the case where the resin is preheated as a preparatory work before application, a resin temperature management method taking into consideration that the resin temperature changes due to the influence of the outside air temperature will be described.

一般に、準備作業で樹脂を一定の温度に予熱する場合、その後所定の時間内に塗布するが、塗布時の樹脂温度は外気温の影響により変化してしまう。そこで、一液性エポキシ樹脂の予熱による樹脂温度と外気温について、最も一般的な予熱直後から1時間の間に塗布する場合に、塗布時の樹脂温度が最適温度である25〜35℃の範囲内になる関係を調査した結果、図2に示す関係が得られた。例えば、外気温が10℃の場合、図2のグラフから、予熱により樹脂温度を40℃に管理して、通常のごとく1時間以内に塗布すればよいことが分る。   In general, when the resin is preheated to a constant temperature in the preparatory work, the resin is applied within a predetermined time thereafter, but the resin temperature at the time of application changes due to the influence of the outside air temperature. Therefore, when the resin temperature and the outside air temperature due to the preheating of the one-component epoxy resin are applied within 1 hour immediately after the most general preheating, the resin temperature at the time of application is in the range of 25 to 35 ° C. which is the optimum temperature. As a result of investigating the inner relationship, the relationship shown in FIG. 2 was obtained. For example, when the outside air temperature is 10 ° C., it can be seen from the graph of FIG. 2 that the resin temperature may be controlled to 40 ° C. by preheating and applied within one hour as usual.

この図2の結果から、一液性エポキシ樹脂を予熱後に塗布する方法としては、樹脂温度Yを外気温Xに対してY=−0.82X+48.27の関係を満たすように予熱し、予熱直後〜1時間の間にカソード母板に塗布する。この方法によれば、塗布時に樹脂温度は25〜35℃の範囲内の温度になり、同時に樹脂の動粘度も10000〜30000cStの範囲内になる。その結果、チタンなどのカソード母板に形状崩れのない電着部を有するマスキングが形成され、特殊形状電気ニッケルの電解採取に用いる良好なカソードを製造することができる。   From the result shown in FIG. 2, as a method of applying the one-component epoxy resin after preheating, the resin temperature Y is preheated so as to satisfy the relationship of Y = −0.82X + 48.27 with respect to the outside air temperature X, and immediately after preheating. Apply to cathode base plate for ~ 1 hour. According to this method, the resin temperature is in the range of 25 to 35 ° C. during coating, and the kinematic viscosity of the resin is also in the range of 10,000 to 30000 cSt. As a result, the cathode base plate made of titanium or the like is formed with a mask having an electrodeposition portion that is not deformed, and a good cathode used for the electrowinning of special-shaped nickel can be manufactured.

特殊形状電気ニッケルの電解採取用のカソードにおいて、良好な電着部の形状とは、例えば電着部の形状が円形の場合、印刷用スクリーンに設定された円形部分の面積に対して、カソードに形成された電着部の面積が80%以上保持されていることを指す。電着部の面積がスクリーンに設定された円形部分の面積の80%未満になると、良好な外観を有するメッキ用特殊形状の電気ニッケルが製造できなくなり、また、電流密度が上昇することにより操業時に水素ガスが発生するなどの問題が生じるためである。   In the cathode for electrolytic collection of special-shaped electronickel, the good electrodeposition part shape is, for example, when the electrodeposition part is circular, the cathode is compared to the area of the circular part set on the printing screen. It means that the area of the formed electrodeposition part is maintained 80% or more. When the area of the electrodeposited portion is less than 80% of the area of the circular portion set on the screen, it is not possible to produce special nickel electroplating for plating having a good appearance, and the current density increases during operation. This is because problems such as generation of hydrogen gas occur.

SUS製のカソード母板表面に、スクリーン印刷により一液性エポキシ樹脂((株)テスク、商品名B−1057)を塗布し、乾燥・硬化させて、多数の円形の電着部を有するマスキングを形成した。その際、外気温10℃において、予め一液性エポキシ樹脂を40℃及び25℃にそれぞれ予熱し、45分経過後に塗布した。尚、スクリーンに設定された円形部分は、直径15mmの真円である。   A one-part epoxy resin (Tesque Co., Ltd., trade name B-1057) is applied to the surface of the SUS cathode base plate by screen printing, dried and cured, and masked with a number of circular electrodeposition parts. Formed. At that time, the one-component epoxy resin was preheated to 40 ° C. and 25 ° C. in advance at an outside air temperature of 10 ° C. and applied after 45 minutes. The circular portion set on the screen is a perfect circle with a diameter of 15 mm.

得られたカソードのマスキング面の写真を図3に示す。図3の(A)は樹脂温度を40℃に予熱した場合、及び(B)は樹脂温度を25℃に予熱した場合である。45℃に予熱した(A)では真円に近いきれいな電着部が得られたのに対し、25℃に予熱した(B)では円形が歪み、きれいな電着部が得られなかった。この結果は、予熱した樹脂を外気温10℃の条件の下で塗布する際に、樹脂の動粘度を(A)では10000〜30000cStの範囲内に保持できたのに対し、(B)では保持できなかったことによる。   A photograph of the masking surface of the obtained cathode is shown in FIG. 3A shows the case where the resin temperature is preheated to 40 ° C., and FIG. 3B shows the case where the resin temperature is preheated to 25 ° C. In (A) preheated to 45 ° C., a clean electrodeposition portion close to a perfect circle was obtained, whereas in (B) preheated to 25 ° C., the circle was distorted and a clean electrodeposition portion was not obtained. This result shows that when the preheated resin is applied under the condition of an outside air temperature of 10 ° C., the kinematic viscosity of the resin can be kept within the range of 10,000 to 30000 cSt in (A), while it is kept in (B). Because it was not possible.

また、得られたカソードのマスキング面について、それぞれ円形の電着部の直径を測定して最大値、最小値、平均値を求めた。更に、これらから電着部の面積の平均値と、スクリーンに設定された円形部分の真円に対する電着部の面積比を求めた。これらの結果を下記表1に示す。下記表1から分るように、樹脂温度を40℃に予熱した(A)では真円に対する面積比が92%であったのに対し、25℃に予熱した(B)では78%であった。   Further, with respect to the masking surface of the obtained cathode, the diameter of each circular electrodeposition portion was measured to obtain the maximum value, the minimum value, and the average value. Furthermore, from these, the average value of the area of the electrodeposition part and the area ratio of the electrodeposition part to the perfect circle of the circular part set on the screen were obtained. These results are shown in Table 1 below. As can be seen from Table 1 below, the area ratio to the perfect circle was 92% in (A) where the resin temperature was preheated to 40 ° C., whereas it was 78% in (B) where the resin temperature was preheated to 25 ° C. .

Figure 2008106292
Figure 2008106292

一液性エポキシ樹脂の樹脂温度と動粘度の関係を示すグラフである。It is a graph which shows the relationship between the resin temperature of a one-component epoxy resin, and kinematic viscosity. 一液性エポキシ樹脂の予熱による樹脂温度Yと外気温Xについて、塗布時の樹脂温度が25〜35℃の範囲内となる関係を示すグラフである。It is a graph which shows the relationship from which the resin temperature at the time of application | coating is in the range of 25-35 degreeC about the resin temperature Y and the external temperature X by preheating of a one-component epoxy resin. 実施例で得られたカソードのマスキング面の写真であり、外気温10℃に対し(A)は40℃に予熱した場合、(B)は25℃に予熱した場合を示す。It is the photograph of the masking surface of the cathode obtained in the Example, (A) preheats to 40 degreeC with respect to 10 degreeC of external temperature, (B) shows the case where it preheats to 25 degreeC.

Claims (2)

電解採取によって特殊形状の電気ニッケルが得られるように表面を絶縁物でマスキングしたカソードの製造方法において、マスキングのためカソード母板に塗布する絶縁物として一液性エポキシ樹脂を使用し、該一液性エポキシ樹脂の塗布時の動粘度を外気温にかかわらず10000〜30000cStに保つことを特徴とする特殊形状電気ニッケルの電解採取用カソードの製造方法。   In a method of manufacturing a cathode whose surface is masked with an insulating material so as to obtain electric nickel of a special shape by electrowinning, a one-component epoxy resin is used as an insulating material to be applied to the cathode base plate for masking. A method for producing a cathode for electrolytic collection of special-shaped electronickel, characterized in that the kinematic viscosity at the time of application of the conductive epoxy resin is kept at 10,000 to 30,000 cSt regardless of the outside temperature. 前記一液性エポキシ樹脂を予熱する際に、外気温Xに対しY=−0.82X+48.27の関係を満たす樹脂温度Yに予熱し、予熱直後から1時間の間にカソード母板に塗布することを特徴とする、請求項1に記載の特殊形状電気ニッケルの電解採取用カソードの製造方法。   When the one-component epoxy resin is preheated, it is preheated to a resin temperature Y that satisfies the relationship of Y = −0.82X + 48.27 with respect to the outside air temperature X, and is applied to the cathode base plate within one hour immediately after preheating. The method for producing a cathode for electrowinning specially shaped electronickel according to claim 1, wherein:
JP2006288300A 2006-10-24 2006-10-24 Method for producing cathode for electrowinning of special shape electric nickel Pending JP2008106292A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006288300A JP2008106292A (en) 2006-10-24 2006-10-24 Method for producing cathode for electrowinning of special shape electric nickel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006288300A JP2008106292A (en) 2006-10-24 2006-10-24 Method for producing cathode for electrowinning of special shape electric nickel

Publications (1)

Publication Number Publication Date
JP2008106292A true JP2008106292A (en) 2008-05-08

Family

ID=39439904

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006288300A Pending JP2008106292A (en) 2006-10-24 2006-10-24 Method for producing cathode for electrowinning of special shape electric nickel

Country Status (1)

Country Link
JP (1) JP2008106292A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018016362A1 (en) * 2016-07-21 2018-01-25 住友金属鉱山株式会社 Metal electrodeposition cathode plate and production method therefor
JP2020158794A (en) * 2019-03-25 2020-10-01 住友金属鉱山株式会社 Method for manufacturing cathode plate for metal electro-deposition
JP2020158793A (en) * 2019-03-25 2020-10-01 住友金属鉱山株式会社 Method for manufacturing cathode plate for metal electro-deposition

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018016362A1 (en) * 2016-07-21 2018-01-25 住友金属鉱山株式会社 Metal electrodeposition cathode plate and production method therefor
JP2018012865A (en) * 2016-07-21 2018-01-25 住友金属鉱山株式会社 Cathode plate for metal electro-deposition and manufacturing method thereof
JP2020158794A (en) * 2019-03-25 2020-10-01 住友金属鉱山株式会社 Method for manufacturing cathode plate for metal electro-deposition
JP2020158793A (en) * 2019-03-25 2020-10-01 住友金属鉱山株式会社 Method for manufacturing cathode plate for metal electro-deposition
JP7188216B2 (en) 2019-03-25 2022-12-13 住友金属鉱山株式会社 Manufacturing method of cathode plate for metal electrodeposition
JP7188217B2 (en) 2019-03-25 2022-12-13 住友金属鉱山株式会社 Manufacturing method of cathode plate for metal electrodeposition

Similar Documents

Publication Publication Date Title
JP6595548B2 (en) Electrolytic copper foil, method for producing electrolytic copper foil, battery current collector, and circuit board
US20070108060A1 (en) Method of preparing copper plating layer having high adhesion to magnesium alloy using electroplating
JP2009221592A (en) Electrolytic copper foil and process for producing the electrolytic copper foil
WO2007087050A3 (en) Electrocomposite coatings for hard chrome replacement
JP2008106292A (en) Method for producing cathode for electrowinning of special shape electric nickel
JP2004176171A (en) Non-cyanogen type electrolytic solution for plating gold
JPH0649958B2 (en) Method for manufacturing electrolytic copper foil
CN109680319A (en) The preparation method of the corrosion-resistant coatings of Mg alloy surface based on calcium salt
JPH0631461B2 (en) Method for manufacturing electrolytic copper foil
WO2018146841A1 (en) Metal plating solution and method for producing metal plated product
CN104099658A (en) Auxiliary anode for use in acid zinc-nickel alloy electroplating
WO2009044266A3 (en) System and method of plating metal alloys by using galvanic technology
JP4365415B2 (en) How to produce high adhesion thick protective coating of valve metal parts by micro arc oxidation
KR101313014B1 (en) Method for Treating the Surface of the Heat Sink for LED
JP6870389B2 (en) How to remove the oxide film on the surface of metal material
JP2005097676A (en) Plated copper film, photogravure using it and mold for lens
JP2017218631A (en) Air bubble removal method for precision electroforming method
SI1260615T1 (en) Metal coating of graphite
US20240030583A1 (en) Electrochemical method for fabrication of high-purity, high-conductivity corrugated waveguides
TWI363811B (en) Housing of portable electric device and method for making the same
JP2004307991A (en) Copper plating hardness maintaining agent and copper plating method, and gravure plate and lens die using the method
JP7059698B2 (en) Method of manufacturing copper film
JP2005206904A (en) METHOD OF PRODUCING Ni-W ALLOY FILM
JPH0672211B2 (en) Electrodeposition coating member and method for forming electrodeposition coating film
JP2011052259A (en) Method of peeling displacement plating layer